WO2019085446A1 - 二次再热机组再热汽温的自降阶多回路集中预估控制系统 - Google Patents

二次再热机组再热汽温的自降阶多回路集中预估控制系统 Download PDF

Info

Publication number
WO2019085446A1
WO2019085446A1 PCT/CN2018/088141 CN2018088141W WO2019085446A1 WO 2019085446 A1 WO2019085446 A1 WO 2019085446A1 CN 2018088141 W CN2018088141 W CN 2018088141W WO 2019085446 A1 WO2019085446 A1 WO 2019085446A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam temperature
control
reheat steam
ijl
model
Prior art date
Application number
PCT/CN2018/088141
Other languages
English (en)
French (fr)
Inventor
蔡戎彧
吕剑虹
于吉
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2019085446A1 publication Critical patent/WO2019085446A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/048Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor

Definitions

  • the invention relates to a self-reducing multi-loop centralized predictive control system for reheat steam temperature of a secondary reheat unit, belonging to the field of thermal power engineering and automatic control.
  • the units continue to develop higher parameters and use secondary reheat technology to further improve unit efficiency.
  • the complexity of the unit is further improved, the inertia of the controlled object is increased, and the control of the reheat steam temperature is more demanding.
  • the reheat steam temperature of the secondary reheat unit is generally controlled by adjusting the flue gas recirculation fan speed and the flue gas baffle opening degree.
  • the desuperheating water regulation is generally used for accidental water spray conditions.
  • the complexity of a supercritical unit system requires higher control accuracy and faster control.
  • the inertia of the system is large, and the order of the object model is high. If the step-down processing is not performed, the sampling period is more demanding. If the traditional PID control is used, the ideal effect is not achieved, which requires us to explore other control schemes.
  • the reheat steam temperature control process of the secondary reheat super-supercritical unit of the invention has the characteristics of large inertia and large hysteresis, and a self-reducing multi-loop centralized predictive control system for reheating steam temperature of the secondary reheat unit is proposed.
  • the predictive control can calculate the optimal control amount at the current moment by predicting the future output.
  • the robustness of the system is good, and the control effect is good.
  • the principle is clear, easy to calculate online, and the control effect is good.
  • the present invention provides a self-reducing multi-loop centralized predictive control system for reheat steam temperature of a secondary reheat unit, with the flue gas recirculation fan speed and the flue gas baffle opening as input.
  • the controller used in the predictive control system is the predictive controller.
  • the predictive controller includes:
  • a prediction module for predicting an output of each sampling moment in the future
  • An optimization performance index calculation module is configured to calculate an optimal control increment within a control range according to the set performance index
  • a control implementation module for applying the calculated optimal control law to the system.
  • the object model that the controller relies on is estimated by the experimental data.
  • a linear transfer function model at each load point is established, and the model of the intermediate load is established.
  • the linear transfer function model at the adjacent load point is calculated by the interpolation method.
  • the model is as follows:
  • the controllable autoregressive integral moving average model based on the centralized predictive controller is derived, namely the CARIMA model.
  • the model is as follows:
  • the model can be transformed into:
  • the predictive model by predicting the controller is:
  • ⁇ U [ ⁇ u 1 (k) ⁇ ⁇ u 1 (k+N u -1) ⁇ u 2 (k) ⁇ ⁇ u 2 (k+N u -1)] T
  • ⁇ U(kj) [ ⁇ u 1 (k-1) ⁇ ⁇ u 1 (kn b1 ) ⁇ u 2 (k-1) ⁇ ⁇ u 2 (kn b2 )] T
  • Y(k) [y 1 (k) ⁇ y 1 (kn a1 ) y 2 (k) ⁇ y 2 (kn a2 )] T
  • N is the prediction time domain
  • N u is the control time domain
  • Y p F 2 ⁇ U(kj)+GY(k) is the output prediction response based on past input and output;
  • the optimized performance indicators of the predictive controller are:
  • Y r [y 1r (k+1) ⁇ y 1r (k+N) y 2r (k+1) ⁇ y 2r (k+N)] T is the set value, and ⁇ is the control weight matrix;
  • the optimal control increment of the predictive controller is:
  • control implementation module takes the control increment of the current time k in the calculated optimal control increment sequence to act on the system:
  • the present invention provides a self-reducing multi-loop centralized predictive control system for reheat steam temperature of a secondary reheat unit, which has the following advantages:
  • the object can maintain good control effects when it has the characteristics of large inertia and large lag.
  • the flue gas recirculation fan speed and the flue gas baffle opening calculated by the controller are within the optimal range, and the variation range is reasonable, which will not cause a large fluctuation of the reheat steam temperature and the secondary reheat steam temperature. Improve system economy while ensuring safety.
  • FIG. 1 is a schematic diagram of a control system according to an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a self-reducing multi-loop centralized predictive control system for reheat steam temperature of a secondary reheat unit.
  • the reheat steam temperature control system includes a flue gas recirculation fan speed control loop and a flue gas block.
  • the plate opening degree control loop, the input quantity of the reheat steam temperature control system is the flue gas recirculation fan speed and the flue gas baffle opening degree, and the output thereof is a reheat steam temperature and a secondary reheat steam temperature, input and output
  • the input data is the flue gas recirculation fan speed and the flue gas baffle opening;
  • the output data is a reheat steam temperature.
  • the object model is fitted according to historical input and output data and subjected to reduction processing.
  • y 1r , y 2r are the set values of one reheat steam temperature and the second reheat steam temperature, respectively.
  • u 1 and u 2 are the maximum of the flue gas recirculation fan and the flue gas baffle opening calculated according to the optimized performance index.
  • the optimal control sequence, y 1 , y 2 is the actual output of the model for one reheat steam temperature and the second reheat steam temperature.
  • the object model of the reheat steam temperature control system is obtained by fitting the experimental data. By performing a step response test at multiple load points, a linear transfer function model at each load point is established, and the intermediate load model passes the established adjacent load.
  • the linear transfer function model at the point is calculated by interpolation method. The model is as follows:
  • the controllable autoregressive integral moving average model based on the centralized predictive controller is derived, namely the CARIMA model.
  • the model is as follows:
  • the model can be transformed into:
  • the output of the future time is predicted by predicting the prediction module of the controller.
  • the prediction model is:
  • ⁇ U [ ⁇ u 1 (k) ⁇ ⁇ u 1 (k+N u -1) ⁇ u 2 (k) ⁇ ⁇ u 2 (k+N u -1)] T
  • ⁇ U(kj) [ ⁇ u 1 (k-1) ⁇ ⁇ u 1 (kn b1 ) ⁇ u 2 (k-1) ⁇ ⁇ u 2 (kn b2 )] T
  • Y(k) [y 1 (k) ⁇ y 1 (kn a1 ) y 2 (k) ⁇ y 2 (kn a2 )] T
  • N is the prediction time domain
  • N u is the control time domain
  • Y p F 2 ⁇ U(kj)+GY(k) is the output prediction response based on past input and output.
  • Determining the optimal performance index calculation module of the controller, and calculating an optimal control increment within the control range, and optimizing performance indicators are:
  • Y r [y 1r (k+1) ⁇ y 1r (k+N) y 2r (k+1) ⁇ y 2r (k+N)] T is the set value, and ⁇ is the control weight matrix.
  • the control weighting coefficient is determined according to the fluctuation range allowed by the control amount.
  • the calculated optimal control law is applied to the system through the control implementation module of the predictive controller, and the control increment of the current time k in the calculated optimal control incremental sequence is:
  • the 660 MW ultra-supercritical secondary reheat unit of a power plant adopts the optimized control system of the present invention as an example to describe the content of the present invention in detail.
  • the sampling period is taken as 10s, the predicted time domain N is taken as 750, the control time domain N u is taken as 10, and the control weight matrix is taken. among them Near the 650MW load, the reheat steam temperature and the secondary reheat steam temperature are 601.2°C and 601.5°C respectively, the flue gas recirculation fan speed is 72%, and the flue gas baffle opening is 50%.
  • the set values of temperature and secondary reheat steam temperature increase step by 4 °C respectively. The results show that the temperature of one reheat steam and the second reheat steam can quickly follow the set value, and the maximum deviation of one reheat steam temperature is 0.5. °C, the maximum reheat steam temperature deviation is 0.7 °C, the deviation is small.
  • the above example shows that the self-reducing multi-loop centralized predictive control system for the reheat steam temperature of the secondary reheat unit of the present embodiment can effectively improve the control performance of the reheat steam temperature control system of the secondary reheat unit, and reheat once.
  • the steam temperature and the secondary reheat steam temperature quickly respond to the set value change, the fluctuation is small, and it is maintained within the safe range, and the economic and safety of the unit are guaranteed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,该控制系统由烟气再循环风机转速控制回路和烟气挡板开度控制回路构成,将一次再热汽温和二次再热汽温与设定值的偏差送入预估控制器,计算得出烟气再循环风机转速和烟气挡板开度的优化值,保证机组一次再热汽温和二次再热汽温维持在合理安全的范围内,本发明采用预估控制能够方便地处理大惯性多变量系统的优化问题,计算过程清晰、简单,工程应用时,编程实施方便,对未来输出偏差的预测能及时调节相应的控制量,一次再热汽温和二次再热汽温能稳定在合理的范围之内,保证了机组的稳定性和安全性,控制效果较传统PID控制好。

Description

二次再热机组再热汽温的自降阶多回路集中预估控制系统 技术领域
本发明涉及一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,属于热能动力工程和自动控制领域。
背景技术
随着对火电机组经济性要求进一步的提高,机组不断向更高参数发展,并采用二次再热技术,进一步提高机组效率。与此同时,机组的复杂性进一步提高,受控对象的惯性增大,对再热汽温的控制要求更高。二次再热机组再热汽温的控制一般通过调节烟气再循环风机转速和烟气挡板开度,减温水调节一般用于事故喷水情况。超临界机组系统的复杂性要求控制精度更高,控制动作更快。系统的惯性大,对象模型阶次高,若不进行降阶处理,对采样周期的要求较为苛刻。若采用传统PID控制,达不到理想的效果,这就需要我们探索其他控制方案。
发明内容
本发明二次再热超超临界机组的再热汽温控制过程具有大惯性、大滞后的特点提出了一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,预估控制能通过预测未来的输出计算当前时刻的最优控制量,系统的鲁棒性较好,同时控制效果良好,其原理清晰,易于在线计算,控制效果良好。
为解决上述技术问题,本发明提供了一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,以烟气再循环风机转速和烟气挡板开度作为输入,以一次再热汽温和二次再热汽温作为输出,包括烟气再循环风机转速控制回路、烟气挡板开度控制回路,该预估控制系统所采用的控制器为预估控制器,分别将一次再热汽温的设定值和二次再热汽温的设定值与所述预估控制器预测的输出的偏差送入所述预估控制器,该预估控制器输出烟气再循环风机转速和烟气挡板开度的优化控制序列,所述优化控制序列中取当前时刻的控制作用作用于经降阶的实际对象模型,得到一次再热汽温、二次再热汽温的实际输出,下一时刻继续相同计算,实现滚动优化。
所述预估控制器包括:
预测模块,用于预测未来各个采样时刻的输出;
优化性能指标计算模块,用于根据设定的性能指标计算控制范围内最优的控制增量;
控制实施模块,用于将计算所得最优控制律应用于系统。
进一步的,预估控制器所依赖的对象模型由实验数据拟合得出,通过在多个负荷点 做阶跃响应试验,建立各负荷点上的线性传递函数模型,中间负荷的模型通过已建立的相邻负荷点上的线性传递函数模型通过插值的方法计算得出,模型如下:
Figure PCTCN2018088141-appb-000001
对对象模型进行Pade近似法降
Figure PCTCN2018088141-appb-000002
Figure PCTCN2018088141-appb-000003
其幂级数展开式为
Figure PCTCN2018088141-appb-000004
其中,
Figure PCTCN2018088141-appb-000005
代入
p ij0=C ij0
p ij1=C ij1+C ij0q ij1
p ijl=C ijl+C ijl-1q ij0+ΛC ij0q ijl
C ijl+1+C ijlq ij1+Λ+C ijl-k+1q ijk=0
C ijl+2+C ijl+1q ij1+Λ+C ijl-k+2q ijk=0
C ijl+k+C ijl+k-1q ij1+Λ+C ijlq ijk=0      (5)
解得p ijs(s=1,2,Λl),q ijt(t=1,2Λk),降阶模型如下:
Figure PCTCN2018088141-appb-000006
根据降阶后的模型推导集中式预估控制器所依据的可控自回归积分滑动平均模型,即CARIMA模型,模型如下:
Figure PCTCN2018088141-appb-000007
其中,
Figure PCTCN2018088141-appb-000008
模型可转化成:
Figure PCTCN2018088141-appb-000009
通过预估控制器的预测模型为:
Y=F 1ΔU+F 2ΔU(k-j)+GY(k)    (10)
其中,
Y=[y 1(k+1) Λ y 1(k+N) y 2(k+1) Λ y 2(k+N)] T
ΔU=[Δu 1(k) Λ Δu 1(k+N u-1) Δu 2(k) Λ Δu 2(k+N u-1)] T
ΔU(k-j)=[Δu 1(k-1) Λ Δu 1(k-n b1) Δu 2(k-1) Λ Δu 2(k-n b2)] T
Y(k)=[y 1(k) Λ y 1(k-n a1) y 2(k) Λ y 2(k-n a2)] T
Figure PCTCN2018088141-appb-000010
n b1=max(n b11,n b21),n b2=max(n b12,n b22),n a1=n a11,n a2=n a22
N为预测时域,N u为控制时域,Y p=F 2ΔU(k-j)+GY(k)为基于过去输入输出的输出预测响应;
F 1、F 2、G的求解通过求解如下Diophantine方程:
Figure PCTCN2018088141-appb-000011
其中,
Figure PCTCN2018088141-appb-000012
Figure PCTCN2018088141-appb-000013
Figure PCTCN2018088141-appb-000014
Figure PCTCN2018088141-appb-000015
Figure PCTCN2018088141-appb-000016
进一步的,预估控制器的优化性能指标为:
J=[F 1ΔU+F 2ΔU(k-j)+GY(k)-Y r] T[F 1ΔU+F 2ΔU(k-j)+GY(k)-Y r]+ΔU TΓΔU
                                                     (11)
其中,Y r=[y 1r(k+1) Λ y 1r(k+N) y 2r(k+1) Λ y 2r(k+N)] T为设定值,Γ为控制权矩阵;
Figure PCTCN2018088141-appb-000017
时,所述预估控制器的最优控制增量为:
ΔU(k)=(F 1 TF 1+Γ) -1F 1 T[Y r-F 2ΔU(k-j)-GY(k)]     (12)。
进一步的,控制实施模块取计算得到的最优控制增量序列中当前时刻k的控制增量作用于系统:
u j(k)=u j(k-1)+Δu j(k),j=1,2    (13)
再以k+1时刻为基点进行下一时刻的最优控制增量序列计算,实现滚动优化。
有益效果:本发明与现有技术相比,本发明提出的一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,具有以下优点:
1、预估控制器的算法计算过程清晰、简单,工程应用时,编程实施非常方便;
2、能够适用于被控过程是线性模型或非线性模型情况,对象具有大惯性、大滞后等特点时也能保持良好的控制效果;
3、能保证一次再热汽温和二次再热汽温维持在稳定安全的范围内;
4、控制器计算得到的烟气再循环风机转速和烟气挡板开度在最优范围内,且变化幅度合理,不会使得一次再热汽温和二次再热汽温有较大的波动,提高系统经济性的同时保证了安全性。
附图说明
图1为本发明实施例控制系统示意图。啊
具体实施方式
下面结合实施例进一步阐述该发明方法。
如图1所示为一种二次再热机组再热汽温的自降阶多回路集中预估控制系统原理 图,再热汽温控制系统包括烟气再循环风机转速控制回路和烟气挡板开度控制回路,该再热汽温控制系统的输入量为烟气再循环风机转速和烟气挡板开度,其输出量为一次再热汽温和二次再热汽温,输入、输出量之间存在耦合,对象惯性较大,采用可降阶的预估控制算法,图1中:输入数据即烟气再循环风机转速、烟气挡板开度;输出数据为一次再热汽温、二次再热汽温。根据历史输入输出数据拟合出对象模型并进行降阶处理。y 1r,y 2r分别为一次再热汽温、二次再热汽温的设定值,
Figure PCTCN2018088141-appb-000018
为根据过去及当前时刻的输入和输出以及未来的输入计算得到的未来输出预测值,u 1,u 2分别为根据优化性能指标计算得到的烟气再循环风机、烟气挡板开度的最优控制序列,y 1,y 2为一次再热汽温、二次再热汽温的模型实际输出。
再热汽温控制系统对象模型由实验数据拟合得出,通过在多个负荷点做阶跃响应试验,建立各负荷点上的线性传递函数模型,中间负荷的模型通过已建立的相邻负荷点上的线性传递函数模型通过插值的方法计算得出,模型如下:
Figure PCTCN2018088141-appb-000019
对象模型采用Pade近似法进行降阶:对
Figure PCTCN2018088141-appb-000020
将其幂级数展开,
Figure PCTCN2018088141-appb-000021
其中,
Figure PCTCN2018088141-appb-000022
代入
p ij0=C ij0
p ij1=C ij1+C ij0q ij1
p ijl=C ijl+C ijl-1q ij0+ΛC ij0q ijl
C ijl+1+C ijlq ij1+Λ+C ijl-k+1q ijk=0
C ijl+2+C ijl+1q ij1+Λ+C ijl-k+2q ijk=0
C ijl+k+C ijl+k-1q ij1+Λ+C ijlq ijk=0    (5)
解得p ijs(s=1,2,Λl),q ijt(t=1,2Λk),降阶模型如下:
Figure PCTCN2018088141-appb-000023
根据降阶后的模型推导集中式预估控制器所依据的可控自回归积分滑动平均模型,即CARIMA模型,模型如下:
Figure PCTCN2018088141-appb-000024
其中,
Figure PCTCN2018088141-appb-000025
模型可转化成:
Figure PCTCN2018088141-appb-000026
通过预估控制器的预测模块,预测未来时刻的输出,预测模型为:
Y=F 1ΔU+F 2ΔU(k-j)+GY(k)      (10)
其中,
Y=[y 1(k+1) Λ y 1(k+N) y 2(k+1) Λ y 2(k+N)] T
ΔU=[Δu 1(k) Λ Δu 1(k+N u-1) Δu 2(k) Λ Δu 2(k+N u-1)] T
ΔU(k-j)=[Δu 1(k-1) Λ Δu 1(k-n b1) Δu 2(k-1) Λ Δu 2(k-n b2)] T
Y(k)=[y 1(k) Λ y 1(k-n a1) y 2(k) Λ y 2(k-n a2)] T
Figure PCTCN2018088141-appb-000027
n b1=max(n b11,n b21),n b2=max(n b12,n b22),n a1=n a11,n a2=n a22
N为预测时域,N u为控制时域,Y p=F 2ΔU(k-j)+GY(k)为基于过去输入输出的输出预测响应。
F 1、F 2、G的求解通过求解如下Diophantine方程:
Figure PCTCN2018088141-appb-000028
其中,
Figure PCTCN2018088141-appb-000029
Figure PCTCN2018088141-appb-000030
Figure PCTCN2018088141-appb-000031
Figure PCTCN2018088141-appb-000032
Figure PCTCN2018088141-appb-000033
确定所述控制器的优化性能指标计算模块,并计算控制范围内最优的控制增量,优化性能指标为:
J=[F 1ΔU+F 2ΔU(k-j)+GY(k)-Y r] T[F 1ΔU+F 2ΔU(k-j)+GY(k)-Y r]+ΔU TΓΔU
                                                      (11)
其中,Y r=[y 1r(k+1) Λ y 1r(k+N) y 2r(k+1) Λ y 2r(k+N)] T为设定值,Γ为控制权矩阵。根据控制量所允许的波动范围确定控制加权系数。
Figure PCTCN2018088141-appb-000034
时,所得控制增量即为最优控制增量:
ΔU(k)=(F 1 TF 1+Γ) -1F 1 T[Y r-F 2ΔU(k-j)-GY(k)]    (12)
通过预估控制器的控制实施模块,将计算所得最优控制律应用于系统,计算得到的最优控制增量序列中当前时刻k的控制增量为:
u j(k)=u j(k-1)+Δu j(k),j=1,2  (13)
再以k+1时刻为基点进行下一时刻的最优控制增量序列计算,实现滚动优化。
下面以某电厂660MW超超临界二次再热机组采用本发明的优化控制系统为例,详细说明本发明内容。
采样周期取为10s,预测时域N取750,控制时域N u取10,控制权矩阵取
Figure PCTCN2018088141-appb-000035
其中
Figure PCTCN2018088141-appb-000036
Figure PCTCN2018088141-appb-000037
在650MW负荷附近,一次再热汽温、二次再热汽温分别为601.2℃、601.5℃,烟气再循环风机转速为72%,烟气挡板开度为50%,将一次再热汽温、二次再热汽温设定值分别阶跃增加4℃,结果显示,一次再热汽温、二次再热汽温能快速跟随设定值,其中一次再热汽温最大偏差为0.5℃,二次再热汽温最大偏差为0.7℃,偏差很小。
以上实例表明:本实施例的二次再热机组再热汽温的自降阶多回路集中预估控制系统,能有效改善二次再热机组再热汽温控制系统的控制性能,一次再热汽温、二次再热汽温快速响应设定值变化,波动小,并维持在安全范围内,机组经济性和安全性均得到保障。

Claims (4)

  1. 一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,其特征在于:以烟气再循环风机转速和烟气挡板开度作为输入,以一次再热汽温和二次再热汽温作为输出,包括烟气再循环风机转速控制回路、烟气挡板开度控制回路,该预估控制系统所采用的控制器为预估控制器,分别将一次再热汽温的设定值和二次再热汽温的设定值与所述预估控制器预测的输出的偏差送入所述预估控制器,该预估控制器输出烟气再循环风机转速和烟气挡板开度的优化控制序列,所述优化控制序列中取当前时刻的控制作用作用于经降阶的实际对象模型,得到一次再热汽温、二次再热汽温的实际输出,下一时刻继续相同计算,实现滚动优化;
    所述预估控制器包括:
    预测模块,用于预测未来各个采样时刻的输出;
    优化性能指标计算模块,用于根据设定的性能指标计算控制范围内最优的控制增量;
    控制实施模块,用于将计算所得最优控制律应用于系统。
  2. 根据权利要求1所述的一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,其特征在于:所述预估控制器所依赖的对象模型由实验数据拟合得出,通过在多个负荷点做阶跃响应试验,建立各负荷点上的线性传递函数模型,中间负荷的模型通过已建立的相邻负荷点上的线性传递函数模型通过插值的方法计算得出,模型如下:
    Figure PCTCN2018088141-appb-100001
    对对象模型进行Pade近似法降阶,对
    Figure PCTCN2018088141-appb-100002
    其幂级数展开式为
    Figure PCTCN2018088141-appb-100003
    其中,
    Figure PCTCN2018088141-appb-100004
    代入
    p ij0=C ij0
    p ij1=C ij1+C ij0q ij1
    p ijl=C ijl+C ijl-1q ij0+ΛC ij0q ijl
    C ijl+1+C ijlq ij1+Λ+C ijl-k+1q ijk=0
    C ijl+2+C ijl+1q ij1+Λ+C ijl-k+2q ijk=0
    C ijl+k+C ijl+k-1q ij1+Λ+C ijlq ijk=0  (5)
    解得p ijs(s=1,2,Λl),q ijt(t=1,2Λk),降阶模型如下:
    Figure PCTCN2018088141-appb-100005
    根据降阶后的模型推导集中式预估控制器所依据的可控自回归积分滑动平均模型,即CARIMA模型,模型如下:
    Figure PCTCN2018088141-appb-100006
    其中,
    Figure PCTCN2018088141-appb-100007
    模型可转化成:
    Figure PCTCN2018088141-appb-100008
    通过预估控制器的预测模型为:
    Y=F 1ΔU+F 2ΔU(k-j)+GY(k)  (10)
    其中,
    Y=[y 1(k+1) Λ y 1(k+N) y 2(k+1) Λ y 2(k+N)] T
    ΔU=[Δu 1(k) Λ Δu 1(k+N u-1) Δu 2(k) Λ Δu 2(k+N u-1)] T
    ΔU(k-j)=[Δu 1(k-1) Λ Δu 1(k-n b1) Δu 2(k-1) Λ Δu 2(k-n b2)] T
    Y(k)=[y 1(k) Λ y 1(k-n a1) y 2(k) Λ y 2(k-n a2)] T
    Figure PCTCN2018088141-appb-100009
    n b1=max(n b11,n b21),n b2=max(n b12,n b22),n a1=n a11,n a2=n a22
    N为预测时域,N u为控制时域,Y p=F 2ΔU(k-j)+GY(k)为基于过去输入输出的输出预测响应;
    F 1、F 2、G的求解通过求解如下Diophantine方程:
    Figure PCTCN2018088141-appb-100010
    i,j=1,2,l为预测步数
    其中,
    Figure PCTCN2018088141-appb-100011
    Figure PCTCN2018088141-appb-100012
    Figure PCTCN2018088141-appb-100013
    Figure PCTCN2018088141-appb-100014
    Figure PCTCN2018088141-appb-100015
  3. 根据权利要求1所述的一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,其特征在于:所述预估控制器的优化性能指标为:
    J=[F 1ΔU+F 2ΔU(k-j)+GY(k)-Y r] T[F 1ΔU+F 2ΔU(k-j)+GY(k)-Y r]+ΔU TΓΔU
                                                                      (11)
    其中,Y r=[y 1r(k+1) Λ y 1r(k+N) y 2r(k+1) Λ y 2r(k+N)] T为设定值,Γ为控制权矩阵;
    Figure PCTCN2018088141-appb-100016
    时,所述预估控制器的最优控制增量为:
    ΔU(k)=(F 1 TF 1+Γ) -1F 1 T[Y r-F 2ΔU(k-j)-GY(k)]  (12)。
  4. 根据权利要求3所述的一种二次再热机组再热汽温的自降阶多回路集中预估控制系统,其特征在于:所述控制实施模块取计算得到的最优控制增量序列中当前时刻k的控制增量作用于系统:
    u j(k)=u j(k-1)+Δu j(k),j=1,2 (13)
    再以k+1时刻为基点进行下一时刻的最优控制增量序列计算,实现滚动优化。
PCT/CN2018/088141 2017-11-01 2018-05-24 二次再热机组再热汽温的自降阶多回路集中预估控制系统 WO2019085446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711057680.0 2017-11-01
CN201711057680.0A CN107908106B (zh) 2017-11-01 2017-11-01 二次再热机组再热汽温的自降阶多回路集中预估控制系统

Publications (1)

Publication Number Publication Date
WO2019085446A1 true WO2019085446A1 (zh) 2019-05-09

Family

ID=61842417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088141 WO2019085446A1 (zh) 2017-11-01 2018-05-24 二次再热机组再热汽温的自降阶多回路集中预估控制系统

Country Status (2)

Country Link
CN (1) CN107908106B (zh)
WO (1) WO2019085446A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107908106B (zh) * 2017-11-01 2019-11-12 东南大学 二次再热机组再热汽温的自降阶多回路集中预估控制系统
CN108762086B (zh) * 2018-06-19 2021-03-23 中国大唐集团科学技术研究院有限公司华东分公司 基于模型预测控制的二次再热蒸汽温度控制装置及控制系统
CN109654475B (zh) * 2018-11-26 2020-09-04 中国电力工程顾问集团西北电力设计院有限公司 一种二次再热机组再热汽温控制方法
CN111561693B (zh) * 2019-11-29 2021-12-17 上海圆曦电力科技有限公司 一种电站锅炉状态空间汽温控制的方法
CN111123704A (zh) * 2019-12-09 2020-05-08 国家能源集团泰州发电有限公司 一种二次再热机组再热汽温的节能型预测控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10301916A (ja) * 1997-04-23 1998-11-13 Ishikawajima Harima Heavy Ind Co Ltd 再熱器ガスダンパ開度制御装置
JP2000257801A (ja) * 1999-03-10 2000-09-22 Babcock Hitachi Kk プロセスの制御方法と流動層ボイラ及びその燃料供給方法
CN102566433A (zh) * 2012-02-08 2012-07-11 上海锅炉厂有限公司 二次再热直流锅炉-汽轮机dbc协调控制系统
CN106642069A (zh) * 2016-10-08 2017-05-10 西安西热控制技术有限公司 超超临界二次再热发电机组再热汽温复合控制策略
CN106871097A (zh) * 2017-01-10 2017-06-20 上海电力学院 电站两次再热机组的锅炉烟气余热回收系统
CN107908106A (zh) * 2017-11-01 2018-04-13 东南大学 二次再热机组再热汽温的自降阶多回路集中预估控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387311A (zh) * 2010-09-02 2012-03-21 深圳Tcl新技术有限公司 一种合成视频图像的装置以及合成视频图像的方法
US9110453B2 (en) * 2011-04-08 2015-08-18 General Cybernation Group Inc. Model-free adaptive control of advanced power plants
CN104075309A (zh) * 2014-06-30 2014-10-01 章礼道 燃用准东煤的二次再热电站锅炉
CN106019939B (zh) * 2016-06-20 2018-09-07 东南大学 基于非线性智能预测控制技术的超临界机组再热汽温优化控制系统
CN106169108B (zh) * 2016-07-14 2020-04-03 河海大学 含电池储能系统的主动配电网短期有功优化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10301916A (ja) * 1997-04-23 1998-11-13 Ishikawajima Harima Heavy Ind Co Ltd 再熱器ガスダンパ開度制御装置
JP2000257801A (ja) * 1999-03-10 2000-09-22 Babcock Hitachi Kk プロセスの制御方法と流動層ボイラ及びその燃料供給方法
CN102566433A (zh) * 2012-02-08 2012-07-11 上海锅炉厂有限公司 二次再热直流锅炉-汽轮机dbc协调控制系统
CN106642069A (zh) * 2016-10-08 2017-05-10 西安西热控制技术有限公司 超超临界二次再热发电机组再热汽温复合控制策略
CN106871097A (zh) * 2017-01-10 2017-06-20 上海电力学院 电站两次再热机组的锅炉烟气余热回收系统
CN107908106A (zh) * 2017-11-01 2018-04-13 东南大学 二次再热机组再热汽温的自降阶多回路集中预估控制系统

Also Published As

Publication number Publication date
CN107908106A (zh) 2018-04-13
CN107908106B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2019085446A1 (zh) 二次再热机组再热汽温的自降阶多回路集中预估控制系统
WO2019047561A1 (zh) 基于多参数动态矩阵控制的火电机组分布式协调控制系统
CN106919053A (zh) 一种基于变结构预测控制算法的火电机组协调控制系统
CN102401371A (zh) 一种基于多变量预测控制的再热气温优化控制方法
CN106019939A (zh) 基于非线性智能预测控制技术的超临界机组再热汽温优化控制系统
Wang et al. An improved coordinated control strategy for boiler-turbine units supplemented by cold source flow adjustment
CN104456513B (zh) 一种火力发电厂主汽温预估优化控制方法
CN112180737B (zh) 一种基于自抗扰控制和类史密斯预估的控制系统控制方法
CN110879620A (zh) 一种核电站立式蒸汽发生器液位控制方法以及系统
CN111637444A (zh) 一种基于q学习的核电蒸汽发生器水位控制方法
CN103134046A (zh) 一种火电机组过热汽温两级协调预测控制方法
CN108361683B (zh) 一种全负荷段再热气温智能控制系统
CN113835342B (zh) 一种过热汽温系统的抗扰预测控制方法
CN110673482B (zh) 一种基于神经网络预测的电站燃煤锅炉智能控制方法和系统
CN113883497A (zh) 一种火电厂锅炉再热汽温优化控制方法
CN110955271A (zh) 火电机组除氧器水位控制方法、装置、系统和存储介质
CN108762086B (zh) 基于模型预测控制的二次再热蒸汽温度控制装置及控制系统
CN113091088A (zh) 一种基于双阶段神经网络的锅炉燃烧广义预测控制方法
CN113282043A (zh) 基于多变量状态空间模型的超超临界机组协调控制方法
CN103363812A (zh) 一种水泥熟料篦冷机控制方法
Li et al. Robust regulation for superheated steam temperature control based on data-driven feedback compensation
Chen et al. Variable discourse of universe fuzzy-PID temperature control system for vacuum smelting based on PLC
Ma et al. The application of model free adaptive control
CN114383130B (zh) 锅炉过热汽温度控制方法、装置、设备及存储介质
CN212565736U (zh) 一种二次再热主蒸汽温度串级控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872099

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18872099

Country of ref document: EP

Kind code of ref document: A1