WO2019085174A1 - 用于调节rgbw液晶显示器亮度的方法及液晶显示器 - Google Patents

用于调节rgbw液晶显示器亮度的方法及液晶显示器 Download PDF

Info

Publication number
WO2019085174A1
WO2019085174A1 PCT/CN2017/116041 CN2017116041W WO2019085174A1 WO 2019085174 A1 WO2019085174 A1 WO 2019085174A1 CN 2017116041 W CN2017116041 W CN 2017116041W WO 2019085174 A1 WO2019085174 A1 WO 2019085174A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
pixel electrode
electrode corresponding
brightness
Prior art date
Application number
PCT/CN2017/116041
Other languages
English (en)
French (fr)
Inventor
唐岳军
陈阳
姜晓辉
刘丹丹
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/740,186 priority Critical patent/US20200035196A1/en
Publication of WO2019085174A1 publication Critical patent/WO2019085174A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133609Direct backlight including means for improving the color mixing, e.g. white
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/52RGB geometrical arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0452Details of colour pixel setup, e.g. pixel composed of a red, a blue and two green components
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0465Improved aperture ratio, e.g. by size reduction of the pixel circuit, e.g. for improving the pixel density or the maximum displayable luminance or brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness

Definitions

  • the invention relates to a display panel technology, in particular to a method for adjusting the brightness of an RGBW liquid crystal display and a liquid crystal display.
  • RGB three-color display systems in liquid crystal displays.
  • the RGBW four-color system not only has a red sub-pixel (R), a green sub-pixel (G), and a blue sub-pixel (B), but also includes a brightness enhancement sub-pixel (W), so that the RGB three-color system can be fully realized. All of the features, but also has the advantages of high light efficiency and low power consumption.
  • W sub-pixels can also cause optical problems such as decreased color saturation of the liquid crystal display and white-color coordinate shifting.
  • W sub-pixels are added. The purpose of improving light efficiency is not fully satisfied.
  • the present invention provides a method for adjusting the brightness of an RGBW liquid crystal display and a liquid crystal display, which improves the application range, display quality, and human eye viewing comfort of the RGBW four-color display system liquid crystal display.
  • the present invention provides a method for adjusting the brightness of an RGBW liquid crystal display, wherein the liquid crystal display includes RGBW sub-pixels, wherein the brightness of the W sub-pixels is adjusted by adjusting the width, spacing, and liquid crystal of the sub-pixel electrodes corresponding to the W sub-pixels.
  • One or more of the thickness, the number of branches, the channel region at the sub-pixel electrode corresponding to the W sub-pixel, and the aperture ratio at the sub-pixel electrode corresponding to the W sub-pixel are realized.
  • the width of the sub-pixel electrode corresponding to the W sub-pixel is specifically set to set the width of the sub-pixel electrode corresponding to the W sub-pixel to be larger or smaller than the width of the sub-pixel electrode corresponding to the RGB sub-pixel, to realize W Adjustment of sub-pixel brightness.
  • the spacing of the sub-pixel electrodes corresponding to the W sub-pixels is specifically such that the spacing between the branches of the sub-pixel electrodes corresponding to the W sub-pixels is set to be larger or smaller than the sub-pixel electrodes corresponding to the RGB sub-pixels.
  • the spacing between the branches enables the adjustment of the brightness of the W sub-pixels.
  • the liquid crystal cell thickness of the sub-pixel electrode corresponding to the W sub-pixel is specifically set to set the height of the sub-pixel electrode corresponding to the W sub-pixel to be higher or lower than the sub-pixel electrode corresponding to the RGB sub-pixel. At the height, the adjustment of the brightness of the W sub-pixel is realized.
  • the number of branches of the sub-pixel electrode corresponding to the W sub-pixel is specifically set to set the number of branches of the sub-pixel electrode corresponding to the W sub-pixel to be larger or smaller than the number of branches of the sub-pixel electrode corresponding to the RGB sub-pixel. To achieve the adjustment of the brightness of the W sub-pixel.
  • the channel region at the sub-pixel electrode corresponding to the W sub-pixel is specifically set to set a width of a channel region at a sub-pixel electrode corresponding to the W sub-pixel to be larger or smaller than that of the RGB sub-pixel.
  • the width of the channel region at the sub-pixel electrode and/or the length of the channel region at the sub-pixel electrode corresponding to the W sub-pixel is set to be larger or smaller than the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel Length, the adjustment of the brightness of the W sub-pixel is realized.
  • the width of the channel region at the sub-pixel electrode corresponding to the W sub-pixel is set to be larger or smaller than the width of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel or the sub-pixel corresponding to the sub-pixel
  • the length of the channel region at the pixel electrode is set to be larger or smaller than the length of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel, and the adjustment of the luminance of the W sub-pixel is achieved.
  • the aperture ratio at the sub-pixel electrode corresponding to the W sub-pixel is specifically set to the aperture ratio at the sub-pixel electrode corresponding to the W sub-pixel is set to be larger or smaller than the sub-pixel electrode corresponding to the RGB sub-pixel The aperture ratio is adjusted to achieve the brightness of the W sub-pixel.
  • the present invention also provides a liquid crystal display comprising a color film substrate and an array substrate, the color film substrate comprising RGBW sub-pixels, the array substrate comprising sub-pixel electrodes corresponding to RGBW sub-pixels, the brightness of the W sub-pixels is adopted
  • the method for adjusting the brightness of the RGBW liquid crystal display achieves brightness adjustment of the W sub-pixel.
  • the brightness of the W sub-pixel is adjusted by adjusting the width, the pitch of the sub-pixel electrode corresponding to the W sub-pixel, the thickness of the liquid crystal cell, the number of branches, and the groove at the sub-pixel electrode corresponding to the W sub-pixel.
  • the one or more modes of the aperture ratio at the sub-pixel electrode corresponding to the track region and the W sub-pixel are overcome, which overcomes the shortcomings of the liquid crystal display of the RGBW four-color display system, and expands the advantages of the liquid crystal display of the RGBW four-color display system.
  • the application range, display quality and viewing comfort of the RGBW four-color display system liquid crystal display are improved.
  • 1-1 is a schematic structural diagram of a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 1 of the present invention
  • 1-2 is a schematic structural diagram of a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 2 of the present invention.
  • 2-1 is a schematic structural diagram of a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 3 of the present invention.
  • FIG. 2-2 is a schematic structural diagram of a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 4 of the present invention.
  • 3-1 is a schematic structural diagram of a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 5 of the present invention.
  • 3-2 is a schematic structural diagram of a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 6 of the present invention.
  • 4-1 is a schematic diagram 1 of a channel region at a sub-pixel electrode corresponding to a W sub-pixel in the prior art
  • 4-2 is a schematic diagram 2 of a channel region at a sub-pixel electrode corresponding to a W sub-pixel in the prior art
  • 4-3 is a schematic structural diagram of a channel region at a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 7 of the present invention.
  • FIG. 4-4 is a schematic structural diagram of a channel region at a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 8 of the present invention.
  • FIGS. 4-5 are schematic diagrams showing the structure of a channel region at a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 9 of the present invention.
  • FIGS. 4-6 are schematic diagrams showing the structure of a channel region at a sub-pixel electrode corresponding to a W sub-pixel according to Embodiment 10 of the present invention.
  • 5-1 is a schematic diagram of a W sub-pixel area in the prior art
  • 5-2 is a schematic diagram showing the area of a W sub-pixel of Embodiment 11 of the present invention.
  • 5-3 is a schematic diagram showing the area of a W sub-pixel of Embodiment 12 of the present invention.
  • the invention discloses a method for adjusting the brightness of an RGBW liquid crystal display, wherein the liquid crystal display comprises RGBW sub-pixels, wherein the brightness of the W sub-pixels is adjusted by adjusting the width, the spacing of the sub-pixel electrodes corresponding to the W sub-pixels, and the liquid crystal cell.
  • One or more of the thickness, the number of branches, the channel region at the sub-pixel electrode corresponding to the W sub-pixel, and the aperture ratio at the sub-pixel electrode corresponding to the W sub-pixel are implemented, wherein:
  • the width of the sub-pixel electrode corresponding to the W sub-pixel is adjusted to set the width of the sub-pixel electrode corresponding to the W sub-pixel to be larger or smaller than the width of the sub-pixel electrode corresponding to the RGB sub-pixel, thereby realizing the adjustment of the brightness of the W sub-pixel.
  • Adjusting the spacing of the sub-pixel electrodes corresponding to the W sub-pixels is specifically: setting the spacing between the branches of the sub-pixel electrodes corresponding to the W sub-pixels to be larger or smaller than the spacing between the branches of the sub-pixel electrodes corresponding to the RGB sub-pixels , to achieve the adjustment of the brightness of the W sub-pixel;
  • Adjusting the thickness of the liquid crystal cell of the sub-pixel electrode corresponding to the W sub-pixel is specifically setting the height of the sub-pixel electrode corresponding to the W sub-pixel to be higher or lower than the height of the sub-pixel electrode corresponding to the RGB sub-pixel, thereby realizing W Adjustment of sub-pixel brightness;
  • Adjusting the number of branches of the sub-pixel electrode corresponding to the W sub-pixel is specifically: setting the number of branches of the sub-pixel electrode corresponding to the W sub-pixel to be larger or smaller than the number of branches of the sub-pixel electrode corresponding to the RGB sub-pixel, and implementing the W sub-pixel Adjustment of brightness;
  • the channel region at the sub-pixel electrode corresponding to the W sub-pixel is adjusted to set the width of the channel region at the sub-pixel electrode corresponding to the W sub-pixel to be larger or smaller than the sub-pixel electrode corresponding to the RGB sub-pixel.
  • the width of the channel region and/or the length of the channel region at the sub-pixel electrode corresponding to the W sub-pixel is set to be larger or smaller than the length of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel, to realize the W sub- Adjusting the brightness of the pixel; optionally, setting the width of the channel region at the sub-pixel electrode corresponding to the W sub-pixel to be larger or smaller than the width of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel or
  • the length of the channel region at the sub-pixel electrode corresponding to the sub-pixel is set to be larger or smaller than the length of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel, thereby realizing adjustment of the brightness of the W sub-pixel, the channel
  • the aperture ratio at the sub-pixel electrode corresponding to the W sub-pixel is adjusted to set the aperture ratio at the sub-pixel electrode corresponding to the W sub-pixel to be larger or smaller than the aperture ratio at the sub-pixel electrode corresponding to the RGB sub-pixel. Adjusting the brightness of the W sub-pixel, specifically, by changing the area of the W sub-pixel, thereby adjusting the aperture ratio at the W sub-pixel, as an implementation manner, the area of the W sub-pixel can be increased by adding the W sub-pixel area The line width of the black matrix is achieved.
  • the W sub-pixel design has more The high light efficiency can better realize the low power consumption and high brightness of the liquid crystal display, and can be used for outdoor display/text display.
  • the W sub-pixel design has lower brightness than the conventional W sub-pixel in the present invention
  • the second applicable scene W sub-pixel design has lower light efficiency, and can reduce the color saturation reduction caused by the W sub-pixel addition,
  • Optical problems such as white point color coordinate drift can be used for liquid crystal displays such as indoor display/picture display that require strict image quality.
  • the width of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 is set larger than the sub-pixel (102, 103, 104) corresponding to the RGB sub-pixel (102, 103, 104).
  • the width of the pixel electrode 202 and the pitch between the branches 2011 of the sub-pixel electrode 201 corresponding to the W sub-pixel 101 are set to be larger than the branch 2021 of the sub-pixel electrode 202 corresponding to the RGB sub-pixels (102, 103, 104).
  • the width of the sub-pixels 201 on the array substrate 200 corresponding to the W sub-pixels 101 in the color filter substrate 100 can be set to be larger than the RGB sub-pixels.
  • the width of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 is set to be smaller than the sub-pixel (102, 103, 104) corresponding to the RGB sub-pixel (102, 103, 104).
  • the width of the pixel electrode 202 and the pitch between the branches 2011 of the sub-pixel electrode 201 corresponding to the W sub-pixel 101 are set to be smaller than the branch 2021 of the sub-pixel electrode 202 corresponding to the RGB sub-pixels (102, 103, 104).
  • the spacing between the sub-pixels can be reduced by the brightness of the W sub-pixels, that is, the brightness of the W sub-pixels is lower than that of the conventional W sub-pixels.
  • the electrode pattern is not specifically limited herein.
  • the width of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 is set larger than the sub-pixel (102, 103, 104) corresponding to the RGB sub-pixel (102, 103, 104).
  • the width of the pixel electrode 202 is such that the brightness of the W sub-pixel is improved, that is, the brightness of the W sub-pixel is higher than that of the conventional W sub-pixel.
  • This embodiment is applicable to the first use scenario, where the sub-pixel electrode pattern can be used.
  • a technical electrode pattern is not specifically limited herein.
  • the number of sub-pixel electrodes corresponding to the RGBW sub-pixels and the pitch are equal.
  • the width of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 is set smaller than the sub-pixel (102, 103, 104) corresponding to the RGB sub-pixel (102, 103, 104).
  • the width of the pixel electrode 202 is such that the brightness of the W sub-pixel is reduced, that is, the brightness of the W sub-pixel is lower than that of the conventional W sub-pixel.
  • This embodiment is applicable to the second use scenario, where the sub-pixel electrode pattern can be used.
  • a technical electrode pattern is not specifically limited herein.
  • the present invention is not limited thereto, and the number of branches of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 may be set to be smaller than the sub-pixel electrode corresponding to the RGB sub-pixel.
  • the number of branches for example, the sub-pixel electrode corresponding to the RGB sub-pixel has two slit slit branches (not shown), and the sub-pixel electrode corresponding to the W sub-pixel has one slit slit branch, further implementing the W sub-pixel Adjustment of pixel brightness.
  • the height of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 is set lower than that corresponding to the RGB sub-pixels (102, 103, 104).
  • the height of the sub-pixel electrode 202 is increased to improve the brightness of the W sub-pixel; specifically, the flat layer 203 in the array substrate 200 corresponding to the position of the W sub-pixel 101 is etched to form a counterbore 204, which will be
  • the sub-pixel electrode 201 corresponding to the sub-pixel 101 is disposed in the counterbore 204, so that the height of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 is set lower than the RGB sub-pixel.
  • the height of the sub-pixel electrode 202 corresponding to the pixel (102, 103, 104) is such that the thickness of the liquid crystal cell at the position of the W sub-pixel is greater than the thickness of the liquid crystal cell at the position of the RGB sub-pixel, thereby improving the brightness of the W sub-pixel, that is, the W sub-pixel.
  • the brightness is brighter than that of a conventional W sub-pixel; this embodiment is applicable to the first use scenario.
  • the pitch, the width, and the electrode pattern of the sub-pixel electrodes corresponding to the RGBW sub-pixels may be the same.
  • the height of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 is set higher than that corresponding to the RGB sub-pixels (102, 103, 104).
  • the height of the sub-pixel electrode 202 is reduced to reduce the brightness of the W sub-pixel; specifically, the flat layer 203 in the array substrate 200 corresponding to the position of the W sub-pixel 101 is thickened, so that the high stage 205 is formed here, and W
  • the sub-pixel electrode 201 corresponding to the sub-pixel 101 is disposed on the upper stage 205, so that the height of the sub-pixel electrode 201 on the array substrate 200 corresponding to the W sub-pixel 101 in the color filter substrate 100 is set higher than the RGB sub-pixel.
  • the height of the sub-pixel electrode 202 corresponding to (102, 103, 104) is such that the liquid crystal cell thickness of the W sub-pixel position is smaller than the liquid crystal cell thickness of the RGB sub-pixel position, thereby reducing the brightness of the W sub-pixel, that is, the W sub-pixel.
  • the brightness is lower than that of a conventional W sub-pixel; this embodiment is applicable to the second use scenario.
  • the high stage 205 may be obtained by etching the flat layer 203 except for the sub-pixel electrode 201 corresponding to the W sub-pixel 101, but the invention is not limited thereto, for example, by depositing an insulating layer and etching the insulating layer. A region other than the sub-pixel electrode 201 corresponding to the W sub-pixel 101 is obtained.
  • the pitch, the width, and the electrode pattern of the sub-pixel electrodes corresponding to the RGBW sub-pixels may be the same.
  • FIGS. 4-1 to 4-6 schematically only show schematic views of the width D and the length L of the channel region.
  • FIG. 4-1 it is a schematic diagram of a channel region located at a sub-pixel electrode corresponding to a W sub-pixel in the prior art.
  • the channel regions at the sub-pixel electrodes of the RGBW sub-pixel are the same, as shown in FIG.
  • the seventh embodiment adjusts the width D of the channel region at the sub-pixel electrode corresponding to the W sub-pixel to be smaller than the width D of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel. Therefore, the carrier can pass through the channel region faster, and has higher charging efficiency, thereby improving the brightness of the W sub-pixel, that is, the brightness of the W sub-pixel is higher than that of the conventional W sub-pixel;
  • the example applies to the first usage scenario.
  • the width D of the channel region at the sub-pixel electrode corresponding to the W sub-pixel is larger than the width D of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel, the carrier will pass through the channel region more slowly, and has lower charging efficiency, thus lowering the brightness of the W sub-pixel, that is, the brightness of the W sub-pixel is lower than that of the conventional W sub-pixel; the embodiment is applicable.
  • the width D of the channel region at the sub-pixel electrode corresponding to the W sub-pixel to be larger than the width D of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel
  • FIG. 4-2 it is a schematic diagram of a channel region located at a sub-pixel electrode corresponding to a W sub-pixel in the prior art.
  • the channel regions at the sub-pixel electrodes of the RGBW sub-pixel are the same, as shown in FIG.
  • the present embodiment 9 adjusts the length L of the channel region at the sub-pixel electrode corresponding to the W sub-pixel to be larger than the length L of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel.
  • the width of the channel region at the sub-pixel electrode corresponding to the W sub-pixel and the width of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel remain unchanged, that is, the width is equal, and the charging efficiency is higher. Therefore, the brightness of the W sub-pixel is improved, that is, the brightness of the W sub-pixel is higher than that of the conventional W sub-pixel; this embodiment is applicable to the first use scenario.
  • the length L of the channel region at the sub-pixel electrode corresponding to the W sub-pixel is set to be smaller than the length L of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel, and
  • the width D of the channel region at the sub-pixel electrode corresponding to the W sub-pixel and the width D of the channel region at the sub-pixel electrode corresponding to the RGB sub-pixel remain unchanged, that is, the width is equal, and the charging efficiency is lower. Therefore, the luminance of the W sub-pixel is lowered, that is, the luminance of the W sub-pixel is lower than that of the conventional W sub-pixel; this embodiment is applicable to the second usage scenario.
  • the embodiment 11 increases the area of the W sub-pixel even if the W sub-pixel
  • the area of the RGB sub-pixels (101, 102, 103) is larger than that of the RGB sub-pixels, thereby adjusting the aperture ratio at the W sub-pixels.
  • the line width of the black matrix 300 of the W sub-pixel 101 area is set to be smaller than the RGB sub-pixel.
  • the line width of the black matrix 300 of the pixel (101, 102, 103) region is realized, the W sub-pixel aperture ratio is increased, the light efficiency is increased, the W sub-pixel has a higher transmittance, and the brightness of the W sub-pixel is improved, that is, The luminance of the W sub-pixel is higher than that of the conventional W sub-pixel; this embodiment is applicable to the first use scenario.
  • the aperture ratio at the W sub-pixel is adjusted, specifically, the W sub-pixel
  • the line width of the black matrix 300 of the 101 region is set to be smaller than the line width of the black matrix 300 of the RGB sub-pixel (101, 102, 103) region, so that the W sub-pixel aperture ratio is reduced, the light efficiency is lowered, and the W sub-pixel has more
  • the low transmittance reduces the brightness of the W sub-pixels, that is, the brightness of the W sub-pixels is lower than that of the conventional W sub-pixels; this embodiment is applicable to the second use scenario.
  • the two or more of the embodiments 1-12 may be combined to further satisfy the requirement of the brightness of the W sub-pixel, and no specific details are provided herein.
  • the liquid crystal display is an FFS (Fringe Field Switching) mode liquid crystal display.
  • the W sub-pixel phase can also be realized by the method of Embodiment 1-12.
  • the sub-pixel electrode corresponding to the W sub-pixel may have a smaller area. This proposal does not limit the display mode of the LCD.
  • the present invention also discloses a liquid crystal display including a color filter substrate 100 and an array substrate 200.
  • the color film substrate includes RGBW sub-pixels 102, 103, 104, and 101, and the array substrate includes RGBW.
  • Sub-pixel corresponding to the sub-pixel electrodes 202, 201, the brightness of the W sub-pixel 101 uses one or more of the above methods for adjusting the brightness of the RGBW liquid crystal display to achieve brightness adjustment of the W sub-pixel, The method for adjusting the brightness of the RGBW liquid crystal display has been described in detail above, and will not be described here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)

Abstract

提供了一种用于调节RGBW液晶显示器亮度的方法,液晶显示器包括RGBW子像素(101,102,103,104),其中,W子像素(101)的亮度通过调节W子像素(101)所对应的子像素电极(201)的宽度、间距、液晶盒厚、分支数量、W子像素(101)所对应的子像素电极(201)处的沟道区、W子像素(101)所对应的子像素电极(201)处的开口率中的一种或一种以上方式实现。还提供了一种液晶显示器,W子像素(101)的亮度采用用于调节RGBW液晶显示器亮度的方法实现对W子像素(101)的亮度调节。其克服了RGBW四色显示系统液晶显示器的缺点,扩大了RGBW四色显示系统液晶显示器的优点,提升了RGBW四色显示系统液晶显示器的应用范围、显示品质和人眼观看舒适性。

Description

用于调节RGBW液晶显示器亮度的方法及液晶显示器 技术领域
本发明涉及一种显示面板技术,特别是一种用于调节RGBW液晶显示器亮度的方法及液晶显示器。
背景技术
在液晶显示器中有RGB三色显示系统,然而随着分辨率提升需要液晶显示器的光效率提升以达到低功耗、高亮度的目的,特别是4K及其以上分辨率产品,因此RGBW四色显示器系统被提出来。RGBW四色系统不仅具有红色子像素(R)、绿色子像素(G)和蓝色子像素(B),其还包括亮度强化子像素(W),从而能够完全实现RGB三色系统所能够实现的全部功能,而且其具有光效高、功耗较低的优点。然而W子像素的加入也会导致液晶显示器色饱和度降低、白点色坐标漂移等光学问题,然而在一些过高PPI(4K分辨率或以上)和适用户外的显示器中W子像素的加入并未完全满足光效率提高的目的。
发明内容
为克服现有技术的不足,本发明提供一种用于调节RGBW液晶显示器亮度的方法及液晶显示器,提升了RGBW四色显示系统液晶显示器的应用范围、显示品质和人眼观看舒适性。
本发明提供了一种用于调节RGBW液晶显示器亮度的方法,所述液晶显示器包括RGBW子像素,其中,W子像素的亮度通过调节W子像素所对应的子像素电极的宽度、间距、液晶盒厚、分支数量、W子像素所对应的子像素电极处的沟道区、W子像素所对应的子像素电极处的开口率中的一种或一种以上方式实现。
进一步地,所述调节W子像素所对应的子像素电极的宽度具体为将W子像素所对应的子像素电极的宽度设置为大于或小于RGB子像素所对应的子像素电极的宽度,实现W子像素亮度的调节。
进一步地,所述调节W子像素所对应的子像素电极的间距具体为将W子像素所对应的子像素电极的分支之间的间距设置为大于或小于RGB子像素所对应的子像素电极的分支之间的间距,实现W子像素亮度的调节。
进一步地,所述调节W子像素所对应的子像素电极的液晶盒厚具体为将W子像素所对应的子像素电极所在高度设置为高于或低于RGB子像素所对应的子像素电极的所在高度,实现W子像素亮度的调节。
进一步地,所述调节W子像素所对应的子像素电极的分支数量具体为将W子像素所对应的子像素电极的分支数量设置为大于或小于RGB子像素所对应的子像素电极的分支数量,实现W子像素亮度的调节。
进一步地,所述调节W子像素所对应的子像素电极处的沟道区具体为将W子像素所对应的子像素电极处的沟道区的宽度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的宽度和/或将W子像素所对应的子像素电极处的沟道区的长度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的长度,实现W子像素亮度的调节。
进一步地,将W子像素所对应的子像素电极处的沟道区的宽度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的宽度或将W子像素所对应的子像素电极处的沟道区的长度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的长度,实现W子像素亮度的调节。
进一步地,所述调节W子像素所对应的子像素电极处的开口率具体为将W子像素所对应的子像素电极处的开口率设置为大于或小于RGB子像素所对应的子像素电极处的开口率,实现W子像素亮度的调节。
本发明还提供了一种液晶显示器,包括彩膜基板和阵列基板,所述彩膜基板包括RGBW子像素,阵列基板包括与RGBW子像素相对应的子像素电极,所述W子像素的亮度采用所述的用于调节RGBW液晶显示器亮度的方法实现对W子像素的亮度调节。
本发明与现有技术相比,采用W子像素的亮度通过调节W子像素所对应的子像素电极的宽度、间距、液晶盒厚、分支数量、W子像素所对应的子像素电极处的沟道区、W子像素所对应的子像素电极处的开口率中的一种或一种以上方式实现,克服了RGBW四色显示系统液晶显示器的缺点,扩大了RGBW四色显示系统液晶显示器的优点,提升了RGBW四色显示系统液晶显示器的应用范围、显示品质和人眼观看舒适性。
附图说明
图1-1是本发明实施例1的W子像素所对应的子像素电极的结构示意图;
图1-2是本发明实施例2的W子像素所对应的子像素电极的结构示意图;
图2-1是本发明实施例3的W子像素所对应的子像素电极的结构示意图;
图2-2是本发明实施例4的W子像素所对应的子像素电极的结构示意图;
图3-1是本发明实施例5的W子像素所对应的子像素电极的结构示意图;
图3-2是本发明实施例6的W子像素所对应的子像素电极的结构示意图;
图4-1为现有技术中W子像素所对应的子像素电极处的沟道区示意图一;
图4-2为现有技术中W子像素所对应的子像素电极处的沟道区示意图二;
图4-3是本发明实施例7的W子像素所对应的子像素电极处的沟道区结构示意图;
图4-4是本发明实施例8的W子像素所对应的子像素电极处的沟道区结构示意图;
图4-5是本发明实施例9的W子像素所对应的子像素电极处的沟道区结构示意图;
图4-6是本发明实施例10的W子像素所对应的子像素电极处的沟道区结构示意图;
图5-1为现有技术中W子像素面积的示意图;
图5-2是本发明实施例11的W子像素面积的示意图;
图5-3是本发明实施例12的W子像素面积的示意图。
具体实施方式
下下面结合附图和实施例对本发明作进一步详细说明。然而,可以以许多不 同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
本发明公开了一种用于调节RGBW液晶显示器亮度的方法,所述液晶显示器包括RGBW子像素,其中,W子像素的亮度通过调节W子像素所对应的子像素电极的宽度、间距、液晶盒厚、分支数量、W子像素所对应的子像素电极处的沟道区、W子像素所对应的子像素电极处的开口率中的一种或一种以上方式实现,其中:
调节W子像素所对应的子像素电极的宽度具体为将W子像素所对应的子像素电极的宽度设置为大于或小于RGB子像素所对应的子像素电极的宽度,实现W子像素亮度的调节;
调节W子像素所对应的子像素电极的间距具体为将W子像素所对应的子像素电极的分支之间的间距设置为大于或小于RGB子像素所对应的子像素电极的分支之间的间距,实现W子像素亮度的调节;
调节W子像素所对应的子像素电极的液晶盒厚具体为将W子像素所对应的子像素电极所在高度设置为高于或低于RGB子像素所对应的子像素电极的所在高度,实现W子像素亮度的调节;
调节W子像素所对应的子像素电极的分支数量具体为将W子像素所对应的子像素电极的分支数量设置为大于或小于RGB子像素所对应的子像素电极的分支数量,实现W子像素亮度的调节;
调节W子像素所对应的子像素电极处的沟道区具体为将W子像素所对应的子像素电极处的沟道区的宽度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的宽度和/或将W子像素所对应的子像素电极处的沟道区的长度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的长度,实现W子像素亮度的调节;可选地,将W子像素所对应的子像素电极处的沟道区的宽度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的宽度或将W子像素所对应的子像素电极处的沟道区的长度设置为大于或小于 RGB子像素所对应的子像素电极处的沟道区的长度,实现W子像素亮度的调节,所述沟道区的宽度是指TFT(薄膜晶体管)中载流子流过的长度,沟道区的长度指的是TFT(薄膜晶体管)中载流子流过的截面积。
调节W子像素所对应的子像素电极处的开口率具体为将W子像素所对应的子像素电极处的开口率设置为大于或小于RGB子像素所对应的子像素电极处的开口率,实现W子像素亮度的调节,具体地,通过改变W子像素的面积,从而实现对对W子像素处的开口率进行调整,作为一种实施方式,W子像素的面积可通过增加W子像素区域的黑色矩阵的线宽实现。
本发明中调节W子像素的亮度中,当本发明中W子像素具有比常规的W子像素更高亮度时,可用于第一适用场景,在第一使用场景中,W子像素设计具有更高的光效率,可以更好的实现液晶显示器低功耗、高亮度,可以用于户外显示/文字显示等。当本发明中W子像素具有比常规的W子像素更低亮度时,可用于第二适用场景W子像素设计具有更低的光效率,可以减小W子像素加入导致的色饱和度降低、白点色坐标漂移等光学问题,可以用于室内显示/图片显示等对图像品质要求严苛的液晶显示器等。
实施例1:
如图1-1所示,通过将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201的宽度设置为大于RGB子像素(102、103、104)所对应的子像素电极202的宽度,以及调节W子像素101所对应的子像素电极201的分支2011之间的间距设置为大于RGB子像素(102、103、104)所对应的子像素电极202的分支2021之间的间距,实现增加W子像素亮度,但本发明不限于此,还可将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201的宽度设置为大于RGB子像素(102、103、104)所对应的子像素电极202的宽度,而W子像素101所对应的子像素电极201的分支2011之间的间距与RGB子像素(102、103、104)所对应的子像素电极202的分支2021之间的间距相等,实现增加W子像素亮度,即W子像素的亮度相对于常规的W子像素的亮度更高,本实施例适用于第一使用场景,此处子像素电极图形可采用现有技术的电极图案,在此不做具体限定。
实施例2:
如图1-2所示,通过将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201的宽度设置为小于RGB子像素(102、103、104)所对应的子像素电极202的宽度,以及调节W子像素101所对应的子像素电极201的分支2011之间的间距设置为小于RGB子像素(102、103、104)所对应的子像素电极202的分支2021之间的间距,实现降低W子像素亮度,即W子像素的亮度相对于常规的W子像素的亮度更低,本实施例适用于第二使用场景,此处子像素电极图形可采用现有技术的电极图案,在此不做具体限定。
实施例3:
如图2-1所示,通过将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201的宽度设置为大于RGB子像素(102、103、104)所对应的子像素电极202的宽度,从而实现提高W子像素亮度,即W子像素的亮度相对于常规的W子像素的亮度更高,本实施例适用于第一使用场景,此处子像素电极图形可采用现有技术的电极图案,在此不做具体限定。
在实施例3中,RGBW子像素所对应的子像素电极的分支数量以及间距相等。
实施例4:
如图2-2所示,通过将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201的宽度设置为小于RGB子像素(102、103、104)所对应的子像素电极202的宽度,从而实现降低W子像素亮度,即W子像素的亮度相对于常规的W子像素的亮度更低,本实施例适用于第二使用场景,此处子像素电极图形可采用现有技术的电极图案,在此不做具体限定。但本发明不限于此,还可以结合或直接将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201的分支数量设置为小于RGB子像素所对应的子像素电极的分支数量,例如,RGB子像素所对应的子像素电极具有2根slit狭缝分支(图中未示出),W子像素所对应的子像素电极具有1根slit狭缝分支,进一步实现W子像素亮度的调节。
实施例5:
如图3-1所示,通过将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201所在高度设置为低于RGB子像素(102、103、104)所对应的子像素电极202的所在高度,实现提高W子像素亮度;具体地,将阵列基板200中与W子像素101所对应位置上的平坦层203进行蚀刻,使此处形成沉孔204,将与W子像素101所对应的子像素电极201设于沉孔204中,从而实现通过将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201所在高度设置为低于RGB子像素(102、103、104)所对应的子像素电极202的所在高度,使得W子像素位置的液晶盒厚要大于RGB子像素位置的液晶盒厚,实现提高W子像素亮度,即W子像素的亮度相对于常规的W子像素的亮度更亮;本实施例适用于第一使用场景。
本实施例5中,RGBW子像素所对应的子像素电极的间距、宽度、电极图案均可相同。
实施例6:
如图3-2所示,通过将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201所在高度设置为高于RGB子像素(102、103、104)所对应的子像素电极202的所在高度,实现降低W子像素亮度;具体地,将阵列基板200中与W子像素101所对应位置上的平坦层203进行增厚,使此处形成高台205,将与W子像素101所对应的子像素电极201设于高台205上,从而实现通过将彩膜基板100中W子像素101所对应的阵列基板200上的子像素电极201所在高度设置为高于RGB子像素(102、103、104)所对应的子像素电极202的所在高度,使得W子像素位置的液晶盒厚要小于RGB子像素位置的液晶盒厚,实现降低W子像素亮度,即W子像素的亮度相对于常规的W子像素的亮度更低;本实施例适用于第二使用场景。
所述高台205可采用对平坦层203进行蚀刻除W子像素101所对应的子像素电极201以外的区域得到,但本发明不限于此,例如通过沉积一层绝缘层并对绝缘层进行蚀刻除W子像素101所对应的子像素电极201以外的区域得到。
本实施例6中,RGBW子像素所对应的子像素电极的间距、宽度、电极图案均可相同。
本发明中,附图4-1至4-6仅示意性的示出了沟道区的宽度D以及长度L的示意图。
实施例7:
如图4-1所示,为现有技术中位于W子像素所对应的子像素电极处的沟道区示意图,常规下,RGBW子像素的子像素电极处的沟道区均相同,如图4-3所示,本实施例7通过调节将W子像素所对应的子像素电极处的沟道区的宽度D设置为小于RGB子像素所对应的子像素电极处的沟道区的宽度D,使载流子可以更快的通过沟道区,具有更高的充电效率,因此提高了W子像素的亮度,即W子像素的亮度相对于常规的W子像素的亮度更高;本实施例适用于第一使用场景。
实施例8:
如图4-5所示,通过调节将W子像素所对应的子像素电极处的沟道区的宽度D设置为大于RGB子像素所对应的子像素电极处的沟道区的宽度D,使载流子会更慢的通过沟道区,具有更低的充电效率,因此降低了W子像素的亮度,即W子像素的亮度相对于常规的W子像素的亮度更低;本实施例适用于第二使用场景。
实施例9:
如图4-2所示,为现有技术中位于W子像素所对应的子像素电极处的沟道区示意图,常规下,RGBW子像素的子像素电极处的沟道区均相同,如图4-4所示,本实施例9通过调节将W子像素所对应的子像素电极处的沟道区的长度L设置为大于RGB子像素所对应的子像素电极处的沟道区的长度L,以及W子像素所对应的子像素电极处的沟道区的宽度与RGB子像素所对应的子像素电极处的沟道区的宽度保持不变,即宽度相等,具有更高的充电效率,因此提高了W子像素的亮度,即W子像素的亮度相对于常规的W子像素的亮度更高;本实施例适用于第一使用场景。
实施例10:
如图4-6所示,通过调节将W子像素所对应的子像素电极处的沟道区的长 度L设置为小于RGB子像素所对应的子像素电极处的沟道区的长度L,以及W子像素所对应的子像素电极处的沟道区的宽度D与RGB子像素所对应的子像素电极处的沟道区的宽度D保持不变,即宽度相等,具有更低的充电效率,因此降低了W子像素的亮度,即W子像素的亮度相对于常规的W子像素的亮度更低;本实施例适用于第二使用场景。
实施例11:
如图5-1所示,现有技术中,RGBW子像素的面积相等,因此,开口率相同;如图5-2所示,本实施例11通过增加W子像素的面积,即使W子像素的面积大于RGB子像素(101、102、103)的面积,从而实现对W子像素处的开口率进行调整,具体地,将W子像素101区域的黑色矩阵300的线宽设置为小于RGB子像素(101、102、103)区域的黑色矩阵300的线宽实现,使W子像素开口率增加,光效率增加,W子像素具有更高的透过率,提高了W子像素的亮度,即W子像素的亮度相对于常规的W子像素的亮度更高;本实施例适用于第一使用场景。
实施例12:
如图5-3所示,通过减小W子像素的面积,即使W子像素的面积小于RGB子像素的面积,从而实现对W子像素处的开口率进行调整,具体地,将W子像素101区域的黑色矩阵300的线宽设置为小于RGB子像素(101、102、103)区域的黑色矩阵300的线宽实现,使W子像素开口率减小,光效率降低,W子像素具有更低的透过率,降低了W子像素的亮度,即W子像素的亮度相对于常规的W子像素的亮度更低;本实施例适用于第二使用场景。
本还可采用将实施例1-12中的两种或以上进行结合,从而进一步地满足W子像素亮度的要求,在此不做具体赘述。
在上述实施例1-12中,液晶显示器为FFS(Fringe Field Switching,边缘场开关技术)模式液晶显示器,在其他模式的液晶显示器中也可以通过实施例1-12的方式来实现W子像素相比常规设计中W子像素更亮或更暗的设计。例如还可以在VA(Vertical Alignment,垂直配向型)模式的液晶显示器中W子像素所对应的子像素电极具有更小面积。本提案对液晶显示器的显示模式不做 限定。
如图1-1所示,本发明还公开了一种液晶显示器,包括彩膜基板100和阵列基板200,所述彩膜基板包括RGBW子像素102、103、104、101,阵列基板包括与RGBW子像素相对应的子像素电极202、201,所述W子像素101的亮度采用上述的用于调节RGBW液晶显示器亮度的方法中的一种或一种以上实现对W子像素的亮度调节,由于前面已对用于调节RGBW液晶显示器亮度的方法做了详细的说明,在此不在赘述。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (16)

  1. 一种用于调节RGBW液晶显示器亮度的方法,其中:所述液晶显示器包括RGBW子像素,其中,W子像素的亮度通过调节W子像素所对应的子像素电极的宽度、间距、液晶盒厚、分支数量、W子像素所对应的子像素电极处的沟道区、W子像素所对应的子像素电极处的开口率中的一种或一种以上方式实现。
  2. 根据权利要求1所述的用于调节RGBW液晶显示器亮度的方法,其中:所述调节W子像素所对应的子像素电极的宽度具体为将W子像素所对应的子像素电极的宽度设置为大于或小于RGB子像素所对应的子像素电极的宽度,实现W子像素亮度的调节。
  3. 根据权利要求1所述的用于调节RGBW液晶显示器亮度的方法,其中:所述调节W子像素所对应的子像素电极的间距具体为将W子像素所对应的子像素电极的分支之间的间距设置为大于或小于RGB子像素所对应的子像素电极的分支之间的间距,实现W子像素亮度的调节。
  4. 根据权利要求1所述的用于调节RGBW液晶显示器亮度的方法,其中:所述调节W子像素所对应的子像素电极的液晶盒厚具体为将W子像素所对应的子像素电极所在高度设置为高于或低于RGB子像素所对应的子像素电极的所在高度,实现W子像素亮度的调节。
  5. 根据权利要求1所述的用于调节RGBW液晶显示器亮度的方法,其中:所述调节W子像素所对应的子像素电极的分支数量具体为将W子像素所对应的子像素电极的分支数量设置为大于或小于RGB子像素所对应的子像素电极的分支数量,实现W子像素亮度的调节。
  6. 根据权利要求1所述的用于调节RGBW液晶显示器亮度的方法,其中:所述调节W子像素所对应的子像素电极处的沟道区具体为将W子像素所对应的子像素电极处的沟道区的宽度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的宽度或将W子像素所对应的子像素电极处的沟道区的长度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的长度,实现W子像素亮度的调节。
  7. 根据权利要求1所述的用于调节RGBW液晶显示器亮度的方法,其中:所述调节W子像素所对应的子像素电极处的沟道区具体为将W子像素所对应的子像素电极处的沟道区的宽度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的宽度和将W子像素所对应的子像素电极处的沟道区的长度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的长度,实现W子像素亮度的调节。
  8. 根据权利要求1所述的用于调节RGBW液晶显示器亮度的方法,其中:所述调节W子像素所对应的子像素电极处的开口率具体为将W子像素所对应的子像素电极处的开口率设置为大于或小于RGB子像素所对应的子像素电极处的开口率,实现W子像素亮度的调节。
  9. 一种液晶显示器,包括彩膜基板和阵列基板,所述彩膜基板包括RGBW子像素,阵列基板包括与RGBW子像素相对应的子像素电极,其中:所述W子像素的亮度采用用于调节RGBW液晶显示器亮度的方法实现对W子像素的亮度调节;所述用于调节RGBW液晶显示器亮度的方法中液晶显示器包括RGBW子像素,其中,W子像素的亮度通过调节W子像素所对应的子像素电极的宽度、间距、液晶盒厚、分支数量、W子像素所对应的子像素电极处的沟道区、W子像素所对应的子像素电极处的开口率中的一种或一种以上方式实现。
  10. 根据权利要求9所述的液晶显示器,其中:所述调节W子像素所对应的子像素电极的宽度具体为将W子像素所对应的子像素电极的宽度设置为大于或小于RGB子像素所对应的子像素电极的宽度,实现W子像素亮度的调节。
  11. 根据权利要求9所述的液晶显示器,其中:所述调节W子像素所对应的子像素电极的间距具体为将W子像素所对应的子像素电极的分支之间的间距设置为大于或小于RGB子像素所对应的子像素电极的分支之间的间距,实现W子像素亮度的调节。
  12. 根据权利要求9所述的液晶显示器,其中:所述调节W子像素所对应的子像素电极的液晶盒厚具体为将W子像素所对应的子像素电极所在高度设置为高于或低于RGB子像素所对应的子像素电极的所在高度,实现W子像 素亮度的调节。
  13. 根据权利要求9所述的液晶显示器,其中:所述调节W子像素所对应的子像素电极的分支数量具体为将W子像素所对应的子像素电极的分支数量设置为大于或小于RGB子像素所对应的子像素电极的分支数量,实现W子像素亮度的调节。
  14. 根据权利要求9所述的液晶显示器,其中:所述调节W子像素所对应的子像素电极处的沟道区具体为将W子像素所对应的子像素电极处的沟道区的宽度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的宽度或将W子像素所对应的子像素电极处的沟道区的长度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的长度,实现W子像素亮度的调节。
  15. 根据权利要求9所述的液晶显示器,其中:所述调节W子像素所对应的子像素电极处的沟道区具体为将W子像素所对应的子像素电极处的沟道区的宽度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的宽度和将W子像素所对应的子像素电极处的沟道区的长度设置为大于或小于RGB子像素所对应的子像素电极处的沟道区的长度,实现W子像素亮度的调节。
  16. 根据权利要求9所述的液晶显示器,其中:所述调节W子像素所对应的子像素电极处的开口率具体为将W子像素所对应的子像素电极处的开口率设置为大于或小于RGB子像素所对应的子像素电极处的开口率,实现W子像素亮度的调节。
PCT/CN2017/116041 2017-10-31 2017-12-14 用于调节rgbw液晶显示器亮度的方法及液晶显示器 WO2019085174A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/740,186 US20200035196A1 (en) 2017-10-31 2017-12-14 Method for adjusting luminance of rgbw liquid crystal display and liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711043041.9A CN107578758A (zh) 2017-10-31 2017-10-31 用于提高液晶显示器亮度的方法及液晶显示器
CN201711043041.9 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085174A1 true WO2019085174A1 (zh) 2019-05-09

Family

ID=61041019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116041 WO2019085174A1 (zh) 2017-10-31 2017-12-14 用于调节rgbw液晶显示器亮度的方法及液晶显示器

Country Status (3)

Country Link
US (1) US20200035196A1 (zh)
CN (1) CN107578758A (zh)
WO (1) WO2019085174A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375850A (zh) * 2018-02-12 2018-08-07 厦门天马微电子有限公司 显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182043A1 (en) * 2014-05-27 2015-12-03 Sony Corporation Display device and electronic apparatus
CN106154658A (zh) * 2016-09-26 2016-11-23 合肥鑫晟光电科技有限公司 阵列基板、显示面板、显示装置及显示面板的设计方法
CN106324923A (zh) * 2016-10-18 2017-01-11 上海中航光电子有限公司 阵列基板及显示面板
CN106873230A (zh) * 2015-11-26 2017-06-20 三星显示有限公司 显示装置及其制造方法
US20170261821A1 (en) * 2016-03-14 2017-09-14 Samsung Display Co. Ltd. Liquid crystal display device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973810B1 (ko) * 2003-08-11 2010-08-03 삼성전자주식회사 4색 액정 표시 장치
KR101072375B1 (ko) * 2003-12-29 2011-10-11 엘지디스플레이 주식회사 화소별 개구율 자동제어가 가능한 액정표시장치
KR100866236B1 (ko) * 2004-08-19 2008-10-30 샤프 가부시키가이샤 다원색 표시 장치
KR101146524B1 (ko) * 2005-05-23 2012-05-25 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR101222955B1 (ko) * 2005-12-28 2013-01-17 엘지디스플레이 주식회사 액정표시소자 및 그 제조방법
US20080158488A1 (en) * 2006-12-21 2008-07-03 Fujifilm Corporation Liquid Crystal Display Device
TWI381216B (zh) * 2009-03-20 2013-01-01 Au Optronics Corp 顯示面板、光電裝置及其製造方法
KR101557802B1 (ko) * 2009-10-14 2015-10-06 삼성전자주식회사 전기습윤을 이용한 디스플레이 장치
TWI521271B (zh) * 2014-07-31 2016-02-11 友達光電股份有限公司 畫素陣列
CN104460114B (zh) * 2014-12-26 2018-01-23 深圳市华星光电技术有限公司 液晶显示面板和显示装置
KR102303604B1 (ko) * 2015-02-17 2021-09-17 삼성디스플레이 주식회사 액정 표시 장치
CN104614904A (zh) * 2015-03-11 2015-05-13 京东方科技集团股份有限公司 一种像素结构及其驱动方法、阵列基板和显示装置
CN104656334B (zh) * 2015-03-20 2017-08-01 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN104865763B (zh) * 2015-06-12 2017-09-15 深圳市华星光电技术有限公司 阵列基板
CN106405966A (zh) * 2016-11-02 2017-02-15 武汉华星光电技术有限公司 液晶面板及其阵列基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182043A1 (en) * 2014-05-27 2015-12-03 Sony Corporation Display device and electronic apparatus
CN106873230A (zh) * 2015-11-26 2017-06-20 三星显示有限公司 显示装置及其制造方法
US20170261821A1 (en) * 2016-03-14 2017-09-14 Samsung Display Co. Ltd. Liquid crystal display device
CN106154658A (zh) * 2016-09-26 2016-11-23 合肥鑫晟光电科技有限公司 阵列基板、显示面板、显示装置及显示面板的设计方法
CN106324923A (zh) * 2016-10-18 2017-01-11 上海中航光电子有限公司 阵列基板及显示面板

Also Published As

Publication number Publication date
US20200035196A1 (en) 2020-01-30
CN107578758A (zh) 2018-01-12

Similar Documents

Publication Publication Date Title
CN105182581B (zh) 像素结构及液晶显示面板
CN107529049B (zh) 显示装置图像处理方法、图像处理系统及显示装置
CN103257494B (zh) 显示基板及显示装置
WO2017005021A1 (en) Color filter substrate, array substrate, and display panel and display apparatus having the same
CN106531106B (zh) 液晶显示器及其驱动方法
CN104298042A (zh) 一种显示面板及显示装置
CN107993581A (zh) 一种显示面板及显示装置
US20160116811A1 (en) Liquid crystal display panel for curved screen
CN106504717B (zh) 一种显示装置的驱动方法及显示装置
CN107229154A (zh) 一种彩膜基板、显示面板和显示装置
US20160033812A1 (en) Color Filter Substrate and Liquid Crystal Display Device
US11333943B2 (en) Display panel, display device, and manufacturing method
CN105319784B (zh) 显示面板
CN106647061B (zh) 像素结构及液晶显示面板
CN106873277B (zh) Rgbw显示面板
CN107993624A (zh) 显示装置的驱动方法、驱动装置及显示装置
CN109283756A (zh) 多畴液晶显示器
CN106847226A (zh) 3t像素最佳公共电压调整方法
CN108732826A (zh) 改善异形屏面板画质的设计方法及结构
CN109036324A (zh) 显示面板和显示装置
CN107895567A (zh) 液晶显示面板以及液晶显示装置
US9213197B2 (en) Color filter substrate, liquid crystal panel and liquid crystal display
CN107479242A (zh) 一种显示面板和显示装置
WO2019085174A1 (zh) 用于调节rgbw液晶显示器亮度的方法及液晶显示器
US10514569B2 (en) Array substrate, display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931051

Country of ref document: EP

Kind code of ref document: A1