WO2019085166A1 - 氢气传感器及其制备方法、实现氢气检测的方法 - Google Patents

氢气传感器及其制备方法、实现氢气检测的方法 Download PDF

Info

Publication number
WO2019085166A1
WO2019085166A1 PCT/CN2017/115826 CN2017115826W WO2019085166A1 WO 2019085166 A1 WO2019085166 A1 WO 2019085166A1 CN 2017115826 W CN2017115826 W CN 2017115826W WO 2019085166 A1 WO2019085166 A1 WO 2019085166A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
sensitive material
elastic substrate
nano
nanostructure
Prior art date
Application number
PCT/CN2017/115826
Other languages
English (en)
French (fr)
Inventor
金崇君
沈杨
佘晓毅
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to US16/498,748 priority Critical patent/US11567050B2/en
Publication of WO2019085166A1 publication Critical patent/WO2019085166A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/69Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence specially adapted for fluids, e.g. molten metal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7773Reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7783Transmission, loss

Definitions

  • the invention relates to the technical field of sensors, in particular to a hydrogen sensor and a preparation method thereof, and a method for realizing hydrogen detection by using the hydrogen sensor.
  • hydrogen As a clean renewable energy carrier, hydrogen is considered an ideal energy source to replace traditional fossil fuels. With the continuous development of hydrogen fuel cell technology, how to ensure the safe, efficient production, storage and use of hydrogen has become a key issue in the era of “hydrogen economy”. However, hydrogen has an extremely wide explosive limit (bulk density of 4% to 75%) and very low ignition energy (0.02 mJ). Therefore, hydrogen sensors are necessary for the application of hydrogen.
  • the hydrogen sensor mainly includes a sensor using an electric sensor and an optical hydrogen sensor.
  • the optical sensor mainly includes a surface plasmon sensor and a membrane structure sensor.
  • the surface plasmon hydrogen sensor is mainly based on the plasmon resonance effect of metal nanoparticles or nanostructures.
  • the incident light can be localized in a region of a sub-wavelength size on its surface.
  • the hydrogen-sensitive metal nanoparticles absorb hydrogen, from the metal state to the metal hydride state, the dielectric constant changes, causing the resonance wavelength to move.
  • the detection of hydrogen can be achieved by monitoring the resonant wavelength.
  • surface plasmon optical hydrogen sensors use metal nanoparticles or nanostructures on rigid substrates, thereby limiting the volume expansion of hydrogen-sensitive metal nanostructures during hydrogen absorption, greatly reducing the structural geometry. Induced optical response.
  • a hydrogen sensor comprising an elastic substrate and a hydrogen sensitive material nanostructure on the elastic substrate; a surface of the elastic substrate adjacent to the hydrogen sensitive material nanostructure has a nano array structure, The hydrogen sensitive material nanostructures are complementary to the nanoarray structure.
  • the material employed in the hydrogen sensitive material nanostructures is selected from one or more of palladium, magnesium, lanthanum, and nickel-magnesium alloys.
  • the hydrogen sensitive material nanostructures are selected from a one-dimensional nano-array or a two-dimensional nano-array.
  • the hydrogen sensitive material nanostructures are selected from a one-dimensional nanogroove array, and the hydrogen sensitive material nanostructures have a period of from 300 nm to 100,000 nm.
  • the grooves in the one-dimensional nanogroove array have a depth of 50 nm to 1000 nm.
  • the grooves in the one-dimensional nanogroove array have an opening width of from 150 nm to 400 nm.
  • the elastic substrate includes a first elastic substrate and a second elastic substrate which are sequentially stacked, and a Young's modulus of the second elastic substrate is greater than that of the first elastic substrate Young's modulus.
  • the first elastic substrate has a thickness of 0.5 mm to 10 mm
  • the second elastic substrate has a thickness of 5 ⁇ m to 100 ⁇ m.
  • a method for preparing the above hydrogen sensor comprises the following steps:
  • the liquid elastic material and the curing agent are mixed, stirred uniformly to obtain a mixed liquid, and the mixed liquid is coated on the nano-grating structure, and the mixed liquid is dried and solidified to obtain an elastic substrate. ;
  • a hydrogen sensitive material is deposited on a surface of the elastic substrate having the nano-array structure to form a hydrogen-sensitive material nanostructure.
  • a method for implementing hydrogen detection based on the above hydrogen sensor comprising the steps of:
  • optical parameter of the film wherein the optical parameter is a resonant wavelength, a full width at half maximum of resonance, a reflectance, a reflected light intensity, a transmittance, a transmitted light intensity, a scattering cross section, an extinction cross section, an absorption cross section, or an absorbance;
  • a change in relative optical parameters is obtained by optical parameters before and after deformation of the nano-structure of the hydrogen-sensitive material, and the concentration of hydrogen is determined according to the change in the relative optical parameters.
  • the hydrogen sensitive material nanostructure when the hydrogen sensitive material nanostructure is in contact with hydrogen, the hydrogen sensitive material nanostructure absorbs hydrogen, the hydrogen sensitive material expands in volume, and pressure is applied to the surface of the elastic substrate during expansion.
  • the geometry of the nanostructure of the elastic substrate is changed.
  • the deformation of the elastic substrate also drives the change of the nanostructure of the hydrogen sensitive material, so that the geometry of the nanostructure of the hydrogen sensitive material is more fully deformed, and further
  • the variation of the resonance wavelength and the relative reflectance intensity of the nanostructure of the hydrogen sensitive material are amplified, and the sensitivity of the hydrogen sensor is improved.
  • the preparation method of the above hydrogen sensor is not only simple to manufacture, low in cost, but also widely applicable.
  • FIG. 1 is a schematic structural view of a hydrogen sensor according to an embodiment
  • Figure 2 is an electron micrograph of the hydrogen sensor shown in Figure 1;
  • Figure 3 is another electron micrograph of the hydrogen sensor shown in Figure 1;
  • FIG. 4 is a schematic flow chart of a method for preparing a hydrogen sensor according to an embodiment
  • Figure 5 is a schematic view showing the structure of an adhesive film formed on a rigid substrate
  • FIG. 6 is a schematic structural view of a photoresist layer formed on the adhesive film shown in FIG. 5;
  • FIG. 7 is a schematic structural view of the photoresist layer shown in FIG. 6 after being processed
  • FIG. 8 is a schematic structural view showing formation of a second elastic substrate on the photoresist layer shown in FIG. 7;
  • FIG. 9 is a schematic structural view showing the first elastic substrate formed on the second elastic substrate shown in FIG. 8; FIG.
  • FIG. 10 is a schematic structural view showing the second elastic substrate and the photoresist layer shown in FIG.
  • Figure 11 is a reflection of the hydrogen sensor obtained in Example 1 under the passage of pure nitrogen gas and 4% hydrogen gas. Spectrum
  • Figure 12 is a reflection spectrum of the hydrogen sensor obtained in Example 2 under the passage of pure nitrogen gas and 4% hydrogen;
  • Figure 13 is a reflection spectrum of the hydrogen sensor obtained in Example 6 under the passage of pure nitrogen gas and 4% hydrogen;
  • Figure 14 is a graph showing the relationship between the resonance wavelength and the hydrogen concentration of the hydrogen gas sensor obtained in Example 2;
  • Fig. 15 is a graph showing the change in reflectance with time of a hydrogen gas sensor obtained in Example 2 under 10 cycles of introducing 4% hydrogen gas and passing pure nitrogen gas.
  • a hydrogen sensor 100 of an embodiment includes an elastomeric substrate and a hydrogen sensitive material nanostructure 110.
  • the hydrogen sensitive material nanostructures 110 are located on an elastic substrate.
  • the surface of the elastic substrate adjacent to the hydrogen sensitive material nanostructure 110 has a nano-array structure, and the hydrogen-sensitive material nano-structure is complementary to the nano-array structure.
  • the hydrogen sensor 100 can be a surface plasmon optical sensor.
  • the hydrogen sensitive material nanostructure 110 when the hydrogen sensitive material nanostructure 110 is in contact with hydrogen when in the hydrogen environment, the hydrogen sensitive material nanostructure 110 absorbs hydrogen, the hydrogen sensitive material expands in volume, and pressure is applied to the surface of the elastic substrate during the expansion process, so that the elastic substrate is The geometry of the nanostructure is changed.
  • the deformation of the elastic substrate also drives the change of the hydrogen sensitive material nanostructure 110, so that the geometry of the hydrogen sensitive material nanostructure 110 is more fully deformed, thereby amplifying the hydrogen sensitivity.
  • the amount of movement of the resonant wavelength of the material nanostructure 110 and the change in relative reflectance intensity increase the sensitivity of the hydrogen sensor.
  • the elastic substrate 110 After the nanostructure 110 is dehydrogenated, the elastic substrate 110 returns to the initial state due to the elastic restoring force of the elastic substrate 110, and the hydrogen sensitive material nanostructure 110 is restored to a smooth state, thereby returning the hydrogen sensor 110 to the initial state, thereby
  • the hydrogen sensor 100 can be used multiple times.
  • the traditional surface plasmon optical hydrogen sensor uses a rigid substrate, which not only limits the volume expansion of the hydrogen-sensitive metal nanostructure during hydrogen absorption, but also greatly reduces the optical response induced by the structural geometry, and also causes localization, etc.
  • the large scattering loss of the exciter causes the resonance to have a wider full width at half maximum, which reduces the sensing performance.
  • the hydrogen-sensitive metal nanostructures generate great stress between the hydrogen absorbing process and the rigid substrate, which is liable to cause detachment, resulting in a decrease in the number of uses of the surface plasmon optical hydrogen sensor, thereby making the lifetime shorter.
  • the above hydrogen sensor 100 has an elastic substrate, and the geometry of the hydrogen-sensitive metal nanostructure 110 on the elastic substrate is more fully deformed under a hydrogen atmosphere, thereby The variation of the resonance wavelength and the relative reflectance intensity of the hydrogen sensitive material nanostructure 110 is amplified, and the resonance wavelength shifts up to 28 nm.
  • the relative reflectance intensity of the hydrogen sensitive material nanostructure 110 can be changed to 390%, and such a strong relative reflectance intensity change can be directly observed by the naked eye.
  • the propagation surface plasmons supported by the hydrogen sensitive material nanostructures 110 interact with their cavity modes to form a coupled resonant mode, thereby greatly reducing the full width at half maximum for the reflection valley or peak, making the hydrogen sensitive
  • the full width at half maximum of the resonance of the material nanostructures 110 can be as narrow as 32 nm.
  • the stress between the hydrogen sensitive material nanostructure 110 and the elastic substrate during hydrogen absorption is reduced, thereby reducing the drop of the hydrogen sensitive material nanostructure 110 during hydrogen absorption. The probability of increasing the number of uses and life of the hydrogen sensor 100 is increased.
  • the material used in the hydrogen sensitive material nanostructures 110 is selected from one or more of palladium, magnesium, lanthanum, and nickel-magnesium alloys.
  • the palladium membrane can react well with hydrogen gas under normal temperature and normal pressure environment.
  • the material used for the hydrogen sensitive material nanostructure 110 is palladium. It should be noted that the material used for the hydrogen sensitive material nanostructures 110 may also be other metal or metal composites in which the volume is expanded after hydrogen absorption.
  • the hydrogen sensitive material nanostructures 110 are selected from a one-dimensional nano-array or a two-dimensional nano-array. It should be noted that the hydrogen sensitive material nanostructure 110 is selected from a periodic nano array, and is not limited herein. Among them, one dimension means that the structure is periodic in one direction. One-dimensional nano array It may be a one-dimensional nano-groove array. In addition, the shape of the basic unit on the one-dimensional nano-array may also be granular or other shapes. The two-dimensional nano-array can be a two-dimensional nano-hole array.
  • the hydrogen sensitive material nanostructures 110 are selected from the one-dimensional nano-groove array, and the hydrogen-sensitive material nanostructures 110 have a period of 300 nm to 100,000 nm. In one embodiment, the hydrogen sensitive material nanostructures 110 have a period of from 400 nm to 1000 nm. In this embodiment, the hydrogen sensitive material is selected from the group consisting of palladium. As shown in Figures 2 and 3, the hydrogen sensitive material nanostructures 110 are also in the form of a nano-groove array.
  • the grooves in the one-dimensional nanogroove array have a depth of from 50 nm to 1000 nm. Further, the depth of the grooves in the one-dimensional nano-groove array may be 90 nm.
  • the grooves in the one-dimensional nanogroove array have an opening width of from 150 nm to 400 nm. Further, the shape of the cross section of the groove in the one-dimensional nano-groove array is trapezoidal, and the width thereof is smaller and smaller from the opening of the groove to the bottom surface of the groove. In one of the embodiments, the grooves in the one-dimensional nanogroove array have an opening width of 280 nm.
  • the period of the one-dimensional nano-groove array, the depth of the groove in the one-dimensional nano-groove array, and the opening width of the groove in the one-dimensional nano-groove array are selected to change the resonant wavelength thereof, thereby expanding the incident light. Select, you can choose a variety of wavelengths of incident light.
  • the Young's modulus of the elastic substrate is greater than 0 and less than or equal to 60,000 MPa.
  • the elastic substrate can be all low elastic modulus elastomers.
  • the elastic substrate may be a thermosetting elastomer and a thermoplastic elastomer.
  • the thermoplastic elastomer may be a rubber such as styrene butadiene rubber, butadiene rubber, isoprene rubber, ethylene propylene rubber, butyl rubber, neoprene rubber or nitrile rubber.
  • the thermoplastic elastomer may also be a polyurethane-based thermoplastic elastomer, a polyamide-based thermoplastic elastomer, or a polyolefin-based thermoplastic elastomer.
  • the thermosetting elastomer may be a polysiloxane, a polyurethane or a silicone rubber or the like. It should be noted that the elastic substrate is only required to have elasticity. Among them, the polysiloxane may be a polydimethylsiloxane.
  • the elastic substrate includes a first elastic substrate 120a and a second elastic substrate 120b which are sequentially stacked, and the Young's modulus of the second elastic substrate 120b is greater than The Young's modulus of an elastic substrate 120b.
  • Both the first elastic substrate 120a and the second elastic substrate 120b have good elasticity, and the second elastic substrate 120b has a relatively high Young's modulus and a high resolution, so as to facilitate the subsequent second elastic lining.
  • the Young's modulus of the first elastic substrate 120a is low, so that the elasticity of the entire elastic substrate is improved.
  • the Young's modulus of the second elastic substrate 120b is 10 times or more the Young's modulus of the first elastic substrate 120b.
  • the first elastic substrate 120a has a thickness of 0.5 mm to 10 mm, and the second elastic substrate 120b has a thickness of 5 ⁇ m to 100 ⁇ m.
  • the first elastic substrate 120a has a relatively thick thickness and functions to mainly provide an elastic force. It should be noted that in other embodiments, the elastic substrate may also include only the first elastic substrate 120a.
  • the hydrogen-sensitive material nanostructure 110 is a one-dimensional nano-groove array
  • the hydrogen-sensitive material nanometer is exposed when exposed to a hydrogen atmosphere.
  • Structure 110 absorbs hydrogen and dissociates hydrogen into hydrogen atoms.
  • the hydrogen atoms occupy the lattice gap of the hydrogen sensitive material by diffusion, forming a hydrogenated state of the hydrogen sensitive material.
  • the dielectric of the hydrogen sensitive material to change frequently and the lattice to expand, which causes the resonance wavelength of the hydrogen sensor to move, so that the hydrogen of the low concentration can be detected by measuring the movement of the resonant wavelength or the change of the reflected light intensity. concentration.
  • the one-dimensional nano-groove array applies stress to the nano-groove interface of the second elastic substrate 120b during expansion, so that the geometry of the nano-groove on the second elastic substrate 120b changes (the opening of the groove changes) Small), thereby causing the resonant wavelength of the hydrogen sensitive material nanostructure to move further.
  • the second elastic substrate 120b and the hydrogen sensing material nanostructure cooperate together to greatly increase the resonance wavelength of the hydrogen sensor, thereby improving the sensing sensitivity thereof.
  • the resonance wavelength of the above hydrogen sensor can be shifted by 28 nm, and the relative reflectance intensity changes under the action of 4% hydrogen concentration (mixed gas of hydrogen and nitrogen, wherein the volume fraction of hydrogen is 4%) in the entire visible light region. Can exceed 390%. Such a strong relative reflectance intensity change can be directly observed with the naked eye.
  • the sensor is low in cost, simple in manufacture, can be mass-produced, and has high sensitivity and can be widely applied, and is suitable for hydrogen detection in different environments.
  • the method for preparing the above hydrogen sensor of an embodiment includes the following steps:
  • an adhesive film 140 is formed on the rigid substrate 130 by spin coating, as shown in FIG.
  • the rigid substrate 130 may be a transparent rigid substrate such as quartz.
  • the adhesive film 140 may be a polymethyl methacrylate film, a polyethylene film, or a polypropylene film.
  • the adhesive film 140 may be formed to facilitate the formation of a subsequent photoresist layer, and the thickness of the adhesive film 140 may be 30 nm to 200 nm.
  • a photoresist layer is formed on the adhesive film under dark room conditions.
  • a photoresist layer 150 is formed on the adhesive film 140 by spin coating.
  • the photoresist layer 150 may have a thickness of 80 nm to 600 nm.
  • the photoresist used in the photoresist layer 150 is an AR-P 3740 high resolution positive photoresist (All Resist, Germany).
  • the photoresist layer is processed such that the photoresist layer has a nano-grating structure.
  • the photoresist layer 150 is subjected to double beam exposure and development, such that the photoresist layer 150 has a nano-grating structure 151, and the nano-grating structure 151, the adhesive film 140, and the rigid substrate 130 together serve as a template for the mold. As shown in Figure 7.
  • the template formed above and the release agent are placed together in a vacuum dish, evacuated and allowed to stand, so that the release agent molecules volatilize and cover the template. .
  • the standing time can be 30 minutes - 60 minutes.
  • the release agent may be selected from a silicone compound, a silicone oil or a perfluorooctyltrichlorosilane or the like.
  • the second liquid elastic material and the second curing agent are mixed, stirred uniformly, and then placed in a vacuum dish to be evacuated to remove bubbles to obtain a second mixed liquid state.
  • the second mixed liquid is spin-coated on the template obtained in the step S3, and the template is placed in an oven for curing to form a second elastic substrate 120b on the template, as shown in FIG.
  • the second liquid elastic material may be methylvinyl dimethyl (siloxane and polysiloxane), 1,3,5,7-tetramethyltetravinylcyclotetrasiloxane, and tetramethyl A mixture of divinylsiloxane platinum complexes.
  • the second curing agent can be a hydrogen terminated methyl siloxane dimethyl siloxane copolymer.
  • methylvinyl dimethyl (siloxane and polysiloxane), 1,3,5,7-tetramethyltetravinylcyclotetrasiloxane and tetramethyldivinylsilane are first introduced.
  • the oxetane platinum complex is mixed in a certain ratio to obtain a mixture, and the mixture is placed in a vacuum dish to be evacuated to remove bubbles, and the bubble-removed mixture and the hydrogen-terminated methyl siloxane dimethyl group are removed.
  • the siloxane copolymer is mixed to obtain a second mixed liquid.
  • Methylvinyl dimethyl (siloxane and polysiloxane), 1,3,5,7-tetramethyltetravinylcyclotetrasiloxane and tetramethyldivinylsiloxane platinum complex The mass of the material can be 3.5 grams, 100 milligrams and 50 milligrams, respectively.
  • the curing conditions may be: a temperature of from 60 ° C to 80 ° C and a time of from 10 to 20 minutes.
  • the first liquid elastic material and the first curing agent are mixed at 5:1-20:1, and after stirring uniformly, a second mixed liquid is obtained, and the second mixed liquid is coated on the second elastic layer.
  • a vacuum chamber was placed in a vacuum chamber to remove air bubbles.
  • the template coated with the second mixed liquid is placed in an oven for drying and curing to form a first elastic substrate 120a as shown in FIG.
  • the curing conditions may be: a temperature of from 60 ° C to 80 ° C and a time of from 10 to 20 minutes.
  • the first elastic material is polydimethylsiloxane (model: SYLGARD 184; manufacturer: Dow Corning, USA), and the first curing agent is silicone curing agent (model: SYLGARD 184; manufacturer: Dow Corning, USA) .
  • first elastic substrate 120a and the second elastic substrate 120b of the edge of the rigid substrate are cut with a clean knife, and the second elastic substrate 120b is separated from the processed photoresist layer to form a second elastic lining.
  • a composite elastic substrate having a nano-array structure 121 on the bottom 120b is shown in FIG.
  • S7 Depositing a hydrogen sensitive material on a surface of a second elastic substrate having a nano-array structure to form a hydrogen-sensitive material nanostructure.
  • a hydrogen sensitive material is deposited on the composite elastic substrate comprising the nano-array structure 121 obtained in step S6 by a magnetron sputtering device to form a hydrogen-sensitive material nanostructure 110, as shown in FIG.
  • the hydrogen sensitive material is palladium.
  • the sputtering parameter can be 15 mA / 240 s.
  • the elastic substrate is a film structure.
  • a method for preparing the above hydrogen sensor of another embodiment includes the following steps:
  • an adhesive film is formed on the rigid substrate by spin coating.
  • the rigid substrate may be a transparent rigid substrate such as quartz.
  • the adhesive film may be a polymethyl methacrylate film, a polyethylene film or a polypropylene film.
  • the adhesive film may have a thickness of 30 nm to 200 nm in order to facilitate formation of a subsequent photoresist layer.
  • a photoresist layer is formed on the adhesive film by spin coating.
  • the thickness of the photoresist layer may range from 80 nm to 600 nm.
  • the photoresist used in the photoresist layer 150 is an AR-P 3740 high resolution positive photoresist (All Resist, Germany).
  • the photoresist layer is subjected to double beam exposure and development such that the photoresist layer has a nano-grating structure, and the nano-grating structure, the adhesive film, and the rigid substrate together serve as a template for the mold.
  • the template formed above and the release agent are placed together in a vacuum dish, evacuated and allowed to stand, so that the release agent molecules volatilize and cover the template. .
  • the standing time can be 30 minutes - 60 minutes.
  • the release agent may be selected from a silicone compound, a silicone oil, and the like.
  • the liquid elastic material and the curing agent are mixed at 5:1-20:1, and after being uniformly stirred, a mixed liquid is obtained, and the mixed liquid is coated on the photoresist layer having the nano light-cut structure. Place a vacuum in a vacuum dish to remove air bubbles. Next, the template coated with the mixed liquid is placed in an oven for drying and solidification to form an elastic substrate 1.
  • the curing conditions may be: a temperature of from 60 ° C to 80 ° C and a time of from 10 to 20 minutes.
  • the first elastic material is polydimethylsiloxane (model: SYLGARD 184; manufacturer: Dow Corning, USA), and the first curing agent is a silicone curing agent (model: SYLGARD 184; manufacturer: Dow Corning, USA).
  • the elastic substrate of the edge of the rigid substrate is cut with a clean knife, and the elastic substrate is separated from the processed photoresist layer to form a nano-array structure on the elastic substrate.
  • S60 Depositing a hydrogen sensitive material on a surface of an elastic substrate having a nano-array structure to form a hydrogen-sensitive material nanostructure.
  • a hydrogen sensitive material is deposited on the elastic substrate comprising the nano-array structure obtained in step S50 by a magnetron sputtering device to form a hydrogen-sensitive material nanostructure.
  • the hydrogen sensitive material is palladium.
  • the sputtering parameter can be 15 mA / 240 s.
  • the preparation method of the above hydrogen sensor is not only simple to manufacture, low in cost, but also widely applicable.
  • S100 irradiating incident light onto a surface of the hydrogen sensitive material nanostructure, and measuring an optical parameter of the hydrogen sensitive material nano film, wherein the optical parameter is a resonant wavelength, a resonant full width at half maximum, a reflectance, a reflected light intensity, Transmittance, transmitted light intensity, scattering cross section, extinction cross section, absorption cross section or absorbance.
  • the resonant wavelength of the hydrogen sensitive material nanostructure, the full width at half maximum of the resonance, or the reflectance at a certain wavelength can be measured using an ultraviolet-visible-near-infrared spectrophotometer.
  • the resonant wavelength and the full width at half maximum of the resonance can be determined by recording the reflection spectrum of a certain band, and the reflectance can be determined by recording the reflection spectrum of a certain band or the reflectance of a certain wavelength in a certain period of time.
  • the resonant wavelength refers to the wavelength at which the lowest point of the reflection valley of the hydrogen sensor is located.
  • the resonant half-height full-width value refers to the corresponding band width when the reflectance in a reflection valley is half of the maximum reflection drop.
  • the introduced hydrogen is a mixed gas of hydrogen and nitrogen, for example, 4% hydrogen is introduced, which means a mixed gas of hydrogen and nitrogen (the volume ratio of hydrogen to nitrogen is 4:96).
  • the nanostructure of the hydrogen sensitive material expands in volume after hydrogen absorption, and during the expansion process, it applies pressure to the surface of the elastic substrate, so that the geometry of the nano-groove on the elastic substrate 1 changes (the opening of the groove becomes smaller), thereby The resonant wavelength of the nanostructure of the hydrogen sensitive material is further shifted.
  • step S200 and step S300 can be performed simultaneously, and the optical parameters and the changes of the optical parameters are recorded in real time.
  • S400 Obtaining a change in relative optical parameters by optical parameters before and after deformation of the nanostructure of the hydrogen sensitive material, and determining the concentration of the introduced hydrogen according to the change of the relative optical parameters.
  • the reflectance before and after the deformation of the nanostructure of the hydrogen sensitive material is calculated.
  • the relative reflectance intensity change is compared with the relationship between the hydrogen concentration and the relative reflectance intensity change, and the concentration of the introduced hydrogen gas is determined.
  • the relationship information between the hydrogen concentration and the relative reflectance intensity change may be a lookup table or the like, wherein the lookup table is a relative reflectance intensity change corresponding to different hydrogen concentration.
  • a polymethyl methacrylate film and a photoresist film are sequentially spin-coated on a clean quartz substrate; wherein the polymethyl methacrylate film has a thickness of 50 nm, and the photoresist The thickness of the film is 90 nm;
  • the photoresist layer has a nano-grating structure; wherein the conditions of double-beam exposure and development are: the incident angle of the double beam is 34.9 degrees, and the exposure time is 50. Second, the development time is 60 seconds, and the development temperature is 21 degrees;
  • the second mixed liquid is spin-coated on the photoresist template after the release agent treatment, placed in an oven for curing, and cured at 70 ° C for 20 minutes to form a second elastic substrate; wherein, the second elastic lining
  • the thickness of the bottom was 30 ⁇ m.
  • step (6) The template after the first mixed liquid in step (6) is placed in an oven, and cured at 70 ° C for 20 minutes to form a first elastic substrate; wherein, the first elastic substrate has a thickness of 1 mm;
  • the hydrogen sensor prepared in Example 1 was placed in a gas flow cell, and pure nitrogen gas was passed through, and its reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). Then, 4% hydrogen (a mixed gas of hydrogen and nitrogen, a volume ratio of hydrogen to nitrogen of 4:96) was introduced, and the reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer), as shown in Fig. 11. Shown. Comparing the results of the two measurements, it can be concluded that the resonant wavelength is shifted by 20 nm, and the full width at half maximum of the resonance is 145 nm. Further, at a wavelength of 550 nm, the maximum value of the change in relative reflectance was measured to be 139%.
  • the hydrogen sensor was prepared according to the procedure of Example 1, except that the size parameters of the nanograting structure were: a period of 1000 nm, a groove depth of 90 nm, a groove opening width of 370 nm, and a groove bottom width of 240 nm.
  • the hydrogen sensor prepared in Example 2 was placed in a gas flow cell, and pure nitrogen gas was passed through, and its reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). Then, 4% hydrogen (a mixed gas of hydrogen and nitrogen, a volume ratio of hydrogen to nitrogen of 4:96) was introduced, and the reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer), and the measurement results were as follows.
  • Figure 12 shows. According to the reflection spectrum measurement and calibration method of Embodiment 1, the resonance wavelength was measured to be shifted by 28 nm, and the full width at half maximum of the resonance was 32 nm. Further, at a wavelength of 400 nm, the maximum value of the change in relative reflectance was measured to be 390%.
  • the hydrogen sensor was prepared according to the procedure of Example 1, except that the size parameters of the nanograting structure were: a period of 500 nm, a groove depth of 90 nm, a groove opening width of 260 nm, and a groove bottom width of 90 nm.
  • the hydrogen sensor prepared in Example 3 was placed in a gas flow cell, and pure nitrogen gas was passed through, and its reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). Then pass 4% hydrogen (a mixture of hydrogen and nitrogen, the volume ratio of hydrogen to nitrogen is 4:96), using UV- See - Near Infrared Spectrophotometer (Lambda 950, PerkinElmer) to measure its reflection spectrum. According to the reflection spectrum measurement and calibration method of Embodiment 1, the resonance wavelength was measured to be shifted by 18 nm, and the full width at half maximum of the resonance was 129 nm. Further, at a wavelength of 650 nm, the maximum value of the change in relative reflectance was found to be 153%.
  • the hydrogen sensor was prepared according to the procedure of Example 1, except that the size parameters of the nanograting structure were: a period of 600 nm, a groove depth of 90 nm, a groove opening width of 260 nm, and a groove bottom width of 90 nm.
  • the hydrogen sensor prepared in Example 4 was placed in a gas flow cell, and pure nitrogen gas was passed through, and its reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). Then, 4% hydrogen (a mixed gas of hydrogen and nitrogen, a volume ratio of hydrogen to nitrogen of 4:96) was introduced, and its reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). According to the reflection spectrum measurement and calibration method of Embodiment 1, the resonance wavelength was measured to be shifted by 18 nm, and the full width at half maximum of the resonance was 74 nm. In addition, at a wavelength of 675 nm, the maximum value of the change in relative reflectance was measured to be 400%.
  • a hydrogen gas sensor was prepared according to the procedure of Example 1, except that the size parameters of the nanograting structure were: a period of 700 nm, a groove depth of 90 nm, a groove opening width of 300 nm, and a groove bottom width of 200 nm.
  • the hydrogen sensor prepared in Example 5 was placed in a gas flow cell, and pure nitrogen gas was passed through, and its reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). Then, 4% hydrogen (a mixed gas of hydrogen and nitrogen, a volume ratio of hydrogen to nitrogen of 4:96) was introduced, and its reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). According to the reflectance spectrum measurement and calibration method of Embodiment 1, the resonance wavelength was measured to be shifted by 15 nm, and the full width at half maximum of the resonance was 79 nm. In addition, at a wavelength of 790 nm, the maximum value of the change in relative reflectance was measured to be 192%.
  • a polymethyl methacrylate film and a photoresist film are sequentially spin-coated on a clean quartz substrate; wherein the polymethyl methacrylate film has a thickness of 50 nm, and the photoresist The thickness of the film is 90 nm;
  • the photoresist layer has a nano-grating structure; wherein the conditions of double-beam exposure and development are: the incident angle of the double beam is 34.9 degrees, and the exposure time is 50. Second, the development time is 60 seconds, and the development temperature is 21 degrees;
  • the polydimethylsiloxane and the curing agent are mixed at a mass ratio of 10:1, and after stirring uniformly, a mixed liquid is obtained, and the mixed liquid is coated on the nano-grating structure, and placed Remove the air bubbles into the vacuum dish;
  • the sputtering parameter is 15 mA/240 s
  • the size parameter of the formed palladium nanogroove array is micro: the period is 400 nm, The groove depth is 90 nm, the groove opening width is 280 nm, and the groove bottom width is 100 nm.
  • the hydrogen sensor prepared in Example 6 was placed in a gas flow cell, and pure nitrogen gas was passed through, and its reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). Then, 4% hydrogen (a mixed gas of hydrogen and nitrogen, a volume ratio of hydrogen to nitrogen of 4:96) was introduced, and the reflection spectrum was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer), and the measurement results were as follows. Figure 13 shows. According to the reflection spectrum measurement and calibration method of Embodiment 1, the resonance wavelength was measured to be shifted by 50 nm, and the full width at half maximum of the resonance was 45 nm. In addition, at a wavelength of 600 nm, the maximum value of the change in relative reflectance was found to be 535%.
  • the hydrogen sensor was placed in a gas flow cell and its reflectance spectrum was measured with an ultraviolet spectrophotometer (Lambda 950, PerkinElmer).
  • the detector is 32 cm from the hydrogen sensor and the size of the light collection area is 7 mm * 7 mm.
  • a silver mirror was placed in the gas flow cell to measure the reflectance. Using the reflectivity of the silver mirror in the flow cell, the glass lens in the gas flow cell is calibrated for errors in the detected light reflection.
  • the calibration formula is Where: Rs is the reflectivity of the hydrogen sensor, R Ag is the reflectance of the silver mirror, and R B is the reflectance of the background.
  • Fig. 14 is a graph showing the relationship between the resonance wavelength and the hydrogen concentration of the hydrogen gas sensor obtained in Example 2.
  • the hydrogen sensor prepared in Example 2 was placed in a gas flow cell, and hydrogen gas of different concentrations (the other component of the mixed gas was nitrogen gas) was introduced, and it was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). Reflection spectrum.
  • the hydrogen concentrations were 0%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3% and 4%, respectively. It can be seen from the figure that the linear response range of the resonance wavelength of the hydrogen sensor is between 0.6% and 1% of the hydrogen concentration, and it can be seen that the hydrogen sensor has high sensitivity.
  • FIG. 15 is a graph showing the reflectance of the hydrogen sensor obtained in Example 2 with time of 10 cycles of introducing 4% hydrogen and passing pure nitrogen.
  • the hydrogen sensor prepared in Example 2 was placed in a gas flow cell, and pure nitrogen gas was introduced under a probe light having a wavelength of 560 nm, and the reflectance was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). .
  • 4% hydrogen (a mixed gas of hydrogen and nitrogen, a volume ratio of hydrogen to nitrogen of 4:96) was passed, and the reflectance thereof was measured by an ultraviolet-visible-near-infrared spectrophotometer (Lambda 950, PerkinElmer). Repeat the above steps for 10 cycles. It can be seen from the figure that the reflectivity of the hydrogen sensor under pure nitrogen and 4% hydrogen remains stable, and it can be seen that the hydrogen sensor has good repeatability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种氢气传感器及其制备方法、以及基于该传感器实现氢气检测的方法。该氢气传感器包括弹性衬底(120a、120b)和位于所述弹性衬底(120a、120b)上的氢敏材料纳米结构(110),弹性衬底靠近氢敏材料纳米结构(110)的表面具有纳米阵列结构(121),氢敏材料纳米结构(110)与纳米阵列结构(121)相互补。该氢气传感器的制备方法包括以下步骤:在刚性衬底(130)上形成粘附膜(140);暗室条件下经处理在粘附膜(140)上形成具有纳米光栅结构(151)的光刻胶层(150);将液态弹性材料和固化剂混合搅拌均匀后涂覆在所述纳米光栅结构(151)上,烘干固化得到弹性衬底(120a、120b);将所述弹性衬底(120a、120b)和处理后的光刻胶层(150)剥离以形成纳米阵列结构(121);在具有纳米阵列结构(121)的弹性衬底(120a、120b)表面上沉积氢敏材料形成氢敏材料纳米结构(110)。该氢气传感器和基于其实现氢气检测的方法,具有高灵敏度,制作简单。

Description

氢气传感器及其制备方法、实现氢气检测的方法 技术领域
本发明涉及传感器技术领域,特别是涉及一种氢气传感器及其制备方法,以及采用该氢气传感器实现氢气检测的方法。
背景技术
作为一种清洁的可再生能量载体,氢气被视为替代传统化石燃料的理想能源。随着氢气燃料电池技术的不断发展,如何确保氢气安全高效的生产、储存和使用,成为一个跨入“氢经济”时代的关键问题。但是,氢气有着极宽的爆炸极限(体积密度为4%-75%)和很低的引燃能(0.02mJ)。因此,氢气传感器对于氢气的应用是十分必要的。
氢气传感器主要包括利用电传感的传感器和光学氢气传感器。其中,光学传感器主要包括表面等离子体传感器和膜结构传感器。表面等离激元氢气传感器主要是基于金属纳米颗粒或者纳米结构的等离激元谐振效应。在氢敏金属纳米颗粒的谐振波长处,可以将入射光局域在其表面一个亚波长尺寸的区域。当氢敏金属纳米颗粒吸收氢气的时候,从金属态转化为金属氢化物态,介电常数随之发生改变,造成谐振波长的移动。通过对谐振波长的监控则可以实现对氢气的探测。
一般地,表面等离激元光学氢气传感器采用将金属纳米颗粒或者纳米结构制备在刚性衬底上,从而限制了氢敏金属纳米结构在吸氢过程中的体积膨胀,大大减弱了由结构几何形状诱导的光学响应。
发明内容
基于此,有必要针对如何提高氢气传感器的灵敏度的问题,提供一种氢气传感器及其制备方法,以及采用该氢气传感器实现氢气检测的方法。
一种氢气传感器,包括弹性衬底和位于所述弹性衬底上的氢敏材料纳米结构;所述弹性衬底的靠近所述氢敏材料纳米结构的表面具有纳米阵列结构,所 述氢敏材料纳米结构与所述纳米阵列结构相互补。
在其中一个实施例中,所述氢敏材料纳米结构中所采用的材料选自钯、镁、钇及镍镁合金中的一种或多种。
在其中一个实施例中,所述氢敏材料纳米结构选自一维纳米阵列或二维纳米阵列。
在其中一个实施例中,所述氢敏材料纳米结构选自一维纳米槽阵列,且所述氢敏材料纳米结构的周期为300nm-100000nm。
在其中一个实施例中,所述一维纳米槽阵列中的槽的深度为50nm-1000nm。
在其中一个实施例中,所述一维纳米槽阵列中的槽的开口宽度为150nm-400nm。
在其中一个实施例中,所述弹性衬底包括依次层叠的第一弹性衬底和第二弹性衬底,且所述第二弹性衬底的杨氏模量大于所述第一弹性衬底的杨氏模量。
在其中一个实施例中,所述第一弹性衬底的厚度为0.5mm-10mm,所述第二弹性衬底的厚度为5μm-100μm。
一种上述氢气传感器的制备方法,包括以下步骤:
在刚性衬底上形成粘附膜;
在暗室条件下,在所述粘附膜上形成光刻胶层,并对所述光刻胶层进行处理,使得所述光刻胶层具有纳米光栅结构;
将液态弹性材料和固化剂进行混合,搅拌均匀后,得到混合液体,并将所述混合液体涂覆在在所述纳米光栅结构上,对所述混合液体进行烘干和固化,得到弹性衬底;
将所述弹性衬底和处理后的光刻胶层进行剥离后,所述弹性衬底上形成纳米阵列结构;
在具有所述纳米阵列结构的所述弹性衬底的表面上沉积氢敏材料,形成氢敏材料纳米结构。
一种基于上述氢气传感器实现氢气检测的方法,其特征在于,包括以下步骤:
将入射光照射到所述氢敏材料纳米结构的表面上,测量所述氢敏材料纳米 膜的光学参数,其中,所述光学参数为谐振波长、谐振半高全宽值、反射率、反射光强、透射率、透射光强、散射截面、消光截面、吸收截面或吸光度;
通入含氢气的气体,所述氢敏材料纳米结构吸收氢气后体积膨胀,所述弹性衬底发生变形;
将入射光照射到变形后的所述氢敏材料纳米结构的表面上,测量所述变形后的氢敏材料纳米结构的光学参数;
通过所述氢敏材料纳米结构变形前后的光学参数,得到相对光学参数的变化,根据所述相对光学参数的变化,确定氢气的浓度。
上述氢气传感器及其采用该氢气传感器实现氢气检测的方法,氢敏材料纳米结构和氢气接触时,氢敏材料纳米结构吸收氢气,氢敏材料体积膨胀,膨胀过程中对弹性衬底的表面施加压力,使得弹性衬底的纳米结构的几何形状发生改变,同时,弹性衬底的形变也会带动氢敏材料纳米结构的变化,使得氢敏材料纳米结构的几何结构也发生更为充分的形变,进而放大了氢敏材料纳米结构的谐振波长的移动量和相对反射率强度的变化,提高了氢气传感器的灵敏度。
上述氢气传感器的制备方法,不仅制作简单、成本低,还可广泛应用。
附图说明
图1为一实施例的氢气传感器的结构示意图;
图2为图1中所示的氢气传感器的电镜图;
图3为图1中所示的氢气传感器的另一电镜图;
图4为一实施例的氢气传感器的制备方法的流程示意图;
图5为粘附膜在刚性衬底上形成后的结构示意图;
图6为图5中所示的粘附膜上形成光刻胶层后的结构示意图;
图7为对图6中所示的光刻胶层进行处理后的结构示意图;
图8为图7中所示的光刻胶层上形成第二弹性衬底的结构示意图;
图9为图8中所示的第二弹性衬底上形成第一弹性衬底后的结构示意图;
图10为将图8中所示的第二弹性衬底和光刻胶层进行分离后的结构示意图;
图11为实施例1得到的氢气传感器在通入纯氮气和通入4%氢气下的反射 谱;
图12为实施例2得到的氢气传感器在通入纯氮气和通入4%氢气下的反射谱;
图13为实施例6得到的氢气传感器在通入纯氮气和通入4%氢气下的反射谱;
图14为实施例2得到的氢气传感器的谐振波长与氢气浓度之间的关系图;
图15为实施例2得到的氢气传感器在通入4%氢气和通入纯氮气的10个循环下的反射率随时间的变化图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,一实施例的氢气传感器100包括弹性衬底和氢敏材料纳米结构110。氢敏材料纳米结构110位于弹性衬底上。弹性衬底的靠近氢敏材料纳米结构110的表面具有纳米阵列结构,且该氢敏材料纳米结构与该纳米阵列结构相互补。该氢气传感器100可以为表面等离激元光学传感器。
从而处于氢气环境中时,氢敏材料纳米结构110和氢气接触时,氢敏材料纳米结构110吸收氢气,氢敏材料体积膨胀,膨胀过程中对弹性衬底的表面施加压力,使得弹性衬底的纳米结构的几何形状发生改变,同时,弹性衬底的形变也会带动氢敏材料纳米结构110的变化,使得氢敏材料纳米结构110的几何结构也发生更为充分的形变,进而放大了氢敏材料纳米结构110的谐振波长的移动量和相对反射率强度的变化,提高了氢气传感器的灵敏度。当对氢敏材料 纳米结构110去氢后,由于弹性衬底110的弹性恢复力,弹性衬底110恢复到初始的状态,带动氢敏材料纳米结构110恢复到平滑状态,进而氢气传感器110恢复到初始状态,从而使得该氢气传感器100可以多次使用。
传统的表面等离激元光学氢气传感器采用刚性衬底,不仅限制了氢敏金属纳米结构在吸氢过程中的体积膨胀,大大减弱了由结构几何形状诱导的光学响应,还会引起局域等离激元较大的散射损耗,从而造成谐振具有较宽的半高全宽,降低了传感性能。此外,氢敏金属纳米结构在吸氢过程中与刚性衬底之间产生极大的应力,容易造成脱落,导致该表面等离激元光学氢气传感器的使用次数减少,进而使得其寿命较短。
相比于传统的表面等离激元光学氢气传感器,上述氢气传感器100具有弹性衬底,在氢气环境下,弹性衬底上的氢敏金属纳米结构110的几何形状发生更为充分的形变,从而放大了该氢敏材料纳米结构110的谐振波长的移动量和相对反射率强度的变化,其谐振波长的移动可达28nm。同时,在可见波段处,氢敏材料纳米结构110的相对反射率强度变化可以达到390%,如此强的相对反射率强度变化可以直接用肉眼观察到。此外,氢敏材料纳米结构110所支持的传播表面等离激元和其腔模之间相互作用,形成一个耦合谐振模式,从而极大地减少用于反射谷或峰的半高全宽值,使得氢敏材料纳米结构110的谐振的半高全宽值可以窄至32nm。又由于弹性衬底较小的杨氏模量,吸氢过程中氢敏材料纳米结构110和弹性衬底之间的应力将减少,从而减少了氢敏材料纳米结构110在吸氢过程中的脱落几率,增加了氢气传感器100的使用次数和寿命。
在其中一个实施例中,氢敏材料纳米结构110所采用的材料选自钯、镁、钇及镍镁合金中的一种或多种。钯膜在常温常压环境下就能很好地与氢气发生作用,在本实施例中,氢敏材料纳米结构110所采用的材料为钯。需要说明的是,氢敏材料纳米结构110所采用的材料也可以为其他吸氢后体积会膨胀的金属或金属复合物。
在其中一个实施例中,氢敏材料纳米结构110选自一维纳米阵列或二维纳米阵列。需要说明的是,氢敏材料纳米结构110选自周期性纳米阵列即可,在此并不限定。其中,一维指的是结构在一个方向上是周期性的。一维纳米阵列 可以为一维纳米槽阵列,此外,一维纳米阵列上的基本单元的形状也还可以是颗粒状或其他形状。二维纳米阵列可以为二维纳米孔洞阵列。
进一步地,氢敏材料纳米结构110选自一维纳米槽阵列,且氢敏材料纳米结构110的周期为300nm-100000nm。在其中一个实施例中,氢敏材料纳米结构110的周期为400nm-1000nm。在本实施例中,氢敏材料选自钯。如图2和图3所示,氢敏材料纳米结构110也呈纳米凹槽阵列。
在其中一个实施例中,一维纳米槽阵列中的槽的深度为50nm-1000nm。进一步地,该一维纳米槽阵列中的槽的深度可以为90nm。
在其中一个实施例中,一维纳米槽阵列中的槽的开口宽度为150nm-400nm。进一步地,该一维纳米槽阵列中的槽的横截面的形状为梯形,从槽的开口往槽的底面的方面,其宽度越来越小。在其中一个实施例中,一维纳米槽阵列中的槽的开口宽度为280nm。
需要说明的是,通过一维纳米槽阵列的周期、一维纳米槽阵列中的槽的深度以及一维纳米槽阵列中的槽的开口宽度进行选择,从而改变其谐振波长,进而扩大入射光的选择,可以选择各种各样的波长的入射光。
在其中一个实施例中,弹性衬底的杨氏模量大于0小于等于60000MPa。弹性衬底可以为所有低弹性模量的弹性体。弹性衬底可以为为热固性弹性体和热塑性弹性体。热塑性弹性体可以为丁苯橡胶、顺丁橡胶、异戊橡胶、乙丙橡胶、丁基橡胶、氯丁橡胶或丁腈橡胶等橡胶。热塑性弹性体也可以为聚氨酯类热塑性弹性体、聚酰胺类热塑性弹性体或聚烯烃类热塑性弹性体等。热固性弹性体可以为聚硅氧烷、聚氨酯或硅橡胶等。需要说明的是,弹性衬底只要其具有弹性即可。其中,聚硅氧烷可以为聚二甲基硅氧烷。
进一步地,再参考图1,在其中一个实施例中,弹性衬底包括依次层叠的第一弹性衬底120a和第二弹性衬底120b,且第二弹性衬底120b的杨氏模量大于第一弹性衬底120b的杨氏模量。第一弹性衬底120a和第二弹性衬底120b都具有很好的弹性,第二弹性衬底120b的杨氏模量相对较高,具有较高的分辨率,便于提高后续的第二弹性衬底120b上的模板的形成的精确性。而第一弹性衬底120a的杨氏模量较低,使得整个弹性衬底的弹性提高。在其中一个实施例中, 第二弹性衬底120b的杨氏模量是第一弹性衬底120b的杨氏模量的10倍以上。
在其中一个实施例中,第一弹性衬底120a的厚度为0.5mm-10mm,第二弹性衬底120b的厚度为5μm-100μm。第一弹性衬底120a的厚度较厚,起到主要提供弹力的作用。需要说明的是,在其他实施例中,弹性衬底也可以只包括第一弹性衬底120a。
再参考图1,当弹性衬底包括第一弹性衬底120a和第二弹性衬底120b,且氢敏材料纳米结构110为一维纳米槽阵列时,暴露在氢气环境中时,氢敏材料纳米结构110吸收氢气,将氢气解离成氢原子。氢原子通过扩散占据了氢敏材料的晶格间隙,形成了氢敏材料的氢化物态。从而引起氢敏材料的介电常发生变化以及晶格发生膨胀,这会引起氢气传感器的谐振波长发生移动,从而可以通过测量其谐振波长的移动或者反射光强的变化,探测低浓度下的氢气浓度。
此外,一维纳米槽阵列在膨胀过程中其对第二弹性衬底120b的纳米凹槽界面施加应力,使得第二弹性衬底120b上的纳米凹槽的几何形状发生变化(凹槽的开口变小),从而使氢敏材料纳米结构的谐振波长进一步移动。在第二弹性衬底120b和氢敏材料纳米结构共同协同作用,使得氢气传感器的谐振波长的移动大大增加,从而提高了其传感灵敏度。
上述氢气传感器的谐振波长的移动可达28nm,且在整个可见光区域,4%氢气浓度(氢气和氮气的混合气体,其中,氢气所占的体积百分数为4%)作用下其相对反射率强度变化可以超过390%。这么强的相对反射率强度变化可以直接用肉眼观察到。该传感器成本低,制作简单,可大批量生产,且灵敏度高,可以广泛应用,适用于不同环境下的氢气探测。
如图4所示,一实施例的上述氢气传感器的制备方法包括以下步骤:
S1:在刚性衬底上形成粘附膜。
具体地,通过旋涂的方式,在刚性衬底130上形成一层粘附膜140,如图5所示。其中,刚性衬底130可以为石英等透明刚性衬底。粘附膜140可以为聚甲基丙烯酸甲酯薄膜、聚乙烯薄膜或聚丙烯薄膜。粘附膜140为便于后续的光刻胶层的形成,粘附膜140的厚度可以为30nm-200nm。
S2:在暗室条件下,在粘附膜上形成光刻胶层。
具体地,如图6所示,通过旋涂的方式,在粘附膜140上形成光刻胶层150。该光刻胶层150的厚度可以为80nm-600nm。其中,光刻胶层150所采用的光刻胶为AR-P 3740高分辨正性光刻胶(德国All Resist公司)。
S3:对光刻胶层进行处理,使得光刻胶层具有纳米光栅结构。
具体地,对光刻胶层150进行一次双光束曝光和显影,使得该光刻胶层150具有纳米光栅结构151,纳米光栅结构151、粘附膜140以及刚性衬底130一起作为铸模的模板,如图7所示。
此外,为了便于后续步骤中形成的弹性衬底和模板分离,将上述形成的模板和脱模剂一起放入真空皿中,抽真空并静置,从而使得该脱模剂分子挥发覆盖到模板上。其中,静置的时间可以为30分钟-60分钟。脱模剂可以选自硅氧烷化合物、硅油或全氟辛基三氯硅烷等。
S4:将第二液态弹性材料和第二固化剂进行混合,搅拌均匀后,得到第二混合液体,并将第二混合液体涂覆在纳米光栅结构上,对第二混合液体进行烘干和固化,得到第二弹性衬底。
具体地,将第二液态弹性材料和第二固化剂进行混合,搅拌均匀后,放入真空皿中进行抽真空,去除气泡,得到第二混合液态。接着将第二混合液态旋涂在步骤S3中所得到的模板上,再将该模板放入烘箱中进行固化,从而在模板上形成第二弹性衬底120b,如图8所示。其中,第二液态弹性材料可以为甲基乙烯基二甲基(硅氧烷与聚硅氧烷)、1,3,5,7-四甲基四乙烯基环四硅氧烷以及四甲基二乙烯基硅氧烷铂络合物的混合物。第二固化剂可以为氢封端甲基硅氧烷二甲基硅氧烷共聚物。此时,先将甲基乙烯基二甲基(硅氧烷与聚硅氧烷)、1,3,5,7-四甲基四乙烯基环四硅氧烷以及四甲基二乙烯基硅氧烷铂络合物按照一定的比例进行混合,得到混合物,再将该混合物放入真空皿中进行抽真空,去除气泡,将去除气泡后的混合物与氢封端甲基硅氧烷二甲基硅氧烷共聚物进行混合,得到第二混合液体。甲基乙烯基二甲基(硅氧烷与聚硅氧烷)、1,3,5,7-四甲基四乙烯基环四硅氧烷以及四甲基二乙烯基硅氧烷铂络合物的质量可以分别为3.5克、100毫克和50毫克。固化条件可以为:温度为60℃-80℃,时间为10-20分钟。
S5:将第一液态弹性材料和第一固化剂进行混合,搅拌均匀后,得到第二混合液体,并将第二混合液体涂覆在第二弹性衬底上,对第二混合液体进行烘干和固化,得到第一弹性衬底。
具体地,常温下,将第一液态弹性材料和第一固化剂以5:1-20:1进行混合,搅拌均匀后,得到第二混合液体,并将第二混合液体涂覆在第二弹性衬底120b上,放入真空皿中抽真空,去除气泡。接着,将涂覆有第二混合液体的模板放入烘箱中进行烘干和固化,形成第一弹性衬底120a,如图9所示。固化条件可以为:温度为60℃-80℃,时间为10-20分钟。在本实施例中,第一弹性材料为聚二甲基硅氧烷(型号:SYLGARD 184;厂家:美国道康宁),第一固化剂为硅树脂固化剂(型号:SYLGARD 184;厂家:美国道康宁)。
S6:将弹性衬底和处理后的光刻胶层进行剥离后,弹性衬底上形成纳米阵列结构。
具体地,用干净的小刀划开刚性衬底边缘的第一弹性衬底120a和第二弹性衬底120b,将第二弹性衬底120b与处理后的光刻胶层分离,形成第二弹性衬底120b上具有纳米阵列结构121的复合弹性衬底,如图10所示。
S7:在具有纳米阵列结构的第二弹性衬底的表面上沉积氢敏材料,形成氢敏材料纳米结构。
具体地,利用磁控溅射仪在步骤S6中得到的包含纳米阵列结构121的复合弹性衬底上沉积氢敏材料,形成氢敏材料纳米结构110,如图1所示。在本实施例中,氢敏材料为钯。其中,溅射参数可以为15mA/240s。
在另一个实施例中,弹性衬底为一层膜结构。另一实施例的上述氢气传感器的制备方法包括以下步骤:
S10:在刚性衬底上形成粘附膜。
具体地,通过旋涂的方式,在刚性衬底上形成一层粘附膜。其中,刚性衬底可以为石英等透明刚性衬底。粘附膜可以为聚甲基丙烯酸甲酯薄膜、聚乙烯薄膜或聚丙烯薄膜。粘附膜为便于后续的光刻胶层的形成,粘附膜的厚度可以为30nm-200nm。
S20:在暗室条件下,在粘附膜上形成光刻胶层。
具体地,通过旋涂的方式,在粘附膜上形成光刻胶层。该光刻胶层的厚度可以为80nm-600nm。其中,光刻胶层150所采用的光刻胶为AR-P 3740高分辨正性光刻胶(德国All Resist公司)。
S30:对光刻胶层进行处理,使得光刻胶层具有纳米光栅结构。
具体地,对光刻胶层进行一次双光束曝光和显影,使得该光刻胶层具有纳米光栅结构,纳米光栅结构、粘附膜以及刚性衬底一起作为铸模的模板。
此外,为了便于后续步骤中形成的弹性衬底和模板分离,将上述形成的模板和脱模剂一起放入真空皿中,抽真空并静置,从而使得该脱模剂分子挥发覆盖到模板上。其中,静置的时间可以为30分钟-60分钟。脱模剂可以选自硅氧烷化合物、硅油等。
S40:将液态弹性材料和固化剂进行混合,搅拌均匀后,得到混合液体,并将混合液体涂覆在纳米光栅结构上,对混合液体进行烘干和固化,得到弹性衬底。
具体地,常温下,将液态弹性材料和固化剂以5:1-20:1进行混合,搅拌均匀后,得到混合液体,并将混合液体涂覆在具有纳米光删结构的光刻胶层上,放入真空皿中抽真空,去除气泡。接着,将涂覆有混合液体的模板放入烘箱中进行烘干和固化,形成弹性衬底1。固化条件可以为:温度为60℃-80℃,时间为10-20分钟。在本实施例中,第一弹性材料为聚二甲基硅氧烷(型号:SYLGARD184;厂家:美国道康宁),第一固化剂为硅树脂固化剂(型号:SYLGARD 184;厂家:美国道康宁)。
S50:将弹性衬底和处理后的光刻胶层进行剥离后,弹性衬底上形成纳米阵列结构。
具体地,用干净的小刀划开刚性衬底边缘的弹性衬底,将弹性衬底与处理后的光刻胶层分离,形成弹性衬底上具有纳米阵列结构。
S60:在具有纳米阵列结构的弹性衬底的表面上沉积氢敏材料,形成氢敏材料纳米结构。
具体地,利用磁控溅射仪在步骤S50中得到的包含纳米阵列结构的弹性衬底上沉积氢敏材料,形成氢敏材料纳米结构。在本实施例中,氢敏材料为钯。 其中,溅射参数可以为15mA/240s。
上述氢气传感器的制备方法,不仅制作简单、成本低,还可广泛应用。
一实施例的基于氢气传感器实现氢气检测的方法包括以下步骤:
S100:将入射光照射到氢敏材料纳米结构的表面上,测量所述氢敏材料纳米膜的光学参数,其中,所述光学参数为谐振波长、谐振半高全宽值、反射率、反射光强、透射率、透射光强、散射截面、消光截面、吸收截面或吸光度。可以采用紫外-可见-近红外分光光度计测量氢敏材料纳米结构的谐振波长、谐振半高全宽值或者某一波长处的反射率。
其中,谐振波长和谐振半高全宽值可以通过记录某一波段的反射谱来确定,反射率可以通过记录某一波段的反射谱或者某一时间段内某一波长的反射率来确定。
需要说明的是,谐振波长指的是氢气传感器的反射谷的最低点所在的波长。谐振半高全宽值指的是一个反射谷中反射率为最大反射落差的一半时对应的谱带宽度。
S200:通入含氢气的气体,氢敏材料纳米结构吸收氢气后体积膨胀,弹性衬底发生变形。
具体地,通入的氢气为氢气和氮气的混合气体,如:通入4%氢气,指的是通入氢气和氮气的混合气体(氢气和氮气的体积比为4:96)。氢敏材料纳米结构吸氢后体积膨胀,膨胀过程中其对弹性衬底的表面施加压力,使得弹性衬底1上的纳米凹槽的几何形状发生变化(凹槽的开口变小),从而使氢敏材料纳米结构的谐振波长进一步移动。
S300:将入射光照射到变形后的氢敏材料纳米结构的表面上,测量变形后的氢敏材料纳米结构的光学参数。
需要说明的是,步骤S200和步骤S300可以同时进行,实时记录光学参数以及光学参数的变化。
S400:通过氢敏材料纳米结构变形前后的光学参数,得到相对光学参数的变化,根据相对光学参数的变化,确定通入的氢气的浓度。
具体地,在本实施例中,通过氢敏材料纳米结构变形前后的反射率计算得 到相对反射率强度变化,再将该相对反射率强度变化跟氢气浓度与相对反射率强度变化的关系信息进行对比,确定通入的氢气的浓度。需要说明的是,氢气浓度与相对反射率强度变化的关系信息可以为查找表等,其中,查找表为不同氢气浓度所对应的相对反射率强度变化。
以下通过具体实施例对本发明作进一步的阐述。
实施例1
(1)常温下,暗室条件下,在干净的石英衬底上依次旋涂聚甲基丙烯酸甲酯薄膜和光刻胶薄膜;其中,聚甲基丙烯酸甲酯薄膜的厚度为50nm,光刻胶薄膜的厚度为90nm;
(2)对光刻胶进行一次双光束曝光和显影,使得光刻胶层具有纳米光栅结构;其中,进行双光束曝光和显影的条件为:双光束的入射角为34.9度,曝光时间为50秒,显影时间为60秒,显影温度为21度;
(3)将处理后的光刻胶和脱模剂全氟辛基三氯硅烷一同放入真空皿中,抽真空,静置40分钟后,脱模剂分子挥发覆盖到光刻胶模板上;
(4)将按3.4g甲基乙烯基二甲基(硅氧烷与聚硅氧烷)、100mg1,3,5,7-四甲基四乙烯基环四硅氧烷以及50mg四甲基二乙烯基硅氧烷铂络合物进行混合,搅拌均匀后放入真空皿中抽真空去除气泡;然后在上述混合物中加入1g氢封端甲基硅氧烷二甲基硅氧烷共聚物,搅拌均匀,形成第二混合液体;
(5)将第二混合液体旋涂在脱模剂处理后的光刻胶模板上,放入烘箱进行固化,在70℃下固化20分钟,形成第二弹性衬底;其中,第二弹性衬底的厚度为30μm。
(6)常温下,将聚二甲基硅氧烷和第一固化剂以质量比为10:1的比例进行混合,搅拌均匀后,得到第一混合液体,将该第一混合液体涂覆在第二弹性衬底上,放入真空皿中除去气泡;
(7)将步骤(6)中涂覆第一混合液体后的模板放入烘箱,在70℃下固化20分钟,形成第一弹性衬底;其中,第一弹性衬底的厚度为1mm;
(8)用干净的小刀划开石英片边缘的第一弹性衬底和第二弹性衬底所形成 的复合弹性衬底,将该复合弹性衬底和处理后的光刻胶分开,从而第二弹性衬底的远离第一弹性衬底的表面上具有纳米阵列结构;
(9)利用磁控溅射仪在第二弹性衬底上沉积钯,形成氢敏材料纳米结构;其中,溅射参数为15mA/240s;形成的钯纳米凹槽阵列的尺寸参数微:周期为400nm,槽深为90nm,凹槽开口宽度为260nm,凹槽底部宽度为90nm。
将实施例1制得的氢气传感器放入气体流通池中,通入纯氮气,采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。然后通入4%氢气(氢气和氮气的混合气体,氢气和氮气的体积比为4:96),采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱,如图11所示。比较两次测量的结果,可以得出其谐振波长移动了20nm,谐振的半高全宽为145nm。此外,在波长550nm下,测得相对反射率变化的最大值达到139%。
实施例2
按实施例1的步骤制备氢气传感器,区别在于纳米光栅结构的尺寸参数为:周期为1000nm,槽深为90nm,凹槽开口宽度为370nm,凹槽底部宽度为240nm。
将实施例2制得的氢气传感器放入气体流通池中,通入纯氮气,采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。然后通入4%氢气(氢气和氮气的混合气体,氢气和氮气的体积比为4:96),采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱,测量结果如图12所示。按实施例1的反射谱测量和校准方法,测得其谐振波长移动了28nm,谐振的半高全宽为32nm。另外,在波长400nm下,测得相对反射率变化的最大值达到390%。
实施例3
按实施例1的步骤制备氢气传感器,区别在于纳米光栅结构的尺寸参数为:周期为500nm,槽深为90nm,凹槽开口宽度为260nm,凹槽底部宽度为90nm。
将实施例3制得的氢气传感器放入气体流通池中,通入纯氮气,采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。然后通入4%氢气(氢气和氮气的混合气体,氢气和氮气的体积比为4:96),采用紫外-可 见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。按实施例1的反射谱测量和校准方法,测得其谐振波长移动了18nm,谐振的半高全宽为129nm。另外,在波长650nm下,测得相对反射率变化的最大值达到153%。
实施例4
按实施例1的步骤制备氢气传感器,区别在于纳米光栅结构的尺寸参数为:周期为600nm,槽深为90nm,凹槽开口宽度为260nm,凹槽底部宽度为90nm。
将实施例4制得的氢气传感器放入气体流通池中,通入纯氮气,采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。然后通入4%氢气(氢气和氮气的混合气体,氢气和氮气的体积比为4:96),采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。按实施例1的反射谱测量和校准方法,测得其谐振波长移动了18nm,谐振的半高全宽为74nm。另外,在波长675nm下,测得相对反射率变化的最大值达到400%。
实施例5
按实施例1的步骤制备氢气传感器,区别在于纳米光栅结构的尺寸参数为:周期为700nm,槽深为90nm,凹槽开口宽度为300nm,凹槽底部宽度为200nm。
将实施例5制得的氢气传感器放入气体流通池中,通入纯氮气,采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。然后通入4%氢气(氢气和氮气的混合气体,氢气和氮气的体积比为4:96),采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。按实施例1的反射谱测量和校准方法,测得其谐振波长移动了15nm,谐振的半高全宽为79nm。另外,在波长790nm下,测得相对反射率变化的最大值达到192%。
实施例6
(1)常温下,暗室条件下,在干净的石英衬底上依次旋涂聚甲基丙烯酸甲酯薄膜和光刻胶薄膜;其中,聚甲基丙烯酸甲酯薄膜的厚度为50nm,光刻胶薄膜的厚度为90nm;
(2)对光刻胶进行一次双光束曝光和显影,使得光刻胶层具有纳米光栅结构;其中,进行双光束曝光和显影的条件为:双光束的入射角为34.9度,曝光时间为50秒,显影时间为60秒,显影温度为21度;
(3)将处理后的光刻胶和脱模剂全氟辛基三氯硅烷一同放入真空皿中,抽真空,静置40分钟后,脱模剂分子挥发覆盖到光刻胶模板上;
(4)常温下,将聚二甲基硅氧烷和固化剂以质量比为10:1的比例进行混合,搅拌均匀后,得到混合液体,将该混合液体涂覆在纳米光栅结构上,放入真空皿中除去气泡;
(5)将步骤(4)中涂覆混合液体后的模板放入烘箱,在70℃下固化20分钟,形成弹性衬底;其中,弹性衬底的厚度为1mm;
(6)用干净的小刀划开石英片边缘的弹性衬底,将该弹性衬底和处理后的光刻胶分开,从而弹性衬底的表面上具有纳米阵列结构;
(7)利用磁控溅射仪在弹性衬底上沉积钯,形成氢敏材料纳米结构;其中,溅射参数为15mA/240s;形成的钯纳米凹槽阵列的尺寸参数微:周期为400nm,槽深为90nm,凹槽开口宽度为280nm,凹槽底部宽度为100nm。
将实施例6制得的氢气传感器放入气体流通池中,通入纯氮气,采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。然后通入4%氢气(氢气和氮气的混合气体,氢气和氮气的体积比为4:96),采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射谱,测量结果如图13所示。按实施例1的反射谱测量和校准方法,测得其谐振波长移动了50nm,谐振的半高全宽为45nm。另外,在波长600nm下,测得相对反射率变化的最大值达到535%。
光谱测量
将氢气传感器放入气体流通池中,用紫外分光光度计(Lambda 950,PerkinElmer)测量其反射谱。探测器距离氢气传感器32cm,光收集区域的尺寸大小为7mm*7mm。首先,在气体流通池内放入银镜,测量其反射率。利用银镜在流通池中的反射率,对气体流通池中的玻璃透镜对探测光反射带来误差进行校准。校准公式为
Figure PCTCN2017115826-appb-000001
式中:Rs是氢气传感器的反射率,RAg是银镜 的反射率,RB是背景的反射率。相对发射率变化的计算公式为:ΔRrel=(R0%-Ri%)/Ri%,其中,i大于0小于等于4,ΔRrel为相对反射率变化;R0%为通氢气前的反射率,Ri%为通浓度为i%的氢气的反射率。
再参考图14,图14为实施例2得到的氢气传感器的谐振波长与氢气浓度之间的关系图。将实施例2制得的氢气传感器放入气体流通池中,通入不同浓度氢气(混合气体的另一组分是氮气),采用紫外-可见-近红外分光光度计(Lambda950,PerkinElmer)测量其反射谱。氢气的浓度分别为0%,0.2%,0.3%,0.4%,0.5%,0.6%,0.7%,0.8%,0.9%,1%,2%,3%以及4%。从图中可以看出,氢气传感器的谐振波长的线性响应范围在氢气浓度0.6%到1%之间,可以看出氢气传感器具有较高的灵敏度。
请参考图15,图15为实施例2得到的氢气传感器在通入4%氢气和通入纯氮气的10个循环下的反射率随时间的变化图。将实施例2制得的氢气传感器放入气体流通池中,在波长为560nm的探测光下,通入纯氮气,采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射率。然后通入4%氢气(氢气和氮气的混合气体,氢气和氮气的体积比为4:96),采用紫外-可见-近红外分光光度计(Lambda 950,PerkinElmer)测量其反射率。重复以上步骤10个循环。从图中可以看出,氢气传感器在纯氮气和4%氢气下的反射率保持稳定,可以看出氢气传感器具有较好的重复性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种氢气传感器,其特征在于,包括弹性衬底和位于所述弹性衬底上的氢敏材料纳米结构;所述弹性衬底的靠近所述氢敏材料纳米结构的表面具有纳米阵列结构,所述氢敏材料纳米结构与所述纳米阵列结构相互补。
  2. 根据权利要求1所述的氢气传感器,其特征在于,所述氢敏材料纳米结构中所采用的材料选自钯、镁、钇及镍镁合金中的一种或多种。
  3. 根据权利要求1或2所述的氢气传感器,其特征在于,所述氢敏材料纳米结构选自一维纳米阵列或二维纳米阵列。
  4. 根据权利要求3所述的氢气传感器,其特征在于,所述氢敏材料纳米结构选自一维纳米槽阵列,且所述氢敏材料纳米结构的周期为300nm-100000nm。
  5. 根据权利要求4所述的氢气传感器,其特征在于,所述一维纳米槽阵列中的槽的深度为50nm-1000nm。
  6. 根据权利要求4中任一项所述的氢气传感器,其特征在于,所述一维纳米槽阵列中的槽的开口宽度为150nm-400nm。
  7. 根据权利要求1所述的氢气传感器,其特征在于,所述弹性衬底包括依次层叠的第一弹性衬底和第二弹性衬底,且所述第二弹性衬底的杨氏模量大于所述第一弹性衬底的杨氏模量。
  8. 根据权利要求7所述的氢气传感器,其特征在于,所述第一弹性衬底的厚度为0.5mm-10mm,所述第二弹性衬底的厚度为5μm-100μm。
  9. 一种如权利要求1-8中任一项所述的氢气传感器的制备方法,其特征在于,包括以下步骤:
    在刚性衬底上形成粘附膜;
    在暗室条件下,在所述粘附膜上形成光刻胶层,并对所述光刻胶层进行处理,使得所述光刻胶层具有纳米光栅结构;
    将液态弹性材料和固化剂进行混合,搅拌均匀后,得到混合液体,并将所述混合液体涂覆在在所述纳米光栅结构上,对所述混合液体进行烘干和固化,得到弹性衬底;
    将所述弹性衬底和处理后的光刻胶层进行剥离后,所述弹性衬底上形成纳 米阵列结构;
    在具有所述纳米阵列结构的所述弹性衬底的表面上沉积氢敏材料,形成氢敏材料纳米结构。
  10. 一种基于权利要求1-8中任一项所述的氢气传感器实现氢气检测的方法,其特征在于,包括以下步骤:
    将入射光照射到所述氢敏材料纳米结构的表面上,测量所述氢敏材料纳米膜的光学参数,其中,所述光学参数为谐振波长、谐振半高全宽值、反射率、反射光强、透射率、透射光强、散射截面、消光截面、吸收截面或吸光度;
    通入含氢气的气体,所述氢敏材料纳米结构吸收氢气后体积膨胀,所述弹性衬底发生变形;
    将入射光照射到变形后的所述氢敏材料纳米结构的表面上,测量所述变形后的氢敏材料纳米结构的光学参数;
    通过所述氢敏材料纳米结构变形前后的光学参数,得到相对光学参数的变化,根据所述相对光学参数的变化,确定氢气的浓度。
PCT/CN2017/115826 2017-11-02 2017-12-13 氢气传感器及其制备方法、实现氢气检测的方法 WO2019085166A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/498,748 US11567050B2 (en) 2017-11-02 2017-12-13 Hydrogen sensor and preparation method therefor, and method for implementing hydrogen detection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711064216.4 2017-11-02
CN201711064216.4A CN107941787B (zh) 2017-11-02 2017-11-02 氢气传感器及其制备方法、实现氢气检测的方法

Publications (1)

Publication Number Publication Date
WO2019085166A1 true WO2019085166A1 (zh) 2019-05-09

Family

ID=61934167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115826 WO2019085166A1 (zh) 2017-11-02 2017-12-13 氢气传感器及其制备方法、实现氢气检测的方法

Country Status (3)

Country Link
US (1) US11567050B2 (zh)
CN (1) CN107941787B (zh)
WO (1) WO2019085166A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11150230B2 (en) 2017-11-02 2021-10-19 Sun Yat-Sen University Hydrogen sensor and preparation method therefor, and method for implementing hydrogen detection

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109374732B (zh) * 2018-08-14 2022-01-04 杭州超钜科技有限公司 断层逸出气便携式快速测氢装置及其监测方法
CN109490367A (zh) * 2018-09-30 2019-03-19 兰州空间技术物理研究所 一种单原子氢传感器及其制备方法
CN111272826B (zh) * 2020-03-06 2022-12-23 电子科技大学中山学院 一种级联作用型半导体气体传感器
CN112986182B (zh) * 2021-02-04 2023-03-03 中山大学 湿度传感单元、湿度传感器及其应用
CN114371197A (zh) * 2021-05-12 2022-04-19 湖北大学 一种基于氧化锌薄膜的可见光吸收型氢气传感器件
CN113533257B (zh) * 2021-05-28 2023-03-28 中山大学 氢气传感器及其制备方法
CN115711713B (zh) * 2021-08-19 2023-09-12 中国石油化工股份有限公司 氢气泄漏检测材料及其制备方法及应用
CN115615965B (zh) * 2022-11-17 2023-04-14 中国工程物理研究院材料研究所 一种氢气传感器及其制备方法、检测氢气浓度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204794A1 (en) * 2004-09-09 2006-09-14 Fujitsu Limited Laminate structure, magnetic recording medium and method for producing the same, magnetic recording device, magnetic recording method, and element with the laminate structure
CN103336036A (zh) * 2013-06-26 2013-10-02 苏州新锐博纳米科技有限公司 一种传感参数可控的钯纳米粒子点阵氢气传感器
CN103424441A (zh) * 2012-05-22 2013-12-04 香港理工大学 制备于柔度可控基底上的连通性可调的钯基氢气传感器及其制作方法
CN104502421A (zh) * 2014-12-16 2015-04-08 电子科技大学 一种室温p-n-p异质结型氢气传感器及其制备方法
CN106053540A (zh) * 2016-06-29 2016-10-26 天津大学 一种一维硅纳米线阵列气敏传感器的制备方法
CN107132253A (zh) * 2017-06-15 2017-09-05 上海因士环保科技有限公司 一种基于柔性衬底的气敏膜的制备方法及气体传感器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330369B2 (en) * 2004-04-06 2008-02-12 Bao Tran NANO-electronic memory array
US11300551B2 (en) * 2005-02-23 2022-04-12 Bao Tran Nano sensor
US7393699B2 (en) * 2006-06-12 2008-07-01 Tran Bao Q NANO-electronics
CN103196867B (zh) * 2013-04-01 2015-09-09 中山大学 局域等离子体谐振折射率传感器及其制造方法
GB201308515D0 (en) * 2013-05-13 2013-06-19 King S College London Hydrogen Detection
EP2887051A1 (en) 2013-12-19 2015-06-24 Kasemo, Bengt Surface plasmon resonance gas sensor, gas sensing system, and gas sensing method
CN104076066B (zh) * 2014-06-10 2018-01-12 桂林电子科技大学 一种基于纳米复合材料的电阻式氢气传感器及其制备方法
KR101704122B1 (ko) 2014-10-08 2017-02-07 현대자동차주식회사 수소 검출 채색 센서
CN106959272A (zh) * 2017-03-02 2017-07-18 复旦大学 一种基于卷曲薄膜的氢气检测装置及方法
CN107941755B (zh) * 2017-11-02 2020-06-02 中山大学 氢气传感器及其制备方法、实现氢气检测的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060204794A1 (en) * 2004-09-09 2006-09-14 Fujitsu Limited Laminate structure, magnetic recording medium and method for producing the same, magnetic recording device, magnetic recording method, and element with the laminate structure
CN103424441A (zh) * 2012-05-22 2013-12-04 香港理工大学 制备于柔度可控基底上的连通性可调的钯基氢气传感器及其制作方法
CN103336036A (zh) * 2013-06-26 2013-10-02 苏州新锐博纳米科技有限公司 一种传感参数可控的钯纳米粒子点阵氢气传感器
CN104502421A (zh) * 2014-12-16 2015-04-08 电子科技大学 一种室温p-n-p异质结型氢气传感器及其制备方法
CN106053540A (zh) * 2016-06-29 2016-10-26 天津大学 一种一维硅纳米线阵列气敏传感器的制备方法
CN107132253A (zh) * 2017-06-15 2017-09-05 上海因士环保科技有限公司 一种基于柔性衬底的气敏膜的制备方法及气体传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11150230B2 (en) 2017-11-02 2021-10-19 Sun Yat-Sen University Hydrogen sensor and preparation method therefor, and method for implementing hydrogen detection

Also Published As

Publication number Publication date
CN107941787A (zh) 2018-04-20
US11567050B2 (en) 2023-01-31
CN107941787B (zh) 2020-06-09
US20210109070A1 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
WO2019085166A1 (zh) 氢气传感器及其制备方法、实现氢气检测的方法
Galeotti et al. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns
US9726788B2 (en) Method for fabricating nanoantenna array, nanoantenna array chip and structure for lithography
Päivänranta et al. Nanofabrication of broad-band antireflective surfaces using self-assembly of block copolymers
Zhu et al. Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor
CN113155906A (zh) 氢气传感器及其制备方法和氢气检测方法
WO2022247320A1 (zh) 氢气传感器及其制备方法
JP7079019B2 (ja) ナノプラズモニック計装、材料、方法、及びシステムインテグレーション
Bomers et al. Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region
US9011705B2 (en) Method of forming a polymer substrate with variable refractive index sensitivity
Haslinger et al. Development of a soft UV-NIL step&repeat and lift-off process chain for high speed metal nanomesh fabrication
US20140199518A1 (en) Facile Large Area Periodic Sub-Micron Photolithography
CN112986182B (zh) 湿度传感单元、湿度传感器及其应用
US11150230B2 (en) Hydrogen sensor and preparation method therefor, and method for implementing hydrogen detection
Bochet-Modaresialam et al. Methylated silica surfaces having tapered nipple-dimple nanopillar morphologies as robust broad-angle and broadband antireflection coatings
JP5397941B2 (ja) 蛍光レジスト組成物および、その用途
KR20130050284A (ko) 태양 전지용 투명 도전성 기판, 그의 제조 방법 및 이를 이용한 태양 전지
Siddique et al. Utilizing laser interference lithography to fabricate hierarchical optical active nanostructures inspired by the blue Morpho butterfly
JP2009133787A (ja) 局在プラズモン共鳴センサーユニット、およびその製造方法
Gazzola et al. High-throughput fabrication and calibration of compact high-sensitivity plasmonic lab-on-chip for biosensing
WO2014168237A1 (ja) 構造体の複製方法及び当該複製方法を含む局在型表面プラズモン共鳴センサ用チップの製造方法、並びに、構造体、局在型表面プラズモン共鳴センサ用チップ及び局在型表面プラズモン共鳴センサ
Ali et al. One-step nanoimprinted hybrid micro-/nano-structure for in situ protein detection of isolated cell array via localized surface plasmon resonance
Zhu et al. Non-fully gold nanohole array fabricated by nanoimprint lithography
AlexáWang A permanent optical storage medium exhibiting ultrahigh contrast, superior stability, and a broad working wavelength regime
Kumari et al. Development of Flexible Plasmonic Sensor Based On Imprinted Nanostructure Array on Plastics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930360

Country of ref document: EP

Kind code of ref document: A1