WO2019085059A1 - 纳米压印模板及其制作方法和应用 - Google Patents

纳米压印模板及其制作方法和应用 Download PDF

Info

Publication number
WO2019085059A1
WO2019085059A1 PCT/CN2017/112186 CN2017112186W WO2019085059A1 WO 2019085059 A1 WO2019085059 A1 WO 2019085059A1 CN 2017112186 W CN2017112186 W CN 2017112186W WO 2019085059 A1 WO2019085059 A1 WO 2019085059A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
polymer layer
fluororubber polymer
manufacturing
template
Prior art date
Application number
PCT/CN2017/112186
Other languages
English (en)
French (fr)
Inventor
杨勇
崔宏青
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US15/579,441 priority Critical patent/US10520807B2/en
Publication of WO2019085059A1 publication Critical patent/WO2019085059A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers

Definitions

  • the invention belongs to the field of nanoimprint technology, and in particular relates to a nano imprint template and a manufacturing method thereof, and a method for manufacturing the microstructure substrate by the nano imprint template.
  • NIL technology nanoimprint technology
  • NIL technology has the economic advantages of low cost and high output due to the elimination of the cost of optical lithography reticle and the use of optical imaging equipment.
  • NIL technology can be applied in a wide range of applications, covering nanoelectronic components, biology or chemistry. Silicon wafer laboratory, micro-channel device (micro-mixer, micro-reactor), ultra-high storage density disk, micro-optical components and many other fields.
  • NIL technology is mostly limited by its process technology, including the production of master and soft films. Embossing process and etching process, etc., in which there is often a certain interaction between the material of the mold and the material of the imprinted substrate during the imprinting process, resulting in residual material or deformation of the microstructure on the substrate during the demolding process, thereby The subsequent etching brings more troubles. At present, there is no good solution to the problems arising in the imprint process, which has become one of the bottlenecks hindering the development of NIL technology.
  • the present invention provides a nanoimprint template and a method for fabricating the same, the imprinted surface of the nanoimprint template exhibits good oil resistance and Corrosion resistance, with lower surface energy, thus effectively improving the degumming problem during nanoimprinting.
  • a nanoimprint template comprising a template body, a plurality of photoresist microstructures disposed on the template body, and a fluororubber polymer layer coated on an outer layer of the photoresist microstructure; wherein The fluororubber polymer layer has a bonding action with the template body such that the fluororubber polymer layer is fixedly attached to the surface of the template body.
  • the fluororubber polymer layer has a thickness of 50 nm to 100 nm.
  • the material of the fluororubber polymer layer has a structure as shown in Formula 1:
  • the fluororubber polymer layer has a network structure.
  • Another object of the present invention is to provide a method for fabricating a nanoimprint template, comprising the steps of:
  • the fluororubber polymer layer has a thickness of 50 nm to 100 nm.
  • the manufacturing method further comprises the steps of: S3, vulcanizing the template body having the fluororubber polymer layer to form the fluororubber polymer layer into a network structure.
  • the material of the fluororubber polymer layer has a structure as shown in Formula 1:
  • Another object of the present invention is to provide a method for fabricating a microstructured substrate, comprising the steps of:
  • the specific method of the step Q2 includes: spraying a layer of polytetrafluoroethylene powder having a thickness of 10 nm to 30 nm on the embossed layer; and separating the layer of the PTFE layer at 200 ° C to 250 ° C The lower layer is calcined and subjected to a cooling treatment to form the separation layer on the embossed layer.
  • the nanoimprint template according to the present invention is coated with a layer of a fluororubber polymer on a surface of a plurality of photoresist microstructures.
  • the fluororubber polymer layer has a coating on the photoresist microstructure.
  • the silicon oxygen atom group in the main chain of the material of the fluororubber polymer layer interacts with the silicon oxygen atom group in the template body to enhance the bond between the fluororubber polymer layer and the template body.
  • the bonding force protects the photoresist microstructure to prevent the nanoimprint template from being deformed during use, thereby improving the quality of the nanoimprinting process; on the other hand, the material of the fluororubber polymer layer
  • the side chain contains more fluorine atoms, which can improve the oil resistance and corrosion resistance of the nanoimprint template imprinting surface, and have a lower surface energy on the surface, thereby effectively improving the degumming problem during the imprinting process. ;
  • the nanoimprint template according to the present invention can form a fluororubber polymer layer on the surface of the photoresist microstructure by only one-step catalytic polymerization in the preparation process; and preferably the fluororubber can be continuously formed.
  • the polymer layer is subjected to high temperature vulcanization treatment, so that the fluororubber polymer layer forms a network structure, further strengthening the toughness and strength, thereby enhancing the protection of the photoresist microstructure; the manufacturing method is simple and easy to operate;
  • FIG. 1 is a schematic structural view of a nanoimprint template according to Embodiment 1 of the present invention.
  • FIG. 2 is a flow chart showing the steps of a method of fabricating a nanoimprint template according to Embodiment 1 of the present invention
  • 3 to 5 are views showing a method of fabricating a nanoimprint template according to Embodiment 1 of the present invention.
  • 6 to 10 are process flow diagrams of a method of fabricating a microstructure substrate according to Embodiment 2 of the present invention.
  • the nanoimprint template includes a template body 11, a plurality of photoresist microstructures 12 disposed on the template body 11, and a photoresist.
  • the fluororubber polymer layer 12 has a thickness of 50 nm to 100 nm.
  • the material of the fluororubber polymer layer 12 has a structure as shown in Formula 1:
  • n represents the degree of polymerization, and is not particularly limited herein.
  • the material of the fluororubber polymer layer 13 The silicon oxygen atom group in the main chain of the material may form an interaction with the silicon oxygen atom group in the template main body 11, and a bonding force may be formed between the fluororubber polymer layer 13 and the template main body 11, so that the rubber
  • the polymer layer 13 can cover the photoresist microstructure 12 and be firmly fixedly attached to the surface of the template body 11; thereby, the nanoimprint template can keep the photoresist microstructure 12 intact during use.
  • the shape prevents deformation, thereby improving the quality of the nanoimprint process.
  • the material of the fluororubber polymer layer 13 contains a large amount of fluorine atoms in the side chain, which can improve the oil resistance and corrosion resistance of the nanoimprint stencil imprinted surface, and has a lower surface energy on the surface. Therefore, the degumming problem can be effectively improved during the use of the imprint.
  • the fluororubber polymer layer 13 has a network structure which can strengthen the toughness and strength of the fluororubber polymer layer 13, thereby providing a better protection for the photoresist microstructure 12.
  • a method of fabricating a nanoimprint template according to the present embodiment includes the following steps:
  • step S1 a photoresist layer 12a is coated on the template body 11, and a photoresist etching process is performed on the photoresist layer 12a, and a plurality of photoresist microstructures 12 are formed on the template body 11.
  • the template body 11 is generally a silica substrate or a quartz substrate.
  • a layer of photoresist is coated on the template body 11 to form a photoresist layer 12a, as shown in FIG. 3; then, a photomask 12b is used and a development etching process is performed to remove the residual glue in the template body 11
  • a plurality of photoresist microstructures 12 are formed thereon, as shown in FIGS. 4 and 5; in FIG. 4, arrows indicate the direction of illumination.
  • Step S2 coating a surface of the photoresist microstructure 12 to form a fluororubber polymer layer 13.
  • the template body 11 having the photoresist microstructure 12 is immersed in an organic solution containing trimethyltris(3-fluoropropyl)cyclotrisiloxane and tetramethyltetravinylcyclotetrasiloxane.
  • an organic solution containing trimethyltris(3-fluoropropyl)cyclotrisiloxane and tetramethyltetravinylcyclotetrasiloxane.
  • the tetravinylcyclotetrasiloxane undergoes catalytic polymerization and is coated on the outer layer of the photoresist microstructure 12 to form a fluororubber polymer layer 13; thus, the nanoimprint template shown in FIG. 1 is formed.
  • the fluororubber polymer layer has a thickness of 50 nm to 100 nm.
  • the material of the fluororubber polymer layer has a structure as shown in Formula 1:
  • the formed fluororubber polymer layer 13 is also fixedly attached to the surface of the template body 11 by bonding.
  • the above manufacturing method further includes the following steps:
  • Step S3 the template body 11 having the fluororubber polymer layer 13 is subjected to a vulcanization treatment to form the fluororubber polymer layer 13 into a network structure.
  • the nanoimprint template according to the embodiment can not only maintain the photoresist microstructure 12 therein in the existing shape without deformation, thereby improving the process quality of the nanoimprint; and the nanometer
  • the embossed surface of the embossing stencil has a lower surface energy, which effectively improves the degumming problem during embossing.
  • the purpose of this embodiment is to provide an application of the nanoimprint template according to the above-mentioned Embodiment 1 in the nanoimprint technology, that is, the nano imprint template in the above Embodiment 1 is used to fabricate the microstructure substrate.
  • the manufacturing method of the microstructure substrate according to the embodiment includes the following steps:
  • Step Q1 an embossing layer 22 is applied on the embossed substrate 21; as shown in FIG.
  • the imprint substrate 21 is generally selected from a flexible substrate such as a glass substrate, a silicon substrate, or a sapphire substrate.
  • Step Q2 coating a layer of polytetrafluoroethylene powder on the embossing layer 22, and calcining and cooling to form an isolation layer 23 on the embossing layer 22; as shown in FIG.
  • a layer of polytetrafluoroethylene powder (not shown) having a thickness of 10 nm to 30 nm is sprayed on the embossed layer 22; then, the PTFE layer is fired at 200 ° C to 250 ° C. And after the cooling treatment, the separation layer 23 is formed on the embossed layer 22.
  • the polytetrafluoroethylene has the structure shown in the following formula 2:
  • n represents the degree of polymerization, and is not particularly limited herein.
  • Step Q3 the nanoimprint template 1 is used to perform an imprint process on the isolation layer 23, and a mask 24 is formed on the imprint substrate 21; as shown in FIGS. 8 and 9.
  • the nanoimprint template 1 used in this step is the nanoimprint template in the above embodiment 1, such that the fluororubber polymer layer in the nanoimprint template 1 faces the isolation layer 23.
  • Step Q4 etching the imprint substrate 21 not covered by the mask 24, and removing the mask 24 to form the microstructure substrate 2; as shown in FIG.
  • RIE Reactive ion etching
  • silica reactive coupled plasma etching
  • the ICP is used to etch the imprinted substrate 21 which is not covered by the mask 24; and the mask 24 is removed by dissolving the organic solution capable of dissolving the corresponding embossed material, thereby obtaining the microstructured substrate 2.
  • the method for fabricating the microstructure substrate provided in this embodiment is further provided with a spacer layer 23 on the embossing layer 22 on the embossed substrate 21, and the spacer layer 23 is used to form a low surface energy surface to be embossed. And then combined with the low surface energy imprinting surface of the nanoimprint template 1 used, thereby further ensuring smooth demolding during the imprinting process; on the other hand, the spacer layer 23 is disposed to protect the mask during the subsequent etching process.
  • the portion of the embossed adhesive in 24 is not excessively etched, and the microstructure size and shape of the formed microstructured substrate 2 can be further ensured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

一种纳米压印模板,包括模板主体(11)、设置在模板主体(11)上的若干光刻胶微结构(12)、以及包覆在光刻胶微结构(12)外层的氟橡胶聚合物层(13),氟橡胶聚合物层(13)与模板主体(11)之间具有键结作用,以使氟橡胶聚合物层(13)固定连接在模板主体(11)的表面。该纳米压印模板不仅可对其中的光刻胶微结构(12)起到保护作用,以防止纳米压印模板在使用过程中发生形变,从而提高纳米压印的工艺品质,而且能够改善纳米压印模板压印表面的耐油性和耐腐蚀性,使其表面具有更低的表面能,从而在压印使用过程中可有效改善脱胶问题。以及该纳米压印模板的制作方法及其在制作微结构基板中的应用,该应用可确保所形成的微结构基板的微结构尺寸及形状。

Description

纳米压印模板及其制作方法和应用 技术领域
本发明属于纳米压印技术领域,具体来讲,涉及一种纳米压印模板及其制作方法、以及该纳米压印模板用于制作微结构基板的方法。
背景技术
由于经济原因促使半导体业朝着不断缩小特征尺寸方向发展,随之而来的技术进步导致了设备的成本以指数增长;由于成本的增长,人们对纳米压印技术(以下简称NIL技术)这一低成本图形转移技术的关注越来越多。通过避免使用昂贵的光源和投影光学系统,纳米压印技术比传统光刻方法大大降低了成本。
由于省去了光学光刻掩模版和使用光学成像设备的成本,因此NIL技术具有低成本、高产出的经济优势;此外,NIL技术可应用的范围相当广泛,涵盖纳米电子元件、生物或化学的硅片实验室、微流道装置(微混合器、微反应器)、超高存储密度磁盘、微光学元件等诸多领域。
NIL技术在显示领域中的广泛应用主要体现在其可实现滤光、抗反射、增透等较好的光学表现;然而NIL技术多受限于其制程工艺,包括母模、软膜的制作,压印过程和蚀刻过程等,其中压印过程中由于模具的材料和压印基板材料之间常常存在一定的相互作用,导致在脱模过程中基板上材料的残留或者微结构的形变,从而也对后续的蚀刻带来较多的困扰。目前针对压印过程中产生的问题还没有较好的解决方法,这也成为阻碍NIL技术发展的瓶颈之一。
发明内容
为解决上述现有技术存在的问题,本发明提供了一种纳米压印模板及其制作方法,该纳米压印模板的压印表面体现出良好的耐油性和 耐腐蚀性,具有更低的表面能,由此在纳米压印过程中有效改善了脱胶问题。
为了达到上述发明目的,本发明采用了如下的技术方案:
一种纳米压印模板,包括模板主体、设置在所述模板主体上的若干光刻胶微结构、以及包覆在所述光刻胶微结构外层的氟橡胶聚合物层;其中,所述氟橡胶聚合物层与所述模板主体之间具有键结作用,以使所述氟橡胶聚合物层固定连接在所述模板主体的表面。
进一步地,所述氟橡胶聚合物层的厚度为50nm~100nm。
进一步地,所述氟橡胶聚合物层的材料具有如式1所示的结构:
Figure PCTCN2017112186-appb-000001
进一步地,所述氟橡胶聚合物层具有网状结构。
本发明的另一目的在于提供一种纳米压印模板的制作方法,包括步骤:
S1、在模板主体上涂覆光刻胶层,并对所述光刻胶层进行显影蚀刻处理,在所述模板主体上形成若干光刻胶微结构;
S2、将具有所述光刻胶微结构的模板主体浸入含有三甲基三(3-氟丙基)环三硅氧烷和四甲基四乙烯基环四硅氧烷的有机溶液中,在催化剂的作用下,所述三甲基三(3-氟丙基)环三硅氧烷和所述四甲基四乙烯基环四硅氧烷发生催化聚合反应,在所述光刻胶微结构外层包覆形成氟橡胶聚合物层;其中,所述氟橡胶聚合物层通过键结作用 固定连接在所述模板主体的表面。
进一步地,所述氟橡胶聚合物层的厚度为50nm~100nm。
进一步地,所述制作方法还包括步骤:S3、对具有所述氟橡胶聚合物层的模板主体进行硫化处理,使所述氟橡胶聚合物层形成网状结构。
进一步地,所述氟橡胶聚合物层的材料具有如式1所示的结构:
Figure PCTCN2017112186-appb-000002
本发明的另一目的还在于提供一种微结构基板的制作方法,包括步骤:
Q1、在压印基板上涂覆压印胶层;
Q2、在所述压印胶层上涂覆聚四氟乙烯粉末层,所述聚四氟乙烯分膜层经煅烧、冷却处理,在所述压印胶层上形成隔离层;
Q3、采取如上任一所述的纳米压印模板在所述隔离层上进行压印工艺,在所述压印基板上形成掩膜;
Q4、蚀刻未被所述掩膜遮掩的压印基板,并去除所述掩膜,形成微结构基板。
进一步地,所述步骤Q2的具体方法包括:在所述压印胶层上喷涂厚度为10nm~30nm的聚四氟乙烯粉末层;将所述聚四氟乙烯分膜层在200℃~250℃下煅烧,并经冷却处理,在所述压印胶层上形成所述隔离层。
有益效果:
(1)根据本发明的纳米压印模板通过在一般的若干光刻胶微结构表面包覆一层氟橡胶聚合物层,一方面,该氟橡胶聚合物层对光刻胶微结构具有包覆作用,同时,该氟橡胶聚合物层的材料的主链中的硅氧原子基团与模板主体中的硅氧原子基团形成相互作用,增强了氟橡胶聚合物层与模板主体之间的键结力,从而对光刻胶微结构起到保护作用,以防止该纳米压印模板在使用过程中发生形变,从而提高纳米压印的工艺品质;另一方面,该氟橡胶聚合物层的材料的侧链中含有较多氟原子,能够改善该纳米压印模板压印表面的耐油性和耐腐蚀性,使其表面具有更低的表面能,从而在压印使用过程中可有效改善脱胶问题;
(2)根据本发明的纳米压印模板在制作过程中,仅需通过一步催化聚合反应,即可在光刻胶微结构表面形成氟橡胶聚合物层;并且优选可继续对该形成的氟橡胶聚合物层进行高温硫化处理,从而使氟橡胶聚合物层形成网状结构,进一步加强韧性和强度,从而加强对光刻胶微结构的保护作用;该制作方法工艺简单,易于操作;
(3)根据本发明的微结构基板的制作方法,一方面,通过在压印基板上的压印胶层上再设置一层隔离层,从而使待压印的表面具有耐腐蚀、高润滑不粘性,继而结合上述纳米压印模板的低表面能的压印表面,从而进一步保证了压印过程中顺利脱模;另一方面,该隔离层的设置还可在后续蚀刻过程中保护掩膜中的压印胶部分不被过分蚀刻,也可进一步确保所形成的微结构基板的微结构尺寸及形状。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1是根据本发明的实施例1的纳米压印模板的结构示意图;
图2是根据本发明的实施例1的纳米压印模板的制作方法的步骤流程图;
图3-图5是根据本发明的实施例1的纳米压印模板的制作方法的 工艺流程图;
图6-图10是根据本发明的实施例2的微结构基板的制作方法的工艺流程图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。在附图中,为了清楚起见,可以夸大元件的形状和尺寸,并且相同的标号将始终被用于表示相同或相似的元件。
实施例1
本实施例提供了一种全新的纳米压印模板,参照图1,该纳米压印模板包括模板主体11、设置在模板主体11上的若干光刻胶微结构12、以及包覆在光刻胶微结构12外层的氟橡胶聚合物层13。
进一步地,氟橡胶聚合物层12的厚度为50nm~100nm。
更进一步地,氟橡胶聚合物层12的材料具有如式1所示的结构:
Figure PCTCN2017112186-appb-000003
在式1中,n表示聚合度,此处不进行特别限定。
从式1的结构式可以看出,一方面,该氟橡胶聚合物层13的材 料的主链中的硅氧原子基团可与模板主体11中的硅氧原子基团形成相互作用,氟橡胶聚合物层13与模板主体11之间可形成键结力的作用,从而该橡胶聚合物层13即可罩住光刻胶微结构12并牢牢固定连接在模板主体11的表面;由此,该纳米压印模板即可在使用过程中使光刻胶微结构12保持既有形状而防止形变,从而提高纳米压印的工艺品质。
另一方面,该氟橡胶聚合物层13的材料的侧链中含有较多氟原子,能够改善该纳米压印模板压印表面的耐油性和耐腐蚀性,使其表面具有更低的表面能,从而在压印使用过程中可有效改善脱胶问题。
优选地,该氟橡胶聚合物层13具有网状结构,网状结构能够加强该氟橡胶聚合物层13的韧性和强度,从而对光刻胶微结构12起到更好的保护作用。
以下将结合附图对本实施例提供的纳米压印模板的制作方法进行详细的描述。
参照图2,根据本实施例的纳米压印模板的制作方法包括下述步骤:
步骤S1、在模板主体11上涂覆光刻胶层12a,并对光刻胶层12a进行显影蚀刻处理,在模板主体11上形成若干光刻胶微结构12。
在模板主体11一般为二氧化硅基板或石英基板。
具体来说,首先在模板主体11上涂布一层光刻胶,形成光刻胶层12a,如图3所示;然后采用光罩12b并进行显影蚀刻处理,去除残胶后在模板主体11上形成若干光刻胶微结构12,如图4、图5所示;在图4中,箭头表示光照方向。
步骤S2、在光刻胶微结构12的表面上包覆形成氟橡胶聚合物层13。
具体来讲,将具有光刻胶微结构12的模板主体11浸入含有三甲基三(3-氟丙基)环三硅氧烷和四甲基四乙烯基环四硅氧烷的有机溶液中,在催化剂的作用下,三甲基三(3-氟丙基)环三硅氧烷和四甲 基四乙烯基环四硅氧烷发生催化聚合反应,在光刻胶微结构12外层包覆形成氟橡胶聚合物层13;如此,即形成图1所示的纳米压印模板。
优选地,氟橡胶聚合物层的厚度为50nm~100nm。
进一步地,该氟橡胶聚合物层的材料具有如式1所示的结构:
Figure PCTCN2017112186-appb-000004
如此,该形成的氟橡胶聚合物层13也通过键结作用固定连接在模板主体11的表面。
优选地,为了进一步加强氟橡胶聚合物层13的韧性和强度,上述制作方法还包括如下步骤:
步骤S3、对具有氟橡胶聚合物层13的模板主体11进行硫化处理,使氟橡胶聚合物层13形成网状结构。
由此,根据本实施例的纳米压印模板不仅可使其中的光刻胶微结构12在压印使用过程中保持既有形状而不发生形变,从而提高纳米压印的工艺品质;而且该纳米压印模板的压印表面具有更低的表面能,从而在压印使用过程中可有效改善脱胶问题。
实施例2
本实施例的目的在于提供一种如上述实施例1所述的纳米压印模板在纳米压印技术中的应用,即应用上述实施例1中的纳米压印模板制作微结构基板。
以下将参照图6-图10对本实施例的微结构基板的制作方法进行详细的描述。根据本实施例的微结构基板的制作方法包括下述步骤:
步骤Q1、在压印基板21上涂覆压印胶层22;如图6所示。
压印基板21一般选自玻璃基板、硅基板、蓝宝石基板等柔性基板。
步骤Q2、在压印胶层22上涂覆聚四氟乙烯粉末层,并经煅烧、冷却处理,在压印胶层22上形成隔离层23;如图7所示。
具体来讲,首先在压印胶层22上喷涂厚度为10nm~30nm的聚四氟乙烯粉末层(图中未示出);然后将聚四氟乙烯分膜层在200℃~250℃下煅烧,并经冷却处理,即在压印胶层22上形成了隔离层23。
聚四氟乙烯具有如下式2所示的结构:
Figure PCTCN2017112186-appb-000005
在式2中,n表示聚合度,此处不进行特别限定。
从式2中可以看出,其结构中具有多个氟原子,由此该隔离层23的表面即呈现出耐腐蚀性、高润滑不粘性,即具有较低的表面能,并且化学性能稳定;同时氟原子也可以和压印胶层22中氢原子形成氢键作用,更为稳固地覆盖在压印胶层22之上。
步骤Q3、采取纳米压印模板1在隔离层23上进行压印工艺,在压印基板21上形成掩膜24;如图8和图9所示。
具体来讲,本步骤中所用纳米压印模板1即上述实施例1中的纳米压印模板,使该纳米压印模板1中的氟橡胶聚合物层朝向隔离层23。
步骤Q4、蚀刻未被掩膜24遮掩的压印基板21,并去除掩膜24,形成微结构基板2;如图10所示。
一般采用反应离子刻蚀(简称RIE)或反应耦合等离子体刻蚀(简 称ICP)来蚀刻未被掩膜24遮掩的压印基板21;再利用能够溶解对应压印胶材料的有机溶液溶解去除掩膜24,由此获得微结构基板2。
本实施例提供的微结构基板的制作方法,一方面通过在压印基板21上的压印胶层22上再设置一层隔离层23,利用该隔离层23形成低表面能的待压印表面,继而结合所使用的纳米压印模板1的低表面能的压印表面,从而进一步保证了压印过程中顺利脱模;另一方面,该隔离层23的设置在后续蚀刻过程中保护掩膜24中的压印胶部分不被过分蚀刻,也可进一步确保所形成的微结构基板2的微结构尺寸及形状。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (20)

  1. 一种纳米压印模板,其中,包括模板主体、设置在所述模板主体上的若干光刻胶微结构、以及包覆在所述光刻胶微结构外层的氟橡胶聚合物层;其中,所述氟橡胶聚合物层与所述模板主体之间具有键结作用,以使所述氟橡胶聚合物层固定连接在所述模板主体的表面。
  2. 根据权利要求1所述的纳米压印模板,其中,所述氟橡胶聚合物层的厚度为50nm~100nm。
  3. 根据权利要求1所述的纳米压印模板,其中,所述氟橡胶聚合物层的材料具有如式1所示的结构:
    Figure PCTCN2017112186-appb-100001
  4. 根据权利要求2所述的纳米压印模板,其中,所述氟橡胶聚合物层的材料具有如式1所示的结构:
    Figure PCTCN2017112186-appb-100002
  5. 根据权利要求1所述的纳米压印模板,其中,所述氟橡胶聚合物层具有网状结构。
  6. 一种纳米压印模板的制作方法,其中,包括步骤:
    S1、在模板主体上涂覆光刻胶层,并对所述光刻胶层进行显影蚀刻处理,在所述模板主体上形成若干光刻胶微结构;
    S2、将具有所述光刻胶微结构的模板主体浸入含有三甲基三(3-氟丙基)环三硅氧烷和四甲基四乙烯基环四硅氧烷的有机溶液中,在催化剂的作用下,所述三甲基三(3-氟丙基)环三硅氧烷和所述四甲基四乙烯基环四硅氧烷发生催化聚合反应,在所述光刻胶微结构外层包覆形成氟橡胶聚合物层;其中,所述氟橡胶聚合物层通过键结作用固定连接在所述模板主体的表面。
  7. 根据权利要求6所述的制作方法,其中,所述氟橡胶聚合物层的厚度为50nm~100nm。
  8. 根据权利要求6所述的制作方法,其中,所述制作方法还包括步骤:
    S3、对具有所述氟橡胶聚合物层的模板主体进行硫化处理,使所述氟橡胶聚合物层形成网状结构。
  9. 根据权利要求7所述的制作方法,其中,所述制作方法还包括步骤:
    S3、对具有所述氟橡胶聚合物层的模板主体进行硫化处理,使所述氟橡胶聚合物层形成网状结构。
  10. 根据权利要求6所述的制作方法,其中,所述氟橡胶聚合物层的材料具有如式1所示的结构:
    Figure PCTCN2017112186-appb-100003
  11. 根据权利要求7所述的制作方法,其中,所述氟橡胶聚合物层的材料具有如式1所示的结构:
    Figure PCTCN2017112186-appb-100004
  12. 一种微结构基板的制作方法,其中,包括步骤:
    Q1、在压印基板上涂覆压印胶层;
    Q2、在所述压印胶层上涂覆聚四氟乙烯粉末层,所述聚四氟乙烯分膜层经煅烧、冷却处理,在所述压印胶层上形成隔离层;
    Q3、采取如权利要求1-4任一所述的纳米压印模板在所述隔离层上进行压印工艺,在所述压印基板上形成掩膜;
    Q4、蚀刻未被所述掩膜遮掩的压印基板,并去除所述掩膜,形成微结构基板。
  13. 根据权利要求12所述的制作方法,其中,所述氟橡胶聚合物层的厚度为50nm~100nm。
  14. 根据权利要求12所述的制作方法,其中,所述氟橡胶聚合物层的材料具有如式1所示的结构:
    Figure PCTCN2017112186-appb-100005
  15. 根据权利要求13所述的制作方法,其中,所述氟橡胶聚合物层的材料具有如式1所示的结构:
    Figure PCTCN2017112186-appb-100006
  16. 根据权利要求12所述的制作方法,其中,所述氟橡胶聚合物层具有网状结构。
  17. 根据权利要求13所述的制作方法,其中,所述步骤Q2的具体方法包括:
    在所述压印胶层上喷涂厚度为10nm~30nm的聚四氟乙烯粉末层;
    将所述聚四氟乙烯分膜层在200℃~250℃下煅烧,并经冷却处理,在所述压印胶层上形成所述隔离层。
  18. 根据权利要求14所述的制作方法,其中,所述步骤Q2的具体方法包括:
    在所述压印胶层上喷涂厚度为10nm~30nm的聚四氟乙烯粉末层;
    将所述聚四氟乙烯分膜层在200℃~250℃下煅烧,并经冷却处理,在所述压印胶层上形成所述隔离层。
  19. 根据权利要求15所述的制作方法,其中,所述步骤Q2的具体方法包括:
    在所述压印胶层上喷涂厚度为10nm~30nm的聚四氟乙烯粉末层;
    将所述聚四氟乙烯分膜层在200℃~250℃下煅烧,并经冷却处理,在所述压印胶层上形成所述隔离层。
  20. 根据权利要求16所述的制作方法,其中,所述步骤Q2的具体方法包括:
    在所述压印胶层上喷涂厚度为10nm~30nm的聚四氟乙烯粉末层;
    将所述聚四氟乙烯分膜层在200℃~250℃下煅烧,并经冷却处理,在所述压印胶层上形成所述隔离层。
PCT/CN2017/112186 2017-10-31 2017-11-21 纳米压印模板及其制作方法和应用 WO2019085059A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/579,441 US10520807B2 (en) 2017-10-31 2017-11-21 Nanoimprint template, a method of making the same and applications thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711043937.7A CN107643652A (zh) 2017-10-31 2017-10-31 纳米压印模板及其制作方法和应用
CN201711043937.7 2017-10-31

Publications (1)

Publication Number Publication Date
WO2019085059A1 true WO2019085059A1 (zh) 2019-05-09

Family

ID=61124982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112186 WO2019085059A1 (zh) 2017-10-31 2017-11-21 纳米压印模板及其制作方法和应用

Country Status (3)

Country Link
US (1) US10520807B2 (zh)
CN (1) CN107643652A (zh)
WO (1) WO2019085059A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156913B2 (en) * 2018-05-09 2021-10-26 Facebook Technologies, Llc Nanoimprint lithography process using low surface energy mask
CN109240040B (zh) * 2018-11-16 2021-10-19 京东方科技集团股份有限公司 压印模板和压印方法
CN111525032A (zh) * 2020-04-06 2020-08-11 杭州纤纳光电科技有限公司 一种二维网状背接触式钙钛矿太阳能电池及其制备方法
CN113031392B (zh) * 2021-03-22 2022-12-30 中国科学院半导体研究所 一种应用于小尺寸样品光刻工艺的方法
CN113406860B (zh) * 2021-07-30 2023-09-12 华天慧创科技(西安)有限公司 一种stamp基底及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065533A2 (en) * 1999-06-30 2001-01-03 Dai Nippon Printing Co., Ltd. Color filter and process for producing the same
US20020130444A1 (en) * 2001-03-15 2002-09-19 Gareth Hougham Post cure hardening of siloxane stamps for microcontact printing
CN101477304A (zh) * 2008-11-04 2009-07-08 南京大学 在复杂形状表面复制高分辨率纳米结构的压印方法及其应用
CN101668594A (zh) * 2006-12-04 2010-03-10 流体科技公司 制造层压纳米模具及由此得到的纳米微粒的方法和材料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2601814Y (zh) * 2003-02-21 2004-02-04 成都市依迈电子化工实业有限公司 导电密封衬垫
GB2406543B (en) * 2003-10-04 2006-06-07 Agilent Technologies Inc A method for fabricating masters for imprint lithography and related imprint process
CN2737118Y (zh) * 2004-09-07 2005-10-26 宋福如 外绝缘有机化的电气、电力设备
EP1820619A4 (en) * 2004-11-30 2010-07-07 Asahi Glass Co Ltd MOLD AND METHOD FOR MANUFACTURING SUBSTRATES HAVING MICROMOTIVES TRANSFERRED THEREON
KR100831046B1 (ko) * 2006-09-13 2008-05-21 삼성전자주식회사 나노 임프린트용 몰드 및 그 제조 방법
CN101250266B (zh) * 2008-03-27 2011-09-07 上海三爱富新材料股份有限公司 氟硅共聚橡胶及其制备方法
JP2010049745A (ja) * 2008-08-21 2010-03-04 Fuji Electric Device Technology Co Ltd ナノインプリント用モールドおよびこれを用いて作製された磁気記録媒体
CN101944413A (zh) * 2009-07-10 2011-01-12 国网运行有限公司上海超高压管理处 高压直流电场电气设备外绝缘子表面的绝缘方法
US9354512B2 (en) * 2009-08-07 2016-05-31 Soken Chemical & Engineering Co., Ltd. Resin mold for imprinting and method for producing the same
CN102854741B (zh) * 2012-09-29 2014-07-16 青岛理工大学 用于非平整衬底晶圆级纳米压印的复合软模具及制造方法
CN103576447A (zh) * 2013-11-05 2014-02-12 无锡英普林纳米科技有限公司 一种含氟聚合物紫外纳米压印模板及其制备方法
CN104527171B (zh) * 2015-01-16 2016-08-17 南京禄浦材料科技有限公司 一种硅氟橡胶板及其制备方法
CN204712548U (zh) * 2015-06-24 2015-10-21 赵兰 一种抗撕裂硅氟橡胶板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065533A2 (en) * 1999-06-30 2001-01-03 Dai Nippon Printing Co., Ltd. Color filter and process for producing the same
US20020130444A1 (en) * 2001-03-15 2002-09-19 Gareth Hougham Post cure hardening of siloxane stamps for microcontact printing
CN101668594A (zh) * 2006-12-04 2010-03-10 流体科技公司 制造层压纳米模具及由此得到的纳米微粒的方法和材料
CN101477304A (zh) * 2008-11-04 2009-07-08 南京大学 在复杂形状表面复制高分辨率纳米结构的压印方法及其应用

Also Published As

Publication number Publication date
CN107643652A (zh) 2018-01-30
US10520807B2 (en) 2019-12-31
US20190227429A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
WO2019085059A1 (zh) 纳米压印模板及其制作方法和应用
KR100790899B1 (ko) 얼라인 마크가 형성된 템플릿 및 그 제조 방법
JP5316132B2 (ja) ナノインプリント用モールド
JP5380803B2 (ja) 非平面上単粒子膜の製造方法、該単粒子膜エッチングマスクを用いた微細構造体の製造方法および該製造方法で得られた微細構造体。
JP2002539604A (ja) 段付き鋳張り捺印式リソグラフィー
US20140349085A1 (en) Method of fabricating 3d nanostructured metal oxides using proximity-field nanopatterning and atomic layer deposition
US20070257396A1 (en) Device and method of forming nanoimprinted structures
Hong et al. Solution-processed fabrication of superhydrophobic hierarchical zinc oxide nanostructures via nanotransfer printing and hydrothermal growth
TWI504556B (zh) 三維奈米結構陣列的製備方法
KR20160034363A (ko) 패터닝된 스탬프 제작 방법, 패터닝된 스탬프 임프린팅 방법 및 임프린트된 물품
JP5423758B2 (ja) 単粒子膜および微細構造体
CA3014989C (en) Methods for micro and nano fabrication by selective template removal
Hwang et al. Fabrication of roll imprint stamp for continuous UV roll imprinting process
JP2005159358A (ja) ナノインプリントリソグラフィ方法および基板
KR101369736B1 (ko) 나노렌즈어레이몰드의 제조방법 및 그 방법에 의해 제조된 몰드를 이용한 나노렌즈어레이의 제조방법
Handte et al. Manufacturing of nanostructures with high aspect ratios using soft UV-nanoimprint lithography with bi-and trilayer resist systems
Du et al. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography
KR101293205B1 (ko) 나노 딤플 패턴의 형성방법 및 나노 구조물
TW201403662A (zh) 表面具有微細圖案的物品及其製造方法、以及光學物品、其製造方法及複製模具之製造方法
Lee et al. Anti-adhesive characteristics of CHF3/O2 and C4F8/O2 plasma-modified silicon molds for nanoimprint lithography
JP5915696B2 (ja) 単粒子膜エッチングマスク付基板の製造方法
JP5733338B2 (ja) ナノインプリント用モールドの製造方法
KR101389048B1 (ko) 유리 기판의 패턴 형성 방법 및 상기 방법에 의해 제작된 유리 기판
US11261085B2 (en) Methods for micro and nano fabrication by selective template removal
Chen et al. Bi-Layer nanoimprinting lithography for metal-assisted chemical etching with application on silicon mold replication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930516

Country of ref document: EP

Kind code of ref document: A1