WO2019084938A1 - 一种数控插补尾巴平摊处理的方法 - Google Patents

一种数控插补尾巴平摊处理的方法 Download PDF

Info

Publication number
WO2019084938A1
WO2019084938A1 PCT/CN2017/109435 CN2017109435W WO2019084938A1 WO 2019084938 A1 WO2019084938 A1 WO 2019084938A1 CN 2017109435 W CN2017109435 W CN 2017109435W WO 2019084938 A1 WO2019084938 A1 WO 2019084938A1
Authority
WO
WIPO (PCT)
Prior art keywords
interpolation
tail
evening
value
interpolating
Prior art date
Application number
PCT/CN2017/109435
Other languages
English (en)
French (fr)
Inventor
卢俊
Original Assignee
卢俊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卢俊 filed Critical 卢俊
Priority to CN201780012219.5A priority Critical patent/CN109074049B/zh
Priority to PCT/CN2017/109435 priority patent/WO2019084938A1/zh
Publication of WO2019084938A1 publication Critical patent/WO2019084938A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation

Definitions

  • the present invention relates to the field of numerical control technology and motion control technology, and in particular, to a method for uniformly processing a CNC interpolation tail.
  • the region track interpolation period is often not an integer multiple, and the standard interpolation period is used to divide the line segment. There is always an interpolation period of the interpolation strip executed at the tail that is much smaller than the standard. In the case of the interpolation cycle, this will cause a problem of uneven speed, which will have a large impact on the control speed and accuracy.
  • the present invention provides a method for processing the NC interpolation tail evenly, which is implemented by the following technical solutions:
  • a method for numerically interpolating tails to be equally distributed mainly includes two cases: the tail is equally stretched forward and the tail is equally stretched backward.
  • the forward flattening can be divided into a subtractive forward flat and an incremental forward spread; the backward flat spread is also divided into a subtractive backward spread and an incremental backward spread.
  • the determining conditions for the forward-spreading of the tail and the rearward quadrupling of the tail are as follows: the interpolation tail of the regional end point adopts a method of flattening the tail forward; the non-regional end point (when The interpolation tail with multiple consecutive G commands in the interpolation area uses a method of equally spreading the tail backwards.
  • the method for flattening the tail forward includes the subtracting forward and the increasing forward.
  • the subtraction is spread forward, and the partial value in the effective equalization area is compensated forward to the equalization node, and the absolute value of the flat value needs to be smaller than the absolute value of each interpolation in the flat zone;
  • the value of the equalization node is equally divided into the effective equalization area, and the absolute value of the equalization amount is increased by one.
  • the method for flattening the tail rearwardly includes a subtractive backward spread and an incremental backward spread.
  • the backward allocation is to temporarily put the calculated value of the interpolation tail into the interpolation buffer, and continue to calculate a plurality of interpolation values as effective sharing areas.
  • the partial value in the effective equalization area is compensated to the equalization node, and the absolute value of the flat value needs to be smaller than the absolute value of each interpolation in the flat area; the incremental type is flattened backwards, which is flat
  • the value of the booth node is equally divided into the effective equalization area, and the absolute value of the average amount is increased by one.
  • the present invention has high efficiency for regional interpolation planning, and can well avoid the problem that the trajectory interpolation period is not an integer multiple, which causes a sudden change in speed and motor jitter, improves the stability of the system, and thus improves the interpolation efficiency and interpolation. Precision.
  • FIG. 1 is a schematic diagram of a subtractive forward spread in the present invention.
  • FIG. 2 is a schematic diagram of the front-up spread of the incremental type in the present invention.
  • FIG. 3 is a schematic diagram of the subtractive backwards in the present invention.
  • FIG. 4 is a schematic diagram of the incremental extension of the present invention in the present invention.
  • 1 is a schematic diagram of the subtraction forward averaging in the present invention. As shown in the figure, it is assumed that the value of the equalization node is 2 and the number of the equalization area is 3:
  • FIG. 2 is a schematic diagram of the forward-upgrading of the incremental type in the present invention. As shown in the figure, it is assumed that the value of the equalization node is 5 and the number of the flattened area is 3:
  • 3 is a schematic diagram of the subtraction backwards in the present invention. As shown in the figure, it is assumed that the value of the equalization node is 2 and the number of the equalization area is 3:
  • the interpolation value of the pulse 0 is not interpolated.
  • FIG. 4 is a schematic diagram of the incremental extension of the present invention in the present invention. As shown in the figure, it is assumed that the value of the equalization node is 5 and the number of the equalization area is 3:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

一种数控插补尾巴平摊处理的方法,包括向前平摊插补尾巴和向后平摊插补尾巴。向前平摊分为减式向前平摊和增式向前平摊;向后平摊分为减式向后平摊和增式向后平摊,区域终点的插补尾巴采用所述向前平摊插补尾巴;非区域终点的插补尾巴采用所述向后平摊插补尾巴。对区域插补规划效率高,能够避免轨迹插补周期不是整数倍而导致速度突变、电机抖动的问题,提高了系统的稳定性,从而提高插补效率与插补精度。

Description

一种数控插补尾巴平摊处理的方法 技术领域
[0001] 本发明涉及数控技术与运动控制技术领域, 具体涉及一种数控插补尾巴平摊处 理的方法。
背景技术
[0002] 插补 (Interpolation) , 即机床数控系统依照一定方法确定刀具运动轨迹的过程
。 也可以说, 已知曲线上的某些数据, 按照某种算法计算已知点之间的中间点 的方法, 也称为 "数据点的密化"; 数控装置根据输入的零件程序的信息, 将程序 段所描述的曲线的起点、 终点之间的空间进行数据密化, 从而形成要求的轮廓 轨迹, 这种"数据密化"机能就称为"插补"。
[0003] 一个零件的轮廓往往是多种多样的, 有直线, 有圆弧, 也有可能是任意曲线, 样条线等.数控机床的刀具往往是不能以曲线的实际轮廓去走刀的, 而是近似地 以若干条很小的直线去走刀。 插补方式有: 直线插补, 圆弧插补, 抛物线插补 , 样条线插补等。
技术问题
[0004] 在实际计算中, 对于一段区域代码而言, 区域轨迹插补周期往往不是整数倍, 用标准插补周期去分割线段, 总存在在尾部执行的插补条的插补周期远小于标 准插补周期的情况, 这样会造成速度的不均匀问题, 对控制速度及精度会带来 较大的影响。
问题的解决方案
技术解决方案
[0005] 为了克服插补尾巴造成速度不均匀的问题, 本发明提供一种数控插补尾巴平摊 处理的方法, 所述方法通过以下技术方案来实现:
[0006] 一种数控插补尾巴平摊处理的方法, 主要包括有两种情况: 向前平摊插补尾巴 和向后平摊插补尾巴。 向前平摊又可分为减式向前平摊和增式向前平摊; 向后 平摊也分为减式向后平摊和增式向后平摊。 [0007] 优选的, 所述向前平摊插补尾巴和向后平摊插补尾巴的判定条件如下: 区域终 点的插补尾巴采用向前平摊插补尾巴的方法; 非区域终点 (当插补区域内有多条 连续 G指令)的插补尾巴采用向后平摊插补尾巴的方法。
[0008] 具体地, 所述的向前平摊插补尾巴的方法包括减式向前平摊和增式向前平摊。
在此, 减式向前平摊, 是将有效平摊区域中的部分值向前补偿到平摊节点中, 平摊值绝对值需小于平摊区各插补绝对值; 增式向前平摊, 是将平摊节点的值 向前均分到有效平摊区域中, 均摊量绝对值加 1。
[0009] 具体地, 所述的向后平摊插补尾巴的方法包括减式向后平摊和增式向后平摊。
在此, 向后平摊是将插补尾巴的计算值暂吋先放入插补缓冲区, 继续往后计算 出多条插补值作为有效平摊区域。 减式向后平摊, 再将有效平摊区域中的部分 值补偿到平摊节点中, 平摊值绝对值需小于平摊区各插补绝对值; 增式向后平 摊, 是将平摊节点的值向后均分到有效平摊区域中, 均摊量绝对值加 1。
发明的有益效果
有益效果
[0010] 本发明对区域插补规划效率高, 能够很好地避免轨迹插补周期不是整数倍而导 致速度突变、 电机抖动的问题, 提高了系统的稳定性, 从而提高插补效率与插 补精度。
对附图的简要说明
附图说明
[0011] 通过阅读参照以下附图所作的对非限制性实施例所作的详细描述, 本发明的其 它特征、 目的和优点将会变得更明显:
[0012] 图 1是本发明中减式向前平摊示意图。
[0013] 图 2是本发明中增式向前平摊示意图。
[0014] 图 3是本发明中减式向后平摊示意图。
[0015] 图 4是本发明中增式向后平摊示意图。
本发明的实施方式 o o
[0016] 现在将参考附图更全面地描述示例实施方式。 然而, 示例实施方式能够以多种 形式实施, 且不应被理解为限于在此阐述的范例; 相反, 提供这些实施方式使 得本发明将更加全面和完整, 并将示例实施方式的构思全面地传达给本领域的 技术人员。 附图仅为本发明的示意性图解, 并非一定是按比例绘制。 图中相同 的附图标记表示相同或类似的部分, 因而将省略对它们的重复描述。
[0017] 此外, 所描述的特征、 结构或特性可以以任何合适的方式结合在一个或更多实 施方式中。 在下面的描述中, 提供许多具体细节从而给出对本发明的实施方式 的充分理解。 然而, 本领域技术人员将意识到, 可以实践本发明的技术方案而 省略所述特定细节中的一个或更多, 或者可以采用其它的方法、 组元、 装置、 步骤等。 在其它情况下, 不详细示出或描述公知结构、 方法、 装置、 实现或者 操作以避免喧宾夺主而使得本发明的各方面变得模糊。
[0018] 下面结合附图对本发明进行进一步说明。
[0019] 图 1是本发明中减式向前平摊示意图, 如图所示, 假设平摊节点值为 2, 平摊区 域数目为 3:
[] [表 1]
10 10 10 2 未计算 未计算
[0020] 通过减式向前平摊变为以下结果:
[] [表 2]
10 11 11 0 未计算 未计算
图 2是本发明中增式向前平摊示意图, 如图所示, 假设平摊节点值为 5, 平摊区 域数目为 3:
[表 3]
10 10 10 5 未计算 未计算
[0023] 通过增式向前平摊变为以下结果:
[] S
[表 4]
Figure imgf000006_0002
[0024]
[0025] 图 3是本发明中减式向后平摊示意图, 如图所示, 假设平摊节点值为 2, 平摊区 域数目为 3:
[] [表 5]
10 10 10 2 10 10 10
[0026] 通过减式向后平摊变为以下结果:
[0027] [数]
Figure imgf000006_0001
[0028] 此吋, 实际为了避免影响运动轴插补的连续性, 脉冲为 0的插补值不进行插补 输出。
[0029]
[0030] 图 4是本发明中增式向后平摊示意图, 如图所示, 假设平摊节点值为 5, 平摊区 域数目为 3:
[] [表 6]
10 10 10 5 10 10 10 通过增式向后平摊变为以下结果:
[表 7]
10 10 10 8 9 9 9
[0032]
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对其限制 ; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利要求书
一种数控插补尾巴平摊处理的方法, 所述方法包括向前平摊插补尾巴 和向后平摊插补尾巴;
所述向前平摊包括减式向前平摊和增式向前平摊;
所述向后平摊包括减式向后平摊和增式向后平摊;
区域终点的插补尾巴采用所述向前平摊插补尾巴; 非区域终点的插补 尾巴采用所述向后平摊插补尾巴。
根据权利要求 1所述的一种数控插补尾巴平摊处理的方法, 其特征在 于, 所述减式向前平摊为将有效平摊区域中的部分值向前补偿到平摊 节点中, 平摊值绝对值需小于平摊区各插补绝对值。
根据权利要求 1所述的一种数控插补尾巴平摊处理的方法, 其特征在 于, 所述增式向前平摊为将平摊节点的值向前均分到有效平摊区域中
, 均摊量绝对值加 1。
根据权利要求 1所述的一种数控插补尾巴平摊处理的方法, 其特征在 于, 所述减式向后平摊为将插补尾巴的计算值暂吋先放入插补缓冲区 , 继续往后计算出多条插补值作为有效平摊区域, 再将有效平摊区域 中的部分值补偿到平摊节点中, 平摊值绝对值需小于平摊区各插补绝 对值。
根据权利要求 1所述的一种数控插补尾巴平摊处理的方法, 其特征在 于, 所述的增式向后平摊为将插补尾巴的计算值暂吋先放入插补缓冲 区, 继续往后计算出多条插补值作为有效平摊区域, 再将平摊节点的
PCT/CN2017/109435 2017-11-04 2017-11-04 一种数控插补尾巴平摊处理的方法 WO2019084938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780012219.5A CN109074049B (zh) 2017-11-04 2017-11-04 一种数控插补尾巴平摊处理的方法
PCT/CN2017/109435 WO2019084938A1 (zh) 2017-11-04 2017-11-04 一种数控插补尾巴平摊处理的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109435 WO2019084938A1 (zh) 2017-11-04 2017-11-04 一种数控插补尾巴平摊处理的方法

Publications (1)

Publication Number Publication Date
WO2019084938A1 true WO2019084938A1 (zh) 2019-05-09

Family

ID=64678058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109435 WO2019084938A1 (zh) 2017-11-04 2017-11-04 一种数控插补尾巴平摊处理的方法

Country Status (2)

Country Link
CN (1) CN109074049B (zh)
WO (1) WO2019084938A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033459A1 (en) * 2003-08-05 2005-02-10 Fanuc Ltd Controller for machine
CN103838183A (zh) * 2014-03-24 2014-06-04 深圳市英威腾电气股份有限公司 一种数控系统及其输出控制方法
CN103970073A (zh) * 2013-01-24 2014-08-06 北京配天大富精密机械有限公司 一种用于数控系统的加减速规划方法、装置及数控机床
CN106444635A (zh) * 2015-08-04 2017-02-22 深圳市雷赛智能控制股份有限公司 一种运动控制系统的非对称s曲线加减速控制方法和装置
CN106950923A (zh) * 2017-03-13 2017-07-14 浙江工业大学 一种定插补周期的速度规划方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1235126B1 (en) * 2001-02-26 2006-09-27 Hitachi, Ltd. Numerically controlled curved surface machining unit
CN101169647A (zh) * 2006-10-27 2008-04-30 上海电气集团股份有限公司中央研究院 微小线段曲线的五轴联动加工速度平滑方法
CN103941646B (zh) * 2014-04-09 2017-01-11 苏州汇川技术有限公司 伺服定位控制系统及方法
JP5790840B2 (ja) * 2014-06-10 2015-10-07 株式会社デンソーウェーブ ロボットの制御装置及びロボットの姿勢補間方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033459A1 (en) * 2003-08-05 2005-02-10 Fanuc Ltd Controller for machine
CN103970073A (zh) * 2013-01-24 2014-08-06 北京配天大富精密机械有限公司 一种用于数控系统的加减速规划方法、装置及数控机床
CN103838183A (zh) * 2014-03-24 2014-06-04 深圳市英威腾电气股份有限公司 一种数控系统及其输出控制方法
CN106444635A (zh) * 2015-08-04 2017-02-22 深圳市雷赛智能控制股份有限公司 一种运动控制系统的非对称s曲线加减速控制方法和装置
CN106950923A (zh) * 2017-03-13 2017-07-14 浙江工业大学 一种定插补周期的速度规划方法

Also Published As

Publication number Publication date
CN109074049B (zh) 2021-05-11
CN109074049A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN109416529B (zh) 数控系统、具有存储功能的装置及nurbs曲线插补方法
CN101833306B (zh) 一种基于前瞻-滤波技术的多程序段连续加减速控制方法
CN108287527A (zh) 一种基于三角函数的改进s曲线加减速控制方法
CN106527351B (zh) 一种过渡曲线长度动态确定的小线段实时插补方法
CN105045211B (zh) 一种等弓高误差变步长切线插补方法
CN107844058B (zh) 一种运动曲线离散动态规划方法
US10788805B2 (en) Numerical controller having tool path interpolation
CN103324141B (zh) 一种高精度变插补周期的多轴联动运动控制方法
CN103809521B (zh) 基于弦截法的样条曲线插补方法
CN109976262A (zh) 一种针对微线段加工的全局曲率连续光顺方法
CN111077846B (zh) 一种薄壁叶片余量去除顺序规划方法
CN110815219B (zh) 一种轨迹跟踪方法、装置、电子设备及存储介质
CN110908337B (zh) 一种对nurbs反求控制点预估方法
WO2019084938A1 (zh) 一种数控插补尾巴平摊处理的方法
CN110531700B (zh) 基于三维广义欧拉螺线的空间拐角光顺方法
CN112865750A (zh) 基于fir滤波器的数控系统倍率变化平滑控制方法及装置
CN116954149A (zh) 一种三阶几何连续的刀具路径平滑压缩方法
WO2022095507A1 (zh) 基于平均滤波的直线段平滑方法、装置、设备及存储介质
CN113672875B (zh) 振镜控制运动轨迹曲线均匀离散化方法
CN113093645B (zh) 一种软控制器连续小线段轨迹预处理方法
CN113835397A (zh) 基于b样条曲线和路径积分的线性数控加工路径平滑方法
CN114675601A (zh) 一种基于优势点的线性刀轨的b样条拟合方法
TWI541623B (zh) 五軸加工數值控制系統及其數值控制方法
CN103529755B (zh) 一种高精度直线插补方法
CN102156439A (zh) 数控机床加工轨迹控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930601

Country of ref document: EP

Kind code of ref document: A1