WO2019083142A1 - Method, server, and computer program for determining whether campaign is exposed - Google Patents
Method, server, and computer program for determining whether campaign is exposedInfo
- Publication number
- WO2019083142A1 WO2019083142A1 PCT/KR2018/009452 KR2018009452W WO2019083142A1 WO 2019083142 A1 WO2019083142 A1 WO 2019083142A1 KR 2018009452 W KR2018009452 W KR 2018009452W WO 2019083142 A1 WO2019083142 A1 WO 2019083142A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- campaign
- game
- exposure
- user
- time
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0255—Targeted advertisements based on user history
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/60—Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor
- A63F13/61—Generating or modifying game content before or while executing the game program, e.g. authoring tools specially adapted for game development or game-integrated level editor using advertising information
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/70—Game security or game management aspects
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/85—Providing additional services to players
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0241—Advertisements
- G06Q30/0251—Targeted advertisements
- G06Q30/0269—Targeted advertisements based on user profile or attribute
- G06Q30/0271—Personalized advertisement
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/50—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers
- A63F2300/55—Details of game data or player data management
- A63F2300/5506—Details of game data or player data management using advertisements
Definitions
- the present invention relates to a method for determining whether a campaign is exposed, a server and a computer program, and more particularly, A method of controlling exposure frequency, an exposure control server, and a computer program.
- Smart devices such as smart TVs and smartphones are becoming popular, and the number of users who enjoy playing games using these smart devices is gradually increasing.
- users who use a smartphone capable of Internet communication can enjoy the game through the Internet anytime and anywhere through the mobility and portability of the smartphone.
- the mobile game provider may periodically or intermittently perform various events and make various suggestions through the campaign to allow the game user to take desired actions of the mobile game provider.
- the campaign is a method in which a game user requests a behavior desired by a game provider in a game, and examples thereof are shown in Figs. 1A and 1B.
- Campaigns can occur when a game user connects to a game and when certain conditions are reached during the game.
- the types of campaigns include the event notification campaigns and purchase proposal campaigns shown in FIGS. 1A and 1B.
- the campaign may include an information providing campaign for notifying various game information, a game in-game consumption guide guide campaign, and the like, but the type of campaign is not limited thereto.
- campaigns are common to all game users, and their tendencies and game patterns are different for each game user, making it difficult to satisfy all game users. For example, a novice game guide campaign for a novice may be helpful for a game user who has just been playing the mobile game, but the proposal of the corresponding campaign is unnecessary for a game player who played for a certain period of time.
- certain campaigns may be repeatedly provided to game users for a predetermined period of time each time they access the game application. In this case, game users who are not interested in the campaigns should close the campaigns and play the game. In other words, even a game user who is interested in the campaigns has a large number of campaigns, and the frequency of the frequent exposure is so inconvenient that the game is inconvenient.
- a specific area may be located at the bottom or top of the once-exposed campaign, and a corresponding campaign may be selected for a preset period (for example, a day) So that it is not exposed during the exposure.
- this method also fails to completely solve the problem of annoying game users who are not interested in the campaign, because the campaign is repeatedly provided to game users at least once every preset period.
- Korean Patent Laid-Open Publication No. 2013-0131845 is available.
- the present invention has been made to solve the above problems, and it is an object of the present invention to provide a method of determining whether a campaign is exposed by selectively providing a campaign according to the degree of interest of a game user, Server and a computer program.
- a method of determining exposure of a target campaign to be provided to a user terminal equipped with a game application comprising: collecting past game logs of a plurality of game users for each campaign group; ; Learning past game logs; Generating a response probability prediction model for each campaign group based on the learning result; Receiving an exposure / non-contact query signal from a user terminal, and extracting a reaction probability determination factor for a target campaign from a past point game log for a game user of the user terminal; Calculating a response probability of the game user with respect to a target campaign by applying a reaction probability determination factor of the game user to the reaction probability prediction model of the campaign group to which the target campaign belongs; And determining whether the target campaign is exposed using the response probability.
- the past game log includes the campaign exposure time of the past campaigns provided to the game user, and the learning of the past game logs may be performed using the campaign exposure times of the past campaigns provided to a plurality of game users.
- the step of learning past game logs may include arranging campaign exposure times of past campaigns according to the size of time; Determining a first time and a second time by analyzing the alignment result; And filtering campaign exposures of past campaigns that are less than or greater than the first time.
- the response probability may be modeled such that the response probability decreases as the campaign exposure time approaches the first time, and increases as the campaign exposure time approaches the second time.
- the step of generating the reaction probability prediction model for each campaign group may model the response probability for the campaign exposure times that is less than the first time or exceeds the second time to be zero.
- the response probability determination factor may be derived based on campaign exposure times of past campaigns provided to the game user of the user terminal.
- the past game log may include information on whether or not to accept the proposal according to past campaigns provided to each game user, and the step of learning past game logs may be performed by using a plurality of game users' proposal acceptance information.
- the step of learning past game logs may include extracting feature values and proposal acceptance information of each game user in past game logs, And learning the feature values and proposal acceptability information of each game user.
- feature values represent values for predefined features of game users, and the features include game user level, in-game good, in-game good, purchase probability, user status information, campaign exposure time, Or the like.
- the step of determining whether the target campaign is exposed may include: determining an exposure determination value; And determining that the target campaign is to be exposed when the response probability of the game user exceeds the exposure determination value.
- the step of determining the exposure determination value may be performed by determining a reaction probability of a game user corresponding to a predetermined upper percentage of all game users as the exposure determination value.
- the method further includes determining that the target campaign is to be exposed when the probability of the game user's reaction exceeds the exposure determination value and the difference between the current time and the latest exposure time exceeds the minimum exposure time, It may be the time of presentation of the last campaign provided to the user terminal of the campaign group including the target campaign.
- the method may further include confirming that the target campaign is to be exposed when a reaction probability of a game user is less than or equal to the exposure determination value and a difference between the current time and the latest exposure time exceeds a maximum exposure frequency time.
- the step of determining whether to expose the target campaign may include deriving a random value between 0 and 1 through a random function; And determining that the target campaign is to be exposed if the response probability of the game user exceeds a random value.
- an exposure control server comprising: a game log collecting unit collecting past game logs of a plurality of game users for each campaign group; A learning unit for learning past game logs; A model generation unit that generates a response probability prediction model for each campaign group based on the learning result; A request receiving unit for receiving an exposure / non-contact query signal from a user terminal; The response probability determination factor for the target campaign is extracted from the past game log of the game terminal for the game user of the user terminal and the response probability determination factor of the game user is applied to the reaction probability prediction model of the campaign group to which the target campaign belongs, A reaction probability calculation unit for calculating a reaction probability of a game user; And an exposure determination unit for determining whether to expose the target campaign using the response probability, and each step according to the above-described method is executed.
- the method for determining whether a campaign is exposed or not, the exposure control server and the computer program of the present invention can be applied to not only the past game logs of a plurality of game users but also the campaigns optimized for the game users There is an effect that the exposure frequency can be adjusted.
- the exposure control server and the computer program can be performed through a separate exposure control server rather than a user terminal, thereby minimizing the load on the user terminal, Game play becomes smooth.
- the exposure control server and the computer program utilize the data according to the provision of the campaign group to which the target campaign belongs to the target campaign to be provided to the game user. You can get a more accurate picture of your interest. Of course, this interest can be extended to campaign units rather than to grouping campaigns.
- the exposure control server and the computer program use a game log of a past time point, and only use a game log within a predetermined time period based on the current time point, And the frequency of exposure of the campaign is also determined based on the recent behavior of the game user, so that the effect can be adaptively changed to the user behavior change.
- Figures 1a and 1b are illustrations of examples for illustrating the concept of a campaign.
- FIG. 2 is a conceptual diagram of a system for determining whether or not a campaign is exposed according to an embodiment of the present invention.
- 3 is a conceptual diagram for explaining the concept of a campaign group.
- FIG. 4 is a block diagram of a user terminal according to an embodiment of the present invention.
- FIG. 5 is a block diagram of an exposure control server according to an embodiment of the present invention.
- FIG. 6 and FIG. 7 illustrate a method of generating a response probability prediction model for each campaign group through the exposure control server according to an embodiment of the present invention.
- FIGS. 8A and 8B are views for explaining a method of generating a response probability prediction model for each campaign group through the exposure control server according to an embodiment of the present invention.
- FIG. 9 is a flowchart illustrating a method of determining whether a campaign is exposed through the exposure control server according to an exemplary embodiment of the present invention.
- FIG. 10 is a flowchart of a learning step according to an embodiment of the present invention.
- FIG. 11 is a flowchart of a learning step according to another embodiment of the present invention.
- FIG. 12 is a flowchart illustrating a step of determining whether a target campaign is exposed according to an exemplary embodiment of the present invention.
- FIG. 13 is a flowchart illustrating a step of determining whether a target campaign is exposed according to another exemplary embodiment of the present invention.
- the campaign exposure determination system 1000 may include user terminals 100 and 200 and an exposure control server 300 according to an exemplary embodiment of the present invention.
- the number of user terminals and the number of game users are shown as two, but it should be understood that these are abbreviated to facilitate understanding of the present invention.
- the flow of operation through each of the user terminals 100 and 200 is substantially the same, the operation of the user terminal 100 will be described below.
- the user terminal 100 represents a terminal that the game user has and in which the game application is installed.
- the user terminal 100 can be any type of device as long as it is a device capable of installing and executing a mobile device or a game application such as a smart phone or a tablet PC.
- the game application may include a game running on a device such as a computer, a laptop computer, a console game machine, etc., and a mobile game running on a portable terminal (e.g., a smart phone or a tablet PC)
- the user terminal 100 executes the corresponding game application and accesses the game server 10 through the network 20.
- the game application may include a plurality of campaigns referred to in the background description item together with the game.
- the campaigns may be stored in advance in the user terminal at the time of installation of the game application.
- the mobile game provider may periodically or intermittently provide updates for the game application, which may be added to the update and stored in the user terminal.
- the campaign may be directly transmitted from the game server 10 and stored in the user terminal 100 when the connection between the user terminal 100 and the game server 10 is performed.
- the user terminal 100 determines whether the campaign exposure time of the campaign stored in the user terminal 100 or transmitted from the game server 10 has arrived. As a result of the determination, when it is determined that the campaign exposure time has arrived, the user terminal 100 selects at least one target campaign among the stored or received campaigns, and inquires whether the selected target campaign is exposed.
- the campaign exposure determination system 1000 provides a customized campaign to each game user rather than providing the same campaign to each game user.
- the campaign exposure determination system 1000 includes an exposure control server 300, and the exposure control server 300 determines whether or not the user queries the user terminals 100 and 200 It determines the exposure of the target campaign.
- the exposure control server 300 is different from the game server 10 in that the game server 10 processes and returns data so that the game can be played during the progress of the game while the exposure control server 300 Uses the game log indicating the game play situation from the game application to determine whether or not the target campaign that is queried by each of the user terminals 100 and 200 is exposed.
- the game log refers to all the raw data generated in the process of installing, executing, or removing a game application on a user terminal of a game user.
- the reaction information of the game user with respect to a campaign to be described later may also be included in the game log.
- 3 is a conceptual diagram for explaining the concept of a campaign group.
- the exposure control server 300 determines whether to expose the target campaign using the past game logs of a plurality of game users. Specifically, the exposure control server 300 may determine whether to expose the target campaign using past game logs of a plurality of game users according to provision of past campaigns belonging to the same campaign group as the target campaign.
- the past game logs i.e., past game logs based on the provision of past campaigns belonging to the same campaign group as the target campaign
- the game users have different tendencies and game patterns for each game user. For example, some game users may be interested in event notification campaigns but not others, and some other game users may be interested in purchase offer campaigns but not others. Therefore, when determining whether to expose a target campaign, it is desirable to utilize reference data having the same or similar purpose as the target campaign.
- the exposure control server 300 can group campaigns into a plurality of campaign groups (cg 1 , cg 2 , cg m ) according to its purpose.
- each campaign is similar purpose group (cg 1, cg 2, cg m).
- the first campaign group cg 1 may be a group of campaigns whose purpose is an event notification
- the second campaign group cg 2 may be a group of campaigns whose purpose is a purchase proposal
- (cg m ) may be a group of campaigns whose objectives are game guides.
- the exposure control server 300 generates the reaction probability prediction models for each campaign group by learning past game logs according to the provision of the past campaigns included in the respective campaign groups cg 1 , cg 2 , cg m . For example, if the number of campaign groups is three, the exposure control server 300 may generate at least one response probability prediction model for each campaign group. In this example, A reaction probability prediction model of the second campaign group, and a reaction probability prediction model of the third campaign group. Of course, if there are a plurality of campaign groups, the number of reaction probability prediction models may be changed by the number of campaign groups.
- the exposure control server 300 may use at least one of the campaign exposure time and the proposal acceptance information in the information included in the past game logs at the time of learning the past game logs. Specifically, the exposure control server 300 collects past game logs of a plurality of game users according to the provision of past campaigns belonging to each campaign group for each campaign group, calculates campaign exposure times and suggestions The reaction probability prediction model may be generated or updated using at least one of the acceptability information. The exposure control server 300 can determine whether to expose the target campaign using the reaction probability prediction model generated or updated.
- the reaction probability prediction model is a model generated through a preset learning technique, and predicts a game user's interest (i.e., reaction probability) with respect to the target campaign.
- the exposure control server 300 extracts a reaction probability determination factor for the target campaign in the game log for the game user of the user terminal 100 that has transmitted the exposure / non-query signal. Then, the exposure control server 300 calculates the response probability for the target user's campaign by applying the extracted response probability determination factor to the reaction probability prediction model of the campaign group to which the target campaign belongs. For example, if the target campaign is a campaign belonging to the second campaign group, the exposure control server 300 applies the response probability determination factor to the response probability prediction model of the second campaign group among the plurality of reaction probability prediction models, Probability can be calculated. When the calculation of the reaction probability is completed, the exposure control server 300 can determine whether to expose the target campaign using the calculated reaction probability.
- the target campaign in which the exposure is inquired may be exposed through the operations described above with respect to the exposure control server 300, and may be selectively displayed on the user terminal 100 according to the exposure.
- the operations can be respectively performed for a plurality of target campaigns, so that the user terminal 100 and the user terminal 200 are exposed Target campaigns can be different.
- the exposure control server 300 determines that the first target campaign is exposed but the second target campaign is not exposed to the user terminal 100, and the first target campaign is exposed to the user terminal 200
- different target campaigns may be exposed to the two user terminals 100 and 200 as shown in FIG.
- the same target campaigns are exposed to the two user terminals 100, 200 if the game users of the two user terminals 100, 200 have similar tendencies and similar levels.
- the campaign can be selectively provided to each game user according to the degree of interest (for example, reaction probability) of each game user. Therefore, according to the campaign exposure determination system 1000 of the present invention, it is possible to provide more efficient information or offer products. In addition, the amount of campaigns not interested in each game user can be drastically reduced, thereby meeting the needs of all game users using the game.
- the degree of interest for example, reaction probability
- the user terminal 100 queries the exposure control server 300 whether the target campaign is exposed when the exposure time of the campaign comes, and exposes the target campaign according to the query result.
- the user terminal 100 includes a campaign exposure time determination unit 110, an exposure target campaign selection unit 120, an exposure query unit 130, a terminal communication unit 140, An exposure unit 150 and a terminal storage unit 160.
- a campaign exposure time determination unit 110 determines whether the target campaign is exposed when the exposure time of the campaign comes, and exposes the target campaign according to the query result.
- the user terminal 100 includes a campaign exposure time determination unit 110, an exposure target campaign selection unit 120, an exposure query unit 130, a terminal communication unit 140, An exposure unit 150 and a terminal storage unit 160.
- the above-described configurations are described for each function in order to facilitate understanding of the present invention.
- the remaining configurations of the above configurations, except for the terminal communication unit 140 and the terminal storage unit 160 include a single processing unit such as a CPU and an MPU It is also possible to implement it through.
- the campaign exposure time determination unit 110 determines the exposure time of the campaign to be provided to the user.
- a campaign in a game can be provided to a game user when certain conditions are met.
- the conditions may include, for example, using a content more than a certain number of times during a game connection, failing an adventure over a certain number of times, losing in a game, and the like.
- the above conditions may include various situations besides those described above.
- the exposure target campaign selection unit 120 functions to select target campaigns to be provided to a game user among a plurality of campaigns stored in the terminal storage unit 160.
- the target campaign selected through the exposure target campaign selection unit 120 can be instantly exposed to the game user.
- this method continuously exposes campaigns to specific game users who are not interested in a particular campaign, or the campaign is exposed too frequently, .
- the user terminal 100 may determine the exposure according to each game user through the exposure control server 300, rather than immediately exposing the campaign at that time, And exposing the campaign using an exposure control signal generated based on the exposure control signal.
- the user terminal 100 includes an exposure / inquiry inquiry unit 130, generates an exposure / nonexistence inquiry signal through the exposure / inquiry inquiry unit 130, and transmits it to the exposure control server 300 ).
- the exposure / non-contact query signal may include an identifier of the user terminal 100 and information on the type (campaign group) or identifier of the target campaign.
- the campaign exposing unit 150 may selectively expose the target campaign based on the exposure control information.
- the exposure control information considers the interest of the game user (for example, reaction probability)
- the user terminal 100 can provide an optional campaign according to the game user .
- the exposure control server 300 is characterized in that it determines how much the game user is interested in the target campaign. To this end, the exposure control server 300 may generate a reaction probability prediction model for each campaign group using past data (i.e., past game logs of a plurality of game users according to past campaigns). The exposure control server 300 determines whether to expose the target campaign in the user terminal 100 using the response probability prediction model for each campaign group when receiving the exposure / non-presence query signal from the user terminal 100, And generates exposure control information according to the generated exposure control information.
- past data i.e., past game logs of a plurality of game users according to past campaigns.
- the exposure control server 300 determines whether to expose the target campaign in the user terminal 100 using the response probability prediction model for each campaign group when receiving the exposure / non-presence query signal from the user terminal 100, And generates exposure control information according to the generated exposure control information.
- the exposure control server 300 includes a game log collecting unit 310, a server storing unit 320, a learning unit 330, a model generating unit 340, a request receiving unit 350 A server communication unit 360, a reaction probability calculation unit 370, and an exposure determination unit 380.
- the components other than the server storage unit 320 and the server communication unit 360 are connected to the CPU and the MPU 360.
- the components of the exposure control server 300 are the same as the components of the exposure control server 300, And the like. Now, each configuration included in the exposure control server 300 is explained.
- the server storage unit 320 stores game logs corresponding to game progress of a plurality of game users.
- the game log means all the raw data generated in the process of installing, executing, and removing the game application on the user terminal of the game user.
- the game log includes at least one of a campaign exposure time of past campaigns provided to each game user, feature values according to characteristics set for each game user, and whether the game user reacts to the provision of past campaigns And the like.
- the game log may be stored in the server storage unit 320 through communication with the user terminal 100 through the server communication unit 360.
- the user terminal 100 may transmit a game log generated periodically or whenever a specific situation occurs to the exposure control server 300, and the exposure control server 300 may transmit the received game log to the game user May be stored in the server storage unit 320.
- the game log may be collected through communication with the game server.
- the game log collecting unit 310 collects game logs stored in the server storage unit 320. [ Specifically, the game log collecting unit 310 collects past game logs of a plurality of game users according to provision of past campaigns classified by campaign group.
- past campaigns are defined as campaigns that have been provided at least once to a plurality of game users to help understand the present invention.
- past game logs are defined as past game logs generated according to the past campaign.
- the exposure control server 300 generates a response probability prediction model for each campaign group.
- the reaction probability prediction model can be largely generated by using one of three methods.
- the first method is a method using a campaign exposure time
- the second method is a method using a reaction of a game user according to a suggestion of a campaign
- the third method is a method using both a first method and a second method .
- the exposure control server 300 may include a learning unit 330 and a model generation unit 340 to generate a response probability prediction model for each campaign group in consideration of the above methods.
- the learning unit 330 functions to learn past game logs, and the model generation unit 340 generates a reaction probability prediction model for each campaign group based on the learning results.
- the learning unit 330 can extract the campaign exposure times measured when the past campaigns are provided to the game user for each campaign group by analyzing past game logs, and learn the campaign exposure times.
- the reason why the campaign exposure times are utilized is that when a game user is interested in the corresponding campaign when one of the campaigns is provided to the game user, the exposure time of the campaign is long. On the contrary, Time is short.
- the graph of FIG. 6 shows an example of the results through logistic regression.
- the x-axis represents the campaign exposure time and the y-axis represents the response probability.
- a plurality of points represented by the region bkd represent the campaign exposure time of the entire game user
- a plurality of points represented by the region rd represent users corresponding to the upper 80 to 90% (bld) represents a user corresponding to the upper 10 to 20%.
- the S-shaped curve cl shows the results obtained by using logistic regression using only the points included in the region rd and the region bld.
- a game user having a campaign exposure time of 3 seconds is assigned a response probability of 0.05
- a game user having a campaign exposure time of 5 seconds is assigned a response probability of 0.98
- a game user having a campaign exposure time of 4 seconds The response probability can be assigned to 0.5.
- the model generating unit 340 can generate a reaction probability prediction model that can represent the degree of interest, that is, the reaction probability from 0 to 1, for all game users through the above method. Such generation can be performed separately for each campaign group, so that the model generation unit 340 can generate a reaction probability prediction model for each campaign group.
- a game user has a high interest rate, that is, a response probability, in proportion to the exposure time of the proposed campaign.
- this assumption may not be true due to the characteristics of mobile games. For example, there may be a situation in which game users proceed to a game without viewing a display unit (i.e., a screen) of the user terminal. In this case, the time for closing pop-ups of game users may be relatively long. Conversely, quickly closing a pop-up in a campaign can mean less interest. Therefore, users who close the campaign too soon or close it too late may be less interested.
- Exposure control server 300 includes a first time by analytical methods or heuristics (heuristics) a method for the campaign, the exposure time as shown in FIG. 7 in order to solve the above problems (t 1 ) And the second time (t 2 ). That is, the learning unit 330 may determine the first time t 1 and the second time t 2 by sorting the campaign exposure times of the past campaigns according to the size of the time and analyzing the sorting result. Here, the second time is greater than the first time.
- the learning unit 330 may be by filtering campaign exposure time to the less than 1 hour (t 1) than the second time (t 2), removing the reliability falling area. In addition, the learning unit 330 may reduce the amount of processing used in the study according to proceed with the study only for campaign exposure time between the first time (t 1) and the second time (t 2).
- the model generation unit 340 may generate a response probability prediction model for each campaign group in consideration of the characteristics. That is, the model generating unit 340 can generate the response probability prediction model such that the response probability is close to 0 or 0 when the campaign exposure time is less than the first time or exceeds the second time. In addition, the model generating unit 340 generates a reaction probability prediction model so that the response probability becomes closer to zero as the campaign exposure time approaches the first time, and the response probability approaches 1 as the campaign exposure time approaches the second time can do.
- the learning unit 330 may perform learning using the information on whether or not the game users accept the proposal according to the provision of the past campaign, as mentioned in the second scheme.
- the information on whether or not the proposal is acceptable can be expressed as 0 and 1. For example, when a game proposes an action or a purchase to a game user in the game, the game user can judge that the proposal is accepted when he / she conducts or purchases the game.
- the concept is extended to a plurality of game users and machine learning is performed using the user status of each game user as a feature vector, it is possible to generate a reaction probability prediction model for each campaign group described above.
- the machine learning can be performed through, for example, SVM (Support Vector Machine), boosting, and random forest.
- the learning unit 330 defines at least one of the features and, for the plurality of game users in the server storage unit 320, the feature values according to the defined features, The information can be extracted and the table can be configured with the generated label.
- the characteristics defined through the learning unit 330 may be game user level, in-game amount, in-game use amount, purchase probability, user status information, campaign exposure time, game play pattern, The characteristic defined through the learning unit 330 is not limited thereto.
- the learning unit 330 performs learning using SVM, boosting, or random forest machine learning, and the model generating unit 340 can generate a response probability prediction model using the learning results.
- the learning unit 330 extracts feature values of the features set in the game logs of the respective game users A1, B2, C1, A2, and D2.
- the number of game users shown in FIG. 8A is only five for explanation, and in reality, the same process can be performed for a larger number of game users.
- Learning performed through the learning unit 330 is characterized by using a game log of the past time point.
- a game log of the past time point may be obtained from gaming log for a period of time of the log in the game, or t -n, or the point of time t -2 from time t -2.
- the proposed acceptance information may be obtained at the time t -1 or + 1 or t -n point later than the time t -2 from the game log for the time period up to the time t -1.
- the game logs that are too old among the game logs of the past time used in the learning unit 330 are not used because the preference of the game users may be rapidly changed due to the characteristics of the mobile game. Therefore, it is preferable that the game log of the past time used in the learning unit 330 is a game log in a predetermined period based on the current time point.
- the number of features is assumed to be three for illustrative purposes, but the number of features may be applied in various other than three.
- the learning unit 330 can extract the proposal acceptance information of the game user when the campaign is provided to the corresponding game users A1, B2, C1, A2, and D2. In this example, it is assumed that the game users A1, B2, and D2 accepted the proposal, while the game users C1 and A2 did not accept the proposal.
- the learning unit 330 may perform supervised learning using the above-described machine learning (ml). Thereafter, the model generating unit 340 can generate a reaction probability prediction model of the corresponding campaign group using the learning results.
- the learning unit 330 and the model generating unit 340 generate the reaction probability prediction model of the campaign group using the campaign exposure time or the acceptance of the proposal.
- the reaction probability prediction model may be generated using all two parameters as mentioned in the third method above.
- the learning unit 330 and the model generating unit 340 can generate a response probability prediction model for one campaign group, and apply the method to other campaign groups, thereby generating a response probability prediction model for the entire campaign group can do.
- the request receiving unit 350 receives an exposure / nonexistence query signal from the user terminal 100 through communication with the user terminal 100.
- the exposure / inquiry signal may include an identifier of the user terminal 100 and an identifier of the target campaign.
- the game log collecting unit 310 collects the past game log information of the corresponding game user in the server storage unit 320 for performing the control process described below, (370).
- the past-time log information of the game user may be log information within a predetermined period based on the current time point.
- the game user's past point log information may include the campaign exposure time as described below.
- the past game log information of the game user may include the feature values derived according to the predetermined features and the proposal acceptance information according to the proposal of the campaign.
- the past game log information of the game user may further include the latest exposure time information of each campaign group exposed to the game user.
- the reaction probability calculation unit 370 calculates the reaction probability of the game user of the user terminal 100 that has transmitted the exposure / non-contact query signal. To this end, the reaction probability calculation unit 370 extracts a reaction probability determination factor for the target campaign from the past game log of the user of the user terminal 100 with respect to the game user. Then, the response probability calculation unit 370 calls the response probability prediction model of the campaign group to which the target campaign belongs. Here, the campaign group to which the target campaign belongs can be searched using the identifier of the target campaign.
- the reaction probability calculation unit 370 may calculate the reaction probability of the game user for the target campaign by applying the reaction probability determination factor of the game user to the reaction probability prediction model of the target campaign group to which the target campaign belongs ( 8B). For example, when the reaction probability prediction model is generated based on the campaign exposure time, the response probability calculation unit 370 calls the campaign exposure times of past campaigns in the past game log of the game user, The probability of the response to the target campaign can be calculated. For example, when the reaction probability prediction model is generated using the campaign exposure time, the input value input to the reaction probability prediction model may be the average time of the campaign exposure times according to the past user's past campaigns. Of course, such input values can be changed and applied in various ways.
- the exposure determination unit 380 determines whether to expose the target campaign using the response probability calculated through the response probability calculation unit 370.
- the exposure determination unit 380 may derive a random value between 0 and 1 through a random function, and may determine to expose a target campaign when a game user's response probability exceeds a random value.
- the random function may be a function provided in a programming language (for example, c language, Java), and rand () and srand () may be used for c language. Random class for Java, Math.random () May be used.
- the response probability of the game user's target campaign is 0.7, and if the random value derived through the exposure determination unit 380 is 0.5, the target campaign is exposed. Conversely, if the random value derived through the exposure determination unit 380 is 0.8, it can be determined that the exposure is not to be exposed.
- this approach may accomplish the object of the present invention in reducing the frequency of exposure of a campaign with a low degree of interest (e. G., Response probability), if the response probability for a particular campaign group is too low , And the probability of the reaction is 0.1 or less), there is a problem that most of the game users are not exposed to the campaign at all.
- a low degree of interest e. G., Response probability
- the exposure determination unit 380 may determine the exposure by determining the exposure determination value and comparing the response probability with the exposure determination value, rather than using the random value.
- the exposure determination unit 380 is independent of whether the response probability is greater than or equal to a certain size, but when the response probability is less than a predetermined value, the exposure determination value is determined and the exposure determination unit 380 can determine the exposure.
- the exposure determination unit 380 may determine to expose the target campaign when the response probability of the game user exceeds the exposure determination value.
- the exposure determination value can be determined in various ways.
- the determination of the exposure determination value may be made by determining a reaction probability of a game user corresponding to a predetermined upper percentage of all game users as the exposure determination value.
- the exposure control server 300 transmits exposure query signals for two target campaigns from three user terminals, as shown in Table 1.
- the User Key represents the identifier of each game user for the user terminal
- the response probability A represents the response probability for the first target campaign
- the response probability B represents the response probability for the second target campaign
- Whether or not A represents the exposure to the first target campaign
- B represents the exposure to the second target campaign.
- 1 indicates a situation determined to expose the target campaign
- 0 indicates a situation determined not to expose the target campaign.
- the reaction probabilities for the first target campaign and the second target campaign can be calculated for the three game users through the reaction probability calculation unit 370 as described above.
- the first target campaign and the second target campaign are determined for the three game users through the determination (for example, the random value or the exposure determination value) through the exposure determination unit 380 And the result can be recorded.
- the exposure determination unit 380 may perform an additional determination process in addition to the exposure determination method through the above-described determination, thereby performing the exposure determination. This is to customize the game user to determine whether the target campaign is exposed.
- the exposure determination unit 380 according to another embodiment of the present invention considers the latest exposure time of the campaign last exposed to the game user among the same campaign group as the target campaign .
- the exposure determination unit 380 extracts the latest exposure time of the last exposed campaign in the past game log of the game user. Thereafter, if the exposure determination unit 380 determines to expose the target campaign in the previous determination, it may further determine whether the difference between the current time and the latest exposure time exceeds the minimum exposure time. For example, a comparison is made between the difference between the current time and the latest exposure time and the minimum exposure frequency time when the probability of reaction exceeds the random value, or when the probability of reaction exceeds the exposure determination value, If you exceed the minimum impression frequency time, you can be sure to expose the target campaign.
- the exposure determination unit 380 may expose the target campaign if the difference between the current time and the latest exposure time exceeds the maximum exposure time even if the response probability is less than the random value or the response probability is less than the exposure determination value Can be confirmed.
- Table 2 assumes a situation in which there are three game users, and the exposure probability for each target campaign is determined using the reaction probability A and the reaction probability B representing different campaign groups. That is, as a result of the determination using the reaction probability A and the reaction probability B, it is assumed that the first game user is exposed to the first target campaign but not the second target campaign. It is assumed that the second game user is determined to expose the first target campaign but not the second campaign. And that it is determined to expose the first and second target campaigns to the third game user.
- the latest exposure time for the first campaign group of the first game user whose identifier is a9d98afb2 is 12:29:51 on February 7, 2017, and the latest exposure time for the second campaign group is 2017 It is assumed that February 1 is 14:52:1.
- the latest exposure time for the first campaign group of the second game user with the identifier bc98dnd18 is 18:52:35 on February 6, 2017, and the latest exposure time for the second campaign group is February 15, 2017 It is assumed that the hour is 35 minutes and 23 seconds.
- the latest exposure time for the first campaign group of the third game user with an identifier of c972gfk2a is 9:23:24 on February 7, 2017, and the latest exposure time for the second campaign group is February 7, 2017 Hour and 18 minutes and 33 seconds.
- the current time is 0:00:00 on February 8, 2017, the minimum exposure time is 1 day, and the maximum exposure time is 3 days.
- the first target campaign it may be determined that the first target campaign is exposed but the second target campaign is not exposed for the first game user. If the campaign is provided according to the determination result without considering the minimum exposure frequency time and the maximum exposure frequency time, the first game user will receive another campaign or campaign similar to the one already received yesterday, You can leave your experience. In addition, since the first game user has not received the campaigns belonging to the second campaign group for a long time, but the second target campaign is also not received, this may be an undesirable situation. Accordingly, it may be desirable to provide the game user with a campaign belonging to a second campaign group that has not been served for a relatively long period of time.
- the first game user can receive the second target campaign that has not been received for a relatively long period of time instead of the first target campaign provided before a comparatively short period . If the current time in this example is February 0, 2017 0:00 0:00, the first game user can be changed to receive all of the two target campaigns.
- the difference between the current time and the latest exposure time of the first campaign group exceeds the minimum exposure time, Exposure can be confirmed.
- the difference between the current time and the latest exposure time of the second campaign group is less than the maximum exposure frequency time, the second game user can be determined not to be exposed.
- the first and second target campaigns can be changed to not be exposed.
- the exposure determination unit 380 takes into account not only the response probability but also the latest exposure time of the campaign group provided to each game user, so that the frequency of the more customized campaign can be adjusted to the game user.
- the exposure control server 300 determines that the target campaign is exposed. However, it is also conceivable that the user terminal 100 performs the exposure determination process through the exposure control server 300 only. However, the load of the user terminal is high due to the characteristics of the mobile game in which the complexity of graphics or coding is high. Here, if an additional process is performed in the user terminal to determine whether or not to control the exposure of the campaign, the user terminal may be overloaded, so that the above-described determination process may be performed in the exposure control server 300.
- FIG. 9 is a flowchart illustrating a method of determining whether a campaign is exposed through the exposure control server according to an exemplary embodiment of the present invention.
- Figures 10 and 11 are flow charts of the learning steps of the present invention.
- 12 and 13 are flow charts for determining whether to expose the subject campaign of the present invention.
- the method for determining whether or not a campaign is exposed includes generating a response probability prediction model for each campaign group, and when receiving an exposure / (For example, a reaction probability) of the corresponding game user according to the provision of the game player.
- a method for determining whether or not to expose a user is provided to control a frequency of a more customized campaign to a corresponding game user in consideration of the calculated reaction probability and various information included in the game log of the corresponding game user .
- FIG. 9 a description will be given of a method of determining whether or not to expose according to an embodiment of the present invention. In the following, the duplication of the above-mentioned parts is omitted and the description is made.
- Step S110 is a step performed by the game log collecting unit, which collects game logs stored in the server storage unit. Specifically, step S110 is a step of collecting past game logs of a plurality of game users according to the provision of past campaigns for each campaign group.
- the response probability prediction model in the campaign exposure determination method according to an exemplary embodiment of the present invention is generated using at least one of the exposure time of the campaign and the proposal acceptance information according to the provision of the past campaign.
- the past game log may include at least one of the campaign exposure time of the past campaigns provided to each game user and the proposal acceptance information according to past campaigns provided to each game user.
- the past game log collected through S110 is a past game log within a predetermined period based on the current time. Because too old game logs are unreliable, it is desirable not to collect game logs beyond a predetermined period of time.
- the past time game logs gathered from the step S110 may be, for example, a game log of the period between the time t -2, or t -n t -2 point in time.
- Step S120 is a step performed by the learning unit, which learns past game logs. As described above, the learning performed in step S120 may be performed using at least one of the campaign exposure time and the information on whether the game user can accept the proposal according to the past campaign. Here, if step S 120 is performed using the campaign exposure time, it may proceed according to the flow shown in FIG. 10.
- step S121 is a step of sorting campaign exposure times of past campaigns according to the size of time
- step S122 is a step of determining first and second times by analyzing the sorting result.
- the game user can perform actions other than the operation of the user terminal after operating the game application. Accordingly, although the campaign exposure time gradually increases, since the game user performs an action other than viewing the campaign, if such data is applied, the reliability of the determination of the exposure of the campaign described below may be adversely affected.
- the method of determining whether or not the campaign is exposed analyzes the campaign exposure times through step S121 and determines the first time and the second time based on the analysis result in step S122.
- the second time is greater than the first time.
- Step S123 is a step of filtering campaign exposures of past campaigns that are less than the first time or exceed the second time. That is, the step S123 is a step of setting the first time and the second time through step S122, and filtering the campaign exposure times out of the range between the first time and the second time.
- Step S124 is a step of learning campaign exposure times according to provision of past campaigns between the first time and the second time.
- step S120 may be performed using the acceptance of the proposal by the game user according to the provision of the past campaign.
- the operation when the step S120 is performed by using the game acceptance information of the game user is shown in FIG.
- Step S221 is a step of defining the features for each game user.
- the user-specific characteristics may include at least one of a game user level, an in-game good, an in-game good, a purchase probability, a user's status information, a campaign exposure time, and a game play pattern.
- Step S222 is a step of extracting feature values and proposal acceptance information of each game user in past game logs
- step S223 is a step of learning feature values and proposal acceptance information of each game user.
- the description of the steps S222 and S223 has been described in detail with reference to FIG. 8A, and a duplicated description will be omitted.
- Step S130 is a step of generating a response probability prediction model for each campaign group based on the learning result.
- the response probability prediction model can be generated through at least one of the campaign exposure time and the proposal acceptance information according to the learning method through step S120, and outputs a different response probability according to the input value.
- the response probability prediction model when the response probability prediction model is generated using the campaign exposure time as described above, the response probability in the response probability prediction model becomes smaller as the exposure time of the campaign approaches the first time, As shown in FIG. Also, when the response probability prediction model is generated using the campaign exposure time, the response probability with respect to the campaign exposure time that is less than the first time or exceeds the second time in the response probability prediction model is 0 or is modeled as a value close to 0 .
- Step S140 is a step performed by the request reception unit, which receives the exposure / non-availability query signal from the user terminal.
- Step S150 is a step performed by the game log collecting unit or the response probability calculating unit.
- the collected game log collects past game logs for the game user of the user terminal, and determines reaction probability determination factors for the target campaign in the collected past game logs Respectively.
- the game log for the game user of the user terminal exists in the server storage unit.
- the game log is stored in the server storage unit based on the identifier of the game user included in the exposure / Lt; / RTI >
- the extraction of the response probability determination factor through step S150 may be performed for at least one of the campaign exposure time and the proposal acceptance information depending on which information is used to generate the response probability prediction model.
- Step S160 is a step performed by the reaction probability calculation unit, which calculates a reaction probability of the game user for the target campaign. Specifically, step S160 is a step of calculating a reaction probability of the game user with respect to the target campaign by applying a reaction probability determination factor of the game user to the reaction probability prediction model of the campaign group to which the target campaign belongs.
- the reaction probability determination factor which is an input value to the reaction probability prediction model, is derived based on the campaign exposure times of the past campaigns provided to the game user of the user terminal .
- the response probability judgment factor input into the reaction probability prediction model may be an average value of the campaign exposure times of the corresponding game user, or a value calculated through another method.
- Step S170 is a step performed by the exposure determination unit, which determines whether the target campaign is exposed using the response probability. As described above, step S170 can be largely performed in two ways. Of these methods, the first method is a method using a random value, and the second method is a method using an exposure determination value. First, with reference to FIG. 12, a step of determining whether to expose a target campaign according to the first scheme is explained.
- Step S171 is a step of deriving a random value. Specifically, step S171 is a step of deriving a random value between 0 and 1 through a random function.
- the random value can be derived as a prime number such as 0.xxx, and the prime number of the prime number is not limited to a specific number.
- Step S172 is a step of comparing the response probability of the game user with respect to the target campaign calculated through step S160 and the random value calculated through step S171. Specifically, step S172 is a step of determining whether the probability of reaction exceeds a random value. That is, in step S172, it is determined that the response probability derived through step S160 is a reference size, and when the random value falls within the reference size, the target campaign is exposed (step S173). On the contrary, It is determined that the target campaign will not be exposed (step S176).
- step S172 when determining whether to expose the target campaign by only the determination in step S172, only the characteristics of the game user and other game users having a similar tendency to the game user are reflected, so that it is less customized can see.
- each game user has a high probability of response (for example, interest level) only in a specific campaign group, so that only the campaigns included in the corresponding campaign groups may be exposed to the game user with frequent frequency And the probability of the other campaign group is too low, the campaigns included in the campaign group may not be exposed to the corresponding game user.
- a method of determining whether a target campaign is exposed may include not only a response probability but also the latest exposure of the last exposed campaign among the campaign groups to which the target campaign belongs And further considers time.
- step S173 the process of determining whether the difference between the current time and the latest exposure time exceeds the minimum exposure time through step S174 may be performed.
- step S176 the process of determining whether the difference between the current time and the latest exposure time exceeds the maximum exposure frequency time through step S177 may be performed.
- the exposure of the target campaign can be further customized by considering the tendency of the game user and the latest exposure time of the campaign provided to the game user.
- step S175b may be performed to change the target campaign to not be exposed.
- step S173 it is determined in step S173 that the target campaign is to be exposed. If the difference between the current time and the latest exposure time exceeds the minimum exposure time in step S174, step S175a is performed and the target campaign is determined to be exposed.
- step S178a may be performed to change the target campaign to be exposed. If it is determined in step S176 that the target campaign is not to be exposed in step S176, and if the difference between the current time and the latest exposure time is less than the maximum exposure frequency time in step S177, step S178b is performed to determine that the target campaign is not to be exposed have.
- the method using a random value can achieve the object of the present invention in that a campaign with a low degree of interest (for example, a response probability) can lower its frequency.
- a campaign with a low degree of interest for example, a response probability
- the response probability for a particular campaign group is too low, the problem may occur that almost all the game users are not exposed to the campaign at all.
- step S170 it is preferable that the exposure determination value is determined instead of the random value, the response probability is compared with the exposure determination value, and the comparison result is used.
- step S170 may include determining the exposure determination value (step S271).
- the exposure determination value may be determined in various manners. For example, in step S271, a response probability of a game user corresponding to a predetermined upper percentage of all game users may be determined as an exposure determination value.
- steps S272 through S278 differ substantially from the steps S172 through S178 shown in FIG. 12, but substantially the same operations are performed. Accordingly, the description of steps S272 through S278 will be omitted.
- step S180 the exposure control information is generated according to whether the target campaign determined through step S170 is exposed, and is transmitted to the user terminal.
- the frequency of the campaign exposure customized to the game user for each game user is adjusted according to the probability of the reaction of each game user, so that each game user can be provided with the campaigns he is interested in, and the situation of annoying the game users can be avoided.
- campaigns belonging to the same group are frequently exposed using frequent exposure time information of the campaign for each campaign group provided to each game user Situations, and situations in which campaigns in a particular campaign group are not exposed for too long. As a result, it is expected that a game which satisfies both mobile game providers and game users will be possible.
- the method of determining whether or not the campaign is exposed according to an embodiment of the present invention and the server utilizes game logs according to a plurality of campaigns included in the campaign group.
- this is only an example, and can be expanded and operated on a campaign basis rather than a campaign group basis.
- the above exemplary methods according to the present invention may be implemented in a computer program product, a computer program product recorded on a recording medium readable by a computer (including all devices having an information processing function) May be implemented in a variety of ways including, but not limited to, applications, logic circuits, custom semiconductors, or firmware.
- Examples of the computer-readable recording medium include, but are not limited to, ROM, RAM, CD, DVD, magnetic tape, hard disk, floppy disk, hard disk and optical data storage.
- the computer-readable recording medium may be distributed over network-connected computer systems so that computer readable codes can be stored and executed in a distributed manner.
- Exposure object campaign selection unit 130 Exposure object query unit
- terminal communication unit 150 terminal communication unit
- Exposure control server 310 Game log collection unit
- model generation unit 350 request reception unit
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Multimedia (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- General Business, Economics & Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Economics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
The present invention relates to a method, a server, a computer program capable of adjusting a campaign exposure frequency customized for each game user, by using game logs of multiple game users. To this end, a method for determining whether a campaign is exposed according to an embodiment of the present invention may comprise: collecting and learning past game logs of multiple game users for each campaign group; generating a reaction probability prediction model for each campaign group on the basis of a learning result; receiving an exposure or non-exposure inquiry signal from a user terminal, and extracting a reaction probability determination factor for a target campaign from a past game log of a game user by the user terminal; calculating a reaction probability of the game user for the target campaign, by applying the reaction probability determination factor for the game user to a reaction probability prediction model of a campaign group to which the target campaign belongs; and determining, using the reaction probability, whether the target campaign is exposed.
Description
본 발명은 캠페인 노출 여부 판단 방법, 서버 및 컴퓨터 프로그램(METHOD, SERVER AND COMPUTER PROGRAM FOR DETERMINING EXPOSURE OF CAMPAIGN)에 관한 것이고, 보다 상세하게 복수의 게임 유저들의 게임 로그들을 활용하여 각 게임 유저에게 맞춤화된 캠페인 노출 빈도를 조절할 수 있는 방법, 노출 제어 서버 및 컴퓨터 프로그램에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining whether a campaign is exposed, a server and a computer program, and more particularly, A method of controlling exposure frequency, an exposure control server, and a computer program.
스마트 TV, 스마트 폰과 같은 스마트 디바이스가 대중화 되고 있으며, 이러한 스마트 디바이스를 이용하여 게임을 즐기는 사용자의 수도 점차 증가하고 있다. 특히, 인터넷 통신이 가능한 스마트 폰을 이용하는 사용자들은 스마트 폰의 이동성 및 휴대성을 통해 언제 어디서나 인터넷을 통해 게임을 즐길 수 있다.Smart devices such as smart TVs and smartphones are becoming popular, and the number of users who enjoy playing games using these smart devices is gradually increasing. In particular, users who use a smartphone capable of Internet communication can enjoy the game through the Internet anytime and anywhere through the mobility and portability of the smartphone.
게임 유저의 흥미를 높이고 게임의 지속 가능성을 높이기 위해, 모바일 게임 제공자는 주기적으로 또는 간헐적으로 다양한 이벤트를 하고, 모바일 게임 제공자가 원하는 행동을 게임 유저가 하도록 캠페인을 통해 다양한 제안을 할 수 있다. 여기서, 캠페인이란 게임 유저가 게임에서 게임 제공자가 원하는 행동을 요구하는 하나의 방법으로서, 이에 대한 예시는 도 1a 및 도 1b에 도시된다.In order to increase the interest of the game user and increase the sustainability of the game, the mobile game provider may periodically or intermittently perform various events and make various suggestions through the campaign to allow the game user to take desired actions of the mobile game provider. Here, the campaign is a method in which a game user requests a behavior desired by a game provider in a game, and examples thereof are shown in Figs. 1A and 1B.
캠페인은 게임 유저가 게임에 접속할 때, 그리고 게임 도중 특정 조건에 도달할 때 발생될 수 있다. 여기서, 캠페인의 종류로는 도 1a 및 도 1b에 도시된 이벤트 알림 캠페인 및 구매 제안 캠페인 등이 있다. 예를 들어, 캠페인에는 도 1a 및 도 1b에 도시된 캠페인 외에도 다양한 게임 정보를 알리는 정보 제공 캠페인, 게임 내 재화 소비 방법 가이드 캠페인 등이 포함될 수 있으나, 캠페인의 종류는 이에 제한되지 않는다. Campaigns can occur when a game user connects to a game and when certain conditions are reached during the game. Here, the types of campaigns include the event notification campaigns and purchase proposal campaigns shown in FIGS. 1A and 1B. For example, in addition to the campaigns shown in FIGS. 1A and 1B, the campaign may include an information providing campaign for notifying various game information, a game in-game consumption guide guide campaign, and the like, but the type of campaign is not limited thereto.
이러한 캠페인들은 모든 게임 유저들에게 공통적으로 제공되는데, 게임 유저마다 그 성향과 게임 패턴이 다르므로, 모든 게임 유저들을 충족시키기는 어렵다. 예를 들어, 초보자를 위한 초보자 게임 가이드 캠페인의 경우, 해당 모바일 게임을 한지 얼마 되지 않은 게임 유저에게는 도움이 될 수 있지만, 반대로 일정 기간 이상 플레이한 게임 유저에게는 해당 캠페인의 제안이 불필요하다. 뿐만 아니라, 특정 캠페인들은 게임 어플리케이션에 접속할 때마다 미리 설정된 기간 동안 반복적으로 게임 유저들에게 제공될 수 있다. 이 경우, 해당 캠페인들에 관심이 없는 게임 유저는 이 캠페인들을 닫고 게임을 진행해야 한다. 다시 말해서, 해당 캠페인들에 관심이 있는 게임 유저더라도 캠페인의 개수가 많고, 그 노출 빈도가 잦기 때문에, 게임을 진행할 때, 불편한 경우가 생기는 문제가 있다. These campaigns are common to all game users, and their tendencies and game patterns are different for each game user, making it difficult to satisfy all game users. For example, a novice game guide campaign for a novice may be helpful for a game user who has just been playing the mobile game, but the proposal of the corresponding campaign is unnecessary for a game player who played for a certain period of time. In addition, certain campaigns may be repeatedly provided to game users for a predetermined period of time each time they access the game application. In this case, game users who are not interested in the campaigns should close the campaigns and play the game. In other words, even a game user who is interested in the campaigns has a large number of campaigns, and the frequency of the frequent exposure is so inconvenient that the game is inconvenient.
이러한 문제점에 관련하여, 도 1a에 도시된 것처럼 한 번 노출된 캠페인의 하단 또는 상단에 특정 영역을 두고, 이 영역을 통한 게임 유저의 선택에 따라 해당 캠페인이 미리 설정된 기간(예를 들어, 하루) 동안 노출되지 않게 제어하는 방식을 채택할 수 있다. 다만, 이 방식도 해당 캠페인이 미리 설정된 기간 마다 적어도 한 번은 게임 유저들에게 반복적으로 제공되므로, 해당 캠페인에 관심이 없는 게임 유저들을 귀찮게 하는 문제점을 완전하게 해소하지 못하고 있다.As shown in FIG. 1A, a specific area may be located at the bottom or top of the once-exposed campaign, and a corresponding campaign may be selected for a preset period (for example, a day) So that it is not exposed during the exposure. However, this method also fails to completely solve the problem of annoying game users who are not interested in the campaign, because the campaign is repeatedly provided to game users at least once every preset period.
따라서, 게임 유저들의 관심도에 따라 캠페인을 선택적으로 제공하는 새로운 기법이 요구된다.Therefore, a new technique for selectively providing a campaign according to the interest of game users is required.
이에 관련하여, 한국공개특허 제2013-0131845호가 있다.In this respect, Korean Patent Laid-Open Publication No. 2013-0131845 is available.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로, 게임 유저들의 관심도에 따라 캠페인을 선택적으로 제공함으로써, 게임 유저의 관심도에 따라 맞춤형으로 캠페인을 제공할 수 있는 캠페인 노출 여부 판단 방법, 노출 제어 서버 및 컴퓨터 프로그램을을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and it is an object of the present invention to provide a method of determining whether a campaign is exposed by selectively providing a campaign according to the degree of interest of a game user, Server and a computer program.
상기와 같은 과제를 해결하기 위한 본 발명의 노출 제어 서버가 게임 어플리케이션이 설치된 사용자 단말기에 제공될 대상 캠페인의 노출 여부를 판단하는 방법은 캠페인 그룹 별로 복수의 게임 유저들의 과거 시점 게임 로그들을 수집하는 단계; 과거 시점 게임 로그들을 학습하는 단계; 학습 결과를 근거로, 캠페인 그룹 별로 반응 확률 예측 모델을 생성하는 단계; 사용자 단말기로부터 노출 여부 질의 신호를 수신하고, 사용자 단말기의 게임 유저에 대한 과거 시점 게임 로그에서 대상 캠페인에 대한 반응 확률 판단 인자를 추출하는 단계; 대상 캠페인이 속한 캠페인 그룹의 반응 확률 예측 모델에 게임 유저의 반응 확률 판단 인자를 적용함으로써 대상 캠페인에 대한 상기 게임 유저의 반응 확률을 산출하는 단계; 및 반응 확률을 이용하여 대상 캠페인의 노출 여부를 결정하는 단계를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of determining exposure of a target campaign to be provided to a user terminal equipped with a game application, the method comprising: collecting past game logs of a plurality of game users for each campaign group; ; Learning past game logs; Generating a response probability prediction model for each campaign group based on the learning result; Receiving an exposure / non-contact query signal from a user terminal, and extracting a reaction probability determination factor for a target campaign from a past point game log for a game user of the user terminal; Calculating a response probability of the game user with respect to a target campaign by applying a reaction probability determination factor of the game user to the reaction probability prediction model of the campaign group to which the target campaign belongs; And determining whether the target campaign is exposed using the response probability.
또한, 과거 시점 게임 로그는 게임 유저에게 제공된 과거 캠페인의 캠페인 노출 시간을 포함하고, 과거 시점 게임 로그들을 학습하는 단계는 복수의 게임 유저들에게 제공된 과거 캠페인의 캠페인 노출 시간들을 이용하여 이루어질 수 있다.In addition, the past game log includes the campaign exposure time of the past campaigns provided to the game user, and the learning of the past game logs may be performed using the campaign exposure times of the past campaigns provided to a plurality of game users.
또한, 과거 시점 게임 로그들을 학습하는 단계는 과거 캠페인의 캠페인 노출 시간들을 시간의 크기에 따라 정렬하는 단계; 정렬 결과를 분석함으로써 제1 시간 및 제2 시간을 결정하는 단계; 및 제1 시간 미만이거나 제2 시간을 초과하는 과거 캠페인의 캠페인 노출 시간들을 필터링하는 단계를 포함할 수 있다.The step of learning past game logs may include arranging campaign exposure times of past campaigns according to the size of time; Determining a first time and a second time by analyzing the alignment result; And filtering campaign exposures of past campaigns that are less than or greater than the first time.
또한, 캠페인 그룹 별 반응 확률 예측 모델에서 반응 확률은 캠페인 노출 시간이 제1 시간에 가까워질수록 작아지고, 캠페인 노출 시간이 제2 시간에 가까워질수록 커지도록 모델링될 수 있다.In the response probability prediction model for each campaign group, the response probability may be modeled such that the response probability decreases as the campaign exposure time approaches the first time, and increases as the campaign exposure time approaches the second time.
또한, 캠페인 그룹 별 반응 확률 예측 모델을 생성하는 단계는, 제1 시간 미만이거나 제2 시간을 초과하는 캠페인 노출 시간들에 대한 반응 확률은 0으로 모델링할 수 있다.In addition, the step of generating the reaction probability prediction model for each campaign group may model the response probability for the campaign exposure times that is less than the first time or exceeds the second time to be zero.
또한, 반응 확률 판단 인자는 사용자 단말기의 게임 유저에게 제공된 과거 캠페인들의 캠페인 노출 시간들을 근거로 도출될 수 있다.In addition, the response probability determination factor may be derived based on campaign exposure times of past campaigns provided to the game user of the user terminal.
또한, 과거 시점 게임 로그는 각 게임 유저에게 제공된 과거 캠페인에 따른 제안 수락 여부 정보를 포함하고, 과거 시점 게임 로그들을 학습하는 단계는 복수의 게임 유저들의 제안 수락 여부 정보들을 이용하여 이루어질 수 있다.Also, the past game log may include information on whether or not to accept the proposal according to past campaigns provided to each game user, and the step of learning past game logs may be performed by using a plurality of game users' proposal acceptance information.
또한, 과거 시점 게임 로그들을 학습하는 단계는 과거 시점 게임 로그들에서 각 게임 유저의 특징 값들 및 제안 수락 여부 정보를 추출하는 단계; 및 각 게임 유저의 특징 값들 및 제안 수락 여부 정보를 학습하는 단계를 포함할 수 있다.The step of learning past game logs may include extracting feature values and proposal acceptance information of each game user in past game logs, And learning the feature values and proposal acceptability information of each game user.
또한, 특징값 들은 게임 유저들의 미리 정의된 특징들에 대한 값들을 나타내고, 특징들은 게임 유저 레벨, 게임 내 재화량, 게임 내 재화 사용량, 구매 확률, 유저의 상태 정보, 캠페인 노출 시간, 게임 플레이 패턴 중 적어도 하나를 포함할 수 있다.In addition, the feature values represent values for predefined features of game users, and the features include game user level, in-game good, in-game good, purchase probability, user status information, campaign exposure time, Or the like.
또한, 대상 캠페인의 노출 여부를 결정하는 단계는 노출 여부 판단값을 결정하는 단계; 및 게임 유저의 반응 확률이 노출 여부 판단 값을 초과할 때 대상 캠페인을 노출할 것으로 결정하는 단계를 포함할 수 있다.In addition, the step of determining whether the target campaign is exposed may include: determining an exposure determination value; And determining that the target campaign is to be exposed when the response probability of the game user exceeds the exposure determination value.
또한, 노출 여부 판단 값을 결정하는 단계는, 전체 게임 유저들 중 미리 설정된 상위 퍼센트에 해당하는 게임 유저의 반응 확률을 노출 여부 판단 값으로 결정함으로써 이루어질 수 있다.In addition, the step of determining the exposure determination value may be performed by determining a reaction probability of a game user corresponding to a predetermined upper percentage of all game users as the exposure determination value.
또한, 게임 유저의 반응 확률이 노출 여부 판단 값을 초과하고, 현재 시각과 최근 노출 시각 간의 차가 최소 노출 빈도 시간을 초과할 때 대상 캠페인을 노출할 것으로 확정하는 단계를 더 포함하고, 최근 노출 시각은 대상 캠페인이 포함된 캠페인 그룹 중 사용자 단말기에 마지막으로 제공된 캠페인의 제공 시각일 수 있다.The method further includes determining that the target campaign is to be exposed when the probability of the game user's reaction exceeds the exposure determination value and the difference between the current time and the latest exposure time exceeds the minimum exposure time, It may be the time of presentation of the last campaign provided to the user terminal of the campaign group including the target campaign.
또한, 게임 유저의 반응 확률이 상기 노출 여부 판단 값 이하이고, 현재 시각과 최근 노출 시각 간의 차가 최대 노출 빈도 시간을 초과할 때 대상 캠페인을 노출할 것으로 확정하는 단계를 더 포함할 수 있다.The method may further include confirming that the target campaign is to be exposed when a reaction probability of a game user is less than or equal to the exposure determination value and a difference between the current time and the latest exposure time exceeds a maximum exposure frequency time.
또한, 대상 캠페인의 노출 여부를 결정하는 단계는, 랜덤 함수를 통해 0에서 1 사이의 랜덤 값을 도출하는 단계; 및 게임 유저의 반응 확률이 랜덤 값을 초과할 경우 대상 캠페인을 노출할 것으로 결정하는 단계를 포함할 수 있다.In addition, the step of determining whether to expose the target campaign may include deriving a random value between 0 and 1 through a random function; And determining that the target campaign is to be exposed if the response probability of the game user exceeds a random value.
상기와 같은 과제를 해결하기 위한 본 발명의 노출 제어 서버는 캠페인 그룹 별로 복수의 게임 유저들의 과거 시점 게임 로그들을 수집하는 게임 로그 수집부; 과거 시점 게임 로그들을 학습하는 학습부; 학습 결과를 근거로, 캠페인 그룹 별로 반응 확률 예측 모델을 생성하는 모델 생성부; 사용자 단말기로부터 노출 여부 질의 신호를 수신하는 요청 수신부; 사용자 단말기의 게임 유저에 대한 과거 시점 게임 로그에서 대상 캠페인에 대한 반응 확률 판단 인자를 추출하고, 대상 캠페인이 속한 캠페인 그룹의 반응 확률 예측 모델에 게임 유저의 반응 확률 판단 인자를 적용함으로써 대상 캠페인에 대한 게임 유저의 반응 확률을 산출하는 반응 확률 산출부; 및 반응 확률을 이용하여 대상 캠페인의 노출 여부를 결정하는 노출 여부 결정부를 포함하고, 상술한 방법에 따른 각 단계를 실행하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided an exposure control server comprising: a game log collecting unit collecting past game logs of a plurality of game users for each campaign group; A learning unit for learning past game logs; A model generation unit that generates a response probability prediction model for each campaign group based on the learning result; A request receiving unit for receiving an exposure / non-contact query signal from a user terminal; The response probability determination factor for the target campaign is extracted from the past game log of the game terminal for the game user of the user terminal and the response probability determination factor of the game user is applied to the reaction probability prediction model of the campaign group to which the target campaign belongs, A reaction probability calculation unit for calculating a reaction probability of a game user; And an exposure determination unit for determining whether to expose the target campaign using the response probability, and each step according to the above-described method is executed.
또한, 상술한 방법을 컴퓨터에서 실행시키기 위하여 컴퓨터 판독 가능한 기록 매체에 저장된 컴퓨터 프로그램이 제공된다.In addition, a computer program stored on a computer-readable recording medium for executing the above-described method on a computer is provided.
또한, 상술한 방법을 수행하는 컴퓨터 프로그램이 기록된 컴퓨터로 읽을 수 있는 기록매체가 제공된다.Further, a computer-readable recording medium on which a computer program for performing the above-described method is recorded is provided.
본 발명의 캠페인 노출 여부 판단 방법, 노출 제어 서버 및 컴퓨터 프로그램은 복수의 게임 유저들의 과거 시점 게임 로그뿐만 아니라, 캠페인의 노출 여부를 확인 요청한 게임 유저의 게임 로그를 활용하여 해당 게임 유저에게 최적화된 캠페인 노출 빈도 조절이 가능한 효과가 있다.The method for determining whether a campaign is exposed or not, the exposure control server and the computer program of the present invention can be applied to not only the past game logs of a plurality of game users but also the campaigns optimized for the game users There is an effect that the exposure frequency can be adjusted.
또한, 본 발명의 캠페인 노출 여부 판단 방법, 노출 제어 서버 및 컴퓨터 프로그램은 사용자 단말기가 아닌 별도의 노출 제어 서버를 통해 이루어질 수 있어서, 사용자 단말기의 부하를 최소화시킬 수 있고, 이에 따라 사용자 단말기를 통해 진행되는 게임 플레이가 원활해지는 장점이 있다.In addition, the method of determining whether or not a campaign is exposed according to the present invention, the exposure control server and the computer program can be performed through a separate exposure control server rather than a user terminal, thereby minimizing the load on the user terminal, Game play becomes smooth.
또한, 본 발명의 캠페인 노출 여부 판단 방법, 노출 제어 서버 및 컴퓨터 프로그램은 게임 유저에게 제공 예정인 대상 캠페인에 대해, 대상 캠페인이 속한 캠페인 그룹의 제공에 따른 데이터를 활용하므로, 해당 캠페인에 대한 게임 유저의 관심도를 보다 정확히 파악할 수 있다. 물론, 이러한 관심도 파악은 캠페인의 그룹 단위가 아닌 캠페인 단위로 확장이 가능하다.In addition, the method of determining whether or not the campaign is exposed according to the present invention, the exposure control server and the computer program utilize the data according to the provision of the campaign group to which the target campaign belongs to the target campaign to be provided to the game user. You can get a more accurate picture of your interest. Of course, this interest can be extended to campaign units rather than to grouping campaigns.
또한, 본 발명의 캠페인 노출 여부 판단 방법, 노출 제어 서버 및 컴퓨터 프로그램은 과거 시점의 게임 로그를 이용하되, 현재 시점을 기준으로 미리 설정된 기간 내의 게임 로그만 이용하여, 비교적 최근 게임 유저들의 행동을 기반으로 최신성을 유지할 수 있고, 캠페인의 노출 빈도도 게임 유저의 최근 행동을 기반으로 결정되므로 유저 행동 변화에 적응적으로 변화될 수 있는 효과가 있다.In addition, the method for determining whether or not a campaign is exposed according to the present invention, the exposure control server and the computer program use a game log of a past time point, and only use a game log within a predetermined time period based on the current time point, And the frequency of exposure of the campaign is also determined based on the recent behavior of the game user, so that the effect can be adaptively changed to the user behavior change.
도 1a 및 도 1b는 캠페인의 개념을 설명하기 위한 예시들의 도면이다.Figures 1a and 1b are illustrations of examples for illustrating the concept of a campaign.
도 2는 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 시스템에 대한 개념도이다.2 is a conceptual diagram of a system for determining whether or not a campaign is exposed according to an embodiment of the present invention.
도 3은 캠페인 그룹의 개념을 설명하기 위한 개념도이다.3 is a conceptual diagram for explaining the concept of a campaign group.
도 4는 본 발명의 일 실시예에 따른 사용자 단말기에 대한 블록도이다.4 is a block diagram of a user terminal according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 노출 제어 서버에 대한 블록도이다.5 is a block diagram of an exposure control server according to an embodiment of the present invention.
도 6 및 도 7은 본 발명의 일 실시예에 따른 노출 제어 서버를 통해 캠페인 그룹 별 반응 확률 예측 모델을 생성하는 방법을 설명하기 위한 도면이다.FIG. 6 and FIG. 7 illustrate a method of generating a response probability prediction model for each campaign group through the exposure control server according to an embodiment of the present invention.
도 8a 및 도 8b는 본 발명의 일 실시예에 따른 노출 제어 서버를 통해 캠페인 그룹 별 반응 확률 예측 모델을 생성하는 방법을 설명하기 위한 도면이다.8A and 8B are views for explaining a method of generating a response probability prediction model for each campaign group through the exposure control server according to an embodiment of the present invention.
도 9는 본 발명의 일 실시예에 따른 노출 제어 서버를 통해 이루어지는 캠페인 노출 여부 판단 방법에 대한 흐름도이다.9 is a flowchart illustrating a method of determining whether a campaign is exposed through the exposure control server according to an exemplary embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 학습 단계에 대한 흐름도이다.10 is a flowchart of a learning step according to an embodiment of the present invention.
도 11은 본 발명의 다른 실시예에 따른 학습 단계에 대한 흐름도이다.11 is a flowchart of a learning step according to another embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따른 대상 캠페인의 노출 여부를 결정하는 단계에 대한 흐름도이다.12 is a flowchart illustrating a step of determining whether a target campaign is exposed according to an exemplary embodiment of the present invention.
도 13은 본 발명의 다른 실시예에 따른 대상 캠페인의 노출 여부를 결정하는 단계에 대한 흐름도이다.13 is a flowchart illustrating a step of determining whether a target campaign is exposed according to another exemplary embodiment of the present invention.
본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다. 여기서, 반복되는 설명, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능, 및 구성에 대한 상세한 설명은 생략한다. 본 발명의 실시형태는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.The present invention will now be described in detail with reference to the accompanying drawings. Hereinafter, a repeated description, a known function that may obscure the gist of the present invention, and a detailed description of the configuration will be omitted. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art. Accordingly, the shapes and sizes of the elements in the drawings and the like can be exaggerated for clarity.
이하, 본 발명의 실시예에 따른 캠페인 노출 여부 판단 시스템에 대하여 설명하도록 한다. Hereinafter, a campaign exposure determination system according to an embodiment of the present invention will be described.
도 2는 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 시스템(1000)에 대한 개념도이다. 도 2에 도시된 것처럼, 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 시스템(1000)은 사용자 단말기(100, 200)와 노출 제어 서버(300)를 포함할 수 있다. 도 2에서 사용자 단말기와 게임 유저의 수는 각각 2개인 것으로 도시되었으나, 이는 본 발명의 이해를 돕기 위해 축약되어 도시되었다는 점이 이해되어야 한다. 또한, 각 사용자 단말기(100, 200)를 통해 동작되는 흐름은 실질적으로 동일하므로, 아래에서는 사용자 단말기(100)를 중심으로 그 동작에 대한 설명이 이루어진다.2 is a conceptual diagram of a system 1000 for determining whether or not a campaign is exposed according to an exemplary embodiment of the present invention. 2, the campaign exposure determination system 1000 may include user terminals 100 and 200 and an exposure control server 300 according to an exemplary embodiment of the present invention. In FIG. 2, the number of user terminals and the number of game users are shown as two, but it should be understood that these are abbreviated to facilitate understanding of the present invention. In addition, since the flow of operation through each of the user terminals 100 and 200 is substantially the same, the operation of the user terminal 100 will be described below.
사용자 단말기(100)는 게임 유저가 가지고 있고, 게임 어플리케이션이 설치된 단말기를 나타낸다. 예를 들어, 사용자 단말기(100)는 스마트 폰이나 태블릿 PC 등의 모바일 디바이스이나 게임 어플리케이션을 설치하여 실행할 수 있는 기기라면 어떠한 종류의 디바이스라도 가능하다. 그리고, 게임 어플리케이션은 컴퓨터, 랩탑 컴퓨터, 콘솔 게임기 등과 같은 디바이스에서 실행되는 게임과, 휴대용 단말기(예를 들어, 스마트폰이나 태블릿 PC 등)에서 실행되는 모바일 게임을 포함할 수 있다.게임 유저로부터 게임 어플리케이션의 실행 입력이 수신되면, 사용자 단말기(100)는 해당 게임 어플리케이션을 실행하고, 네트워크(20)를 통해 게임 서버(10)에 접속하는 과정이 이루어진다.The user terminal 100 represents a terminal that the game user has and in which the game application is installed. For example, the user terminal 100 can be any type of device as long as it is a device capable of installing and executing a mobile device or a game application such as a smart phone or a tablet PC. The game application may include a game running on a device such as a computer, a laptop computer, a console game machine, etc., and a mobile game running on a portable terminal (e.g., a smart phone or a tablet PC) When the execution input of the application is received, the user terminal 100 executes the corresponding game application and accesses the game server 10 through the network 20. [
여기서, 게임 어플리케이션에는 게임과 함께 배경기술 항목에서 언급된 복수의 캠페인들이 포함될 수 있다. 캠페인들은 게임 어플리케이션의 설치 시 미리 사용자 단말기에 저장될 수 있다. 또한, 모바일 게임 제공자는 주기적으로 또는 간헐적으로 해당 게임 어플리케이션에 대한 업데이트를 제공할 수 있는데, 이 업데이트에도 상기 캠페인들이 추가되어 사용자 단말기에 저장될 수 있다. 또한, 캠페인은 사용자 단말기(100)와 게임 서버(10)간 접속이 이루어질 때, 게임 서버(10)에서 직접적으로 송신되어 사용자 단말기(100)에 저장될 수 있다.Here, the game application may include a plurality of campaigns referred to in the background description item together with the game. The campaigns may be stored in advance in the user terminal at the time of installation of the game application. In addition, the mobile game provider may periodically or intermittently provide updates for the game application, which may be added to the update and stored in the user terminal. The campaign may be directly transmitted from the game server 10 and stored in the user terminal 100 when the connection between the user terminal 100 and the game server 10 is performed.
사용자 단말기(100)와 게임 서버(10)간 접속이 완료되면, 사용자 단말기(100)는 사용자 단말기(100)에 저장된 또는 게임 서버(10)로부터 송신된 캠페인의 캠페인 노출 시점이 도래하였는지 판단한다. 판단 결과, 캠페인 노출 시점이 도래한 것으로 판단된 경우 사용자 단말기(100)는 저장된 또는 수신된 캠페인들 중 적어도 하나의 대상 캠페인을 선택하고, 선택한 대상 캠페인의 노출 여부를 질의하는 과정을 수행한다. When the connection between the user terminal 100 and the game server 10 is completed, the user terminal 100 determines whether the campaign exposure time of the campaign stored in the user terminal 100 or transmitted from the game server 10 has arrived. As a result of the determination, when it is determined that the campaign exposure time has arrived, the user terminal 100 selects at least one target campaign among the stored or received campaigns, and inquires whether the selected target campaign is exposed.
위에서 설명한 것처럼 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 시스템(1000)은 동일한 캠페인을 각 게임 유저에게 제공하는 것이 아닌, 각 게임 유저에게 맞춤화된 캠페인을 제공하는 것을 특징으로 한다. 이러한 맞춤화 과정을 위해 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 시스템(1000)은 노출 제어 서버(300)를 포함하고, 노출 제어 서버(300)는 각 사용자 단말기(100, 200)에서 질의한 대상 캠페인의 노출 여부를 결정하는 기능을 한다.As described above, the campaign exposure determination system 1000 according to an embodiment of the present invention provides a customized campaign to each game user rather than providing the same campaign to each game user. For this customization process, the campaign exposure determination system 1000 according to an embodiment of the present invention includes an exposure control server 300, and the exposure control server 300 determines whether or not the user queries the user terminals 100 and 200 It determines the exposure of the target campaign.
노출 제어 서버(300)는 게임 서버(10)와 구분되는 것으로, 게임 서버(10)가 게임이 진행되는 동안 게임이 플레이될 수 있도록 데이터를 처리 및 반환하는 역할을 하는 반면, 노출 제어 서버(300)는 게임 어플리케이션으로부터 게임 플레이 상황을 나타내는 게임 로그를 이용하여 각 사용자 단말기(100, 200)에서 질의한 대상 캠페인의 노출 여부를 결정하는 기능을 한다. 여기서 게임 로그란 게임 유저의 사용자 단말기에 게임 어플리케이션을 설치, 실행, 제거하는 과정 등에서 생성되는 모든 원시 데이터(raw data)를 의미한다. 일 실시예에서, 후술할 캠페인에 대한 게임 유저의 반응 정보도 게임 로그에 포함될 수 있다.The exposure control server 300 is different from the game server 10 in that the game server 10 processes and returns data so that the game can be played during the progress of the game while the exposure control server 300 Uses the game log indicating the game play situation from the game application to determine whether or not the target campaign that is queried by each of the user terminals 100 and 200 is exposed. Here, the game log refers to all the raw data generated in the process of installing, executing, or removing a game application on a user terminal of a game user. In one embodiment, the reaction information of the game user with respect to a campaign to be described later may also be included in the game log.
도 3은 캠페인 그룹의 개념을 설명하기 위한 개념도이다.3 is a conceptual diagram for explaining the concept of a campaign group.
노출 제어 서버(300)는 복수의 게임 유저들의 과거 시점 게임 로그를 이용하여 대상 캠페인의 노출 여부를 결정한다. 구체적으로, 노출 제어 서버(300)는 대상 캠페인과 동일한 캠페인 그룹에 속한 과거 캠페인들의 제공에 따른 복수의 게임 유저들의 과거 시점 게임 로그를 이용하여 대상 캠페인의 노출 여부를 결정할 수 있다. 여기서, 과거 시점 게임 로그(즉, 대상 캠페인과 동일한 캠페인 그룹에 속한 과거 캠페인들의 제공에 따른 과거 시점 게임 로그)를 이용하는 이유는 각 게임 유저가 게임 유저마다 그 성향과 게임 패턴이 다르기 때문이다. 예를 들어, 어떤 게임 유저는 이벤트 알림 캠페인에 관심이 있지만 다른 캠페인들에는 전혀 관심이 없을 수 있고, 다른 어떤 게임 유저는 구매 제안 캠페인에는 관심이 있지만 다른 캠페인들에는 전혀 관심이 없을 수 있다. 따라서, 대상 캠페인의 노출 여부를 결정할 때, 대상 캠페인과 동일한 또는 유사한 목적을 갖는 참고 데이터를 활용하는 것이 바람직하다.The exposure control server 300 determines whether to expose the target campaign using the past game logs of a plurality of game users. Specifically, the exposure control server 300 may determine whether to expose the target campaign using past game logs of a plurality of game users according to provision of past campaigns belonging to the same campaign group as the target campaign. Here, the past game logs (i.e., past game logs based on the provision of past campaigns belonging to the same campaign group as the target campaign) are used because the game users have different tendencies and game patterns for each game user. For example, some game users may be interested in event notification campaigns but not others, and some other game users may be interested in purchase offer campaigns but not others. Therefore, when determining whether to expose a target campaign, it is desirable to utilize reference data having the same or similar purpose as the target campaign.
도 3을 참고하면, 본 발명의 일 실시예에 따른 노출 제어 서버(300)는 캠페인을 그 목적에 따라 복수의 캠페인 그룹(cg1, cg2, cgm)들로 그룹화할 수 있다. 도 3에 도시된 것처럼, 각 캠페인 그룹(cg1, cg2, cgm)에는 목적이 유사한 복수의 캠페인들이 포함된다. 예를 들어, 제1 캠페인 그룹(cg1)은 목적이 이벤트 알림인 캠페인들의 그룹일 수 있고, 제2 캠페인 그룹(cg2)은 목적이 구매 제안인 캠페인들의 그룹일 수 있으며, 제m 캠페인 그룹(cgm)은 목적이 게임 가이드인 캠페인들의 그룹일 수 있다. Referring to FIG. 3, the exposure control server 300 according to an exemplary embodiment of the present invention can group campaigns into a plurality of campaign groups (cg 1 , cg 2 , cg m ) according to its purpose. As shown in Figure 3, includes a plurality of campaigns, each campaign is similar purpose group (cg 1, cg 2, cg m). For example, the first campaign group cg 1 may be a group of campaigns whose purpose is an event notification, the second campaign group cg 2 may be a group of campaigns whose purpose is a purchase proposal, (cg m ) may be a group of campaigns whose objectives are game guides.
그 후, 노출 제어 서버(300)는 각 캠페인 그룹(cg1, cg2, cgm)에 포함된 과거 캠페인들의 제공에 따른 과거 시점 게임 로그들을 학습함으로써 캠페인 그룹 별 반응 확률 예측 모델을 생성한다. 예를 들어, 캠페인 그룹의 개수가 3개인 경우 노출 제어 서버(300)는 캠페인 그룹 별로 적어도 하나의 반응 확률 예측 모델을 생성할 수 있으며, 이 예시에서 노출 제어 서버(300)는 제1 캠페인 그룹의 반응 확률 예측 모델, 제2 캠페인 그룹의 반응 확률 예측 모델, 그리고 제3 캠페인 그룹의 반응 확률 예측 모델을 생성할 것이다. 물론, 복수의 캠페인 그룹들이 존재하는 경우, 캠페인 그룹의 개수만큼 반응 확률 예측 모델들의 개수도 변경될 수 있다.Thereafter, the exposure control server 300 generates the reaction probability prediction models for each campaign group by learning past game logs according to the provision of the past campaigns included in the respective campaign groups cg 1 , cg 2 , cg m . For example, if the number of campaign groups is three, the exposure control server 300 may generate at least one response probability prediction model for each campaign group. In this example, A reaction probability prediction model of the second campaign group, and a reaction probability prediction model of the third campaign group. Of course, if there are a plurality of campaign groups, the number of reaction probability prediction models may be changed by the number of campaign groups.
노출 제어 서버(300)는 과거 시점 게임 로그들을 학습할 때, 과거 시점 게임 로그들에 포함된 정보들에서 캠페인 노출 시간 및 제안 수락 여부 정보 중 적어도 하나를 이용할 수 있다. 구체적으로, 노출 제어 서버(300)는 캠페인 그룹 별로 각 캠페인 그룹에 속한 과거 캠페인들의 제공에 따른 복수의 게임 유저들의 과거 시점 게임 로그들을 수집하고, 과거 시점 게임 로그들에서 수집한 캠페인 노출 시간 및 제안 수락 여부 정보 중 적어도 하나를 이용하여 반응 확률 예측 모델을 생성 또는 갱신할 수 있다. 노출 제어 서버(300)는 생성 또는 갱신한 반응 확률 예측 모델을 활용하여 대상 캠페인의 노출 여부를 결정할 수 있다. 여기서, 반응 확률 예측 모델은 미리 설정된 학습 기법을 통해 생성된 모델로서, 대상 캠페인에 대한 게임 유저의 관심도(즉, 반응 확률)를 예측하는 기능을 한다.The exposure control server 300 may use at least one of the campaign exposure time and the proposal acceptance information in the information included in the past game logs at the time of learning the past game logs. Specifically, the exposure control server 300 collects past game logs of a plurality of game users according to the provision of past campaigns belonging to each campaign group for each campaign group, calculates campaign exposure times and suggestions The reaction probability prediction model may be generated or updated using at least one of the acceptability information. The exposure control server 300 can determine whether to expose the target campaign using the reaction probability prediction model generated or updated. Here, the reaction probability prediction model is a model generated through a preset learning technique, and predicts a game user's interest (i.e., reaction probability) with respect to the target campaign.
그 후, 노출 제어 서버(300)는 노출 여부 질의 신호를 송신한 사용자 단말기(100)의 게임 유저에 대한 게임 로그에서 대상 캠페인에 대한 반응 확률 판단 인자를 추출한다. 이어서, 노출 제어 서버(300)는 추출한 반응 확률 판단 인자를 대상 캠페인이 속한 캠페인 그룹의 반응 확률 예측 모델에 적용함으로써 게임 유저의 해당 대상 캠페인에 대한 반응 확률을 산출한다. 예를 들어, 대상 캠페인이 제2 캠페인 그룹에 속한 캠페인일 경우, 노출 제어 서버(300)는 반응 확률 판단 인자를 복수의 반응 확률 예측 모델들 중 제2 캠페인 그룹의 반응 확률 예측 모델에 적용함으로써 반응 확률을 산출 할 수 있다. 이렇게 반응 확률의 산출이 완료되면, 노출 제어 서버(300)는 산출된 반응 확률을 이용하여 대상 캠페인의 노출 여부를 결정할 수 있다.Thereafter, the exposure control server 300 extracts a reaction probability determination factor for the target campaign in the game log for the game user of the user terminal 100 that has transmitted the exposure / non-query signal. Then, the exposure control server 300 calculates the response probability for the target user's campaign by applying the extracted response probability determination factor to the reaction probability prediction model of the campaign group to which the target campaign belongs. For example, if the target campaign is a campaign belonging to the second campaign group, the exposure control server 300 applies the response probability determination factor to the response probability prediction model of the second campaign group among the plurality of reaction probability prediction models, Probability can be calculated. When the calculation of the reaction probability is completed, the exposure control server 300 can determine whether to expose the target campaign using the calculated reaction probability.
노출 여부가 질의된 대상 캠페인은 노출 제어 서버(300)에 관하여 상술한 동작들을 통해 노출 여부가 결정되고, 그 노출 여부에 따라 사용자 단말기(100)에 선택적으로 디스플레이될 수 있다. 또한, 위에서는 하나의 대상 캠페인에 대해 그 설명이 이루어졌으나, 상기 동작들은 복수의 대상 캠페인들에 각각 이루어질 수 있어서, 도 2에 도시된 것처럼 사용자 단말기(100)와 사용자 단말기(200)에 노출되는 대상 캠페인은 서로 다를 수 있다. The target campaign in which the exposure is inquired may be exposed through the operations described above with respect to the exposure control server 300, and may be selectively displayed on the user terminal 100 according to the exposure. In addition, although a description has been made for one target campaign in the above, the operations can be respectively performed for a plurality of target campaigns, so that the user terminal 100 and the user terminal 200 are exposed Target campaigns can be different.
예를 들어, 사용자 단말기(100)와 사용자 단말기(200)에는 동일한 2개의 대상 단말기들이 존재하는 상황을 가정한다. 여기서, 노출 제어 서버(300)의 판단 결과, 사용자 단말기(100)에는 제1 대상 캠페인을 노출시키되 제2 대상 캠페인을 노출시키지 않는 것으로 결정하고, 사용자 단말기(200)에는 제1 대상 캠페인을 노출시키지 않되 제2 대상 캠페인을 노출시키는 것으로 결정한 경우, 도 2에 도시된 것처럼 2개의 사용자 단말기들(100, 200)에는 서로 다른 대상 캠페인들이 노출 될 수 있다. 물론, 2개의 사용자 단말기들(100, 200)의 게임 유저들이 비슷한 성향 및 비슷한 수준을 갖는다면, 2개의 사용자 단말기들(100, 200)에 동일한 대상 캠페인들이 노출되는 것도 가능하다. 물론, 상황에 따라서는 사용자 단말기에는 어떠한 대상 캠페인도 노출되지 않는 상황도 존재할 수 있다. For example, assume that two user terminals exist in the user terminal 100 and the user terminal 200. As a result of the determination by the exposure control server 300, the exposure control server 300 determines that the first target campaign is exposed but the second target campaign is not exposed to the user terminal 100, and the first target campaign is exposed to the user terminal 200 However, if it is determined to expose the second target campaign, different target campaigns may be exposed to the two user terminals 100 and 200 as shown in FIG. Of course, it is also possible that the same target campaigns are exposed to the two user terminals 100, 200 if the game users of the two user terminals 100, 200 have similar tendencies and similar levels. Of course, depending on the situation, there may be situations in which no target campaign is exposed to the user terminal.
이처럼, 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 시스템(1000)에 따르면, 각 게임 유저의 관심도(예를 들어, 반응 확률)에 따라 캠페인이 각 게임 유저에게 선택적으로 제공될 수 있다. 이로 인해, 본 발명의 캠페인 노출 여부 판단 시스템(1000)에 따르면 보다 효율적인 정보 제공 또는 상품 제안이 가능해지는 장점이 있다. 뿐만 아니라, 각 게임 유저에 대해 관심이 없는 캠페인들의 양을 획기적으로 줄일 수 있어서, 게임을 이용하는 모든 게임 유저의 요구를 충족시킬 수 있는 장점이 있다.As described above, according to the campaign exposure determination system 1000 according to the embodiment of the present invention, the campaign can be selectively provided to each game user according to the degree of interest (for example, reaction probability) of each game user. Therefore, according to the campaign exposure determination system 1000 of the present invention, it is possible to provide more efficient information or offer products. In addition, the amount of campaigns not interested in each game user can be drastically reduced, thereby meeting the needs of all game users using the game.
도 4는 본 발명의 일 실시예에 따른 사용자 단말기(100)에 대한 블록도이다. 위에서 설명한 것처럼, 사용자 단말기(100)는 캠페인의 노출 시점이 도래할 때, 대상 캠페인의 노출 여부를 노출 제어 서버(300)에 질의하여, 질의 결과에 따라 대상 캠페인의 노출하는 것을 특징으로 한다. 이를 위해, 본 발명의 일 실시예에 따른 사용자 단말기(100)는 캠페인 노출 시점 판단부(110), 노출 대상 캠페인 선택부(120), 노출 여부 질의부(130), 단말 통신부(140), 캠페인 노출부(150) 및 단말 저장부(160)를 포함할 수 있다. 여기서, 상술한 구성들은 본 발명의 이해를 돕기 위해 기능별로 서술된 것이고, 상기 구성들 중 단말 통신부(140) 및 단말 저장부(160)를 제외한 나머지 구성들은 CPU 및 MPU와 같은 하나의 처리 장치를 통해 구현되는 것도 가능하다.4 is a block diagram of a user terminal 100 according to an embodiment of the present invention. As described above, the user terminal 100 queries the exposure control server 300 whether the target campaign is exposed when the exposure time of the campaign comes, and exposes the target campaign according to the query result. The user terminal 100 according to an exemplary embodiment of the present invention includes a campaign exposure time determination unit 110, an exposure target campaign selection unit 120, an exposure query unit 130, a terminal communication unit 140, An exposure unit 150 and a terminal storage unit 160. [ Here, the above-described configurations are described for each function in order to facilitate understanding of the present invention. The remaining configurations of the above configurations, except for the terminal communication unit 140 and the terminal storage unit 160, include a single processing unit such as a CPU and an MPU It is also possible to implement it through.
캠페인 노출 시점 판단부(110)는 사용자에게 제공될 캠페인의 노출 시점을 판단하는 기능을 한다. 게임에서의 캠페인은 특정 조건에 충족될 때 게임 유저에게 제공될 수 있다. 여기서 조건은 예를 들어, 게임 접속 시, 특정 횟수 이상 콘텐츠를 이용하거나, 특정 횟수 이상 모험을 실패하거나 대전에서 패배할 때 등을 포함할 수 있다. 물론, 상기 조건은 상술한 것들 외에도 다양한 상황이 포함될 수 있다.The campaign exposure time determination unit 110 determines the exposure time of the campaign to be provided to the user. A campaign in a game can be provided to a game user when certain conditions are met. The conditions may include, for example, using a content more than a certain number of times during a game connection, failing an adventure over a certain number of times, losing in a game, and the like. Of course, the above conditions may include various situations besides those described above.
노출 대상 캠페인 선택부(120)는 단말 저장부(160)에 저장된 복수의 캠페인들 중 게임 유저에게 제공될 대상 캠페인들을 선택하는 기능을 한다. The exposure target campaign selection unit 120 functions to select target campaigns to be provided to a game user among a plurality of campaigns stored in the terminal storage unit 160. [
한편, 캠페인 노출 시점에 도래하면, 노출 대상 캠페인 선택부(120)를 통해 선택된 대상 캠페인이 즉각적으로 게임 유저에게 노출될 수 있다. 다만, 이 방식은 위에서 설명한 것처럼 캠페인이 너무 자주 노출되거나 또는 특정 캠페인에 관심이 없는 특정 게임 유저들에게, 그 종류에 관계 없이 캠페인을 지속적으로 노출시켜, 대부분의 게임 유저들에게 불편함을 주는 문제점이 있다. 따라서, 본 발명의 일 실시예에 따른 사용자 단말기(100)는 상기 시점에 캠페인을 즉각적으로 노출시키는 것이 아닌, 노출 제어 서버(300)를 통해 각 게임 유저에 따라 노출 여부를 판단하고, 그 판단 결과에 기초하여 생성된 노출 제어 신호를 이용하여 캠페인을 노출시키는 것을 특징으로 한다. On the other hand, when the campaign reaches the point of exposure, the target campaign selected through the exposure target campaign selection unit 120 can be instantly exposed to the game user. However, as described above, this method continuously exposes campaigns to specific game users who are not interested in a particular campaign, or the campaign is exposed too frequently, . Accordingly, the user terminal 100 according to an embodiment of the present invention may determine the exposure according to each game user through the exposure control server 300, rather than immediately exposing the campaign at that time, And exposing the campaign using an exposure control signal generated based on the exposure control signal.
이를 위해, 사용자 단말기(100)는 노출 여부 질의부(130)를 포함하고, 노출 여부 질의부(130)를 통해 노출 여부 질의 신호를 생성하며, 이를 단말 통신부(140)를 통해 노출 제어 서버(300)로 송신할 수 있다. 여기서, 노출 여부 질의 신호는 사용자 단말기(100)의 식별자와, 대상 캠페인의 종류(캠페인 그룹) 또는 식별자에 대한 정보를 포함할 수 있다. To this end, the user terminal 100 includes an exposure / inquiry inquiry unit 130, generates an exposure / nonexistence inquiry signal through the exposure / inquiry inquiry unit 130, and transmits it to the exposure control server 300 ). ≪ / RTI > Here, the exposure / non-contact query signal may include an identifier of the user terminal 100 and information on the type (campaign group) or identifier of the target campaign.
노출 여부 질의 신호의 송신 이후, 노출 제어 서버(300)로부터 대상 캠페인에 대한 노출 제어 정보가 수신되면, 캠페인 노출부(150)는 노출 제어 정보를 기초로 대상 캠페인을 선택적으로 노출시킬 수 있다. 앞서 설명한 것처럼 노출 제어 정보는 게임 유저의 관심도(예를 들어, 반응 확률)가 고려된 것이므로, 본 발명의 일 실시예에 따른 사용자 단말기(100)는 게임 유저에 따라 선택적인 캠페인의 제공이 가능하다.When the exposure control information for the target campaign is received from the exposure control server 300 after the transmission of the exposure query message, the campaign exposing unit 150 may selectively expose the target campaign based on the exposure control information. As described above, since the exposure control information considers the interest of the game user (for example, reaction probability), the user terminal 100 according to the embodiment of the present invention can provide an optional campaign according to the game user .
도 5는 본 발명의 일 실시예에 따른 노출 제어 서버(300)에 대한 블록도이다. 본 발명의 일 실시예에 따른 노출 제어 서버(300)는 게임 유저가 대상 캠페인에 얼마나 관심이 있는지를 판단하는 것을 특징으로 한다. 이를 위해, 노출 제어 서버(300)는 과거 데이터(즉, 과거 캠페인 제공에 따른 복수의 게임 유저들의 과거 시점 게임 로그)들을 이용하여 캠페인 그룹 별 반응 확률 예측 모델을 생성할 수 있다. 그리고, 노출 제어 서버(300)는 사용자 단말기(100)로부터 노출 여부 질의 신호를 수신할 때, 캠페인 그룹 별 반응 확률 예측 모델을 이용하여 사용자 단말기(100)에서의 대상 캠페인의 노출 여부를 결정하고, 이에 따른 노출 제어 정보를 생성하는 것을 특징으로 한다. 5 is a block diagram of an exposure control server 300 according to an embodiment of the present invention. The exposure control server 300 according to an embodiment of the present invention is characterized in that it determines how much the game user is interested in the target campaign. To this end, the exposure control server 300 may generate a reaction probability prediction model for each campaign group using past data (i.e., past game logs of a plurality of game users according to past campaigns). The exposure control server 300 determines whether to expose the target campaign in the user terminal 100 using the response probability prediction model for each campaign group when receiving the exposure / non-presence query signal from the user terminal 100, And generates exposure control information according to the generated exposure control information.
이를 위해, 본 발명의 일 실시예에 따른 노출 제어 서버(300)는 게임 로그 수집부(310), 서버 저장부(320), 학습부(330), 모델 생성부(340), 요청 수신부(350), 서버 통신부(360), 반응 확률 산출부(370) 및 노출 여부 결정부(380)를 포함할 수 있다. 여기서, 노출 제어 서버(300)에 포함된 각 구성들은 본 발명의 이해를 돕기 위해 기능별로 각 구성을 구분한 것이고, 서버 저장부(320)와 서버 통신부(360)를 제외한 나머지 구성들은 CPU 및 MPU와 같은 하나의 처리 장치를 통해 구현되는 것도 가능하다. 이제, 노출 제어 서버(300)에 포함된 각 구성에 대한 설명이 이루어진다.The exposure control server 300 according to an embodiment of the present invention includes a game log collecting unit 310, a server storing unit 320, a learning unit 330, a model generating unit 340, a request receiving unit 350 A server communication unit 360, a reaction probability calculation unit 370, and an exposure determination unit 380. [ The components other than the server storage unit 320 and the server communication unit 360 are connected to the CPU and the MPU 360. The components of the exposure control server 300 are the same as the components of the exposure control server 300, And the like. Now, each configuration included in the exposure control server 300 is explained.
서버 저장부(320)는 복수의 게임 유저들의 게임 진행에 따른 게임 로그들을 저장하는 기능을 한다. 상술한 것처럼, 게임 로그는 게임 유저의 사용자 단말기에 게임 어플리케이션을 설치, 실행, 제거하는 과정 등에서 생성되는 모든 원시 데이터를 의미한다. 또한, 아래에서 설명되는 것처럼 게임 로그는 각 게임 유저에게 제공된 과거 캠페인의 캠페인 노출 시간, 각 게임 유저 별로 설정된 특징들에 따른 특징 값들, 그리고 과거 캠페인의 제공에 따른 게임 유저의 반응 여부 중 적어도 하나에 대한 정보를 포함할 수 있다.The server storage unit 320 stores game logs corresponding to game progress of a plurality of game users. As described above, the game log means all the raw data generated in the process of installing, executing, and removing the game application on the user terminal of the game user. Also, as described below, the game log includes at least one of a campaign exposure time of past campaigns provided to each game user, feature values according to characteristics set for each game user, and whether the game user reacts to the provision of past campaigns And the like.
여기서, 게임 로그는 서버 통신부(360)를 통한 사용자 단말기(100)와 통신을 통해 서버 저장부(320)에 저장될 수 있다. 예를 들어, 사용자 단말기(100)는 주기적으로 또는 특정 상황의 발생시마다 발생된 게임 로그를 노출 제어 서버(300)로 송신할 수 있고, 노출 제어 서버(300)는 수신한 게임 로그를 게임 유저 별로 서버 저장부(320)에 저장할 수 있다. 또한, 다른 방식으로서, 게임 서버에서 게임 유저의 게임 로그를 별도로 관리하는 경우, 게임 서버와의 통신을 통해 게임 로그를 수집할 수 있다.Here, the game log may be stored in the server storage unit 320 through communication with the user terminal 100 through the server communication unit 360. For example, the user terminal 100 may transmit a game log generated periodically or whenever a specific situation occurs to the exposure control server 300, and the exposure control server 300 may transmit the received game log to the game user May be stored in the server storage unit 320. Alternatively, when the game log of the game user is separately managed by the game server, the game log may be collected through communication with the game server.
게임 로그 수집부(310)는 서버 저장부(320)에 저장된 게임 로그들을 수집하는 기능을 한다. 구체적으로, 게임 로그 수집부(310)는 캠페인 그룹 별로 구분된 과거 캠페인들의 제공에 따른 복수의 게임 유저들의 과거 시점 게임 로그들을 수집하는 기능을 한다. 여기서, 과거 캠페인은 본 발명의 이해를 돕기 위해 복수의 게임 유저들 중 적어도 한 명에게 한 번이라도 제공된 적이 있는 캠페인으로 정의된다. 또한, 과거 시점 게임 로그들은 상기 과거 캠페인의 제공에 따라 발생된 과거 시점의 게임 로그들로 정의된다.The game log collecting unit 310 collects game logs stored in the server storage unit 320. [ Specifically, the game log collecting unit 310 collects past game logs of a plurality of game users according to provision of past campaigns classified by campaign group. Here, past campaigns are defined as campaigns that have been provided at least once to a plurality of game users to help understand the present invention. In addition, past game logs are defined as past game logs generated according to the past campaign.
아래에서 설명되는 바와 같이 본 발명의 일 실시예에 따른 노출 제어 서버(300)는 캠페인 그룹 별로 반응 확률 예측 모델을 생성한다. 여기서, 반응 확률 예측 모델은 크게 3개의 방식 중 하나를 이용해서 생성될 수 있다. 구체적으로, 제1 방식은 캠페인 노출 시간을 이용한 방식이고, 제2 방식은 캠페인의 제안에 따른 게임 유저의 반응 여부를 이용한 방식이며, 제3 방식은 제1 방식 및 제2 방식 모두를 이용한 방식일 수 있다. 상기 방식들을 고려하여 캠페인 그룹 별 반응 확률 예측 모델을 생성하기 위해, 노출 제어 서버(300)는 학습부(330)와 모델 생성부(340)를 포함하여 구성될 수 있다.As described below, the exposure control server 300 according to an embodiment of the present invention generates a response probability prediction model for each campaign group. Here, the reaction probability prediction model can be largely generated by using one of three methods. Specifically, the first method is a method using a campaign exposure time, the second method is a method using a reaction of a game user according to a suggestion of a campaign, and the third method is a method using both a first method and a second method . The exposure control server 300 may include a learning unit 330 and a model generation unit 340 to generate a response probability prediction model for each campaign group in consideration of the above methods.
학습부(330)는 과거 시점 게임 로그들을 학습하는 기능을 하고, 모델 생성부(340)는 학습 결과를 근거로, 캠페인 그룹 별 반응 확률 예측 모델을 생성하는 기능을 한다.The learning unit 330 functions to learn past game logs, and the model generation unit 340 generates a reaction probability prediction model for each campaign group based on the learning results.
제1 방식의 경우, 학습부(330)는 과거 시점 게임 로그들을 분석함으로써 캠페인 그룹 별로 과거 캠페인들을 게임 유저에게 제공했을 때 측정된 캠페인 노출 시간들을 추출하고, 이를 학습할 수 있다. 여기서, 캠페인 노출 시간들을 활용하는 이유는 통상적으로 어느 하나의 캠페인이 게임 유저에게 제공될 때 게임 유저가 해당 캠페인에 관심이 많다면 캠페인의 노출 시간이 길지만, 반대로 해당 캠페인에 관심이 없으면 캠페인의 노출 시간이 짧기 때문이다.In the case of the first scheme, the learning unit 330 can extract the campaign exposure times measured when the past campaigns are provided to the game user for each campaign group by analyzing past game logs, and learn the campaign exposure times. Here, the reason why the campaign exposure times are utilized is that when a game user is interested in the corresponding campaign when one of the campaigns is provided to the game user, the exposure time of the campaign is long. On the contrary, Time is short.
예를 들어, 게임 유저에게 정보 전달을 위한 가이드 캠페인을 제공한 상황을 가정한다. 이 경우, 게임 유저에게 캠페인 창을 팝업 한 시각과 캠페인 창을 닫은 시각의 차이를 이용하여 캠페인 노출 시간의 측정이 가능하며, 이러한 측정은 각 게임 유저 별로 이루어질 수 있다. 이렇게 측정된 게임 유저 별 캠페인 노출 시간을 시그모이드 함수(Sigmoid function)에 적용함으로써 캠페인 노출 시간에 따른 관심도(예를 들어, 반응 확률)를 도출할 수 있다.For example, suppose that we have provided a guide campaign for information delivery to game users. In this case, it is possible to measure the campaign exposure time using the difference between the time of popping up the campaign window and the time of closing the campaign window to the game user, and such measurement can be performed for each game user. By applying the measured campaign exposure time per game user to the sigmoid function, it is possible to derive an interest degree (for example, reaction probability) according to the campaign exposure time.
예를 들어, 게임 유저마다 제안된 캠페인의 노출 시간을 측정하고, 캠페인 노출 시간들을 내림차순으로 정렬하고, 모든 게임 유저들 중 상위 10~20%의 게임 유저에게는 레이블 1을 할당하며, 상위 80~90%의 유저에게는 레이블 0을 할당할 수 있다. 그리고 상위 10% 미만 및 상위 90% 초과에 해당하는 데이터들은 모두 노이즈로 처리할 수 있다. 이렇게 하면 캠페인 노출 시간과 레이블이 정의될 수 있어서 로지스틱 회귀(logistic regression) 문제로 풀 수 있다.For example, we measure the exposure time of the proposed campaign for each game user, sort the campaign exposure times in descending order, allocate label 1 to the top 10-20% of all game users, You can assign label 0 to% users. And data that is less than the upper 10% and higher than the upper 90% can all be treated as noise. This allows the campaign exposure time and label to be defined, which can be solved by a logistic regression problem.
도 6의 그래프는 로지스틱 회귀를 통한 결과의 예시를 보여준다. 도 6의 그래프에서 x축은 캠페인 노출 시간을 나타내고, y축은 반응 확률을 나타낸다. 또한, 도 6의 그래프에서 영역(bkd)으로 나타난 복수의 점들은 전체 게임 유저의 캠페인 노출 시간을 나타내고, 영역(rd)으로 나타난 복수의 점들은 상위 80~90%에 해당하는 유저를 나타내며, 영역(bld)으로 나타난 복수의 점들은 상위 10~20%에 해당하는 유저를 나타낸다. 또한, 도 6의 그래프에서 S형 커브(cl)는 영역(rd) 및 영역(bld)에 포함된 점들 만을 이용하여 로지스틱 회귀를 통해 얻은 결과를 나타낸다. The graph of FIG. 6 shows an example of the results through logistic regression. In the graph of FIG. 6, the x-axis represents the campaign exposure time and the y-axis represents the response probability. 6, a plurality of points represented by the region bkd represent the campaign exposure time of the entire game user, a plurality of points represented by the region rd represent users corresponding to the upper 80 to 90% (bld) represents a user corresponding to the upper 10 to 20%. Also, in the graph of Fig. 6, the S-shaped curve cl shows the results obtained by using logistic regression using only the points included in the region rd and the region bld.
도 6의 그래프에 따르면, 캠페인 노출 시간이 3초인 게임 유저는 반응 확률이 0.05로 할당되고, 캠페인 노출 시간이 5초인 게임 유저는 반응 확률이 0.98로 할당되며, 캠페인 노출 시간이 4초인 게임 유저는 반응 확률이 0.5로 할당될 수 있다. 따라서, 모델 생성부(340)는 상기 방식을 통해 모든 게임 유저에 대해, 관심도 즉, 반응 확률을 0에서 1 사이의 값으로 표현할 수 있는 반응 확률 예측 모델을 생성할 수 있다. 이러한 생성은 각 캠페인 그룹에 대해 별도로 수행될 수 있어서, 모델 생성부(340)는 캠페인 그룹 별로 반응 확률 예측 모델을 생성할 수 있다.According to the graph of FIG. 6, a game user having a campaign exposure time of 3 seconds is assigned a response probability of 0.05, a game user having a campaign exposure time of 5 seconds is assigned a response probability of 0.98, and a game user having a campaign exposure time of 4 seconds The response probability can be assigned to 0.5. Accordingly, the model generating unit 340 can generate a reaction probability prediction model that can represent the degree of interest, that is, the reaction probability from 0 to 1, for all game users through the above method. Such generation can be performed separately for each campaign group, so that the model generation unit 340 can generate a reaction probability prediction model for each campaign group.
위의 설명에서는 게임 유저가 제안된 캠페인의 노출 시간에 비례하여 관심도 즉, 반응 확률이 높을 것으로 가정하였다. 하지만, 모바일 게임의 특성 상 이러한 가정이 맞지 않을 수도 있다. 예를 들어, 게임 유저들이 사용자 단말기의 디스플레이부(즉, 화면)를 보지 않은 상태로 게임을 진행하는 상황이 존재할 수 있는데, 이 경우 상대적으로 게임 유저들의 팝업을 닫는 시간이 길어질 수 있다. 반대로 캠페인의 팝업을 빨리 닫는 것은 관심도가 적은 것을 의미할 수 있다. 따라서 캠페인을 너무 빨리 닫거나, 너무 늦게 닫는 유저의 경우 관심도가 낮다고 생각할 수 있다.In the above description, it is assumed that a game user has a high interest rate, that is, a response probability, in proportion to the exposure time of the proposed campaign. However, this assumption may not be true due to the characteristics of mobile games. For example, there may be a situation in which game users proceed to a game without viewing a display unit (i.e., a screen) of the user terminal. In this case, the time for closing pop-ups of game users may be relatively long. Conversely, quickly closing a pop-up in a campaign can mean less interest. Therefore, users who close the campaign too soon or close it too late may be less interested.
본 발명의 일 실시예에 따른 노출 제어 서버(300)는 상술한 문제점을 해결하기 위해, 도 7에 도시된 것처럼 캠페인 노출 시간에 대해 분석적 방법 또는 휴리스틱(heuristics)한 방법으로 제1 시간(t1) 및 제2 시간(t2)을 더 결정할 수 있다. 즉, 학습부(330)는 과거 캠페인의 캠페인 노출 시간들을 시간의 크기에 따라 정렬하고, 정렬 결과를 분석함으로써 제1 시간(t1) 및 제2 시간(t2)을 결정할 수 있다. 여기서, 제2 시간은 제1 시간보다 크다. Exposure control server 300 according to one embodiment of the present invention includes a first time by analytical methods or heuristics (heuristics) a method for the campaign, the exposure time as shown in FIG. 7 in order to solve the above problems (t 1 ) And the second time (t 2 ). That is, the learning unit 330 may determine the first time t 1 and the second time t 2 by sorting the campaign exposure times of the past campaigns according to the size of the time and analyzing the sorting result. Here, the second time is greater than the first time.
그 후, 학습부(330)는 제1 시간(t1) 미만이거나 제2 시간(t2)을 초과하는 캠페인 노출 시간들을 필터링함으로써, 신뢰도가 떨어지는 영역을 제거할 수 있다. 또한, 학습부(330)는 제1 시간(t1)과 제2 시간(t2) 사이의 캠페인 노출 시간들에 대해서만 학습을 진행할 수 있어서 학습에 이용되는 처리량을 감소시킬 수 있다.Then, the learning unit 330 may be by filtering campaign exposure time to the less than 1 hour (t 1) than the second time (t 2), removing the reliability falling area. In addition, the learning unit 330 may reduce the amount of processing used in the study according to proceed with the study only for campaign exposure time between the first time (t 1) and the second time (t 2).
모델 생성부(340)는 상기 특성을 고려하여 캠페인 그룹 별 반응 확률 예측 모델을 생성할 수 있다. 즉, 모델 생성부(340)는 제1 시간 미만이거나 제2 시간을 초과하는 캠페인 노출 시간이 입력되면 반응 확률이 0 또는 0에 근접하도록 반응 확률 예측 모델을 생성할 수 있다. 또한, 모델 생성부(340)는 캠페인 노출 시간이 제1 시간에 근접할수록 반응 확률이 0에 가까워지고, 캠페인 노출 시간이 제2 시간에 근접할수록 반응 확률이 1에 가까워지도록 반응 확률 예측 모델을 생성할 수 있다.The model generation unit 340 may generate a response probability prediction model for each campaign group in consideration of the characteristics. That is, the model generating unit 340 can generate the response probability prediction model such that the response probability is close to 0 or 0 when the campaign exposure time is less than the first time or exceeds the second time. In addition, the model generating unit 340 generates a reaction probability prediction model so that the response probability becomes closer to zero as the campaign exposure time approaches the first time, and the response probability approaches 1 as the campaign exposure time approaches the second time can do.
또한, 학습부(330)는 상술한 캠페인 노출 시간 대신, 제2 방식으로 언급된 것처럼 과거 캠페인의 제공에 따른 게임 유저들의 제안 수락 여부에 대한 정보를 이용하여 학습을 수행하는 것도 가능하다. 여기서, 제안 수락 여부에 대한 정보는 0과 1로 표현될 수 있다. 예를 들어, 게임에서 게임 유저에게 어떤 행위 또는 구매를 제안했을 때, 해당 게임 유저가 행위 또는 구매를 하면, 제안을 수락한 것으로 판단할 수 있다. Also, instead of the campaign exposure time, the learning unit 330 may perform learning using the information on whether or not the game users accept the proposal according to the provision of the past campaign, as mentioned in the second scheme. Here, the information on whether or not the proposal is acceptable can be expressed as 0 and 1. For example, when a game proposes an action or a purchase to a game user in the game, the game user can judge that the proposal is accepted when he / she conducts or purchases the game.
상기 개념을 복수의 게임 유저들로 확장하고, 각 게임 유저의 유저 상태를 특징 벡터로 하여 기계 학습을 수행하면 위에서 설명된 캠페인 그룹 별 반응 확률 예측 모델 생성이 가능하다. 여기서, 기계 학습은 예를 들어, SVM(Support Vector Machine), 부스팅(boosting) 및 랜덤 포레스트(random forest) 등을 통해 이루어질 수 있다.If the concept is extended to a plurality of game users and machine learning is performed using the user status of each game user as a feature vector, it is possible to generate a reaction probability prediction model for each campaign group described above. Here, the machine learning can be performed through, for example, SVM (Support Vector Machine), boosting, and random forest.
구체적으로, 학습부(330)는 적어도 하나의 특징들을 정의하고, 서버 저장부(320)에서 복수의 게임 유저들에 대해, 정의한 특징들에 따른 특징 값들과, 과거 캠페인의 제공에 따른 제안 수락 여부 정보를 추출하여 생성된 레이블로 테이블을 구성할 수 있다. 예를 들어, 학습부(330)를 통해 정의된 특징은 게임 유저 레벨, 게임 내 재화량, 게임 내 재화 사용량, 구매 확률, 유저의 상태 정보, 캠페인 노출 시간, 게임 플레이 패턴 등이 될 수 있으나, 학습부(330)를 통해 정의되는 특징은 이에 제한되지 않는다. Specifically, the learning unit 330 defines at least one of the features and, for the plurality of game users in the server storage unit 320, the feature values according to the defined features, The information can be extracted and the table can be configured with the generated label. For example, the characteristics defined through the learning unit 330 may be game user level, in-game amount, in-game use amount, purchase probability, user status information, campaign exposure time, game play pattern, The characteristic defined through the learning unit 330 is not limited thereto.
그 후, 학습부(330)는 SVM, 부스팅 또는 랜덤 포레스트 기계 학습법을 이용하여 학습을 수행하고, 모델 생성부(340)는 학습 결과를 이용하여 반응 확률 예측 모델을 생성할 수 있다.Thereafter, the learning unit 330 performs learning using SVM, boosting, or random forest machine learning, and the model generating unit 340 can generate a response probability prediction model using the learning results.
예를 들어, 학습부(330)를 통해 도 8a에 도시된 것처럼 동일한 캠페인 그룹에 속한 캠페인들 중 적어도 하나가 5명의 게임 유저(A1, B2, C1, A2, D2)들에게 제공된 상황을 가정한다. 이때, 학습부(330)는 각 게임 유저(A1, B2, C1, A2, D2)의 게임 로그에서 설정된 특징들에 대한 특징 값들을 추출한다. 물론, 도 8a에 도시된 게임 유저의 수는 설명을 위해 5명만이 개시된 것이고 실제로는 더 많은 수의 게임 유저들에 대해 동일한 과정이 수행될 수 있다.For example, assume that at least one of the campaigns belonging to the same campaign group as shown in FIG. 8A is provided to five game users (A1, B2, C1, A2, D2) through the learning unit 330 . At this time, the learning unit 330 extracts feature values of the features set in the game logs of the respective game users A1, B2, C1, A2, and D2. Of course, the number of game users shown in FIG. 8A is only five for explanation, and in reality, the same process can be performed for a larger number of game users.
학습부(330)를 통해 이루어지는 학습은 과거 시점의 게임 로그를 이용한 것을 특징으로 한다. 그 중에서 게임 유저의 상태 정보를 나타내는 특징들은 t-2 시점의 게임 로그이거나 또는 t-n 시점에서 t-2 시점까지의 특정 기간에 대한 게임 로그로부터 획득될 수 있다. 그리고, 제안 수락 여부 정보는 t-2 시점 보다 이후인 t-1 시점이거나 또는 t-n+1 시점에서 t-1 시점까지의 기간에 대한 게임 로그로부터 획득될 수 있다.Learning performed through the learning unit 330 is characterized by using a game log of the past time point. Among these characteristics showing a state of the game user information may be obtained from gaming log for a period of time of the log in the game, or t -n, or the point of time t -2 from time t -2. Then, the proposed acceptance information may be obtained at the time t -1 or + 1 or t -n point later than the time t -2 from the game log for the time period up to the time t -1.
학습부(330)에서 이용되는 과거 시점의 게임 로그들 중 너무 오래된 게임 로그들은 사용되지 않는 것이 바람직한데, 이는 모바일 게임 특성상 게임 유저들의 선호도가 급격히 변할 수 있기 때문이다. 따라서, 학습부(330)에서 이용되는 과거 시점의 게임 로그는 현재 시점을 기준으로 미리 설정된 기간 내의 게임 로그인 것이 바람직하다.It is preferable that the game logs that are too old among the game logs of the past time used in the learning unit 330 are not used because the preference of the game users may be rapidly changed due to the characteristics of the mobile game. Therefore, it is preferable that the game log of the past time used in the learning unit 330 is a game log in a predetermined period based on the current time point.
본 예시에서 특징들의 개수는 설명을 위해 3개인 것으로 가정되나 이의 개수는 3개 외에 다양한 개수로 적용될 수 있다. 이어서 학습부(330)는 해당 게임 유저(A1, B2, C1, A2, D2)에게 상기 캠페인을 제공했을 때 게임 유저의 제안 수락 여부 정보를 추출할 수 있다. 본 예시에서, 게임 유저(A1, B2, D2)는 제안을 수락한 반면, 게임 유저(C1, A2)는 제안을 수락하지 않은 것으로 가정한다.In the present example, the number of features is assumed to be three for illustrative purposes, but the number of features may be applied in various other than three. Then, the learning unit 330 can extract the proposal acceptance information of the game user when the campaign is provided to the corresponding game users A1, B2, C1, A2, and D2. In this example, it is assumed that the game users A1, B2, and D2 accepted the proposal, while the game users C1 and A2 did not accept the proposal.
그 후, 학습부(330)는 위에서 설명한 기계 학습(ml)을 이용한 감독 학습(Supervised learning)을 수행할 수 있다. 그 후, 모델 생성부(340)는 학습 결과를 이용하여 해당 캠페인 그룹의 반응 확률 예측 모델을 생성할 수 있다.Thereafter, the learning unit 330 may perform supervised learning using the above-described machine learning (ml). Thereafter, the model generating unit 340 can generate a reaction probability prediction model of the corresponding campaign group using the learning results.
위의 설명에서 학습부(330)와 모델 생성부(340)는 캠페인 노출 시간을 이용하거나 또는 제안 수락 여부를 이용하여 캠페인 그룹의 반응 확률 예측 모델을 생성하는 것으로 설명하였다. 다만 이는 예시일 뿐이고, 위에서 제3 방식으로 언급된 것처럼 2개의 매개 변수 모두를 활용하여 반응 확률 예측 모델을 생성할 수도 있다.In the above description, the learning unit 330 and the model generating unit 340 generate the reaction probability prediction model of the campaign group using the campaign exposure time or the acceptance of the proposal. However, this is merely an example, and the reaction probability prediction model may be generated using all two parameters as mentioned in the third method above.
이처럼 학습부(330)와 모델 생성부(340)는 하나의 캠페인 그룹에 대한 반응 확률 예측 모델을 생성할 수 있고, 상기 방법을 다른 캠페인 그룹에도 적용함으로써 전체 캠페인 그룹에 대한 반응 확률 예측 모델을 생성할 수 있다.In this way, the learning unit 330 and the model generating unit 340 can generate a response probability prediction model for one campaign group, and apply the method to other campaign groups, thereby generating a response probability prediction model for the entire campaign group can do.
다시, 도 5를 참조하면, 요청 수신부(350)는 사용자 단말기(100)와의 통신을 통해 사용자 단말기(100)로부터 노출 여부 질의 신호를 수신한다. 도 4를 참조로 설명한 것처럼, 노출 여부 질의 신호에는 사용자 단말기(100)의 식별자와 대상 캠페인의 식별자가 포함될 수 있다. 이때, 게임 로그 수집부(310)는 아래에서 설명되는 제어 과정의 수행을 위해 서버 저장부(320)에서 해당 게임 유저의 과거 시점 로그 정보를 수집하고, 수집된 과거 시점 로그 정보를 반응 확률 산출부(370)에 전달할 수 있다. 여기서, 게임 유저의 과거 시점 로그 정보는 현재 시점을 기준으로 미리 설정된 기간 내의 로그 정보일 수 있다. Referring again to FIG. 5, the request receiving unit 350 receives an exposure / nonexistence query signal from the user terminal 100 through communication with the user terminal 100. [ As described with reference to FIG. 4, the exposure / inquiry signal may include an identifier of the user terminal 100 and an identifier of the target campaign. At this time, the game log collecting unit 310 collects the past game log information of the corresponding game user in the server storage unit 320 for performing the control process described below, (370). Here, the past-time log information of the game user may be log information within a predetermined period based on the current time point.
게임 유저의 과거 시점 로그 정보는 아래에서 설명되는 것처럼 캠페인 노출 시간을 포함할 수 있다. 게임 유저의 과거 시점 로그 정보는 미리 설정된 특징들에 따라 도출된 특징 값들과, 캠페인의 제안에 따른 제안 수락 여부 정보를 포함할 수 있다. 그리고, 게임 유저의 과거 시점 로그 정보는 해당 게임 유저에게 노출된 캠페인 그룹 별 최근 노출 시각 정보를 더 포함할 수 있다. The game user's past point log information may include the campaign exposure time as described below. The past game log information of the game user may include the feature values derived according to the predetermined features and the proposal acceptance information according to the proposal of the campaign. The past game log information of the game user may further include the latest exposure time information of each campaign group exposed to the game user.
반응 확률 산출부(370)는 노출 여부 질의 신호를 송신한 사용자 단말기(100)의 게임 유저의 반응 확률을 산출하는 기능을 한다. 이를 위해, 반응 확률 산출부(370)는 사용자 단말기(100)의 게임 유저에 대한 과거 시점 게임 로그에서 대상 캠페인에 대한 반응 확률 판단 인자를 추출하는 과정을 수행한다. 이어서, 반응 확률 산출부(370)는 대상 캠페인이 속한 캠페인 그룹의 반응 확률 예측 모델을 호출한다. 여기서, 대상 캠페인이 속한 캠페인 그룹은 대상 캠페인의 식별자를 이용하여 탐색할 수 있다.The reaction probability calculation unit 370 calculates the reaction probability of the game user of the user terminal 100 that has transmitted the exposure / non-contact query signal. To this end, the reaction probability calculation unit 370 extracts a reaction probability determination factor for the target campaign from the past game log of the user of the user terminal 100 with respect to the game user. Then, the response probability calculation unit 370 calls the response probability prediction model of the campaign group to which the target campaign belongs. Here, the campaign group to which the target campaign belongs can be searched using the identifier of the target campaign.
그 후, 반응 확률 산출부(370)는 대상 캠페인이 속한 대상 캠페인 그룹의 반응 확률 예측 모델에 게임 유저의 반응 확률 판단 인자를 적용함으로써 대상 캠페인에 대한 상기 게임 유저의 반응 확률을 산출할 수 있다(도 8b 참조). 예를 들어, 반응 확률 예측 모델이 캠페인 노출 시간에 기초하여 생성된 경우, 반응 확률 산출부(370)는 게임 유저의 과거 시점 게임 로그에서 과거 캠페인들의 캠페인 노출 시간들을 호출하고, 이를 반응 확률 예측 모델의 입력으로 하여 대상 캠페인에 대한 반응 확률을 산출할 수 있다. 예를 들어, 반응 확률 예측 모델이 캠페인 노출 시간을 이용하여 생성된 경우, 반응 확률 예측 모델에 입력되는 입력 값은 해당 게임 유저의 과거 캠페인들에 따른 캠페인 노출 시간들의 평균 시간일 수 있다. 물론 이러한 입력 값은 다양하게 변경되어 적용되는 것도 가능하다.Thereafter, the reaction probability calculation unit 370 may calculate the reaction probability of the game user for the target campaign by applying the reaction probability determination factor of the game user to the reaction probability prediction model of the target campaign group to which the target campaign belongs ( 8B). For example, when the reaction probability prediction model is generated based on the campaign exposure time, the response probability calculation unit 370 calls the campaign exposure times of past campaigns in the past game log of the game user, The probability of the response to the target campaign can be calculated. For example, when the reaction probability prediction model is generated using the campaign exposure time, the input value input to the reaction probability prediction model may be the average time of the campaign exposure times according to the past user's past campaigns. Of course, such input values can be changed and applied in various ways.
노출 여부 결정부(380)는 반응 확률 산출부(370)를 통해 산출한 반응 확률을 이용하여 대상 캠페인의 노출 여부를 결정하는 기능을 한다. The exposure determination unit 380 determines whether to expose the target campaign using the response probability calculated through the response probability calculation unit 370. [
예를 들어, 노출 여부 결정부(380)는 랜덤 함수를 통해 0에서 1 사이의 랜덤 값을 도출하고, 게임 유저의 반응 확률이 랜덤 값을 초과할 경우 대상 캠페인을 노출할 것으로 결정할 수 있다. 여기서 랜덤 함수는 프로그래밍 언어(예를 들어, c 언어, Java)에서 제공되는 함수일 수 있고, c 언어의 경우 rand(), srand() 등이 이용될 수 있으며, Java의 경우 Random 클래스, Math.random() 등이 이용될 수 있다.For example, the exposure determination unit 380 may derive a random value between 0 and 1 through a random function, and may determine to expose a target campaign when a game user's response probability exceeds a random value. Here, the random function may be a function provided in a programming language (for example, c language, Java), and rand () and srand () may be used for c language. Random class for Java, Math.random () May be used.
예를 들어, 게임 유저의 대상 캠페인에 대한 반응 확률이 0.7이라고 가정하고, 노출 여부 결정부(380)를 통해 도출된 랜덤 값이 0.5라면 대상 캠페인을 노출할 것으로 결정할 수 있다. 반대로, 노출 여부 결정부(380)를 통해 도출된 랜덤 값이 0.8이라면 이를 노출하지 않을 것으로 결정할 수 있다.For example, it is possible to determine that the response probability of the game user's target campaign is 0.7, and if the random value derived through the exposure determination unit 380 is 0.5, the target campaign is exposed. Conversely, if the random value derived through the exposure determination unit 380 is 0.8, it can be determined that the exposure is not to be exposed.
하지만, 이 방식은 관심도(예를 들어, 반응 확률)가 낮은 캠페인의 노출 빈도수를 감소시키는 점에서 본 발명의 목적을 달성할 수 있지만, 특정 캠페인 그룹에 대한 반응 확률이 너무 낮은 경우(예를 들어, 반응 확률이 0.1 이하인 경우), 거의 대부분의 게임 유저들에게 해당 캠페인이 아예 노출되지 않는 문제점이 발생할 수 있다.However, although this approach may accomplish the object of the present invention in reducing the frequency of exposure of a campaign with a low degree of interest (e. G., Response probability), if the response probability for a particular campaign group is too low , And the probability of the reaction is 0.1 or less), there is a problem that most of the game users are not exposed to the campaign at all.
따라서, 본 예시에 따른 일 실시예에서는, 노출 여부 결정부(380)는 랜덤 값을 활용하는 방식 보다는 노출 여부 판단 값을 결정하고 반응 확률과 노출 여부 판단 값을 비교함으로써 노출 여부를 결정할 수 있다. 다시 말해서, 노출 여부 결정부(380)는 반응 확률이 일정 크기 이상일 때에는 무관하나, 반응 확률이 일정 크기 미만일 때에는 노출 여부 판단 값을 결정하고 이를 이용하여 노출 여부를 결정할 수 있다. 예를 들어, 노출 여부 결정부(380)는 게임 유저의 반응 확률이 노출 여부 판단 값을 초과할 때 상기 대상 캠페인을 노출할 것으로 결정할 수 있다. Accordingly, in one embodiment of the present invention, the exposure determination unit 380 may determine the exposure by determining the exposure determination value and comparing the response probability with the exposure determination value, rather than using the random value. In other words, the exposure determination unit 380 is independent of whether the response probability is greater than or equal to a certain size, but when the response probability is less than a predetermined value, the exposure determination value is determined and the exposure determination unit 380 can determine the exposure. For example, the exposure determination unit 380 may determine to expose the target campaign when the response probability of the game user exceeds the exposure determination value.
여기서, 노출 여부 판단 값은 다양한 방식으로 결정될 수 있다. 예를 들어, 노출 여부 판단 값의 결정은 전체 게임 유저들 중 미리 설정된 상위 퍼센트에 해당하는 게임 유저의 반응 확률을 노출 여부 판단 값으로 결정함으로써 이루어질 수 있다. Here, the exposure determination value can be determined in various ways. For example, the determination of the exposure determination value may be made by determining a reaction probability of a game user corresponding to a predetermined upper percentage of all game users as the exposure determination value.
예를 들어, 표 1과 같이 노출 제어 서버(300)에 3개의 사용자 단말기들에서 각각 2개의 대상 캠페인들에 대한 노출 여부 질의 신호를 송신한 상황을 가정한다. 표 1에서, User Key는 사용자 단말기에 대한 각 게임 유저의 식별자를 나타내고, 반응확률A는 제1 대상 캠페인에 대한 반응확률을 나타내고, 반응확률B는 제2 대상 캠페인에 대한 반응확률을 나타내고, 노출여부A는 제1 대상 캠페인에 대한 노출 여부를 나타내며, 노출여부B는 제2 대상 캠페인에 대한 노출 여부를 나타낸다. 또한, 노출 여부의 열에서 1은 대상 캠페인을 노출할 것으로 결정된 상황을 나타내고, 0은 대상 캠페인을 노출하지 않을 것으로 결정된 상황을 나타낸다.For example, it is assumed that the exposure control server 300 transmits exposure query signals for two target campaigns from three user terminals, as shown in Table 1. In Table 1, the User Key represents the identifier of each game user for the user terminal, the response probability A represents the response probability for the first target campaign, the response probability B represents the response probability for the second target campaign, Whether or not A represents the exposure to the first target campaign, and B represents the exposure to the second target campaign. Also, in the column of exposure, 1 indicates a situation determined to expose the target campaign, and 0 indicates a situation determined not to expose the target campaign.
위에서 설명한 것처럼 반응 확률 산출부(370)를 통해 3명의 게임 유저에 대해 제1 대상 캠페인과 제2 대상 캠페인에 대한 반응 확률이 계산될 수 있다. 이렇게 반응 확률의 계산이 완료되면, 노출 여부 결정부(380)를 통한 판단(예를 들어, 랜덤 값 또는 노출 여부 판단 값)을 통해 3명의 게임 유저들에 대해 제1 대상 캠페인과 제2 대상 캠페인에 대한 노출 여부가 결정되어 그 결과가 기록될 수 있다.The reaction probabilities for the first target campaign and the second target campaign can be calculated for the three game users through the reaction probability calculation unit 370 as described above. When the calculation of the reaction probability is completed, the first target campaign and the second target campaign are determined for the three game users through the determination (for example, the random value or the exposure determination value) through the exposure determination unit 380 And the result can be recorded.
또한, 본 발명의 다른 실시예에서 노출 여부 결정부(380)는 상술한 판단을 통한 노출 여부 결정 방식 외에, 추가적인 판단 과정을 더 수행함으로써 노출 여부 결정을 수행할 수 있다. 이는 게임 유저에 보다 맞춤화하여 대상 캠페인의 노출 여부를 결정하기 위함이다. 즉, 본 발명의 다른 실시예에 따른 노출 여부 결정부(380)는 상술한 판단 방식에 더하여, 대상 캠페인과 동일한 캠페인 그룹 중 해당 게임 유저에게 마지막으로 노출된 캠페인의 최근 노출 시각을 고려하는 것을 특징으로 한다.In addition, in another embodiment of the present invention, the exposure determination unit 380 may perform an additional determination process in addition to the exposure determination method through the above-described determination, thereby performing the exposure determination. This is to customize the game user to determine whether the target campaign is exposed. In other words, in addition to the above-described determination method, the exposure determination unit 380 according to another embodiment of the present invention considers the latest exposure time of the campaign last exposed to the game user among the same campaign group as the target campaign .
구체적으로 노출 여부 결정부(380)는 해당 게임 유저의 과거 시점 게임 로그에서 마지막으로 노출된 캠페인의 최근 노출 시각을 추출한다. 그 후, 노출 여부 결정부(380)는 앞선 판단에서 대상 캠페인을 노출할 것으로 결정한 경우, 현재 시각과 최근 노출 시각 간의 차가 최소 노출 빈도 시간을 초과하는지의 판단을 더 수행할 수 있다. 예를 들어, 반응 확률이 랜덤 값을 초과할 때, 또는 반응 확률이 노출 여부 판단 값을 초과할 때, 현재 시각과 최근 노출 시각 간의 차와 최소 노출 빈도 시간 간의 비교를 수행하고, 비교 결과 상기 차가 최소 노출 빈도 시간을 초과하면 대상 캠페인을 노출할 것으로 확정할 수 있다.Specifically, the exposure determination unit 380 extracts the latest exposure time of the last exposed campaign in the past game log of the game user. Thereafter, if the exposure determination unit 380 determines to expose the target campaign in the previous determination, it may further determine whether the difference between the current time and the latest exposure time exceeds the minimum exposure time. For example, a comparison is made between the difference between the current time and the latest exposure time and the minimum exposure frequency time when the probability of reaction exceeds the random value, or when the probability of reaction exceeds the exposure determination value, If you exceed the minimum impression frequency time, you can be sure to expose the target campaign.
또한, 위의 판단에서는 대상 캠페인을 노출하지 않을 것으로 결정하였으나(즉, 반응 확률이 랜덤 값 이하이거나 또는 반응 확률이 노출 여부 판단 값 이하일 때), 너무 오랜 시간 동안 해당 게임 유저에게 캠페인을 제공하지 않는 것은 바람직하지 않다. 이에 따라, 노출 여부 결정부(380)는 반응 확률이 랜덤 값 이하이거나 반응 확률이 노출 여부 판단 값 이하이더라도, 현재 시각과 최근 노출 시각 간의 차가 최대 노출 시간을 초과하면, 해당 대상 캠페인을 노출할 것으로 확정할 수 있다.In addition, in the above judgment, when it is determined that the target campaign is not to be exposed (that is, the response probability is less than the random value or the response probability is less than the exposure determination value), the campaign is not provided to the game user for too long Is not desirable. Accordingly, the exposure determination unit 380 may expose the target campaign if the difference between the current time and the latest exposure time exceeds the maximum exposure time even if the response probability is less than the random value or the response probability is less than the exposure determination value Can be confirmed.
노출 여부 결정부(380)를 통해 이루어지는 노출 여부 결정 과정은 아래의 표 2를 참조로 더 설명된다.The process of determining whether or not to be exposed through the exposure determination unit 380 will be further described with reference to Table 2 below.
표 1을 참조로 설명한 것처럼, 표 2는 3명의 게임 유저가 존재하고, 서로 다른 캠페인 그룹을 나타내는 반응확률A와 반응확률B를 이용하여 각 대상 캠페인에 대한 노출 여부가 결정된 상황을 가정한다. 즉, 반응 확률A 및 반응 확률B를 이용한 판단 결과, 제1 게임 유저에게는 제1 대상 캠페인을 노출하되 제2 대상 캠페인을 노출하지 않는 것으로 결정된 상황을 가정한다. 제2 게임 유저에게는 제1 대상 캠페인을 노출하되 제2 캠페인을 노출하지 않는 것으로 결정된 상황을 가정한다. 그리고 제3 게임 유저에게는 제1 및 제2 대상 캠페인을 노출할 것으로 결정된 상황을 가정한다.As described with reference to Table 1, Table 2 assumes a situation in which there are three game users, and the exposure probability for each target campaign is determined using the reaction probability A and the reaction probability B representing different campaign groups. That is, as a result of the determination using the reaction probability A and the reaction probability B, it is assumed that the first game user is exposed to the first target campaign but not the second target campaign. It is assumed that the second game user is determined to expose the first target campaign but not the second campaign. And that it is determined to expose the first and second target campaigns to the third game user.
표 2를 참조하면, 식별자가 a9d98afb2인 제1 게임 유저의 제1 캠페인 그룹에 대한 최근 노출 시각은 2017년 2월 7일 12시 29분 51초이고, 제2 캠페인 그룹에 대한 최근 노출 시각은 2017년 2월 1일 14시 52분 1초인 것으로 가정한다. 식별자가 bc98dnd18인 제2 게임 유저의 제1 캠페인 그룹에 대한 최근 노출 시각은 2017년 2월 6일 18시 52분 35초이고, 제2 캠페인 그룹에 대한 최근 노출 시각은 2017년 2월 5일 15시 35분 23초인 것으로 가정한다. 식별자가 c972gfk2a인 제3 게임 유저의 제1 캠페인 그룹에 대한 최근 노출 시각은 2017년 2월 7일 9시 23분 24초이고, 제2 캠페인 그룹에 대한 최근 노출 시각은 2017년 2월 7일 11시 18분 33초인 것으로 가정한다.Referring to Table 2, the latest exposure time for the first campaign group of the first game user whose identifier is a9d98afb2 is 12:29:51 on February 7, 2017, and the latest exposure time for the second campaign group is 2017 It is assumed that February 1 is 14:52:1. The latest exposure time for the first campaign group of the second game user with the identifier bc98dnd18 is 18:52:35 on February 6, 2017, and the latest exposure time for the second campaign group is February 15, 2017 It is assumed that the hour is 35 minutes and 23 seconds. The latest exposure time for the first campaign group of the third game user with an identifier of c972gfk2a is 9:23:24 on February 7, 2017, and the latest exposure time for the second campaign group is February 7, 2017 Hour and 18 minutes and 33 seconds.
또한, 본 예시에서 현재 시각은 2017년 2월 8일 0시 0분 0초이고, 최소 노출 빈도 시간은 1일, 최대 노출 빈도 시간은 3일 인 것으로 가정한다.Also, in this example, it is assumed that the current time is 0:00:00 on February 8, 2017, the minimum exposure time is 1 day, and the maximum exposure time is 3 days.
이 경우, 원래의 판단에서 제1 게임 유저에 대해서는 제1 대상 캠페인은 노출하되 제2 대상 캠페인은 노출하지 않는 것으로 결정할 수 있다. 최소 노출 빈도 시간과 최대 노출 빈도 시간을 고려하지 않고 상기 판단 결과에 따라 그대로 캠페인을 제공하게 되면, 제1 게임 유저는 이미 어제도 받았던 캠페인 또는 이와 유사한 캠페인을 또 받게 되어, 해당 게임 유저에게 좋지 않은 경험을 남길 수 있다. 뿐만 아니라, 제1 게임 유저는 제2 캠페인 그룹에 속한 캠페인들을 오랜 시간 동안 받지 못하였었으나, 제2 대상 캠페인도 받지 못하게 되므로, 이는 바람직하지 않은 상황일 수 있다. 이에 따라, 해당 게임 유저에게는 비교적 오랜 기간 동안 제공되지 않은 제2 캠페인 그룹에 속한 캠페인을 제공하는 것이 오히려 바람직할 수 있다.In this case, in the original judgment, it may be determined that the first target campaign is exposed but the second target campaign is not exposed for the first game user. If the campaign is provided according to the determination result without considering the minimum exposure frequency time and the maximum exposure frequency time, the first game user will receive another campaign or campaign similar to the one already received yesterday, You can leave your experience. In addition, since the first game user has not received the campaigns belonging to the second campaign group for a long time, but the second target campaign is also not received, this may be an undesirable situation. Accordingly, it may be desirable to provide the game user with a campaign belonging to a second campaign group that has not been served for a relatively long period of time.
반면, 위에서 설명한 최소 노출 빈도 시간과 최대 노출 빈도 시간을 이용한 추가적인 판단을 적용하게 되면 제1 게임 유저는 비교적 짧은 기간 전에 제공된 제1 대상 캠페인 대신, 비교적 오랜 기간 동안 받지 못한 제2 대상 캠페인을 받을 수 있게 된다. 만약 본 예시에서 현재 시각이 2017년 2월 9일 0시 0분 0초라면, 제1 게임 유저는 2개의 대상 캠페인들 모두를 제공받는 것으로 변경될 수 있다.On the other hand, if additional judgment using the above-described minimum exposure frequency time and maximum exposure frequency time is applied, the first game user can receive the second target campaign that has not been received for a relatively long period of time instead of the first target campaign provided before a comparatively short period . If the current time in this example is February 0, 2017 0:00 0:00, the first game user can be changed to receive all of the two target campaigns.
또한, 현재 시각이 2017년 2월 8일 0시 0분 0초인 경우, 제2 게임 유저는 현재 시각과 제1 캠페인 그룹의 최근 노출 시각간의 차가 최소 노출 빈도 시간을 초과하므로, 제1 대상 캠페인의 노출이 확정될 수 있다. 또한, 제2 게임 유저는 현재 시각과 제2 캠페인 그룹의 최근 노출 시각 간의 차가 최대 노출 빈도 시간 이하이므로, 제2 대상 캠페인이 노출되지 않는 것으로 결정될 수 있다.If the current time is 0:00:00 on February 8, 2017, the difference between the current time and the latest exposure time of the first campaign group exceeds the minimum exposure time, Exposure can be confirmed. In addition, since the difference between the current time and the latest exposure time of the second campaign group is less than the maximum exposure frequency time, the second game user can be determined not to be exposed.
그리고, 제3 게임 유저는 현재 시각과 제1 캠페인 그룹 및 제2 캠페인 그룹의 최근 노출 시각간의 차가 최소 노출 빈도 시간 이하이므로, 제1 및 제2 대상 캠페인은 노출되지 않는 것으로 변경될 수 있다.In addition, since the difference between the current time and the latest exposure time of the first campaign group and the second campaign group is less than the minimum exposure time, the first and second target campaigns can be changed to not be exposed.
이처럼, 노출 여부 결정부(380)는 단순히 반응 확률만을 고려하는 것이 아닌, 각 게임 유저에게 제공된 캠페인 그룹의 최근 노출 시각을 더 고려함으로써 게임 유저에 보다 맞춤화된 캠페인의 빈도 조절이 가능한 장점이 있다.As described above, the exposure determination unit 380 takes into account not only the response probability but also the latest exposure time of the campaign group provided to each game user, so that the frequency of the more customized campaign can be adjusted to the game user.
위의 설명에서 대상 캠페인에 대한 노출 여부 판단은 노출 제어 서버(300)에서 이루어지는 것으로 설명되었다. 다만, 이는 예시일 뿐이고 노출 제어 서버(300)를 통해 이루어지는 노출 여부 판단 과정이 사용자 단말기(100)에서 이루어지는 것도 생각해볼 수 있다. 하지만, 게임 어플리케이션은 그래픽이나 코딩의 복잡도가 높은 모바일 게임의 특성에 기인하여, 사용자 단말기의 부하가 높다. 여기서, 캠페인의 노출 제어 여부 판단을 위해 사용자 단말기에서 추가적인 과정을 수행할 경우, 사용자 단말기의 과부하를 초래할 우려가 있으므로, 상술한 판단 과정은 노출 제어 서버(300)에서 이루어질 수 있다.In the above description, the exposure control server 300 determines that the target campaign is exposed. However, it is also conceivable that the user terminal 100 performs the exposure determination process through the exposure control server 300 only. However, the load of the user terminal is high due to the characteristics of the mobile game in which the complexity of graphics or coding is high. Here, if an additional process is performed in the user terminal to determine whether or not to control the exposure of the campaign, the user terminal may be overloaded, so that the above-described determination process may be performed in the exposure control server 300.
도 9는 본 발명의 일 실시예에 따른 노출 제어 서버를 통해 이루어지는 캠페인 노출 여부 판단 방법에 대한 흐름도이다. 도 10 및 도 11은 본 발명의 학습 단계에 대한 흐름도이다. 도 12 및 도 13은 본 발명의 대상 캠페인의 노출 여부를 결정하는 단계에 대한 흐름도이다.9 is a flowchart illustrating a method of determining whether a campaign is exposed through the exposure control server according to an exemplary embodiment of the present invention. Figures 10 and 11 are flow charts of the learning steps of the present invention. 12 and 13 are flow charts for determining whether to expose the subject campaign of the present invention.
상술한 것처럼, 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 방법은 캠페인 그룹 별로 반응 확률 예측 모델을 생성하고, 사용자 단말기로부터 노출 여부 질의 신호를 수신할 때, 반응 확률 예측 모델을 이용하여 대상 캠페인의 제공에 따른 해당 게임 유저의 관심도(예를 들어, 반응 확률)를 산출할 수 있다. 또한, 본 발명의 일 실시예에 따른 노출 여부 판단 방법은 산출한 반응 확률과 해당 게임 유저의 게임 로그에 포함된 다양한 정보들을 고려하여 해당 게임 유저에 더 맞춤화된 캠페인의 빈도 조절을 제공하는 것을 특징으로 한다. 이제, 도 9를 참조로 본 발명의 일 실시예에 따른 노출 여부 판단 방법에 대한 설명이 이루어진다. 아래에서는 위에서 언급된 부분과 중복되는 사항은 생략하여 그 설명이 이루어진다.As described above, the method for determining whether or not a campaign is exposed according to an exemplary embodiment of the present invention includes generating a response probability prediction model for each campaign group, and when receiving an exposure / (For example, a reaction probability) of the corresponding game user according to the provision of the game player. According to an embodiment of the present invention, a method for determining whether or not to expose a user is provided to control a frequency of a more customized campaign to a corresponding game user in consideration of the calculated reaction probability and various information included in the game log of the corresponding game user . Now, referring to FIG. 9, a description will be given of a method of determining whether or not to expose according to an embodiment of the present invention. In the following, the duplication of the above-mentioned parts is omitted and the description is made.
S110 단계는 게임 로그 수집부에 의해 수행되는 단계로서, 서버 저장부에 저장된 게임 로그들을 수집하는 단계이다. 구체적으로, S110 단계는 캠페인 그룹 별로 과거 캠페인들의 제공에 따른 복수의 게임 유저들의 과거 시점 게임 로그들을 수집하는 단계이다. 위에서 설명한 것처럼 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 방법에서 반응 확률 예측 모델은 캠페인의 노출 시간과 과거 캠페인의 제공에 따른 제안 수락 여부 정보 중 적어도 하나를 이용하여 생성된다. 이에 따라, 과거 시점 게임 로그는 각 게임 유저에게 제공된 과거 캠페인의 캠페인 노출 시간과, 각 게임 유저에게 제공된 과거 캠페인에 따른 제안 수락 여부 정보 중 적어도 하나를 포함할 수 있다.Step S110 is a step performed by the game log collecting unit, which collects game logs stored in the server storage unit. Specifically, step S110 is a step of collecting past game logs of a plurality of game users according to the provision of past campaigns for each campaign group. As described above, the response probability prediction model in the campaign exposure determination method according to an exemplary embodiment of the present invention is generated using at least one of the exposure time of the campaign and the proposal acceptance information according to the provision of the past campaign. Accordingly, the past game log may include at least one of the campaign exposure time of the past campaigns provided to each game user and the proposal acceptance information according to past campaigns provided to each game user.
또한, 위에서 설명한 것처럼 S110 단계를 통해 수집되는 과거 시점 게임 로그는 현재 시점을 기준으로 기설정된 기간 내의 과거 시점 게임 로그이다. 왜냐하면, 너무 오래된 게임 로그는 신뢰도가 떨어지기 때문에, 기설정된 기간을 벗어나는 게임 로그는 수집되지 않는 것이 바람직하다. 따라서, S110 단계를 통해 수집되는 과거 시점 게임 로그는 예를 들어, t-2 시점 또는 t-n 시점에서 t-2 시점 사이의 기간들의 게임 로그일 수 있다.In addition, as described above, the past game log collected through S110 is a past game log within a predetermined period based on the current time. Because too old game logs are unreliable, it is desirable not to collect game logs beyond a predetermined period of time. Thus, the past time game logs gathered from the step S110 may be, for example, a game log of the period between the time t -2, or t -n t -2 point in time.
S120 단계는 학습부에 의해 수행되는 단계로서, 과거 시점 게임 로그들을 학습하는 단계이다. 위에서 설명한 것처럼, S120 단계를 통해 이루어지는 학습은 캠페인 노출 시간과 과거 캠페인에 따른 각 게임 유저의 제안 수락 여부 정보 중 적어도 하나를 이용하여 이루어질 수 있다. 여기서, S120 단계는 캠페인 노출 시간을 이용하여 수행될 경우, 도 10에 도시된 흐름에 따라 진행될 수 있다.Step S120 is a step performed by the learning unit, which learns past game logs. As described above, the learning performed in step S120 may be performed using at least one of the campaign exposure time and the information on whether the game user can accept the proposal according to the past campaign. Here, if step S 120 is performed using the campaign exposure time, it may proceed according to the flow shown in FIG. 10.
도 10에서, S121 단계는 과거 캠페인의 캠페인 노출 시간들을 시간의 크기에 따라 정렬하는 단계이고, S122 단계는 정렬 결과를 분석함으로써 제1 시간 및 제2 시간을 결정하는 단계이다.10, step S121 is a step of sorting campaign exposure times of past campaigns according to the size of time, and step S122 is a step of determining first and second times by analyzing the sorting result.
상술한 것처럼, 통상적으로 캠페인 노출 시간이 짧을수록 해당 캠페인에 대한 관심도가 낮고, 캠페인 노출 시간이 길수록 해당 캠페인에 대한 관심이 높다. 하지만, 모바일 게임의 관점에서 볼 때, 게임 유저는 게임 어플리케이션을 동작시킨 후, 사용자 단말기를 조작하는 것이 아닌 다른 행동을 할 수 있다. 이에 따라, 캠페인 노출 시간은 점차 증가하지만, 게임 유저는 캠페인을 보는 것이 아닌 다른 행위를 하는 것이므로 이러한 데이터가 적용되면 아래에서 설명되는 캠페인의 노출 여부 판단의 신뢰도에 악영향을 미칠 수 있다.As mentioned above, the shorter the campaign exposure time is, the lower the interest in the campaign, and the longer the campaign exposure time, the more interested in the campaign. However, from the viewpoint of the mobile game, the game user can perform actions other than the operation of the user terminal after operating the game application. Accordingly, although the campaign exposure time gradually increases, since the game user performs an action other than viewing the campaign, if such data is applied, the reliability of the determination of the exposure of the campaign described below may be adversely affected.
이에 따라, 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 방법은 S121 단계를 통해 캠페인 노출 시간들을 분석하고, 분석 결과를 기반으로 S122 단계를 통해 제1 시간과 제2 시간을 결정한다. 여기서, 제2 시간은 제1 시간보다 크다.Accordingly, the method of determining whether or not the campaign is exposed according to the embodiment of the present invention analyzes the campaign exposure times through step S121 and determines the first time and the second time based on the analysis result in step S122. Here, the second time is greater than the first time.
S123 단계는 제1 시간 미만이거나 상기 제2 시간을 초과하는 과거 캠페인의 캠페인 노출 시간들을 필터링하는 단계이다. 즉, S123 단계는 S122 단계를 통해 제1 시간과 제2 시간을 설정하고, 제1 시간과 제2 시간 사이의 범위를 벗어나는 캠페인 노출 시간들을 필터링하는 단계이다.Step S123 is a step of filtering campaign exposures of past campaigns that are less than the first time or exceed the second time. That is, the step S123 is a step of setting the first time and the second time through step S122, and filtering the campaign exposure times out of the range between the first time and the second time.
S124 단계는 제1 시간과 제2 시간 사이의 과거 캠페인의 제공에 따른 캠페인 노출 시간들을 학습하는 단계이다.Step S124 is a step of learning campaign exposure times according to provision of past campaigns between the first time and the second time.
위에서 설명한 것처럼, S120 단계는 캠페인 노출 시간을 이용한 방식 외에, 과거 캠페인의 제공에 따른 게임 유저의 제안 수락 여부를 이용하여 이루어지는 것도 가능하다. 이렇게 S120 단계가 게임 유저의 제안 수락 여부 정보들을 이용하여 이루어질 때의 동작은 도 11에 도시된다.As described above, in addition to the method using the campaign exposure time, step S120 may be performed using the acceptance of the proposal by the game user according to the provision of the past campaign. The operation when the step S120 is performed by using the game acceptance information of the game user is shown in FIG.
S221 단계는 게임 유저 별로 특징들을 정의하는 단계이다. 여기서, 유저 별특징은 게임 유저 레벨, 게임 내 재화량, 게임 내 재화 사용량, 구매 확률, 유저의 상태 정보, 캠페인 노출 시간, 게임 플레이 패턴 중 적어도 하나를 포함할 수 있다.Step S221 is a step of defining the features for each game user. Here, the user-specific characteristics may include at least one of a game user level, an in-game good, an in-game good, a purchase probability, a user's status information, a campaign exposure time, and a game play pattern.
S222 단계는 과거 시점 게임 로그들에서 각 게임 유저의 특징 값들 및 제안 수락 여부 정보를 추출하는 단계이고, S223 단계는 각 게임 유저의 특징 값들 및 제안 수락 여부 정보를 학습하는 단계이다. 여기서, S222 단계 및 S223 단계에 대한 설명은 도 8a를 참조로 상세히 언급하였으므로 중복되는 설명은 생략한다.Step S222 is a step of extracting feature values and proposal acceptance information of each game user in past game logs, and step S223 is a step of learning feature values and proposal acceptance information of each game user. Here, the description of the steps S222 and S223 has been described in detail with reference to FIG. 8A, and a duplicated description will be omitted.
S130 단계는 학습 결과를 근거로, 캠페인 그룹 별로 반응 확률 예측 모델을 생성하는 단계이다. 위에서 설명한 것처럼, 반응 확률 예측 모델은 S120 단계를 통한 학습 방식에 따라 캠페인 노출 시간과 제안 수락 여부 정보 중 적어도 하나를 통해 생성될 수 있고, 입력 값에 따라 상이한 반응 확률을 출력하는 모델이다. Step S130 is a step of generating a response probability prediction model for each campaign group based on the learning result. As described above, the response probability prediction model can be generated through at least one of the campaign exposure time and the proposal acceptance information according to the learning method through step S120, and outputs a different response probability according to the input value.
또한, 위에서 설명한 것처럼 반응 확률 예측 모델이 캠페인 노출 시간을 이용하여 생성될 경우, 반응 확률 예측 모델에서 반응 확률은 캠페인의 노출 시간이 제1 시간에 가까워질수록 작아지고, 캠페인 노출 시간이 제2 시간에 가까워질수록 커지도록 모델링될 수 있다. 또한, 반응 확률 예측 모델이 캠페인 노출 시간을 이용하여 생성될 경우, 반응 확률 예측 모델에서 제1 시간 미만이거나 제2 시간을 초과하는 캠페인 노출 시간에 대한 반응 확률은 0이거나 0에 근접한 값으로 모델링될 수 있다.Also, when the response probability prediction model is generated using the campaign exposure time as described above, the response probability in the response probability prediction model becomes smaller as the exposure time of the campaign approaches the first time, As shown in FIG. Also, when the response probability prediction model is generated using the campaign exposure time, the response probability with respect to the campaign exposure time that is less than the first time or exceeds the second time in the response probability prediction model is 0 or is modeled as a value close to 0 .
S140 단계는 요청 수신부에 의해 수행되는 단계로서, 사용자 단말기로부터 노출 여부 질의 신호를 수신하는 단계이다. Step S140 is a step performed by the request reception unit, which receives the exposure / non-availability query signal from the user terminal.
S150 단계는 게임 로그 수집부 또는 반응 확률 산출부에 의해 수행되는 단계로서, 사용자 단말기의 게임 유저에 대한 과거 시점 게임 로그를 수집하고, 수집한 과거 시점 게임 로그에서 대상 캠페인에 대한 반응 확률 판단 인자를 추출하는 단계이다. 위에서 설명한 것처럼 사용자 단말기의 게임 유저에 대한 게임 로그는 서버 저장부에 존재하고, S140 단계를 통해 노출 여부 질의 신호를 수신할 때, 노출 여부 질의 신호에 포함된 게임 유저의 식별자를 근거로 서버 저장부에서 호출될 수 있다. Step S150 is a step performed by the game log collecting unit or the response probability calculating unit. The collected game log collects past game logs for the game user of the user terminal, and determines reaction probability determination factors for the target campaign in the collected past game logs Respectively. As described above, the game log for the game user of the user terminal exists in the server storage unit. When receiving the exposure / non-availability query signal through step S140, the game log is stored in the server storage unit based on the identifier of the game user included in the exposure / Lt; / RTI >
또한, S150 단계를 통해 이루어지는 반응 확률 판단 인자의 추출은 반응 확률 예측 모델이 어떠한 정보를 이용하여 생성되었는지에 따라 캠페인 노출 시간과 제안 수락 여부 정보 중 적어도 하나에 대해 이루어질 수 있다. In addition, the extraction of the response probability determination factor through step S150 may be performed for at least one of the campaign exposure time and the proposal acceptance information depending on which information is used to generate the response probability prediction model.
S160 단계는 반응 확률 산출부에 의해 수행되는 단계로서, 대상 캠페인에 대한 게임 유저의 반응 확률을 산출하는 단계이다. 구체적으로, S160 단계는 대상 캠페인이 속한 캠페인 그룹의 반응 확률 예측 모델에 게임 유저의 반응 확률 판단 인자를 적용함으로써 대상 캠페인에 대한 상기 게임 유저의 반응 확률을 산출하는 단계이다.Step S160 is a step performed by the reaction probability calculation unit, which calculates a reaction probability of the game user for the target campaign. Specifically, step S160 is a step of calculating a reaction probability of the game user with respect to the target campaign by applying a reaction probability determination factor of the game user to the reaction probability prediction model of the campaign group to which the target campaign belongs.
반응 확률 예측 모델이 캠페인 노출 시간들을 근거로 생성된 경우, S160 단계에서, 반응 확률 예측 모델로의 입력 값인 반응 확률 판단 인자는 사용자 단말기의 게임 유저에게 제공된 과거 캠페인들의 캠페인 노출 시간들을 근거로 도출될 수 있다. 예를 들어, 반응 확률 예측 모델로 입력되는 반응 확률 판단 인자는 해당 게임 유저의 캠페인 노출 시간들의 평균값이나, 별도의 다른 방식을 통해 연산된 값일 수 있다.If the response probability prediction model is generated based on the campaign exposure times, the reaction probability determination factor, which is an input value to the reaction probability prediction model, is derived based on the campaign exposure times of the past campaigns provided to the game user of the user terminal . For example, the response probability judgment factor input into the reaction probability prediction model may be an average value of the campaign exposure times of the corresponding game user, or a value calculated through another method.
S170 단계는 노출 여부 결정부에 의해 수행되는 단계로서, 반응 확률을 이용하여 대상 캠페인의 노출 여부를 결정하는 단계이다. 상술한 것처럼, S170 단계는 크게 2개의 방식으로 이루어질 수 있다. 이들 방식 중 제1 방식은 랜덤 값을 이용한 방식이고, 제2 방식은 노출 여부 판단 값을 이용한 방식이다. 먼저, 도 12를 참조로 제1 방식에 따른 대상 캠페인의 노출 여부의 결정 단계에 대한 설명이 이루어진다.Step S170 is a step performed by the exposure determination unit, which determines whether the target campaign is exposed using the response probability. As described above, step S170 can be largely performed in two ways. Of these methods, the first method is a method using a random value, and the second method is a method using an exposure determination value. First, with reference to FIG. 12, a step of determining whether to expose a target campaign according to the first scheme is explained.
S171 단계는 랜덤 값을 도출하는 단계이다. 구체적으로, S171 단계는 랜덤 함수를 통해 0에서 1 사이의 랜덤 값을 도출하는 단계이다. 여기서, 랜덤 값은 0.xxx와 같이 소수의 값으로 도출될 수 있고, 소수의 자릿수는 특정 개수로 제한되지 않는다.Step S171 is a step of deriving a random value. Specifically, step S171 is a step of deriving a random value between 0 and 1 through a random function. Here, the random value can be derived as a prime number such as 0.xxx, and the prime number of the prime number is not limited to a specific number.
S172 단계는 S160 단계를 통해 산출된 대상 캠페인에 대한 게임 유저의 반응 확률과 S171 단계를 통해 산출한 랜덤 값을 비교하는 단계이다. 구체적으로, S172 단계는 반응 확률이 랜덤 값을 초과하는지 판단하는 단계이다. 즉, S172 단계는 S160 단계를 통해 도출된 반응 확률을 기준 크기로 두고, 랜덤 값이 이 기준 크기 내에 들어오면 대상 캠페인을 노출할 것으로 결정하는 것이고(S173 단계), 반대로 랜덤 값이 이 기준 크기를 벗어나는 경우 대상 캠페인을 노출하지 않을 것으로 결정하는 것이다(S176 단계).Step S172 is a step of comparing the response probability of the game user with respect to the target campaign calculated through step S160 and the random value calculated through step S171. Specifically, step S172 is a step of determining whether the probability of reaction exceeds a random value. That is, in step S172, it is determined that the response probability derived through step S160 is a reference size, and when the random value falls within the reference size, the target campaign is exposed (step S173). On the contrary, It is determined that the target campaign will not be exposed (step S176).
다만 S172 단계를 통한 판단만으로 대상 캠페인의 노출 여부를 결정할 경우 해당 게임 유저와, 이 게임 유저에 유사한 성향을 가진 다른 게임 유저들의 특성만이 반영된 것이므로, 해당 게임 유저만을 생각해보면 그 맞춤화가 덜 된 것으로 볼 수 있다. 또한, 위에서 설명한 것처럼 각 게임 유저는 특정 캠페인 그룹에만 반응 확률(예를 들어, 관심도)이 높은 것으로 판단되어, 해당 캠페인 그룹들에 포함된 캠페인들만 너무 잦은 빈도로 게임 유저에 노출되는 상황이 존재할 수 있고, 또한 다른 캠페인 그룹의 반응 확률이 너무 낮을 때에는, 해당 캠페인 그룹에 포함된 캠페인들은 해당 게임 유저에 너무 노출되지 않는 상황이 발생할 수 있다.However, when determining whether to expose the target campaign by only the determination in step S172, only the characteristics of the game user and other game users having a similar tendency to the game user are reflected, so that it is less customized can see. In addition, as described above, it is determined that each game user has a high probability of response (for example, interest level) only in a specific campaign group, so that only the campaigns included in the corresponding campaign groups may be exposed to the game user with frequent frequency And the probability of the other campaign group is too low, the campaigns included in the campaign group may not be exposed to the corresponding game user.
이에 따라, 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 방법은 대상 캠페인의 노출 여부를 결정할 때, 반응 확률뿐만 아니라, 대상 캠페인이 속한 캠페인 그룹 중 해당 게임 유저에게 마지막으로 노출된 캠페인의 최근 노출 시각을 더 고려하는 것을 특징으로 한다.Accordingly, when determining whether to expose a target campaign according to an exemplary embodiment of the present invention, a method of determining whether a target campaign is exposed may include not only a response probability but also the latest exposure of the last exposed campaign among the campaign groups to which the target campaign belongs And further considers time.
이에 따라, S173 단계를 통해 대상 캠페인을 노출할 것으로 결정하였더라도, S174 단계를 통해 현재 시각과 최근 노출 시각 간의 차가 최소 노출 빈도 시간을 초과하는지 판단하는 과정을 더 수행할 수 있다. 마찬가지로, S176 단계를 통해 대상 캠페인을 노출하지 않을 것으로 결정하였더라도, S177 단계를 통해 현재 시각과 최근 노출 시각 간의 차가 최대 노출 빈도 시간을 초과하는지 판단하는 과정을 더 수행할 수 있다.Accordingly, even if it is determined in step S173 that the target campaign is to be exposed, the process of determining whether the difference between the current time and the latest exposure time exceeds the minimum exposure time through step S174 may be performed. Likewise, even if it is determined in step S176 that the target campaign is not to be exposed, the process of determining whether the difference between the current time and the latest exposure time exceeds the maximum exposure frequency time through step S177 may be performed.
S174 단계와 S177 단계를 통한 판단 과정을 더 수행함으로써, 대상 캠페인의 노출은 해당 게임 유저의 성향과, 해당 게임 유저에게 제공된 캠페인의 최근 노출 시점을 고려함으로써 보다 맞춤화되어 이루어질 수 있다.By further performing the determination process through steps S174 and S177, the exposure of the target campaign can be further customized by considering the tendency of the game user and the latest exposure time of the campaign provided to the game user.
즉, S173 단계를 통해 대상 캠페인을 노출할 것으로 결정하였더라도, S174 단계를 통한 판단 결과 현재 시각과 최근 노출 시각 사이의 차가 최소 노출 빈도 시간 이하라면(즉, 대상 캠페인 또는 이의 캠페인 그룹에 포함된 캠페인이 특정 기간 이내에 제공되었다면), S175b 단계가 수행되어 해당 대상 캠페인을 노출하지 않을 것으로 변경할 수 있다. 물론, S173 단계에서 대상 캠페인을 노출할 것으로 결정하였고, S174 단계에서도 현재 시각과 최근 노출 시각 사이의 차가 최소 노출 빈도 시간을 초과하면 S175a 단계가 수행되어, 대상 캠페인을 노출할 것으로 확정할 수 있다.That is, even if it is determined in step S173 that the target campaign is to be exposed, if it is determined in step S174 that the difference between the current time and the latest exposure time is less than the minimum exposure time, If it is provided within a specific period), step S175b may be performed to change the target campaign to not be exposed. Of course, it is determined in step S173 that the target campaign is to be exposed. If the difference between the current time and the latest exposure time exceeds the minimum exposure time in step S174, step S175a is performed and the target campaign is determined to be exposed.
마찬가지로, S176 단계를 통해 대상 캠페인을 노출하지 않을 것으로 결정하였더라도, S177 단계를 통한 판단 결과 현재 시각과 최근 노출 시각 사이의 차가 최대 노출 빈도 시간을 초과하면(즉, 대상 캠페인 또는 이의 캠페인 그룹에 포함된 캠페인이 특정 기간을 초과하여 제공되지 않았다면), S178a 단계가 수행되어 대상 캠페인을 노출할 것으로 변경할 수 있다. 물론, S176 단계에서 대상 캠페인을 노출하지 않을 것으로 결정하였고, S177 단계에서도 현재 시각과 최근 노출 시각 사이의 차가 최대 노출 빈도 시간 이하이면, S178b 단계가 수행되어, 대상 캠페인을 노출하지 않을 것으로 확정할 수 있다.Similarly, even if it is determined in step S176 that the target campaign is not to be exposed, if it is determined in step S177 that the difference between the current time and the latest exposure time exceeds the maximum exposure frequency time (i.e., If the campaign has not been provided beyond a certain period of time), step S178a may be performed to change the target campaign to be exposed. If it is determined in step S176 that the target campaign is not to be exposed in step S176, and if the difference between the current time and the latest exposure time is less than the maximum exposure frequency time in step S177, step S178b is performed to determine that the target campaign is not to be exposed have.
도 5를 참조로 설명한 것처럼, 랜덤 값을 이용한 방식은 관심도(예를 들어, 반응 확률)가 낮은 캠페인은 그 빈도수를 낮출 수 있는 점에서, 본 발명의 목적을 달성할 수 있다. 하지만, 특정 캠페인 그룹에 대한 반응 확률이 너무 낮은 경우, 거의 대부분의 게임 유저들에게 해당 캠페인이 아예 노출되지 않는 문제점이 발생할 수 있다.As described with reference to FIG. 5, the method using a random value can achieve the object of the present invention in that a campaign with a low degree of interest (for example, a response probability) can lower its frequency. However, if the response probability for a particular campaign group is too low, the problem may occur that almost all the game users are not exposed to the campaign at all.
따라서, S170 단계는 도 13에 도시된 것처럼 랜덤 값 대신 노출 여부 판단 값을 결정하고, 반응 확률과 노출 여부 판단 값을 비교하며, 이 비교 결과를 이용하여 이루어지는 것이 바람직하다. 이를 위해, S170 단계는 노출 여부 판단 값을 결정하는 단계(S271 단계)를 포함할 수 있다. S271 단계에서 노출 여부 판단 값은 다양한 방식으로 결정될 수 있다. 예를 들어, S271 단계는 전체 게임 유저들 중 미리 설정된 상위 퍼센트에 해당하는 게임 유저의 반응 확률을 노출 여부 판단 값으로 결정함으로써 이루어질 수 있다. Therefore, in step S170, it is preferable that the exposure determination value is determined instead of the random value, the response probability is compared with the exposure determination value, and the comparison result is used. For this, step S170 may include determining the exposure determination value (step S271). In step S271, the exposure determination value may be determined in various manners. For example, in step S271, a response probability of a game user corresponding to a predetermined upper percentage of all game users may be determined as an exposure determination value.
그리고, S272 단계 내지 S278 단계는 도 12에 도시된 S172 단계 내지 S178 단계와 비교 대상에서만 일부 차이가 있을 뿐 실질적으로 동일한 동작이 이루어진다. 이에 따라, S272 단계 내지 S278 단계에 대한 설명은 생략한다.The steps S272 through S278 differ substantially from the steps S172 through S178 shown in FIG. 12, but substantially the same operations are performed. Accordingly, the description of steps S272 through S278 will be omitted.
다시 도 9를 참조하면, S180 단계는 S170 단계를 통해 결정된 대상 캠페인의 노출 여부에 따라 노출 제어 정보를 생성하고, 이를 사용자 단말기로 송신하는 단계이다.Referring again to FIG. 9, in step S180, the exposure control information is generated according to whether the target campaign determined through step S170 is exposed, and is transmitted to the user terminal.
이처럼, 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 방법 및 서버를 이용하면, 게임 유저 별로 게임 유저에 맞춤화된, 캠페인 노출 빈도 조절이 가능하다. 각 게임 유저의 반응 확률에 따라 캠페인들의 빈도수가 조절되므로 각 게임 유저는 자신이 관심이 있어하는 캠페인들을 제공받을 수 있어, 게임 유저들을 귀찮게 하는 상황을 벗어날 수 있다. As described above, by using the method and server for judging whether or not the campaign is exposed according to the embodiment of the present invention, it is possible to control the frequency of the campaign exposure customized to the game user for each game user. The frequency of the campaigns is adjusted according to the probability of the reaction of each game user, so that each game user can be provided with the campaigns he is interested in, and the situation of annoying the game users can be avoided.
뿐만 아니라, 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 방법 및 서버에 따르면, 각 게임 유저에게 제공된 캠페인 그룹 별로, 캠페인의 최근 노출 시각 정보를 활용하여, 동일한 그룹에 속한 캠페인들이 너무 잦게 노출되는 상황, 그리고 특정 캠페인 그룹에 속한 캠페인들이 너무 오랫동안 노출되지 않는 상황 모두를 고려할 수 있다. 이에 따라, 모바일 게임 제공자와 게임 유저 모두가 만족할 수 있는 게임 진행이 가능할 것으로 기대된다.In addition, according to the method and server for determining whether or not a campaign is exposed according to an embodiment of the present invention, campaigns belonging to the same group are frequently exposed using frequent exposure time information of the campaign for each campaign group provided to each game user Situations, and situations in which campaigns in a particular campaign group are not exposed for too long. As a result, it is expected that a game which satisfies both mobile game providers and game users will be possible.
또한, 위에서는 본 발명의 일 실시예에 따른 캠페인 노출 여부 판단 방법 및 서버가 캠페인 그룹에 포함된 복수의 캠페인들에 따른 게임 로그들을 활용하는 것으로 설명하였다. 하지만 이는 예시일 뿐이고, 캠페인 그룹 단위가 아닌 캠페인 단위로 확장하여 운영할 수 있다.In the above description, the method of determining whether or not the campaign is exposed according to an embodiment of the present invention and the server utilizes game logs according to a plurality of campaigns included in the campaign group. However, this is only an example, and can be expanded and operated on a campaign basis rather than a campaign group basis.
본 발명에 따른 상기 예시적인 방법들은 프로세서에 의해 실행되는 프로그램 명령들, 소프트웨어 모듈, 마이크로 코드, 컴퓨터(정보 처리 기능을 갖는 장치를 모두 포함함)로 읽을 수 있는 기록 매체에 기록된 컴퓨터 프로그램 제품, 애플리케이션, 논리 회로들, 주문형 반도체, 또는 펌웨어 등 다양한 방식으로 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD, DVD, 자기 테이프, 하드 디스크, 플로피 디스크, 하드 디스크, 광데이터 저장 장치 등이 있으며, 이에 제한되는 것은 아니다. 또한, 컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.The above exemplary methods according to the present invention may be implemented in a computer program product, a computer program product recorded on a recording medium readable by a computer (including all devices having an information processing function) May be implemented in a variety of ways including, but not limited to, applications, logic circuits, custom semiconductors, or firmware. Examples of the computer-readable recording medium include, but are not limited to, ROM, RAM, CD, DVD, magnetic tape, hard disk, floppy disk, hard disk and optical data storage. In addition, the computer-readable recording medium may be distributed over network-connected computer systems so that computer readable codes can be stored and executed in a distributed manner.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다.The foregoing description is merely illustrative of the present invention, and various modifications may be made by those skilled in the art without departing from the spirit of the present invention.
[부호의 설명][Description of Symbols]
100 : 사용자 단말기 110 : 캠페인 노출 시점 판단부100: User terminal 110: Campaign exposure time determination unit
120 : 노출 대상 캠페인 선택부 130 : 노출 여부 질의부120: Exposure object campaign selection unit 130: Exposure object query unit
140 : 단말 통신부 150 : 캠페인 노출부140: terminal communication unit 150:
300 : 노출 제어 서버 310 : 게임 로그 수집부300: Exposure control server 310: Game log collection unit
320 : 서버 저장부 330 : 학습부320: server storage unit 330: learning unit
340 : 모델 생성부 350 : 요청 수신부340: model generation unit 350: request reception unit
360 : 서버 통신부 370 : 반응 확률 산출부360: server communication unit 370: response probability calculation unit
380 : 노출 여부 결정부380: Exposure determination unit
1000 : 캠페인 노출 여부 판단 시스템1000: Campaign exposure determination system
Claims (17)
- 노출 제어 서버가 게임 어플리케이션이 설치된 사용자 단말기에 제공될 대상 캠페인의 노출 여부를 판단하는 방법으로서,A method for an exposure control server to determine whether a target campaign to be provided to a user terminal equipped with a game application is exposed,캠페인 그룹 별로 복수의 게임 유저들의 과거 시점 게임 로그들을 수집하는 단계;Collecting past game logs of a plurality of game users for each campaign group;상기 과거 시점 게임 로그들을 학습하는 단계;Learning the past game logs;상기 학습의 결과를 근거로, 상기 캠페인 그룹 별로 반응 확률 예측 모델을 생성하는 단계;Generating a response probability prediction model for each campaign group based on a result of the learning;상기 사용자 단말기로부터 상기 대상 캠페인의 노출 여부 질의 신호를 수신하고, 상기 사용자 단말기의 게임 유저에 대한 과거 시점 게임 로그에서 상기 대상 캠페인에 대한 반응 확률 판단 인자를 추출하는 단계;A step of receiving a query signal of the target campaign from the user terminal and extracting a response probability determination factor for the target campaign from a past point game log for a game user of the user terminal;상기 대상 캠페인이 속한 캠페인 그룹의 반응 확률 예측 모델에 상기 게임 유저의 반응 확률 판단 인자를 적용함으로써 상기 대상 캠페인에 대한 상기 게임 유저의 반응 확률을 산출하는 단계; 및Calculating a response probability of the game user to the target campaign by applying a reaction probability determination factor of the game user to a reaction probability prediction model of a campaign group to which the target campaign belongs; And상기 반응 확률을 이용하여 상기 대상 캠페인의 노출 여부를 결정하는 단계를 포함하는 것을 특징으로 하는 캠페인 노출 여부 판단 방법.And determining whether to expose the target campaign using the response probability.
- 제1항에 있어서,The method according to claim 1,상기 과거 시점 게임 로그는 상기 게임 유저에게 제공된 과거 캠페인의 캠페인 노출 시간을 포함하고, The past game log includes a campaign exposure time of a past campaign provided to the game user,상기 과거 시점 게임 로그들을 학습하는 단계는 상기 복수의 게임 유저들에게 제공된 과거 캠페인의 캠페인 노출 시간들을 이용하여 이루어지는 것을 특징으로 하는 캠페인 노출 여부 판단 방법.Wherein the learning of the past game logs is performed using campaign exposure times of past campaigns provided to the plurality of game users.
- 제2항에 있어서,3. The method of claim 2,상기 과거 시점 게임 로그들을 학습하는 단계는,The step of learning the past game logs may include:상기 과거 캠페인의 캠페인 노출 시간들을 시간의 크기에 따라 정렬하는 단계;Arranging campaign exposures of the past campaigns according to size of time;상기 정렬 결과를 분석함으로써 제1 시간 및 제2 시간을 결정하는 단계; 및Determining a first time and a second time by analyzing the result of the alignment; And상기 제1 시간 미만이거나 상기 제2 시간을 초과하는 상기 과거 캠페인의 캠페인 노출 시간들을 필터링하는 단계를 포함하는 것을 특징으로 하는 캠페인 노출 여부 판단 방법.Filtering the campaign exposure times of the past campaigns that are less than the first time or exceed the second time.
- 제3항에 있어서,The method of claim 3,상기 캠페인 그룹 별 반응 확률 예측 모델에서 반응 확률은 상기 캠페인 노출 시간이 상기 제1 시간에 가까워질수록 작아지고, 상기 캠페인 노출 시간이 상기 제2 시간에 가까워질수록 커지도록 모델링되는 것을 특징으로 하는 캠페인 노출 여부 판단 방법.Wherein the response probability in the response probability prediction model for each campaign group is modeled such that the response probability decreases as the campaign exposure time approaches the first time and increases as the campaign exposure time approaches the second time. How to Determine If You Are Exposed.
- 제3항에 있어서,The method of claim 3,상기 캠페인 그룹 별 반응 확률 예측 모델을 생성하는 단계는,Wherein the step of generating the response probability prediction model for each campaign group comprises:상기 제1 시간 미만이거나 상기 제2 시간을 초과하는 캠페인 노출 시간들에 대한 반응 확률은 0으로 모델링하는 것을 특징으로 하는 캠페인 노출 여부 판단 방법.Wherein the response probability for the campaign exposure times is less than the first time or is greater than the second time.
- 제2항에 있어서,3. The method of claim 2,상기 반응 확률 판단 인자는 상기 사용자 단말기의 게임 유저에게 제공된 과거 캠페인들의 캠페인 노출 시간들을 근거로 도출되는 것을 특징으로 하는 캠페인 노출 여부 판단 방법.Wherein the response probability determination factor is derived based on campaign exposure times of past campaigns provided to a game user of the user terminal.
- 제1항에 있어서,The method according to claim 1,상기 과거 시점 게임 로그는 상기 게임 유저에게 제공된 과거 캠페인에 따른 제안 수락 여부 정보를 포함하고, The past game log includes information on whether or not to accept a proposal according to a past campaign provided to the game user,상기 과거 시점 게임 로그들을 학습하는 단계는 상기 복수의 게임 유저들의 제안 수락 여부 정보들을 이용하여 이루어지는 것을 특징으로 하는 캠페인 노출 여부 판단 방법.Wherein the step of learning the past game logs is performed using information on whether to accept the proposals of the plurality of game users.
- 제7항에 있어서,8. The method of claim 7,상기 과거 시점 게임 로그들을 학습하는 단계는,The step of learning the past game logs may include:상기 과거 시점 게임 로그들에서 각 게임 유저의 특징 값들 및 제안 수락 여부 정보를 추출하는 단계; 및Extracting feature values and proposal acceptance information of each game user in the past game logs; And상기 각 게임 유저의 특징 값들 및 제안 수락 여부 정보를 학습하는 단계를 포함하는 것을 특징으로 하는 캠페인 노출 여부 판단 방법. And learning the feature values and the proposal acceptability information of each of the game users.
- 제8항에 있어서,9. The method of claim 8,상기 특징 값들은 게임 유저들의 미리 정의된 특징들에 대한 값들을 나타내고, 상기 특징들은 게임 유저 레벨, 게임 내 재화량, 게임 내 재화 사용량, 구매 확률, 유저의 상태 정보, 캠페인 노출 시간, 게임 플레이 패턴 중 적어도 하나를 포함하는 캠페인 노출 여부 판단 방법.The feature values represent values for predefined features of game users, and the features include game user level, in-game good, in-game good, purchase probability, user status information, campaign exposure time, The method comprising the steps of:
- 제1항에 있어서,The method according to claim 1,상기 대상 캠페인의 노출 여부를 결정하는 단계는,Wherein the step of determining whether to expose the target campaign comprises:노출 여부 판단 값을 결정하는 단계; 및Determining an exposure determination value; And상기 게임 유저의 반응 확률이 상기 노출 여부 판단 값을 초과할 때 상기 대상 캠페인을 노출할 것으로 결정하는 단계를 포함하는 것을 캠페인 노출 여부 판단 방법.And determining that the target campaign is to be exposed when a response probability of the game user exceeds the exposure determination value.
- 제10항에 있어서,11. The method of claim 10,상기 노출 여부 판단 값을 결정하는 단계는,The step of determining the exposure determination value includes:전체 게임 유저들 중 미리 설정된 상위 퍼센트에 해당하는 게임 유저의 반응 확률을 노출 여부 판단 값으로 결정함으로써 이루어지는 캠페인 노출 여부 판단 방법.And determining a response probability of a game user corresponding to a predetermined upper percentage of all game users as an exposure determination value.
- 제10항에 있어서,11. The method of claim 10,상기 게임 유저의 반응 확률이 상기 노출 여부 판단 값을 초과하고, 현재 시각과 최근 노출 시각 간의 차가 최소 노출 빈도 시간을 초과할 때 상기 대상 캠페인을 노출할 것으로 확정하는 단계를 더 포함하고, 상기 최근 노출 시각은 상기 대상 캠페인이 포함된 캠페인 그룹 중 상기 사용자 단말기에 마지막으로 제공된 캠페인의 제공 시각인 캠페인 노출 여부 판단 방법.Determining that the target campaign is to be exposed when a response probability of the game user exceeds the exposure determination value and a difference between the current time and the latest exposure time exceeds a minimum exposure frequency time, Wherein the time is a presentation time of a campaign last provided to the user terminal among the campaign groups including the target campaign.
- 제10항에 있어서,11. The method of claim 10,상기 게임 유저의 반응 확률이 상기 노출 여부 판단 값 이하이고, 현재 시각과 최근 노출 시각 간의 차가 최대 노출 빈도 시간을 초과할 때 상기 대상 캠페인을 노출할 것으로 확정하는 단계를 더 포함하는 캠페인 노출 여부 판단 방법.Determining that the target campaign is to be exposed when the response probability of the game user is less than the exposure determination value and the difference between the current time and the latest exposure time exceeds a maximum exposure frequency time, .
- 제1항에 있어서,The method according to claim 1,상기 대상 캠페인의 노출 여부를 결정하는 단계는,Wherein the step of determining whether to expose the target campaign comprises:랜덤 함수를 통해 0에서 1 사이의 랜덤 값을 도출하는 단계; 및Deriving a random value between 0 and 1 through a random function; And상기 게임 유저의 반응 확률이 상기 랜덤 값을 초과할 경우 상기 대상 캠페인을 노출할 것으로 결정하는 단계를 포함하는 캠페인 노출 여부 판단 방법.And determining to expose the target campaign if the response probability of the game user exceeds the random value.
- 캠페인 그룹 별로 복수의 게임 유저들의 과거 시점 게임 로그들을 수집하는 게임 로그 수집부;A game log collecting unit collecting past game logs of a plurality of game users for each campaign group;상기 과거 시점 게임 로그들을 학습하는 학습부; A learning unit for learning the past game logs;상기 학습의 결과를 근거로, 상기 캠페인 그룹 별로 반응 확률 예측 모델을 생성하는 모델 생성부;A model generating unit for generating a response probability prediction model for each of the campaign groups based on a result of the learning;상기 사용자 단말기로부터 노출 여부 질의 신호를 수신하는 요청 수신부;A request receiving unit for receiving an exposure / non-contact query signal from the user terminal;상기 사용자 단말기의 게임 유저에 대한 과거 시점 게임 로그에서 상기 대상 캠페인에 대한 반응 확률 판단 인자를 추출하고, 상기 대상 캠페인이 속한 캠페인 그룹의 반응 확률 예측 모델에 상기 게임 유저의 반응 확률 판단 인자를 적용함으로써 상기 대상 캠페인에 대한 상기 게임 유저의 반응 확률을 산출하는 반응 확률 산출부; 및Extracting a response probability determination factor for the target campaign from the past game log of the user of the user terminal and applying a reaction probability determination factor of the game user to the reaction probability prediction model of the campaign group to which the target campaign belongs A response probability calculation unit for calculating a response probability of the game user to the target campaign; And상기 반응 확률을 이용하여 상기 대상 캠페인의 노출 여부를 결정하는 노출 여부 결정부를 포함하고,And an exposure determining unit determining whether to expose the target campaign using the response probability,제1항 내지 제14항 중 어느 한 항에 따른 방법의 각 단계를 실행하는 노출 제어 서버.An exposure control server for executing each step of the method according to any one of claims 1 to 14.
- 제1항 내지 제14항 중 어느 한 항의 방법을 컴퓨터에서 실행시키기 위하여 컴퓨터 판독가능한 기록 매체에 저장된 컴퓨터 프로그램.15. A computer program stored in a computer-readable medium for causing a computer to execute the method of any one of claims 1 to 14.
- 제1항 내지 제14항 중 어느 한 항의 방법을 수행하는 컴퓨터 프로그램이 기록된 컴퓨터로 읽을 수 있는 기록매체.A computer-readable recording medium having recorded thereon a computer program for performing the method of any one of claims 1 to 14.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0137604 | 2017-10-23 | ||
KR1020170137604A KR101877688B1 (en) | 2017-10-23 | 2017-10-23 | Method, server and computer program for determining exposure of campaign |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019083142A1 true WO2019083142A1 (en) | 2019-05-02 |
Family
ID=62919745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/009452 WO2019083142A1 (en) | 2017-10-23 | 2018-08-17 | Method, server, and computer program for determining whether campaign is exposed |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101877688B1 (en) |
WO (1) | WO2019083142A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6826217B1 (en) * | 2020-01-28 | 2021-02-03 | 株式会社バンダイ | Programs, terminals, game execution devices and methods |
KR102510209B1 (en) * | 2021-08-17 | 2023-03-14 | 노현철 | Optional discussion lecture platform server using metaverse |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010077057A (en) * | 2000-01-31 | 2001-08-17 | 이동훈 | Advertisment system and method using on-line game |
KR20090020065A (en) * | 2007-08-22 | 2009-02-26 | 주식회사 아이지에이웍스 | System and method for interactive advertisement during game play |
US20090327076A1 (en) * | 2008-06-27 | 2009-12-31 | Microsoft Corporation | Ad targeting based on user behavior |
KR20100019016A (en) * | 2008-08-08 | 2010-02-18 | 주식회사 아이지에이웍스 | Game advertisements system based on the amount of exposure of the advertisement and method thereof |
KR20110034174A (en) * | 2009-09-28 | 2011-04-05 | 주식회사 다음커뮤니케이션 | Method and server apparatus for providing advertizing service |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20110001451A (en) * | 2009-06-30 | 2011-01-06 | (주)디브로스 | Method and system for measuring advertisement exposed on a game and recording media therefor |
KR101105915B1 (en) * | 2009-08-10 | 2012-01-17 | 엔에이치엔(주) | Method for deciding exposure rank of game advertisement displayed on web page, method for displaying of game advertisement, and record media recoded program for implement thereof |
KR101164885B1 (en) * | 2010-02-10 | 2012-07-19 | 남기원 | Advertisement data output control system and method of the same over network |
KR101264626B1 (en) * | 2011-04-22 | 2013-05-24 | 주식회사 네오위즈인터넷 | Server and the method for putting an advertisement based on information related to user in the game ranking list |
KR101123163B1 (en) * | 2011-08-17 | 2012-03-20 | 주식회사 감성 | Method and system for servicing advertisement by using game |
KR101596458B1 (en) * | 2014-09-19 | 2016-02-24 | 주식회사 퍼플즈 | Mobile game device, mobile game management system |
KR101666970B1 (en) * | 2015-09-15 | 2016-10-17 | 주식회사 칸마루 | Management system for integrating promotion event, and method for the same |
-
2017
- 2017-10-23 KR KR1020170137604A patent/KR101877688B1/en active IP Right Grant
-
2018
- 2018-08-17 WO PCT/KR2018/009452 patent/WO2019083142A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010077057A (en) * | 2000-01-31 | 2001-08-17 | 이동훈 | Advertisment system and method using on-line game |
KR20090020065A (en) * | 2007-08-22 | 2009-02-26 | 주식회사 아이지에이웍스 | System and method for interactive advertisement during game play |
US20090327076A1 (en) * | 2008-06-27 | 2009-12-31 | Microsoft Corporation | Ad targeting based on user behavior |
KR20100019016A (en) * | 2008-08-08 | 2010-02-18 | 주식회사 아이지에이웍스 | Game advertisements system based on the amount of exposure of the advertisement and method thereof |
KR20110034174A (en) * | 2009-09-28 | 2011-04-05 | 주식회사 다음커뮤니케이션 | Method and server apparatus for providing advertizing service |
Also Published As
Publication number | Publication date |
---|---|
KR101877688B1 (en) | 2018-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020180013A1 (en) | Apparatus for vision and language-assisted smartphone task automation and method thereof | |
WO2020085798A1 (en) | Method, device, and computer program product for processing voice instruction | |
WO2014178496A1 (en) | Advertising system and method therefor using advertising module included in application | |
WO2013069893A1 (en) | Instant messaging service and method for providing plurality of services extended from instant messaging service | |
EP3356914A1 (en) | Predicting text input based on user demographic information and context information | |
WO2020096172A1 (en) | Electronic device for processing user utterance and controlling method thereof | |
EP3304942A1 (en) | Method and apparatus for sharing application | |
WO2013183836A1 (en) | Method and apparatus for controlling character by inputting pattern | |
WO2016200018A1 (en) | Method and apparatus for sharing application | |
WO2019083142A1 (en) | Method, server, and computer program for determining whether campaign is exposed | |
WO2013157718A1 (en) | Method and device for controlling automatic game play | |
WO2024154885A1 (en) | Method for dynamically setting communication channel for transmitting chat messages to nearby users according to movement of user, and instant messaging system for performing same | |
WO2021085812A1 (en) | Electronic apparatus and method for controlling same | |
WO2013180474A1 (en) | System and method for providing location-based service | |
WO2018080270A1 (en) | Method for generating animation information, and method, application and system for displaying animation on user terminal | |
WO2013133515A1 (en) | Method and server for changing item using recommended item in online game | |
WO2020231001A2 (en) | Service provision device and method supporting advertisement-related dynamic rewards, and service provision system comprising same | |
WO2019022344A1 (en) | Apparatus and method for replacing and outputting advertisement | |
WO2013100401A1 (en) | Online-game item information renewal method, item purchase method, and item information renewal server | |
WO2019039665A1 (en) | Chatting system including interactive function and method for providing chatting service | |
WO2020022645A1 (en) | Method and electronic device for configuring touch screen keyboard | |
KR20190045043A (en) | Method, server and computer program for determining exposure of campaign | |
WO2013085114A1 (en) | Method and server for providing online game regulation service | |
WO2013062153A1 (en) | Method and apparatus for managing item lottery service | |
WO2013085189A1 (en) | Method and server for providing item usage service |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18869749 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18869749 Country of ref document: EP Kind code of ref document: A1 |