WO2019081237A1 - Kolbenverdichter - Google Patents

Kolbenverdichter

Info

Publication number
WO2019081237A1
WO2019081237A1 PCT/EP2018/077971 EP2018077971W WO2019081237A1 WO 2019081237 A1 WO2019081237 A1 WO 2019081237A1 EP 2018077971 W EP2018077971 W EP 2018077971W WO 2019081237 A1 WO2019081237 A1 WO 2019081237A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure chamber
piston
cylinder
annular
compressor
Prior art date
Application number
PCT/EP2018/077971
Other languages
English (en)
French (fr)
Inventor
Dietmar Uhlmann
Dirk SCHNITTGER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2019081237A1 publication Critical patent/WO2019081237A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • F04B39/041Measures to avoid lubricant contaminating the pumped fluid sealing for a reciprocating rod
    • F04B39/045Labyrinth-sealing between piston and cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0443Draining of the housing; Arrangements for handling leaked fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0448Sealing means, e.g. for shafts or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/24Pumping by heat expansion of pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/126Cylinder liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/008Spacing or clearance between cylinder and piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/02Packing the free space between cylinders and pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/16Casings; Cylinders; Cylinder liners or heads; Fluid connections
    • F04B53/162Adaptations of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases

Definitions

  • Piston compressor The invention relates to a piston compressor for compressing a working fluid having the features of the preamble of claim 1.
  • the working fluid may be a liquid or gaseous fuel, such as natural gas ("NG").
  • natural gas When the natural gas is used to power an internal combustion engine of a motor vehicle, it will be aboard the vehicle
  • the proposed reciprocating compressor can be used for compressing any gaseous and / or liquid media, so that the presently selected term "piston compressor” also includes piston pumps
  • a piston compressor for the compression of a cooling gas emerges, which comprises a cylinder and a reciprocating piston in the cylinder.
  • the cylinder and piston define a compression chamber.
  • the piston is connected to a drive mechanism, wherein the
  • the present invention has for its object to provide a reciprocating compressor, which has an improved efficiency. To achieve this, the leakage in the region of an annular gap between the piston and the cylinder of the reciprocating compressor should be minimized.
  • the reciprocating compressor should in this way also be suitable for compressing a liquid or gaseous fuel, such as natural gas, to high pressure (preferably about 600 bar).
  • the piston compressor proposed for compressing a working fluid comprises a piston which can be moved back and forth in a bore of a cylinder and which delimits within the bore a compression space which can be filled with the working fluid.
  • a compression space which can be filled with the working fluid.
  • an annular pressure chamber is formed in the cylinder, which is hydraulically connected to the compression space and limited to the bore through an elastically deformable wall portion of the cylinder.
  • the stroke of the piston causes compression of the trapped working fluid in the compression space. This means that the pressure in the compression chamber increases. At the same time, the pressure in the cylinder-shaped annular pressure chamber increases, since it is hydraulically connected to the compression space. Due to the elastic deformability of the pressure chamber limiting wall portion this deformed and thereby moves in the direction of the piston. Depending on the pressure in the compression chamber or in the pressure chamber, the wall section can reach the piston. In any case, however, the piston narrows an annular gap remaining between the piston and the cylinder a longitudinal (approximately) linear pressure drop occurs, so that the leakage over the annular gap is minimized.
  • the elastic deformation of the wall portion is proportional to the pressure increase in the compression chamber or in the pressure chamber. That means that as you progress
  • the leakage can be significantly reduced via the annular gap from the compression chamber during operation of the reciprocating compressor. This means that the losses due to leakage are minimal, so that the reciprocating compressor has a high efficiency.
  • production-related diameter tolerances can be compensated by means of the pressure-dependent gap minimization, so that the production of the reciprocating compressor is simplified.
  • the annular pressure chamber is arranged at least in sections at the level of the piston. It is also proposed that the annular pressure chamber is arranged concentrically with respect to the bore. This means that the elastically deformable wall section circumferentially has the same thickness, so that a circumferentially uniform deformation of the
  • the annular pressure chamber is hydraulically connected to the compression space via at least one channel formed in the cylinder.
  • the channel is used to fill the pressure chamber with working fluid, wherein the working fluid is removed from the compression chamber.
  • the channel can be connected to the compression space directly or indirectly via the annular gap remaining between the piston and the cylinder.
  • the at least one of the filling serving channel is to be dimensioned such that a rapid filling and thus a rapid pressure build-up in the pressure chamber can be achieved.
  • the channel is designed as an annular channel and connects the pressure chamber with the remaining between the piston and the cylinder annular gap.
  • the annular channel allows a particularly fast and also uniform filling of the pressure chamber.
  • the annular channel is formed at one end of the pressure chamber, so that the elastically deformable wall portion is free at one end. Due to the free end of the wall section can easily deform elastically.
  • the annular pressure chamber circumferentially on a constant width and / or a constant height. This simplifies the production of the annular pressure chamber.
  • the annular pressure chamber has a varying inner diameter over its height.
  • the inner diameter in the direction of a channel formed as an annular channel, which serves to fill the pressure chamber with the working fluid smaller.
  • the elastically deformable wall portion has a smaller thickness at its exposed end, so that the elastic deformability of the exposed end is further improved.
  • the elastically deformable wall section does not have an exposed end, it preferably has its smallest thickness in a central area. In this way, a radial buckling of the elastically deformable wall portion can be supported when pressurized.
  • the annular pressure chamber is rounded at at least one end.
  • the final rounding counteracts stresses (notch stresses), so that the strength of the cylinder is maintained.
  • both ends are rounded, so that the pressure chamber via a rounding in the at least one channel, before preferably ring channel, passes.
  • the rounding facilitates the filling of the pressure chamber with the working fluid, since the inlet is flow-optimized.
  • the cylinder can be designed in one or more parts.
  • the one-piece design simplifies the installation of the reciprocating compressor, since fewer parts have to be assembled and, in addition, fewer seals are produced.
  • the one-piece cylinder has preferably been produced in an additive manufacturing process, in particular in a 3 D printing process, since these processes simplify the formation of cavities. If the cylinder is designed in several parts, preferably the plurality of parts are placed against each other and connected to each other so that together they define the annular pressure chamber formed in the cylinder.
  • the compression space can be connected via an inlet valve to a fluid supply and / or via an outlet valve to a pressure line.
  • the working fluid enters the compression chamber via the inlet valve, where it is compressed by means of the piston stroke.
  • the compressed working fluid can then be fed via the outlet valve and the subsequent pressure line to a fluid reservoir, which is preferably a high-pressure accumulator for a liquid or gaseous fuel, such as natural gas, which is injected under high pressure into the combustion chamber of an internal combustion engine.
  • a fluid reservoir which is preferably a high-pressure accumulator for a liquid or gaseous fuel, such as natural gas, which is injected under high pressure into the combustion chamber of an internal combustion engine.
  • FIG. 1 shows a schematic longitudinal section through a piston compressor according to the invention according to a preferred embodiment
  • FIG. 2 shows an enlarged detail of FIG. 1 in the region of the channel and the pressure chamber
  • 3 a) and b) each show a schematic longitudinal section through the reciprocating compressor of FIG. 1 in various operating states
  • Fig. 6 a) and b) each have a schematic longitudinal section through a cylinder for a piston compressor according to the invention in one piece and multi-part executed cylinder and
  • Fig. 7 is a schematic longitudinal section through a cylinder for a piston compressor according to the invention with representation of the pressure profile.
  • the piston compressor 1 according to the invention shown in Figures 1 and 2 comprises a cylinder 3 with a bore 2 in which a piston 4 is reciprocally accommodated.
  • the piston 4 bounded within the bore 2 a compression chamber 5, which is connected via an inlet valve 10 with a fluid supply 11 connectable or filled with a working medium.
  • a fluid storage (not shown) may be connected to the pressure line 13 to the pressure line 13.
  • the cylinder 3 has an annular pressure chamber 6 which is formed at the level of the piston 4 concentric with the bore 2.
  • the pressure chamber 6 is limited to the bore 2 through a wall portion 7 of the cylinder 3, which at its upper end by a ringför- Migen channel 8 (see Fig. 2) is free. Increases the pressure in the pressure chamber 6, this leads to an elastic deformation of the wall portion 7, in such a way that the free end moves into the bore 2, until it - depending on the prevailing pressure conditions - to rest on the piston 4 arrived.
  • the pressure rise in the annular pressure chamber 6 is effected by a hydraulic connection of the pressure chamber 6 with the compression chamber 5 via the channel 8 and the annular gap 9, so that with a pressure increase in the compression chamber 5 and the pressure in the pressure chamber 6 increases.
  • a minimal pressure prevails in the compression space 5 when the piston 4 assumes its lower end position (see FIG. 3 a).
  • the same pressure prevails in the annular pressure chamber 6, since this is hydraulically connected via the channel 8 and the annular gap 9 with the compression space 5 (see arrow 15).
  • the piston 4 moves upward until it has reached its upper end position (see FIG. 3b). This leads to the compression of the working fluid in the compression space 5, the pressure rising in the compression space 5 and in the annular pressure chamber 6.
  • the pressure increase in the annular pressure chamber 6 causes the wall portion 7 to deform elastically.
  • Figures 4a and 4b are dependent on the respective pressure different geometries of the annular pressure chamber 6 can be seen. If the piston 4 is in the lower end position, as shown by way of example in FIG. 3 a, the wall section 7 is largely pressure-balanced (see FIG. 4 a). If, however, the piston 4 moves towards its upper end position, as shown by way of example in FIG. 3b, the pressure in the pressure chamber 6 increases, so that a compressive force acts on the wall section (7) on one side (see arrow 14). This causes the wall portion 7 elastically deformed and moved into the bore 2 into it.
  • FIGS. 5a and 5b show a further preferred embodiment of an annular pressure chamber 6.
  • that of Figures 5a and 5b has a varying height over its inner diameter, so that the pressure chamber 6 delimiting wall portion 7 via a its height varies in thickness.
  • the end of the wall section 7 which is freed over the channel 8 is less thick than the opposite end (see FIG. 5a). This favors the desired elastic deformation of the wall section 7 when pressurized (see Fig. 5b, arrow 14).
  • the cylinder 3 having the pressure chamber 6 can be designed in one or more parts.
  • FIG. 6a is an example of a one-piece design.
  • FIG. 6 b shows a multipart design of the cylinder 3.
  • the one-piece cylinder variant is preferably manufactured in an additive manufacturing process. At the ends, the pressure chamber 6 on curves 16, which serve to reduce the voltage in the notch base.
  • the two-part cylinder variant with an upper part 3.1 and a lower part 3.2 allows the formation of the pressure chamber 6 between the two parts 3.1, 3.2.
  • a seal is to be provided, so that the connection region 17 at the same time forms a sealing point.
  • the volume of the pressure chamber 6 is to be chosen as small as possible, since this volume must be compressed without being forwarded as a high-pressure volume. That is, it forms a dead volume.
  • the first section 2.1 has a first inner diameter Di, which is preferably 0.2 to 0.4 mm larger than a second inner diameter D2 of the second section 2.2. In this way it is ensured that pressure is built up in the pressure chamber 6 quickly. This and the area difference between the inner diameter D2 and a diameter D3 finally lead to the pressure chamber 6 delimiting wall portion 7 elastically deformed.
  • FIG. 7 shows, in a simplified representation, a pressure profile which reproduces the pressure conditions applied to the wall section 7 of the cylinder 3 during operation of the reciprocating compressor 1. Outside is the same pressure as in the compression chamber 5, while inside the pressure in the longitudinal direction (approximately) decreases linearly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

Die Erfindung betrifft einen Kolbenverdichter (1) zum Verdichten eines Arbeitsfluids, insbesondere eines flüssigen oder gasförmigen Brennstoffs, umfassend einen in einer Bohrung (2) eines Zylinders (3) hin und her beweglichen Kolben (4), der innerhalb der Bohrung (2) einen mit dem Arbeitsfluid befüllbaren Kompressionsraum (5) begrenzt. Erfindungsgemäß ist im Zylinder (3) eine ringförmige Druckkammer (6) ausgebildet, die mit dem Kompressionsraum (5) hydraulisch verbunden und zur Bohrung (2) hin durch einen elastisch verformbaren Wandabschnitt (7) des Zylinders (3) begrenzt ist.

Description

Beschreibung
Titel:
Kolbenverdichter Die Erfindung betrifft einen Kolbenverdichter zum Verdichten eines Arbeitsfluids mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Bei dem Arbeitsfluid kann es sich insbesondere um einen flüssigen oder gasförmigen Brennstoff, wie beispielsweise Erdgas („Natural Gas" = NG), handeln. Dient das Erdgas dem Betreiben einer Brennkraftmaschine eines Kraftfahrzeugs, wird es an Bord des
Kraftfahrzeugs in der Regel in flüssiger Form („Liquefied Natural Gas" = LNG) in einem Tank mitgeführt. Bevor das Erdgas in einen Brennraum der Brennkraftmaschine einge- blasen wird, wird es verdichtet. Hierin ist eine bevorzugte Anwendung des vorliegend vorgeschlagenen Kolbenverdichters zu sehen.
Darüber hinaus kann der vorgeschlagene Kolbenverdichter zum Verdichten beliebiger gasförmiger und/oder flüssiger Medien eingesetzt werden, so dass der vorliegend gewählte Begriff„Kolbenverdichter" auch Kolbenpumpen umfasst. Stand der Technik
Aus der WO 2003/010446 AI geht beispielhaft ein Kolbenverdichter zur Kompression eines Kühlgases hervor, der einen Zylinder und einen im Zylinder hin und her beweglichen Kolben umfasst. Der Zylinder und der Kolben legen dabei eine Kompressions- kammer fest. Der Kolben ist mit einem Antriebsmechanismus verbunden, wobei die
Verbindung über Stifte erfolgt, die in Radiallöchern des Kolbens aufgenommen sind. Da die Radiallöcher über einen zwischen dem Kolben und dem Zylinder verbleibenden Radialspalt mit der Kompressionskammer hydraulisch verbunden sind, gilt es die Radiallöcher abzudichten. Die Abdichtung erfolgt über in den Radiallöchern aufgenommene Dichtelemente. Auf diese Weise wird einer Leckage des Kühlgases über die Radiallöcher entgegengewirkt.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Kolbenverdichter bereitzustellen, der einen verbesserten Wirkungsgrad besitzt. Um dies zu erreichen, soll die Leckage im Bereich eines Ringspalts zwischen dem Kolben und dem Zylinder des Kolbenverdichters minimiert werden. Der Kolbenverdichter soll auf diese Weise auch zum Verdichten eines flüssigen oder gasförmigen Brennstoffs, wie beispielsweise Erdgas, auf Hochdruck (vorzugsweise etwa 600 bar) geeignet sein.
Zur Lösung der Aufgabe wird der Kolbenverdichter mit den Merkmalen des
Anspruchs 1 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.
Offenbarung der Erfindung
Der zum Verdichten eines Arbeitsfluids, insbesondere eines flüssigen oder gasförmigen Brennstoffs, vorgeschlagene Kolbenverdichter umfasst einen in einer Bohrung eines Zylinders hin und her beweglichen Kolben, der innerhalb der Bohrung einen mit dem Arbeitsfluid befüllbaren Kompressionsraum begrenzt. Erfindungsgemäß ist im Zylinder eine ringförmige Druckkammer ausgebildet, die mit dem Kompressionsraum hydraulisch verbunden und zur Bohrung hin durch einen elastisch verformbaren Wandabschnitt des Zylinders begrenzt ist.
Durch die Hubbewegung des Kolbens kommt es im Kompressionsraum zu einer Kompression des eingeschlossenen Arbeitsfluids. Das heißt, dass der Druck im Kompressionsraum ansteigt. Zugleich steigt der Druck in der im Zylinder ausgebildeten ringförmigen Druckkammer an, da diese mit dem Kompressionsraum hydraulisch verbunden ist. Aufgrund der elastischen Verformbarkeit des die Druckkammer begrenzenden Wandabschnitts verformt sich dieser und bewegt sich dabei in Richtung des Kolbens. In Abhängigkeit vom Druck im Kompressionsraum bzw. in der Druckkammer kann dabei der Wandabschnitt zur Anlage am Kolben gelangen. In jedem Fall jedoch verengt der Kolben einen zwischen dem Kolben und dem Zylinder verbleibenden Ringspalt, in dem ein in Längsrichtung (näherungsweise) linearer Druckabfall auftritt, so dass die Leckage über den Ringspalt minimiert wird.
Die elastische Verformung des Wandabschnitts erfolgt proportional zum Druckanstieg im Kompressionsraum bzw. in der Druckkammer. Das heißt, dass mit fortschreitendem
Druckanstieg auch die Verformung zunimmt.Ursache hierfür ist der in Längsrichtung konstante Druck in der Druckkammer, während sich im Ringspalt zwischen dem Kolben und dem Zylinder ein Druckabfall einstellt. Der gewünschte Effekt der Spaltmini- mierung ist somit über den gesamten Druckbereich hinweg gegeben.
Mittels der druckabhängigen Spaltminimierung mit einem möglichst gleichmäßigen Spalt in Längsrichtung kann die Leckage über den Ringspalt aus dem Kompressionsraum im Betrieb des Kolbenverdichters deutlich verringert werden. Das heißt, dass die Verluste aufgrund Leckage minimal sind, so dass der Kolbenverdichter einen hohen Wirkungsgrad besitzt.
Ferner können mittels der druckabhängigen Spaltminimierung fertigungsbedingte Durchmessertoleranzen kompensiert werden, so dass die Fertigung des Kolbenverdichters vereinfacht wird.
Um die gewünschte Spaltminimierung zu erzielen, ist die ringförmige Druckkammer zumindest abschnittsweise auf Höhe des Kolbens angeordnet. Ferner wird vorgeschlagen, dass die ringförmige Druckkammer konzentrisch in Bezug auf die Bohrung angeordnet ist. Das heißt, dass der elastisch verformbare Wandabschnitt umlaufend die gleiche Dicke aufweist, so dass eine über den Umfang gleichmäßige Verformung des
Wandabschnitts erreicht wird.
Bevorzugt die ringförmige Druckkammer über mindestens einen im Zylinder ausgebildeten Kanal mit dem Kompressionsraum hydraulisch verbunden. Der Kanal dient der Befüllung der Druckkammer mit Arbeitsfluid, wobei das Arbeitsfluid dem Kompressionsraum entnommen wird. Der Kanal kann hierzu unmittelbar oder mittelbar über den zwischen dem Kolben und dem Zylinder verbleibenden Ringspalt mit dem Kompressionsraum verbunden sein. Der mindestens eine der Befüllung dienende Kanal ist derart zu dimensionieren, dass eine schnelle Befüllung und damit ein schneller Druckaufbau in der Druckkammer erzielbar ist. Durch mehrere über den Umfang der Bohrung gleichmäßig verteilt angeordnete Kanäle, beispielsweise in Form von Radialbohrungen, kann zudem eine gleichmäßige Befüllung der Druckkammer sichergestellt werden.
Alternativ wird vorgeschlagen, dass der Kanal als Ringkanal ausgeführt ist und die Druckkammer mit dem zwischen dem Kolben und dem Zylinder verbleibenden Ringspalt verbindet. Der Ringkanal ermöglicht eine besonders schnelle und zudem gleichmäßige Befüllung der Druckkammer. Vorzugsweise ist der Ringkanal an einem Ende der Druckkammer ausgebildet ist, so dass der elastisch verformbare Wandabschnitt an einem Ende freigestellt ist. Durch das freigestellte Ende kann sich der Wandabschnitt leichter elastisch verformen.
Bevorzugt weist die ringförmige Druckkammer umlaufend eine gleichbleibende Breite und/oder eine gleich bleibende Höhe auf. Dadurch vereinfacht sich die Herstellung der ringförmigen Druckkammer.
Ferner wird vorgeschlagen, dass die ringförmige Druckkammer über ihre Höhe einen variierenden Innendurchmesser aufweist. Vorzugsweise wird der Innendurchmesser in Richtung eines als Ringkanal ausgebildeten Kanals, welcher der Befüllung der Druckkammer mit dem Arbeitsfluid dient, kleiner. Das heißt, dass der elastisch verformbare Wandabschnitt an seinem freigestellten Ende eine geringere Dicke besitzt, so dass die elastische Verformbarkeit des freigestellten Endes weiter verbessert wird. Sofern der elastisch verformbare Wandabschnitt kein freigestelltes Ende aufweist, weist er vorzugsweise in einem mittigen Bereich seine geringste Dicke auf. Auf diese Weise kann ein radiales Aufwölben des elastisch verformbaren Wandabschnitts bei Druckbeaufschlagung unterstützt werden.
Vorteilhafterweise ist die ringförmige Druckkammer an zumindest einem Ende gerundet. Die endseitige Rundung wirkt Spannungen (Kerbspannungen) entgegen, so dass die Festigkeit des Zylinders erhalten bleibt. Vorzugsweise sind beide Enden gerundet, so dass die Druckkammer über eine Rundung in den mindestens einen Kanal, vor- zugsweise Ringkanal, übergeht. Die Rundung erleichtert die Befüllung der Druckkammer mit dem Arbeitsfluid, da der Zulauf strömungsoptimiert ist.
Zur Ausbildung der ringförmigen Druckkammer kann der Zylinder ein- oder mehrteilig ausgeführt sein. Die einteilige Ausführung vereinfacht die Montage des Kolbenverdichters, da weniger Teile zu montieren sind und zudem weniger Dichtstellen anfallen. Der einteilig ausgeführte Zylinder ist vorzugsweise in einem additiven Fertigungsprozess, insbesondere in einem 3 D- Druckverfahren, hergestellt worden, da diese Verfahren die Ausbildung von Hohlräumen vereinfachen. Ist der Zylinder mehrteilig ausgeführt, sind vorzugsweise die mehreren Teile derart aneinandergesetzt und miteinander verbunden, dass sie gemeinsam die im Zylinder ausgebildete ringförmige Druckkammer begrenzen.
Des Weiteren wird vorgeschlagen, dass der Kompressionsraum über ein Einlassventil mit einer Fluidversorgung und/oder über ein Auslassventil mit einer Druckleitung verbindbar ist. Über das Einlassventil gelangt das Arbeitsfluid in den Kompressionsraum, wo es mittels des Kolbenhubs verdichtet wird. Das verdichtete Arbeitsfluid kann anschließend über das Auslassventil und der hieran anschließenden Druckleitung einem Fluidspeicher zugeführt werden, wobei es sich vorzugsweise um einen Hochdruckspeicher für einen flüssigen oder gasförmigen Brennstoff, wie beispielsweise Erdgas, handelt, der unter hohem Druck in den Brennraum einer Brennkraftmaschine eingespritzt wird. Denn aufgrund der verringerten Leckage über den zwischen dem Kolben und dem Zylinder verbleibenden Ringspalt können hohe Drücke im Kompressionsraum erreicht werden, so dass sich der vorgeschlagene Kolbenverdichter insbesondere als LNG-Verdichter für die mobile Anwendung in einem Kraftfahrzeug eignet.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen:
Fig. 1 einen schematischen Längsschnitt durch einen erfindungsgemäßen Kolbenverdichter gemäß einer bevorzugten Ausführungsform,
Fig. 2 einen vergrößerten Ausschnitt der Fig. 1 im Bereich des Kanals und der Druckkammer, Fig. 3 a) und b) jeweils einen schematischen Längsschnitt durch den Kolbenverdichter der Fig. 1 in verschiedenen Betriebszuständen,
Fig. 4 a) und b) jeweils einen vergrößerten Ausschnitt der Fig. 2 im Bereich der Druckkammer mit unverformtem und mit verformtem Wandabschnitt,
Fig. 5 a) und b) jeweils einen schematischen Längsschnitt durch eine Druckkammer eines erfindungsgemäßen Kolbenverdichters gemäß einer weiteren bevorzugten Ausführungsform,
Fig. 6 a) und b) jeweils einen schematischen Längsschnitt durch einen Zylinder für einen erfindungsgemäßen Kolbenverdichter bei einteilig und mehrteilig ausgeführtem Zylinder und
Fig. 7 einen schematischen Längsschnitt durch einen Zylinder für einen erfindungsgemäßen Kolbenverdichter mit Darstellung des Druckprofils.
Ausführliche Beschreibung der Zeichnungen
Der in den Figuren 1 und 2 dargestellte erfindungsgemäße Kolbenverdichter 1 umfasst einen Zylinder 3 mit einer Bohrung 2, in der ein Kolben 4 hin und her beweglich aufgenommen ist. Der Kolben 4 begrenzt innerhalb der Bohrung 2 einen Kompressionsraum 5, der über ein Einlassventil 10 mit einer Fluidversorgung 11 verbindbar bzw. mit einem Arbeitsmedium befüllbar ist. Nachdem das Arbeitsfluid im Kompressionsraum 5 durch einen Hub des Kolbens 4 verdichtet worden ist, kann es über ein Auslassventil 12 einer Druckleitung 13 zugeführt werden. An die Druckleitung 13 kann ein Fluid- speicher (nicht dargestellt) angeschlossen sein.
Um die Leckage aus dem Kompressionsraum 5 über einen Ringspalt 9 zu verringern, der zwischen dem Kolben 4 und dem Zylinder 3 verbleibt, weist der Zylinder 3 eine ringförmige Druckkammer 6 auf, die auf Höhe des Kolbens 4 konzentrisch zur Bohrung 2 ausgebildet ist. Die Druckkammer 6 wird zur Bohrung 2 hin durch einen Wandabschnitt 7 des Zylinders 3 begrenzt, der an seinem oberen Ende durch einen ringför- migen Kanal 8 (siehe Fig. 2) freigestellt ist. Steigt der Druck in der Druckkammer 6 an, führt dies zu einer elastischen Verformung des Wandabschnitts 7, und zwar in der Weise, dass sich das freigestellte Ende in die Bohrung 2 hinein bewegt, bis es - je nach den vorherrschenden Druckverhältnissen - zur Anlage am Kolben 4 gelangt.
Der Druckanstieg in der ringförmigen Druckkammer 6 wird dadurch bewirkt, dass eine hydraulische Verbindung der Druckkammer 6 mit dem Kompressionsraum 5 über den Kanal 8 und den Ringspalt 9 besteht, so dass mit einem Druckanstieg im Kompressionsraum 5 auch der Druck in der Druckkammer 6 ansteigt.
Wie beispielhaft in den Figuren 3a und 3b dargestellt, herrscht im Kompressionsraum 5 ein minimaler Druck, wenn der Kolben 4 seine untere Endlage einnimmt (siehe Fig. 3a). Der gleiche Druck herrscht in der ringförmigen Druckkammer 6, da diese über den Kanal 8 und den Ringspalt 9 mit dem Kompressionsraum 5 hydraulisch verbunden ist (siehe Pfeil 15). Im Betrieb des Kolbenverdichters 1 bewegt sich der Kolben 4 nach oben, bis er seine obere Endlage erreicht hat (siehe Fig. 3b). Dies führt zur Kompression des im Kompressionsraum 5 befindlichen Arbeitsfluids, wobei der Druck ansteigt, und zwar im Kompressionsraum 5 und in der ringförmigen Druckkammer 6. Der Druckanstieg in der ringförmigen Druckkammer 6 hat zur Folge, dass sich der Wandabschnitt 7 elastisch verformt.
Den Figuren 4a und 4b sind die vom jeweiligen Druck abhängigen unterschiedlichen Geometrien der ringförmigen Druckkammer 6 zu entnehmen. Befindet sich der Kolben 4 in der unteren Endlage, wie beispielhaft in der Fig. 3a dargestellt, ist der Wand- abschnitt 7 weitgehend druckausgeglichen (siehe Fig. 4a). Bewegt sich jedoch der Kolben 4 auf seine obere Endlage zu, wie beispielhaft in der Fig. 3b dargestellt, steigt der Druck in der Druckkammer 6 an, so dass auf den Wandabschnitt (7) einseitig eine Druckkraft wirkt (siehe Pfeil 14). Diese bewirkt, dass sich der Wandabschnitt 7 elastisch verformt und in die Bohrung 2 hinein bewegt.
Den Figuren 5a und 5b ist eine weitere bevorzugte Ausführungsform einer ringförmigen Druckkammer 6 zu entnehmen. Im Unterschied zur Druckkammer 6 der Figuren 4a und 4b, weist die der Figuren 5a und 5b einen über ihre Höhe variierenden Innendurchmesser auf, so dass der die Druckkammer 6 begrenzende Wandabschnitt 7 eine über seine Höhe variierende Dicke besitzt. Das über den Kanal 8 freigestellte Ende des Wandabschnitts 7 ist dabei weniger dick als das gegenüberliegende Ende ausgeführt (siehe Fig. 5a). Dies begünstigt die gewünschte elastische Verformung des Wandabschnitts 7 bei Druckbeaufschlagung (siehe Fig. 5b, Pfeil 14).
Der die Druckkammer 6 aufweisende Zylinder 3 kann ein- oder mehrteilig ausgeführt sein. Der Fig. 6a ist beispielhaft eine einteilige Ausführung zu entnehmen. Die Fig. 6b zeigt eine mehrteilige Ausführung des Zylinders 3.
Die einteilige Zylindervariante wird vorzugsweise in einem additiven Fertigungsverfahren gefertigt. An den Enden weist die Druckkammer 6 Rundungen 16 auf, die der Spannungsreduzierung im Kerbgrund dienen.
Die zweiteilige Zylindervariante mit einem Oberteil 3.1 und einem Unterteil 3.2 ermöglicht die Ausbildung der Druckkammer 6 zwischen den beiden Teilen 3.1, 3.2. In einem Verbindungsbereich 17 ist eine Abdichtung vorzusehen, so dass der Verbindungsbereich 17 zugleich eine Dichtstelle ausbildet.
Bei beiden Zylindervarianten weist die ringförmige Druckkammer 6 jeweils umlaufend eine gleich bleibende Breite B = 1 mm sowie eine gleich bleibende Höhe Hi = 10 mm auf. Der ringförmige Kanal 8 besitzt eine Höhe H2 = 1 mm. Das Volumen der Druckkammer 6 ist so kleine wie möglich zu wählen, da dieses Volumen verdichtet werden muss, ohne als Hochdruckvolumen weitergeleitet zu werden. Das heißt, dass es ein Totvolumen ausbildet.
Um die Befüllung der Druckkammer 6 mit dem Arbeitsfluid zu optimieren, kann die Bohrung 2, in welcher der Kolben 4 aufgenommen ist, zwei Abschnitte 2.1, 2.2 aufweisen, die unterschiedliche Innendurchmesser besitzen. Der erste Abschnitt 2.1, weist einen ersten Innendurchmesser Di auf, der vorzugsweise 0,2 bis 0,4 mm größer als ein zweiter Innendurchmesser D2 des zweiten Abschnitts 2.2 ist. Auf diese Weise ist sichergestellt, dass in der Druckkammer 6 schnell Druck aufgebaut wird. Dieser sowie die Flächendifferenz zwischen dem Innendurchmesser D2 und einem Durchmesser D3 führen schließlich dazu, dass sich der die Druckkammer 6 begrenzende Wandabschnitt 7 elastisch verformt. Der Fig. 7 ist in einer vereinfachten Darstellung ein Druckprofil zu entnehmen, das die am Wandabschnitt 7 des Zylinders 3 anliegenden Druckverhältnisse im Betrieb des Kolbenverdichters 1 wiedergibt. Außen liegt der gleiche Druck wie im Kompressionsraum 5 an, während innen der Druck in Längsrichtung (näherungsweise) linear abfällt.

Claims

Ansprüche
1. Kolbenverdichter (1) zum Verdichten eines Arbeitsfluids, insbesondere eines flüssigen oder gasförmigen Brennstoffs, umfassend einen in einer Bohrung (2) eines Zylinders (3) hin und her beweglichen Kolben (4), der innerhalb der Bohrung (2) einen mit dem Arbeitsfluid befüllbaren Kompressionsraum (5) begrenzt,
dadurch gekennzeichnet, dass im Zylinder (3) eine ringförmige Druckkammer (6) ausgebildet ist, die mit dem Kompressionsraum (5) hydraulisch verbunden und zur Bohrung (2) hin durch einen elastisch verformbaren Wandabschnitt (7) des Zylinders (3) begrenzt ist.
2. Kolbenverdichter (1) nach Anspruch 1,
dadurch gekennzeichnet, dass die ringförmige Druckkammer (6) zumindest abschnittsweise auf Höhe des Kolbens (4) und/oder konzentrisch in Bezug auf die Bohrung (2) angeordnet ist.
3. Kolbenverdichter (1) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die ringförmige Druckkammer (6) über mindestens einen im Zylinder (3) ausgebildeten Kanal (8) mit dem Kompressionsraum (5) hydraulisch verbunden ist.
4. Kolbenverdichter (1) nach Anspruch 3,
dadurch gekennzeichnet, dass der Kanal (8) als Ringkanal ausgeführt ist und die Druckkammer (6) mit einem Ringspalt (9) verbindet, der zwischen dem Kolben (4) und dem Zylinder (3) verbleibt, wobei vorzugsweise der Ringkanal an einem Ende der Druckkammer (6) ausgebildet ist, so dass der elastisch verformbare Wandabschnitt (7) an einem Ende freigestellt ist.
5. Kolbenverdichter (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die ringförmige Druckkammer (6) umlaufend eine gleichbleibende Breite (B) und/oder eine gleich bleibende Höhe (H) aufweist.
6. Kolbenverdichter (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die ringförmige Druckkammer (6) über ihre Höhe einen variierenden Innendurchmesser (Di) aufweist.
7. Kolbenverdichter (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die ringförmige Druckkammer (6) an zumindest einem Ende gerundet ist.
8. Kolbenverdichter (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Zylinder (3) in einem additiven Fertigungsprozess, insbesondere in einem 3D-Druckverfahren, hergestellt worden ist und/oder mehrteilig ausgeführt ist.
9. Kolbenverdichter (1) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Kompressionsraum (5) über ein Einlassventil (10) mit einer Fluidversorgung (11) und/oder über ein Auslassventil (12) mit einer Druckleitung (13) verbindbar ist.
PCT/EP2018/077971 2017-10-27 2018-10-15 Kolbenverdichter WO2019081237A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017219326.3A DE102017219326A1 (de) 2017-10-27 2017-10-27 Kolbenverdichter
DE102017219326.3 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019081237A1 true WO2019081237A1 (de) 2019-05-02

Family

ID=63896121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/077971 WO2019081237A1 (de) 2017-10-27 2018-10-15 Kolbenverdichter

Country Status (2)

Country Link
DE (1) DE102017219326A1 (de)
WO (1) WO2019081237A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114962844A (zh) * 2022-04-26 2022-08-30 重庆海浦洛自动化科技有限公司 高粘度介质用蓄能装置及其使用方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021205681A1 (de) * 2021-06-04 2022-12-08 Continental Reifen Deutschland Gmbh Kompressorsystem für ein Pannenhilfeset, Pannenhilfeset mit einem solchen Kompressorsystem und Verfahren zum Abdichten eines Fahrzeugreifens mit einem solchen Kompressorsystem

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899136A (en) * 1996-12-18 1999-05-04 Cummins Engine Company, Inc. Low leakage plunger and barrel assembly for high pressure fluid system
WO2003010446A1 (en) 2001-07-25 2003-02-06 Empresa Brasileira De Compressores S.A. - Embraco Mounting arrangement for the piston of a reciprocating hermetic compressor
DE10210317A1 (de) * 2002-03-08 2003-09-25 Bosch Gmbh Robert Hochdruckelement für Einspritzanlagen mit verringerter Leckage
DE102008040088A1 (de) * 2008-07-02 2010-01-07 Robert Bosch Gmbh Hochdruckpumpe
JP2010229914A (ja) * 2009-03-27 2010-10-14 Denso Corp 高圧ポンプ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5899136A (en) * 1996-12-18 1999-05-04 Cummins Engine Company, Inc. Low leakage plunger and barrel assembly for high pressure fluid system
WO2003010446A1 (en) 2001-07-25 2003-02-06 Empresa Brasileira De Compressores S.A. - Embraco Mounting arrangement for the piston of a reciprocating hermetic compressor
DE10210317A1 (de) * 2002-03-08 2003-09-25 Bosch Gmbh Robert Hochdruckelement für Einspritzanlagen mit verringerter Leckage
DE102008040088A1 (de) * 2008-07-02 2010-01-07 Robert Bosch Gmbh Hochdruckpumpe
JP2010229914A (ja) * 2009-03-27 2010-10-14 Denso Corp 高圧ポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114962844A (zh) * 2022-04-26 2022-08-30 重庆海浦洛自动化科技有限公司 高粘度介质用蓄能装置及其使用方法

Also Published As

Publication number Publication date
DE102017219326A1 (de) 2019-05-02

Similar Documents

Publication Publication Date Title
EP2935860B1 (de) Kolben-kraftstoffpumpe für eine brennkraftmaschine
EP3108138B1 (de) Kolben-kraftstoffpumpe für eine brennkraftmaschine
WO2009043733A1 (de) Kolbenpumpe zur förderung eines fluids und zugehöriges bremssystem
EP3108137B1 (de) Kolben-kraftstoffpumpe für eine brennkraftmaschine
EP3108136B1 (de) Kolben-kraftstoffpumpe für eine brennkraftmaschine
WO2010102850A1 (de) Saugventil für eine kraftstoffhochdruckpumpe
WO2019081237A1 (de) Kolbenverdichter
WO2019015863A1 (de) Kolbenpumpe, insbesondere kraftstoff-hochdruckpumpe für eine brennkraftmaschine
WO2016096485A1 (de) Kolben-kraftstoffpumpe für eine brennkraftmaschine
AT514966B1 (de) Ein Hochdruckmedium führendes Bauelement
EP3234343B1 (de) Kolben-kraftstoffpumpe für eine brennkraftmaschine
DE102008017824A1 (de) Stößelbaugruppe für eine Hochdruckpumpe und Hochdruckpumpe
DE102013210019A1 (de) Hochdruckpumpe für ein Kraftstoffeinspritzsystem mit einem Saugventil
WO2019081239A1 (de) Kolbenverdichter
DE102018206916A1 (de) Kolben-Kraftstoffhochdruckpumpe
WO2019081240A1 (de) Kolbenverdichter
DE19902259B4 (de) Montageverfahren
DE102010031390A1 (de) Saugventil einer Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE102018203089A1 (de) Kolbenverdichter
WO2019007567A1 (de) Kraftstoffhochdruckpumpe
DE102014211609A1 (de) Kraftstoff-Hochdruckpumpe mit einem Kolben
DE102013226953B4 (de) Hochdruckpumpe mit einem Ventilstück
EP1798415B1 (de) Hochdruckpumpe
DE102016220610A1 (de) Hochdruckpumpe für ein Kraftstoffeinspritzsystem
DE102016207171A1 (de) Hochdruckpumpe mit vermindertem Verschleiß

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18789050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18789050

Country of ref document: EP

Kind code of ref document: A1