WO2019080400A1 - 基于SiC功率器件的全桥LLC谐振型等离子体电源 - Google Patents

基于SiC功率器件的全桥LLC谐振型等离子体电源

Info

Publication number
WO2019080400A1
WO2019080400A1 PCT/CN2018/074687 CN2018074687W WO2019080400A1 WO 2019080400 A1 WO2019080400 A1 WO 2019080400A1 CN 2018074687 W CN2018074687 W CN 2018074687W WO 2019080400 A1 WO2019080400 A1 WO 2019080400A1
Authority
WO
WIPO (PCT)
Prior art keywords
diode
module
capacitor
power switch
frequency
Prior art date
Application number
PCT/CN2018/074687
Other languages
English (en)
French (fr)
Inventor
王振民
范文艳
谢芳祥
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2019080400A1 publication Critical patent/WO2019080400A1/zh
Priority to ZA2020/02052A priority Critical patent/ZA202002052B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention patent relates to the technical field of special power sources, in particular to a full bridge LLC resonance type plasma power source based on a SiC power device.
  • Plasma power supplies are moving toward higher requirements such as high efficiency, high power density (small size), high frequency and high voltage, etc., mainly through high frequency power devices and reduced power consumption.
  • high-power plasma power sources at home and abroad generally use Si-based power devices due to their high voltage, high current, and high power.
  • the performance of Si-based power devices is close to the theoretical limit determined by their material properties. The potential to increase frequency and reduce power consumption has been extremely limited.
  • the new generation SiC power devices Compared with Si power devices, the new generation SiC power devices have significant advantages in switching performance, and have the advantages of high band gap, high thermal conductivity, and critical breakdown field strength, which improve the performance of the whole machine and reduce the switching loss. There is good prospects for reducing the volume and increasing the power density.
  • the current application of SiC power devices to plasma power supplies is still in a blank state; therefore, it is necessary to develop a plasma power source based on SiC power devices to improve its power efficiency and power density.
  • the object of the present invention is to overcome the shortcomings and deficiencies in the prior art, and to provide a SiC-based power device, high power efficiency, high power density, high reliability, reduced electromagnetic interference intensity, and high power output.
  • Good dynamic response performance, full-bridge LLC resonant plasma power supply that facilitates high-speed precise regulation of plasma loads.
  • a full-bridge LLC resonant plasma power supply based on a SiC power device comprising: a main circuit and a control circuit; the main circuit includes sequentially connected The rectifier filter module, the high frequency full bridge inverter module, the high frequency transformer module and the fast rectifier filter module; the rectifier filter module is connected with the three-phase AC input power source, and the fast rectifier filter module is connected with the load; wherein the high frequency full bridge inverter module is adopted Full-bridge inverter LLC type zero-voltage soft-switching topology; the high-frequency full-bridge inverter module, high-frequency transformer module, and fast rectification filter module are respectively connected with the control circuit to realize the control power output by the control circuit.
  • a full-bridge inverter LLC type zero-voltage soft switching topology is adopted, which has high power density and can obtain extremely high conversion efficiency under load conditions; the resonant commutation frequency is high, and the main circuit can be obtained.
  • the time constant is reduced, the control period is shorter, and the dynamic performance is better, which is convenient for the high-speed precise regulation of the plasma load.
  • the high-frequency full-bridge inverter module adopts a full-bridge inverter LLC type zero-voltage soft-switching topology structure: the high-frequency full-bridge inverter module includes a SiC power switch tube Q101, a SiC power switch tube Q102, and a SiC power switch tube Q103.
  • SiC power switch tube Q104 SiC power switch tube Q104, inductor L102, inductor L103 and capacitor C107; SiC power switch tube Q101 and SiC power switch tube Q103 are connected in series and connected to the rectifier filter module; SiC power switch tube Q102 and SiC power switch tube Q104 are connected in series and then in parallel The rectifier filter module is connected to the connection between the SiC power switch Q101 and the SiC power switch Q103 and the connection between the SiC power switch Q102 and the SiC power switch Q104 through the sequentially connected inductor L103, capacitor C107 and inductor L102.
  • Inductor L103 is connected in parallel with the high-frequency transformer module; SiC power switch Q101 is also connected with diode D109 and capacitor C103 in parallel; SiC power switch Q102 is also connected with diode D110 and capacitor C104 in parallel; SiC power switch Q103 is also connected with diode D111 and Capacitor C105; SiC power switch Q104 is also connected in parallel with diode D112 and capacitor C106.
  • the high-frequency full-bridge inverter module adopts a full-bridge inverter LLC type zero-voltage soft-switching topology structure, which is suitable for high-voltage output applications, and can improve efficiency and achieve high-frequency miniaturization.
  • High-frequency inverter technology can enhance transmission power and improve energy conversion efficiency; LLC resonance technology can increase power density and achieve extremely high conversion efficiency under load conditions; the zero-voltage soft-switching mode is realized by: SiC
  • the power switch tubes Q101 ⁇ Q104 use their parallel diodes D109 ⁇ D112 and capacitors C103 ⁇ C106. When the capacitors C103 ⁇ C106 are discharged to zero, the parallel diodes D109 ⁇ D112 are naturally turned on, and the SiC power switch tubes Q101 ⁇ Q104 gate source The voltage is clamped to zero. At this time, the SiC power switch tubes Q101 ⁇ Q104 can be turned on to achieve zero voltage turn-on.
  • the zero voltage soft switch mode can realize power commutation, reduce switching loss of power devices, and meet the requirements of high efficiency and high power density.
  • the power switch tube of the high-frequency full-bridge inverter module needs to withstand lower voltage, which can avoid the damage of the power switch tube, and adopts the SiC power switch tube as the power switch tube, and the withstand voltage value is up to 1200V; the SiC power switch tube is connected in parallel. Can meet high power requirements.
  • the high frequency transformer module comprises a high frequency transformer T101;
  • the fast rectification filter module comprises a rectifier diode D113, a rectifier diode D114, a capacitor C108, a capacitor C109 and a reactance L104; a primary and high frequency full bridge inverse of the high frequency transformer T101
  • the variable module is connected; the secondary output end of the high frequency transformer T101 is connected to the secondary output terminal of the high frequency transformer T101 through the rectifier diode D113 and the capacitor C108 which are sequentially connected; the secondary output terminal of the high frequency transformer T101 is passed through the rectifier diode D114 is connected to the junction of the rectifier diode D113 and the capacitor C108; the reactance L104 and the capacitor C109 are connected in series and connected in parallel to the capacitor C108; the capacitor C109 is connected in parallel with the load.
  • the fast rectification and filtering module adopts full-wave rectification structure, the circuit structure is simple, and the current fluctuation amplitude is small; the reactance L104 can realize high-performance smoothing filtering, effectively improve current ripple, and is beneficial to improve welding quality.
  • the rectifier diode D113 and the rectifier diode D114 are both SiC Schottky diodes; there is no reverse recovery current, and the withstand voltage is up to 650V, which can greatly reduce switching losses and increase the switching frequency.
  • the control circuit comprises a resonant mode controller, a high frequency driving module, a peak current detecting module, a voltage feedback module, an overvoltage detecting module, an undervoltage detecting module and a power supply module; and the resonant mode controller is driven by a high frequency
  • the module is connected with the high-frequency full-bridge inverter module; the high-frequency transformer module is connected to the resonance mode controller through the peak current detection module; the fast rectifier filter module is connected to the resonance mode controller through the voltage feedback module and the overvoltage detection module respectively; the rectification filter module
  • the undervoltage detection module is connected to the resonant mode controller; the power supply module is respectively connected to the resonant mode controller and the high frequency drive module.
  • the high frequency driving module comprises a high frequency amplifier U201, a high frequency amplifier U202, a DC blocking capacitor C201, a voltage clamping circuit, a voltage clamping circuit 2, a high frequency pulse transformer T201 and two high frequency driving signals generated.
  • a high frequency amplifier U201 a high frequency amplifier U202, a DC blocking capacitor C201, a voltage clamping circuit, a voltage clamping circuit 2, a high frequency pulse transformer T201 and two high frequency driving signals generated.
  • the resonant mode controller includes a resonant mode control chip; the resonant mode control chip includes an interface for generating a PFM1 signal and an interface for generating a PFM2 signal; and an interface for generating a PFM1 signal is connected through a high frequency amplifier U201, which is sequentially connected
  • the straight capacitor C201 and the voltage clamping circuit are connected to the primary input end of the high frequency pulse transformer T201, and the interface for generating the PFM2 signal is connected through the high frequency amplifier U202 and the voltage clamping circuit 2 and the high frequency pulse transformer T201 Primary input two connections;
  • the high-frequency pulse transformer T201 has two secondary, two high-frequency driving signal generating circuits have the same structure, and two high-frequency driving signal generating circuits are respectively connected to the secondary of the two high-frequency pulse transformers T201 in opposite directions. on.
  • the voltage clamping circuit includes a diode D201 and a diode D202; the diode D201 and the diode D202 are connected to the power supply module; the connection between the diode D201 and the diode D202 is respectively connected to the DC blocking capacitor C201 and the high frequency pulse transformer T201. a connection at the primary input;
  • the voltage clamping circuit 2 includes a diode D203 and a diode D204; the diode D203 and the diode D204 are connected to the power supply module; the connection of the diode D203 and the diode D204 is respectively connected with the primary input of the high frequency amplifier U202 and the high frequency pulse transformer T201. Two connections.
  • the high frequency driving signal generating circuit comprises a resistor R201, a resistor R202, a resistor R203, a resistor R204, a resistor R205, a drain resistor R206, a capacitor C202, a capacitor C203, a diode D205, a diode D206, a diode D207, a diode D208, Zener diode ZD201, Zener diode ZD202, Zener diode ZD203 and N-type power switch Q201; Secondary output of high-frequency pulse transformer T201 through the resistor R202 and diode D205 and the high-frequency pulse transformer T201 The output terminal of the stage is connected; the source of the N-type power switch Q201 is connected to the diode D206 and connected in parallel to the resistor R202; the diode D207 and the resistor R203 are connected to form a series circuit, and then connected in series with the Zener diode ZD201 and then connected in parallel with the N-type power switch.
  • the gate Q201 is connected to the gate source; the Zener diode ZD203 and the Zener diode ZD202 are connected in series in reverse series and connected in parallel to the series circuit; the resistor R204, the diode D208 and the drain resistor R206 are connected in series and then connected in parallel to the series circuit; Resistor R201 is connected in parallel with diode D205; capacitor C202 is connected in parallel with Zener diode ZD201; resistor R205 is connected in parallel with diode D208; capacitor C203 is discharged The resistors R206 are connected in parallel; the two ends of the capacitor C203 are respectively connected to the high frequency full bridge inverter module.
  • the high frequency driving module uses two high frequency amplifiers to form a push-pull structure with sufficient driving power to satisfy the high switching frequency of the SiC power switching tube.
  • the Zener diode ZD201 connected in parallel with the capacitor C202 generates a negative voltage to accelerate the turn-off of the SiC power switch tube, which is beneficial to prevent mis-conduction of the SiC power switch tube;
  • the capacitor C203 is a SiC power switch tube gate source shunt capacitor, the drive voltage The spikes act as inhibitors.
  • the resonant mode control chip refers to a resonant mode control chip of the type NCP1395B.
  • the NCP1395B resonant mode control chip features a reliable and robust resonant mode with minimal standby power consumption and all the necessary functions, greatly simplifying the design of the control circuit; its key features include wide frequency from 50kHz to 1.0MHz Range, adjustable dead time, adjustable soft start, adjustable minimum and maximum frequency, low startup current, undervoltage detection, adjustable fault timer interval, and skip cycle probability; Protection features such as immediate shutdown or timer-based events, undervoltage, etc., help to create a safer converter design without adding complex circuitry.
  • the present invention has the following advantages and benefits:
  • the plasma power source of the invention has higher energy efficiency and power density: all power devices of the plasma power source adopt wide-bandgap SiC power devices, realize high-frequency soft switching, the whole machine has smaller volume and weight, and dynamic loss is more Low, power density and efficiency, energy conversion efficiency can be as high as 98% or more;
  • the plasma power supply of the invention has better dynamic response performance: adopts full-bridge inverter LLC type zero-voltage soft switching topology structure, the resonant commutation frequency reaches 500 kHz, the time constant of the main circuit is reduced, the control period is shorter, and the dynamic Better performance; high reliability, which is conducive to improving efficiency, reducing electromagnetic interference intensity and enabling greater power output;
  • the plasma power source of the invention has more excellent process performance: since the inverter frequency of the invention is higher and the dynamic response performance is better, the invention is more convenient to realize high-speed precise regulation of the plasma load.
  • FIG. 1 is a block diagram showing the structure of a plasma power supply of the present invention
  • FIG. 2 is a schematic diagram of a main circuit of a plasma power supply of the present invention.
  • FIG. 3 is a circuit schematic diagram of a high frequency driving module of a plasma power supply of the present invention.
  • FIG. 4 is a circuit schematic diagram of a resonant mode controller of a plasma power supply of the present invention.
  • the full-bridge LLC resonant plasma power supply based on the SiC power device of the present embodiment includes a main circuit and a control circuit; the main circuit includes a rectifying and filtering module, a high-frequency full-bridge inverter module, and a high frequency connected in sequence.
  • the high-frequency full-bridge inverter module includes SiC power switch tube Q101, SiC power switch tube Q102, SiC power switch tube Q103, SiC power switch tube Q104, inductor L102, inductor L103 and capacitor C107; SiC power switch tube Q101 and SiC power switch tube Q103 After series connection, parallel to the rectification and filtering module; SiC power switch tube Q102 and SiC power switch tube Q104 are connected in series and then connected in parallel to the rectification and filtering module; SiC power switch tube Q101 and SiC power switch tube Q103 are connected with SiC power switch tube Q102 and The connection between the SiC power switch Q104 is connected by the inductor L103, the capacitor C107 and the inductor L102 which are sequentially connected; the inductor L103 is connected in parallel with the high frequency transformer module; the SiC power switch Q101 is also connected with the diode D109 and the capacitor C103 in parallel; SiC power The switch Q102 is also connected with a diode D110 and a capacitor C104 in
  • the high-frequency full-bridge inverter module adopts a full-bridge inverter LLC type zero-voltage soft-switching topology structure, which is suitable for high-voltage output applications, and can improve efficiency and achieve high-frequency miniaturization.
  • High-frequency inverter technology can enhance transmission power and improve energy conversion efficiency; LLC resonance technology can increase power density and achieve extremely high conversion efficiency under load conditions; the zero-voltage soft-switching mode is realized by: SiC
  • the power switch tubes Q101 ⁇ Q104 use their parallel diodes D109 ⁇ D112 and capacitors C103 ⁇ C106.
  • the SiC power switch tubes Q101 ⁇ Q104 When the capacitors C103 ⁇ C106 are discharged to zero, the parallel diodes D109 ⁇ D112 are naturally turned on, and the SiC power switch tubes Q101 ⁇ Q104 gate source The voltage is clamped to zero. At this time, the SiC power switch tubes Q101 ⁇ Q104 can be turned on to achieve zero voltage turn-on; the zero voltage soft switch mode can realize power commutation, reduce switching loss of power devices, and meet the requirements of high efficiency and high power density;
  • the power switch tube of the high-frequency full-bridge inverter module needs to withstand lower voltage, which can avoid the damage of the power switch tube, and adopts the SiC power switch tube as the power switch tube, and the withstand voltage value is up to 1200V; the SiC power switch tube is connected in parallel. Can meet high power requirements.
  • the high frequency transformer module includes a high frequency transformer T101;
  • the fast rectifier filter module includes a rectifier diode D113, a rectifier diode D114, a capacitor C108, a capacitor C109 and a reactance L104; a primary of the high frequency transformer T101 is connected in parallel with the inductor L103; and a high frequency transformer T101
  • the secondary output terminal is connected to the secondary output terminal 2 of the high frequency transformer T101 through a rectifier diode D113 and a capacitor C108 which are sequentially connected; the secondary output terminal 3 of the high frequency transformer T101 passes through the rectifier diode D114 and the rectifier diode D113 and the capacitor C108.
  • the connection is connected; the reactance L104 and the capacitor C109 are connected in series and connected in parallel to the capacitor C108; the capacitor C109 is connected in parallel with the load.
  • the fast rectification and filtering module adopts full-wave rectification structure, the circuit structure is simple, and the current fluctuation amplitude is small; the reactance L104 can realize high-performance smoothing filtering, effectively improve current ripple, and is beneficial to improve welding quality.
  • Rectifier diode D113 and rectifier diode D114 use SiC Schottky diodes; no reverse recovery current, withstand voltage up to 650V, which can greatly reduce switching losses and increase switching frequency.
  • the working principle of the main circuit of the plasma power supply of the invention is: first, the three-phase alternating current input power supply is connected to the rectifying and filtering module to make the alternating current smoothing filter into direct current; the direct current input high frequency full bridge inverter module, via the SiC power switching tube Q101, the SiC power switching tube Q102, SiC power switch tube Q103 and SiC power switch tube Q104 constitute a full-bridge inverter circuit, two complementary PFM signals control the two power switch tubes at the same time to turn on or off at the same time, convert DC power to high frequency Sine wave AC; wherein diode D109, diode D110, diode D111, diode D112 are SiC power switch Q101, SiC power switch Q102, SiC power switch Q103 and SiC power switch Q104 anti-parallel diode; and capacitor C103, The capacitor C104, the capacitor C105 and the capacitor C106 are the output filter capacitors of the SiC power switch tube Q101, the SiC power switch tube Q102, the
  • the control circuit comprises a resonant mode controller, a high frequency driving module, a peak current detecting module, a voltage feedback module, an overvoltage detecting module, an undervoltage detecting module and a power supply module; the resonant mode controller passes the high frequency driving module and the high frequency full bridge inverter module
  • the high-frequency transformer module is connected to the resonance mode controller through the peak current detection module; the fast rectifier filter module is connected to the resonance mode controller through the voltage feedback module and the overvoltage detection module respectively; the rectifier filter module passes the undervoltage detection module and the resonance
  • the mode controller is connected; the power supply module is respectively connected to the resonant mode controller and the high frequency drive module.
  • the high frequency driving module comprises a high frequency amplifier U201, a high frequency amplifier U202, a DC blocking capacitor C201, a voltage clamping circuit, a voltage clamping circuit 2, a high frequency pulse transformer T201 and two high frequency driving signal generating circuits;
  • the resonant mode controller includes a resonant mode control chip; the resonant mode control chip includes an interface for generating a PFM1 signal and an interface for generating a PFM2 signal; and an interface for generating a PFM1 signal through a high frequency amplifier U201 and a DC blocking capacitor sequentially connected C201, the voltage clamping circuit is connected with the primary input end of the high frequency pulse transformer T201, and the interface for generating the PFM2 signal is connected through the high frequency amplifier U202 and the voltage clamping circuit 2 and the primary input of the high frequency pulse transformer T201. Terminal two connection;
  • the high-frequency pulse transformer T201 has two secondary circuits, and the two high-frequency driving signal generating circuits have the same structure, and the two high-frequency driving signal generating circuits are respectively connected to the secondary of the two high-frequency pulse transformers T201 in opposite directions.
  • the voltage clamping circuit includes a diode D201 and a diode D202; the diode D201 and the diode D202 are connected to the power supply module; the connection of the diode D201 and the diode D202 is respectively connected to the primary input of the DC blocking capacitor C201 and the high frequency pulse transformer T201. ;
  • the voltage clamping circuit 2 includes a diode D203 and a diode D204; the diode D203 and the diode D204 are connected to the power supply module; the connection of the diode D203 and the diode D204 is respectively connected to the primary input terminal of the high frequency amplifier U202 and the high frequency pulse transformer T201. .
  • Diode D201 and diode D202, as well as diode D203 and diode D204, can clamp the voltage value between VCC and ground.
  • the high frequency driving signal generating circuit comprises a resistor R201, a resistor R202, a resistor R203, a resistor R204, a resistor R205, a bleeder resistor R206, a capacitor C202, a capacitor C203, a diode D205, a diode D206, a diode D207, a diode D208, a Zener diode ZD201, Zener diode ZD202, Zener diode ZD203 and N-type power switch Q201; the secondary output of high-frequency pulse transformer T201 is connected to the secondary output of high-frequency pulse transformer T201 through resistor R202 and diode D205
  • the N-type power switch Q201 source is connected to the diode D206 and connected in parallel to the resistor R202; the diode D207 and the resistor R203 are connected to form a series circuit, and then connected in series with the Zener diode ZD201 and then connected in parallel with the N-type power switch Q201 gate source
  • Zener diode ZD203 and the Zener diode ZD202 are connected in series in reverse series and connected in parallel to the series circuit; the resistor R204, the diode D208 and the drain resistor R206 are connected in series and connected in parallel to the series circuit; the resistor R201 and the diode D205 Parallel; capacitor C202 is connected in parallel with Zener diode ZD201; resistor R205 is connected in parallel with diode D208; capacitor C203 is connected in parallel with drain resistor R206
  • the principle of one of the high-frequency driving signal generating circuits is as follows: when the secondary output end of the high-frequency pulse transformer T201 is inductively outputting a low level, and the secondary output end of the high-frequency pulse transformer T201 is inductively outputting a high level, the high T201-frequency pulse transformer in turn connected to two output terminals of the secondary via a diode D205, resistor R204 and R205 outputs the high level to the output port G 1; secondary output of a high-frequency pulse transformer T201 is connected via a diode D206 are sequentially and zener diode 201 outputs a low level to the output port S 1 ; the secondary output end of the high frequency pulse transformer T201 is inductively outputting a high level through the diode D205 and the series circuit to charge the capacitor C202;
  • the secondary output end of the high-frequency pulse transformer T201 is inductively outputting a high level, and the secondary output end of the high-frequency pulse transformer T201 is inductively outputting a low level, the secondary output end of the high-frequency pulse transformer T201 is connected in turn by a resistor.
  • R202 and resistor R201 are connected to the secondary output terminal of the high-frequency pulse transformer T201; the high level is divided by the resistor R202 and the resistor R201, and the resistor R202 and the resistor R201 are connected to the low level through the resistor R204 and the diode D208 to output port G 1; case N-type power switch Q201 is turned on, begins to discharge the capacitor C202, resistor R202 and resistor R201 is connected via the N-type power switch Q201 and the capacitor C202 outputs the high level to the output port S 1;
  • Another high-frequency drive signal generating circuit also uses the same working principle to cause the output port G 2 S 2 to generate a high-frequency drive signal; the output terminals G 1 S 1 and G 2 S 2 of the two high-frequency drive signal generating circuits and the high-frequency full-bridge inverse Variable module connection.
  • the high frequency driving module uses two high frequency amplifiers to form a push-pull structure with sufficient driving power to satisfy the high switching frequency of the SiC power switching tube.
  • the Zener diode ZD201 connected in parallel with the capacitor C202 generates a negative voltage to accelerate the turn-off of the SiC power switch tube, which is beneficial to prevent mis-conduction of the SiC power switch tube;
  • the capacitor C203 is a SiC power switch tube gate source shunt capacitor, the drive voltage The spikes act as inhibitors.
  • the resonant mode control chip can use a digital microprocessor chip or a dedicated resonant mode control chip; one of the preferred resonant mode control chips refers to a resonant mode control chip of the type NCP1395B.
  • the NCP1395B resonant mode control chip features a reliable and robust resonant mode with minimal standby power consumption and all the necessary functions, greatly simplifying the design of the control circuit; its key features include wide frequency from 50kHz to 1.0MHz Range, adjustable dead time, adjustable soft start, adjustable minimum and maximum frequency, low startup current, undervoltage detection, adjustable fault timer interval, and skip cycle probability; Protection features such as immediate shutdown or timer-based events, undervoltage, etc., help to create a safer converter design without adding complex circuitry. Since it is important to avoid resonance peaks in the resonant circuit structure, the resonant mode control chip of the NCP1395B incorporates an adjustable and accurate minimum switching frequency in order to operate the topology in the appropriate working area.
  • the resonant mode control chip of model NCP1395B is set up like this:
  • Pin F min and pin F max are the lowest and highest operating frequency setting terminals respectively. By selecting the external resistors R301 and R302, the lowest and highest frequency values can be set, and the resistance value is nonlinearly related to the frequency;
  • the pin DT is a dead time setting end, and the dead time is determined according to the external resistor R303 to prevent the high-frequency full-bridge inverter module from being directly connected to the diagonal bridge arm;
  • the pin C ss is a soft start terminal, wherein C301 is an external capacitor, and the normal soft start operating voltage is at 3.5V. If the feedback voltage V fb is lower than 0.6V, the soft start is continuously started;
  • Pin FB is the regulated feedback terminal, where C302 is the external capacitor, R312 and R313 are the voltage dividing resistors, D302 is the Zener diode, the output voltage value of the fast rectifying and filtering module is passed through the voltage feedback module, and the output of the voltage feedback module is optocoupler.
  • the two output ports are respectively connected to the input ports RT and RT-RTN, and control the opening and closing of the input port RT and RT-RTN by controlling the opening and closing of the optocoupler, when the input port RT and RT-RTN pass the optocoupler When closed, the power supply is divided by the resistor R312 and the resistor R313 to obtain the feedback voltage.
  • the resonant mode controller determines that the fault is; when the feedback voltage is between 0.6V and 1.3V, the output waveform is output.
  • the frequency is fixed at the minimum value F min ; when the feedback voltage is between 1.3V and 6V, the frequency variation ⁇ F sw is proportional to the feedback voltage ⁇ V fb ; when the feedback voltage exceeds 6V, the resonant mode controller stops working. Stabilizing the output voltage value of the fast rectifying and filtering module by changing the frequency;
  • the pin C timer fault detection time setting end is set by the charging and discharging of the external resistor R304 and the capacitor C303 to set the fault detection time;
  • Pin BO is the undervoltage protection detection terminal
  • C304 is the external capacitor
  • R305 is the voltage dividing resistor
  • the three-phase AC input power is rectified and filtered by the rectification filter module, and the undervoltage detection module obtains the detected voltage value Brown-Down Voltage, the input tube
  • the foot BO if the voltage value exceeds the range of 1.03V ⁇ 4.1V, the resonant mode controller stops working; the output voltage value of the fast rectifying and filtering module obtains the detected voltage value OVP-SIG through the overvoltage detecting module, when the overvoltage signal is detected PNP type transistor N301 is opened, and R316 is a current limiting resistor.
  • the voltage value on the resistor R315 is obtained through the diode D301 input pin BO. If the voltage value exceeds the range of 1.03V to 4.1V, Then the resonant mode controller stops working;
  • Pin A_GND is analog ground
  • pin P_GND is digital ground
  • two grounds are connected to GND
  • Pin SW_A and pin SW_B are the low-side and high-side drive pulse outputs
  • pin SW_A is the interface for generating the PFM1 signal
  • pin SW_B is the interface for generating the PFM2 signal, electrically isolated by the high-frequency drive module.
  • the pin VCC is the power terminal, wherein C305 and C308 are external capacitors, and D301 is a Zener diode;
  • the pin F-Fault and the pin S-Fault are fast and slow fault detection pins respectively, and the feedback voltage V fb is connected to the pin F-Fault and the pin S-Fault through the resistor R309 and the resistor R308, respectively.
  • the pin 13F-Fault fault turn-on voltage is 1.05V
  • the fault turn-off recovery voltage is 1.03V
  • the resonant mode controller is turned on or off according to the feedback voltage value V fb , where C306 is an external capacitor and R307 is an external resistor.
  • the S-Fault fault turn-on voltage of the pin is 1.03V.
  • the peak current detection module uses the current sensor to obtain the primary current value of the high-frequency transformer module.
  • the primary current value flows into the resonant mode controller through the input port CS, where R306, R310 and R311
  • C307 is a shunt capacitor; when a fault occurs, the timer begins to count down and turns off the resonant mode controller at the end of the time.
  • the voltage feedback module is used to detect the output voltage value of the fast rectification and filtering module, and the prior art can be adopted.
  • the undervoltage detection module is used to detect the input voltage value of the rectification and filtering module, and the prior art can be adopted.
  • the peak current detecting module is used to obtain the primary current value of the high frequency transformer module, and the prior art can be used.
  • the overvoltage detection module is used to detect the output voltage value of the fast rectification and filtering module, and the prior art can be used.
  • the plasma power source of the invention realizes high frequency and high voltage output, can meet the requirements of high efficiency, high power density and miniaturization, and is a new generation plasma power source; the specific advantages are as follows:
  • the invention adopts a full-SiC power device and constructs a full-bridge LLC resonant plasma power supply based on a full SiC power device, achieving high frequency and greatly reducing
  • the volume and weight of the high-frequency transformer module, the heat dissipation system and the fast rectification filter module have good dynamic response, greatly reducing the dynamic loss and improving the performance of the whole machine;
  • the invention fully utilizes the powerful design flexibility of the resonant mode control chip of the model NCP1395B, the external circuit is simple, stable and reliable, and the precise control of the plasma power source is easy to be realized; the LLC type soft switching converter technology is adopted, and the high frequency full bridge is adopted.
  • the inverter module has high energy conversion efficiency, high power density and good reliability, which not only helps to improve efficiency, but also reduces electromagnetic interference intensity and achieves large power output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Plasma Technology (AREA)

Abstract

一种基于SiC功率器件的全桥LLC谐振型等离子体电源,包括主电路和控制电路。主电路包括依次连接的整流滤波模块、高频全桥逆变模块、高频变压模块和快速整流滤波模块;整流滤波模块与三相交流输入电源连接,快速整流滤波模块与负载连接;高频全桥逆变模块采用全桥逆变LLC型零电压软开关拓扑结构;高频全桥逆变模块、高频变压模块、快速整流滤波模块分别与控制电路连接,以实现由控制电路控制电源输出。该等离子体电源效率高,具有高功率密度,可靠性高,可降低电磁干扰强度并能够实现较大功率输出,具有良好动态响应性能,有利于实现对等离子体负载的高速精确调控。

Description

基于SiC功率器件的全桥LLC谐振型等离子体电源 技术领域
本发明专利涉及特种电源技术领域,具体是指一种基于SiC功率器件的全桥LLC谐振型等离子体电源。
背景技术
等离子体电源朝着高效、高功率密度(小型化)、高频高压等更高要求方向发展,主要通过功率器件的高频化以及降低功耗来实现。目前,国内外大功率等离子体电源因其工作的高压、大电流、强功率等特点,普遍采用Si基功率器件;然而,Si基功率器件的性能已接近由其材料特性所决定的理论极限,提高频率以及降低功耗的潜力已经极其有限。
新一代SiC功率器件与Si功率器件相比,在开关性能方面有着显著的优势,具有禁带宽度高、热导率高、临界击穿场强等优点,在改善整机性能、减少开关损耗、减小体积以及提高功率密度上具有良好的前景。但是,目前SiC功率器件在等离子体电源上的应用仍处于空白状态;因此,需要研制出一种基于SiC功率器件的等离子体电源来提高其电源效率和功率密度。
发明内容
本发明的目的在于克服现有技术中的缺点与不足,提供一种基于SiC功率器件、电源效率高、具有高功率密度、可靠性高、可降低电磁干扰强度并能够实现较大功率输出、具有良好动态响应性能、有利于实现对等离子体负载高速精确调控的全桥LLC谐振型等离子体电源。
为了达到上述目的,本发明通过下述技术方案予以实现:一种基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:包括主电路和控制电路;所述主电路包括依次连接的整流滤波模块、高频全桥逆变模块、高频变压模块和快速整流滤波模块;所述整流滤波模块与三相交流输入电源连接,快速整流滤波模块与负载连接;其中,高频全桥逆变模块采用全桥逆变LLC型零电压软 开关拓扑结构;所述高频全桥逆变模块、高频变压模块、快速整流滤波模块分别与控制电路连接,以实现由控制电路控制电源输出。本发明等离子体电源中,采用全桥逆变LLC型零电压软开关拓扑结构,具有高功率密度,并且能在带载条件下得到极高的转换效率;谐振换流频率高,可使主电路的时间常数减小,控制周期更短,动态性能更好,有利于便捷地实现对等离子体负载高速精确调控。
优选地,所述的高频全桥逆变模块采用全桥逆变LLC型零电压软开关拓扑结构是指:高频全桥逆变模块包括SiC功率开关管Q101、SiC功率开关管Q102、SiC功率开关管Q103、SiC功率开关管Q104、电感L102、电感L103和电容C107;SiC功率开关管Q101和SiC功率开关管Q103串联后并联到整流滤波模块上;SiC功率开关管Q102和SiC功率开关管Q104串联后并联到整流滤波模块上;SiC功率开关管Q101和SiC功率开关管Q103的连接处与SiC功率开关管Q102和SiC功率开关管Q104的连接处之间通过依次连接的电感L103、电容C107和电感L102连接;电感L103与高频变压模块并联;SiC功率开关管Q101还并联有二极管D109和电容C103;SiC功率开关管Q102还并联有二极管D110和电容C104;SiC功率开关管Q103还并联有二极管D111和电容C105;SiC功率开关管Q104还并联有二极管D112和电容C106。本发明中,高频全桥逆变模块采用全桥逆变LLC型零电压软开关拓扑结构,适合高压输出的应用场合,可提高效率以及实现高频小型化。高频逆变技术可增强传递功率和提高能量转换效率;LLC谐振技术可提高功率密度,并且能在带载条件下得到极高的转换效率;所述零电压软开关模式是这样实现的:SiC功率开关管Q101~Q104利用其并联的二极管D109~D112以及电容C103~C106,当电容C103~C106放电到零时同时使并联二极管D109~D112自然导通,SiC功率开关管Q101~Q104栅源极电压被箝位到零,此时开通SiC功率开关管Q101~Q104可实现零电压开通,利用零电压软开关模式可实现功率换流,降低功率器件开关损耗,满足高效率高功率密度的需要;高频全桥逆变模块的功率开关管需要承受的电压较低,可避免功率开关管的损坏,并且采用SiC功率开关管作为功率开关管,耐压值高达1200V;SiC功率开关管采用并联方式连接,可满足大功率要求。
优选地,所述高频变压模块包括高频变压器T101;所述快速整流滤波模块包括整流二极管D113、整流二极管D114、电容C108、电容C109和电抗L104; 高频变压器T101的初级与高频全桥逆变模块连接;高频变压器T101的次级输出端一通过依次连接的整流二极管D113和电容C108与高频变压器T101的次级输出端二连接;高频变压器T101的次级输出端三通过整流二极管D114与整流二极管D113和电容C108的连接处连接;电抗L104和电容C109串联后并联在电容C108上;电容C109与负载并联。快速整流滤波模块采用全波整流结构,电路结构简单,电流波动幅度小;电抗L104可实现高性能的平滑滤波,有效改善电流纹波,有利于提高焊接质量。
优选地,所述整流二极管D113和整流二极管D114均采用SiC肖特基二极管;无反向恢复电流,耐压值高达650V,可大幅降低开关损耗并提高开关频率。
优选地,所述控制电路包括谐振模式控制器、高频驱动模块、峰值电流检测模块,电压反馈模块、过压检测模块、欠压检测模块和供电模块;所述谐振模式控制器通过高频驱动模块与高频全桥逆变模块连接;高频变压模块通过峰值电流检测模块与谐振模式控制器连接;快速整流滤波模块分别通过电压反馈模块和过压检测模块与谐振模式控制器连接;整流滤波模块通过欠压检测模块与谐振模式控制器连接;供电模块分别与谐振模式控制器和高频驱动模块连接。
优选地,所述高频驱动模块包括高频放大器U201、高频放大器U202、隔直电容C201、电压钳位电路一、电压钳位电路二、高频脉冲变压器T201和两个高频驱动信号产生电路;
所述谐振模式控制器包括谐振模式控制芯片;谐振模式控制芯片包括用于产生PFM1信号的接口和用于产生PFM2信号的接口;用于产生PFM1信号的接口通过依次连接的高频放大器U201、隔直电容C201、电压钳位电路一与高频脉冲变压器T201的初级输入端一连接,用于产生PFM2信号的接口通过依次连接的高频放大器U202和电压钳位电路二与高频脉冲变压器T201的初级输入端二连接;
所述高频脉冲变压器T201带有两个次级,两个高频驱动信号产生电路结构相同,且两个高频驱动信号产生电路以相反方向分别连接于两个高频脉冲变压器T201的次级上。
优选地,所述电压钳位电路一包括二极管D201和二极管D202;二极管D201和二极管D202连接后与供电模块连接;二极管D201和二极管D202的连接处分别与隔直电容C201和高频脉冲变压器T201的初级输入端一连接;
所述电压钳位电路二包括二极管D203和二极管D204;二极管D203和二极管D204连接后与供电模块连接;二极管D203和二极管D204的连接处分别与高频放大器U202和高频脉冲变压器T201的初级输入端二连接。
优选地,所述高频驱动信号产生电路包括电阻R201、电阻R202、电阻R203、电阻R204、电阻R205、泄排电阻R206、电容C202、电容C203、二极管D205、二极管D206、二极管D207、二极管D208、稳压二极管ZD201、稳压二极管ZD202、稳压二极管ZD203和N型功率开关管Q201;高频脉冲变压器T201的次级输出端一通过依次连接的电阻R202和二极管D205与高频脉冲变压器T201的次级输出端二连接;N型功率开关管Q201源极和二极管D206连接后并联在电阻R202上;二极管D207和电阻R203连接形成串接电路,之后与稳压二极管ZD201串联后并联在N型功率开关管Q201栅源极上;稳压二极管ZD203和稳压二极管ZD202反向串联后并联在所述串接电路上;电阻R204、二极管D208和泄排电阻R206串联后并联在所述串接电路上;电阻R201与二极管D205并联;电容C202与稳压二极管ZD201并联;电阻R205与二极管D208并联;电容C203与泄排电阻R206并联;电容C203的两端分别与高频全桥逆变模块连接。
由于SiC功率开关管的开关频率高,因此需要更大的驱动功率,从而对高频驱动模块提出了更高的要求。本发明中高频驱动模块采用两个高频放大器形成一个推挽结构,有着足够的驱动功率来满足SiC功率开关管的高开关频率。利用与电容C202并联的稳压二极管ZD201产生负压来加速SiC功率开关管的关断,有利于防止SiC功率开关管的误导通;电容C203为SiC功率开关管栅源极并联电容,对驱动电压尖峰起抑制作用。
优选地,所述谐振模式控制芯片是指型号为NCP1395B的谐振模式控制芯片。型号为NCP1395B的谐振模式控制芯片具有可靠和稳固的谐振模式,待机能耗极低,同时提供了所有必须的功能,极大地简化了控制电路的设计;其关键特性包括50kHz~1.0MHz的宽频率范围、可调节的死区时间(dead time)、可调节的软启动、可调节的最小和最大频率、低启动电流、欠压检测、可调节的故障定时器间隔和跳周期可能性等;其保护功能,例如立即关机或基于定时器的事件、欠压等,有助于建立一个更安全的转换器设计,无需增加复杂的电路。
与现有技术相比,本发明具有如下优点与有益效果:
1、本发明等离子体电源具有更高的能效和功率密度:等离子体电源所有 功率器件全部采用宽禁带SiC功率器件,实现了高频软开关,整机的体积和重量更小,动态损耗更低,功率密度和效率更高,能量转换效率可高达98%以上;
2、本发明等离子体电源具有更好的动态响应性能:采用全桥逆变LLC型零电压软开关拓扑结构,谐振换流频率达到500kHz,主电路的时间常数减小,控制周期更短,动态性能更好;可靠性高,有利于提高效率,降低电磁干扰强度并能够实现较大功率输出;
3、本发明等离子体电源具有更优异的工艺性能:由于本发明的逆变频率更高,动态响应性能更好,使得本发明更易于实现对等离子体负载高速精确调控。
附图说明
图1是本发明等离子体电源的系统结构框图;
图2是本发明等离子体电源的主电路原理图;
图3是本发明等离子体电源的高频驱动模块的电路原理图;
图4是本发明等离子体电源的谐振模式控制器的电路原理图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细的描述。
实施例
如图1至图4所示,本实施例基于SiC功率器件的全桥LLC谐振型等离子体电源包括主电路和控制电路;主电路包括依次连接的整流滤波模块、高频全桥逆变模块、高频变压模块和快速整流滤波模块;整流滤波模块与三相交流输入电源连接,快速整流滤波模块与负载连接。
高频全桥逆变模块包括SiC功率开关管Q101、SiC功率开关管Q102、SiC功率开关管Q103、SiC功率开关管Q104、电感L102、电感L103和电容C107;SiC功率开关管Q101和SiC功率开关管Q103串联后并联到整流滤波模块上;SiC功率开关管Q102和SiC功率开关管Q104串联后并联到整流滤波模块上;SiC功率开关管Q101和SiC功率开关管Q103的连接处与SiC功率开关管Q102和SiC功率开关管Q104的连接处之间通过依次连接的电感L103、电容C107和电感L102连接;电感L103与高频变压模块并联;SiC功率开关管Q101还并联有二极管D109和电容C103;SiC功率开关管Q102还并联有二极管D110和电容C104;SiC 功率开关管Q103还并联有二极管D111和电容C105;SiC功率开关管Q104还并联有二极管D112和电容C106。本发明中,高频全桥逆变模块采用全桥逆变LLC型零电压软开关拓扑结构,适合高压输出的应用场合,可提高效率以及实现高频小型化。高频逆变技术可增强传递功率和提高能量转换效率;LLC谐振技术可提高功率密度,并且能在带载条件下得到极高的转换效率;所述零电压软开关模式是这样实现的:SiC功率开关管Q101~Q104利用其并联的二极管D109~D112以及电容C103~C106,当电容C103~C106放电到零时同时使并联二极管D109~D112自然导通,SiC功率开关管Q101~Q104栅源极电压被箝位到零,此时开通SiC功率开关管Q101~Q104可实现零电压开通;利用零电压软开关模式可实现功率换流,降低功率器件开关损耗,满足高效率高功率密度的需要;高频全桥逆变模块的功率开关管需要承受的电压较低,可避免功率开关管的损坏,并且采用SiC功率开关管作为功率开关管,耐压值高达1200V;SiC功率开关管采用并联方式连接,可满足大功率要求。
高频变压模块包括高频变压器T101;快速整流滤波模块包括整流二极管D113、整流二极管D114、电容C108、电容C109和电抗L104;高频变压器T101的初级并联在电感L103上;高频变压器T101的次级输出端一通过依次连接的整流二极管D113和电容C108与高频变压器T101的次级输出端二连接;高频变压器T101的次级输出端三通过整流二极管D114与整流二极管D113和电容C108的连接处连接;电抗L104和电容C109串联后并联在电容C108上;电容C109与负载并联。快速整流滤波模块采用全波整流结构,电路结构简单,电流波动幅度小;电抗L104可实现高性能的平滑滤波,有效改善电流纹波,有利于提高焊接质量。
整流二极管D113和整流二极管D114均采用SiC肖特基二极管;无反向恢复电流,耐压值高达650V,可大幅降低开关损耗并提高开关频率。
本发明等离子体电源主电路的工作原理是:首先,三相交流输入电源连接整流滤波模块使交流电平滑滤波变为直流电;直流电输入高频全桥逆变模块,经由SiC功率开关管Q101、SiC功率开关管Q102、SiC功率开关管Q103和SiC功率开关管Q104构成的全桥逆变电路,两路互补的PFM信号控制对角的两个功率开关管同时高频开通或者关断,将直流电转换为高频正弦波交流电;其中二极管D109、二极管D110、二极管D111、二极管D112分别为SiC功率开关 管Q101、SiC功率开关管Q102、SiC功率开关管Q103和SiC功率开关管Q104的反并联二极管;而电容C103、电容C104、电容C105和电容C106分别为SiC功率开关管Q101、SiC功率开关管Q102、SiC功率开关管Q103和SiC功率开关管Q104的输出滤波电容;然后,高频正弦波交流电流入高频变压模块进行电压变换;经过电压变换之后的高压高频正弦波交流电进入快速整流滤波模块,变成平滑的直流电;其中电抗L104可以进一步降低纹波电流,但因为频率的提高,使得电抗值大大地减小,从而减小电抗的重量和体积。高频全桥逆变模块对输出的电压值进行调制,通过频率的调制从而稳定输出电压,实现恒压输出。
控制电路包括谐振模式控制器、高频驱动模块、峰值电流检测模块,电压反馈模块、过压检测模块、欠压检测模块和供电模块;谐振模式控制器通过高频驱动模块与高频全桥逆变模块连接;高频变压模块通过峰值电流检测模块与谐振模式控制器连接;快速整流滤波模块分别通过电压反馈模块和过压检测模块与谐振模式控制器连接;整流滤波模块通过欠压检测模块与谐振模式控制器连接;供电模块分别与谐振模式控制器和高频驱动模块连接。
高频驱动模块包括高频放大器U201、高频放大器U202、隔直电容C201、电压钳位电路一、电压钳位电路二、高频脉冲变压器T201和两个高频驱动信号产生电路;
谐振模式控制器包括谐振模式控制芯片;谐振模式控制芯片包括用于产生PFM1信号的接口和用于产生PFM2信号的接口;用于产生PFM1信号的接口通过依次连接的高频放大器U201、隔直电容C201、电压钳位电路一与高频脉冲变压器T201的初级输入端一连接,用于产生PFM2信号的接口通过依次连接的高频放大器U202和电压钳位电路二与高频脉冲变压器T201的初级输入端二连接;
高频脉冲变压器T201带有两个次级,两个高频驱动信号产生电路结构相同,且两个高频驱动信号产生电路以相反方向分别连接于两个高频脉冲变压器T201的次级上。
电压钳位电路一包括二极管D201和二极管D202;二极管D201和二极管D202连接后与供电模块连接;二极管D201和二极管D202的连接处分别与隔直电容C201和高频脉冲变压器T201的初级输入端一连接;
电压钳位电路二包括二极管D203和二极管D204;二极管D203和二极管D204 连接后与供电模块连接;二极管D203和二极管D204的连接处分别与高频放大器U202和高频脉冲变压器T201的初级输入端二连接。二极管D201和二极管D202以及二极管D203和二极管D204可以将电压值钳位在VCC与地之间。
高频驱动信号产生电路包括电阻R201、电阻R202、电阻R203、电阻R204、电阻R205、泄排电阻R206、电容C202、电容C203、二极管D205、二极管D206、二极管D207、二极管D208、稳压二极管ZD201、稳压二极管ZD202、稳压二极管ZD203和N型功率开关管Q201;高频脉冲变压器T201的次级输出端一通过依次连接的电阻R202和二极管D205与高频脉冲变压器T201的次级输出端二连接;N型功率开关管Q201源极和二极管D206连接后并联在电阻R202上;二极管D207和电阻R203连接形成串接电路,之后与稳压二极管ZD201串联后并联在N型功率开关管Q201栅源极上;稳压二极管ZD203和稳压二极管ZD202反向串联后并联在所述串接电路上;电阻R204、二极管D208和泄排电阻R206串联后并联在所述串接电路上;电阻R201与二极管D205并联;电容C202与稳压二极管ZD201并联;电阻R205与二极管D208并联;电容C203与泄排电阻R206并联;
其中一个高频驱动信号产生电路的原理是这样的:当高频脉冲变压器T201的次级输出端一感应输出低电平,高频脉冲变压器T201的次级输出端二感应输出高电平时,高频脉冲变压器T201的次级输出端二通过依次连接二极管D205、电阻R204和R205输出高电平到输出端口G 1;高频脉冲变压器T201的次级输出端一通过依次连接二极管D206和稳压二极管201输出低电平到输出端口S 1;高频脉冲变压器T201的次级输出端二感应输出高电平经过二极管D205以及所述串接电路给电容C202充电;
当高频脉冲变压器T201的次级输出端一感应输出高电平,高频脉冲变压器T201的次级输出端二感应输出低电平时,高频脉冲变压器T201的次级输出端一通过依次连接电阻R202和电阻R201与高频脉冲变压器T201的次级输出端二连接;所述高电平通过电阻R202和电阻R201分压,电阻R202和电阻R201连接处经过电阻R204和二极管D208输出低电平到输出端口G 1;此时N型功率开关管Q201导通,电容C202开始放电,电阻R202和电阻R201连接处经过N型功率开关管Q201和电容C202输出高电平到输出端口S 1
另一个高频驱动信号产生电路也采用相同工作原理使输出端口G 2S 2产生高频驱动信号;两个高频驱动信号产生电路的输出端G 1S 1和G 2S 2与高频全桥逆变模 块连接。
由于SiC功率开关管的开关频率高,因此需要更大的驱动功率,从而对高频驱动模块提出了更高的要求。本发明中高频驱动模块采用两个高频放大器形成一个推挽结构,有着足够的驱动功率来满足SiC功率开关管的高开关频率。利用与电容C202并联的稳压二极管ZD201产生负压来加速SiC功率开关管的关断,有利于防止SiC功率开关管的误导通;电容C203为SiC功率开关管栅源极并联电容,对驱动电压尖峰起抑制作用。
谐振模式控制芯片可以采用数字微处理器芯片,也可以采用专用的谐振模式控制芯片;其中的一种优选的谐振模式控制芯片是指型号为NCP1395B的谐振模式控制芯片。型号为NCP1395B的谐振模式控制芯片具有可靠和稳固的谐振模式,待机能耗极低,同时提供了所有必须的功能,极大地简化了控制电路的设计;其关键特性包括50kHz~1.0MHz的宽频率范围、可调节的死区时间(dead time)、可调节的软启动、可调节的最小和最大频率、低启动电流、欠压检测、可调节的故障定时器间隔和跳周期可能性等;其保护功能,例如立即关机或基于定时器的事件、欠压等,有助于建立一个更安全的转换器设计,无需增加复杂的电路。由于在谐振电路结构中避开谐振尖峰相当重要,因此为了使拓扑工作在合适的工作区域,型号为NCP1395B的谐振模式控制芯片内置了可调节且精确的最低开关频率。
型号为NCP1395B的谐振模式控制芯片这样设置:
管脚F min和管脚F max分别为最低和最高工作频率设定端,通过对外部电阻R301和R302的选择,可以设定最低和最高频率值,阻值与频率称非线性关系;
管脚DT为死区时间设定端,根据外部电阻R303确定死区时间,防止高频全桥逆变模块对角桥臂的直通而发生故障;
管脚C ss为软启动端,其中C301为外部电容,正常软启动工作电压点在3.5V,若反馈电压V fb低于0.6V,则软启动在不停地启动;
管脚FB为稳压反馈端,其中C302为外部电容,R312和R313为分压电阻,D302为稳压二极管,快速整流滤波模块的输出电压值通过电压反馈模块,电压反馈模块里输出光耦的两个输出端口分别和输入端口RT和RT-RTN连接,通过控制光耦的开通和关断来控制输入端口RT和RT-RTN的闭合与断开,当输入端口RT和RT-RTN通过光耦闭合时,电源经过电阻R312和电阻R313进行分压, 获得反馈电压,当反馈电压值在0~0.6V时,谐振模式控制器判定为故障;反馈电压值在0.6V~1.3V时,输出波形的频率固定在最小值F min;反馈电压值在1.3V~6V时,频率的变化量ΔF sw与反馈电压ΔV fb呈正比关系;反馈电压超过6V时,谐振模式控制器停止工作。通过改变频率从而稳定快速整流滤波模块的输出电压值;
管脚C timer故障检测时间设定端,通过外部电阻R304和电容C303的充放电来设定故障检测时间;
管脚BO为欠压保护检测端,C304为外部电容,R305为分压电阻,三相交流输入电源通过整流滤波模块整流滤波后,经过欠压检测模块得到检测电压值Brown-Down Voltage,输入管脚BO,如果电压值超出1.03V~4.1V范围,则谐振模式控制器停止工作;快速整流滤波模块的输出电压值通过过压检测模块得到检测电压值OVP-SIG,当检测到过压信号时,开通PNP型三极管N301,R316为限流电阻,电压VCC经过分压电阻R314和R315后,得到电阻R315上的电压值经过二极管D301输入管脚BO,如果电压值超出1.03V~4.1V范围,则谐振模式控制器停止工作;
管脚A_GND为模拟地,管脚P_GND为数字地,将两个地接到GND上;
管脚SW_A和管脚SW_B分别为低端和高端驱动脉冲输出端,管脚SW_A是用于产生PFM1信号的接口,管脚SW_B是用于产生PFM2信号的接口,经过高频驱动模块的电气隔离和放大,产生驱动信号,来驱动高频全桥逆变模块的四个SiC功率开关管,控制其开通或者关断,实现输出电压的恒压特性闭环控制,以符合设定的电压值要求;
管脚VCC为电源端,其中C305和C308为外部电容,D301为稳压二极管;
管脚F-Fault和管脚S-Fault分别为快速和慢速故障检测引脚,将反馈电压V fb通过电阻R309和电阻R308分别接在管脚F-Fault和管脚S-Fault。管脚13F-Fault故障开启电压为1.05V,故障关闭恢复电压为1.03V,根据反馈电压值V fb控制谐振模式控制器的开启或者关断,其中C306为外部电容,R307为外部电阻。管脚S-Fault故障开启电压为1.03V,峰值电流检测模块利用电流传感器获得高频变压模块原边电流值,原边电流值通过输入端口CS流入谐振模式控制器,其中R306、R310和R311为分流电阻,C307为并联电容;当故障发生时,定时器开始倒计时,并在时间结束时关断谐振模式控制器。
电压反馈模块用于检测快速整流滤波模块的输出电压值,可采用现有技术。
欠压检测模块用于检测整流滤波模块的输入电压值,可采用现有技术。
峰值电流检测模块用于获得高频变压模块原边电流值,可采用现有技术。
过压检测模块用于检测快速整流滤波模块的输出电压值,可采用现有技术。
本发明等离子体电源实现了高频高压输出,能够满足高效、高功率密度和小型化的要求,是新一代等离子体电源;其具体优点如下:
1、高频化、小型化:本发明创新性的采用了全SiC功率器件,构建了基于全SiC功率器件的全桥LLC谐振型等离子体电源,实现了高频化,大幅度地减小了高频变压模块、散热系统以及快速整流滤波模块的体积和重量,动态响应好,极大地减小了动态损耗,改善了整机性能;
2、高效化:本发明充分利用型号为NCP1395B的谐振模式控制芯片的强大设计灵活性,外部电路简单,稳固可靠,易于实现等离子体电源的精确控制;采用LLC型软开关换流技术,高频全桥逆变模块的能量转换效率高,功率密度高,可靠性好,不仅有利于提高效率,而且能够降低电磁干扰强度、实现较大功率输出。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:包括主电路和控制电路;所述主电路包括依次连接的整流滤波模块、高频全桥逆变模块、高频变压模块和快速整流滤波模块;所述整流滤波模块与三相交流输入电源连接,快速整流滤波模块与负载连接;其中,高频全桥逆变模块采用全桥逆变LLC型零电压软开关拓扑结构;所述高频全桥逆变模块、高频变压模块、快速整流滤波模块分别与控制电路连接,以实现由控制电路控制电源输出。
  2. 根据权利要求1所述的基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:所述的高频全桥逆变模块采用全桥逆变LLC型零电压软开关拓扑结构是指:高频全桥逆变模块包括SiC功率开关管Q101、SiC功率开关管Q102、SiC功率开关管Q103、SiC功率开关管Q104、电感L102、电感L103和电容C107;SiC功率开关管Q101和SiC功率开关管Q103串联后并联到整流滤波模块上;SiC功率开关管Q102和SiC功率开关管Q104串联后并联到整流滤波模块上;SiC功率开关管Q101和SiC功率开关管Q103的连接处与SiC功率开关管Q102和SiC功率开关管Q104的连接处之间通过依次连接的电感L103、电容C107和电感L102连接;电感L103与高频变压模块并联;SiC功率开关管Q101还并联有二极管D109和电容C103;SiC功率开关管Q102还并联有二极管D110和电容C104;SiC功率开关管Q103还并联有二极管D111和电容C105;SiC功率开关管Q104还并联有二极管D112和电容C106。
  3. 根据权利要求1所述的基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:所述高频变压模块包括高频变压器T101;所述快速整流滤波模块包括整流二极管D113、整流二极管D114、电容C108、电容C109和电抗L104;高频变压器T101的初级与高频全桥逆变模块连接;高频变压器T101的次级输出端一通过依次连接的整流二极管D113和电容C108与高频变压器T101的次级输出端二连接;高频变压器T101的次级输出端三通过整流二极管D114与整流二极管D113和电容C108的连接处连接;电抗L104和电容C109串联后并联在电容C108上;电容C109与负载并联。
  4. 根据权利要求3所述的基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:所述整流二极管D113和整流二极管D114均采用SiC肖特基 二极管。
  5. 根据权利要求1所述的基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:所述控制电路包括谐振模式控制器、高频驱动模块、峰值电流检测模块,电压反馈模块、过压检测模块、欠压检测模块和供电模块;所述谐振模式控制器通过高频驱动模块与高频全桥逆变模块连接;高频变压模块通过峰值电流检测模块与谐振模式控制器连接;快速整流滤波模块分别通过电压反馈模块和过压检测模块与谐振模式控制器连接;整流滤波模块通过欠压检测模块与谐振模式控制器连接;供电模块分别与谐振模式控制器和高频驱动模块连接。
  6. 根据权利要求5所述的基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:所述高频驱动模块包括高频放大器U201、高频放大器U202、隔直电容C201、电压钳位电路一、电压钳位电路二、高频脉冲变压器T201和两个高频驱动信号产生电路;
    所述谐振模式控制器包括谐振模式控制芯片;谐振模式控制芯片包括用于产生PFM1信号的接口和用于产生PFM2信号的接口;用于产生PFM1信号的接口通过依次连接的高频放大器U201、隔直电容C201、电压钳位电路一与高频脉冲变压器T201的初级输入端一连接,用于产生PFM2信号的接口通过依次连接的高频放大器U202和电压钳位电路二与高频脉冲变压器T201的初级输入端二连接;
    所述高频脉冲变压器T201带有两个次级,两个高频驱动信号产生电路结构相同,且两个高频驱动信号产生电路以相反方向分别连接于两个高频脉冲变压器T201的次级上。
  7. 根据权利要求6所述的基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:所述电压钳位电路一包括二极管D201和二极管D202;二极管D201和二极管D202连接后与供电模块连接;二极管D201和二极管D202的连接处分别与隔直电容C201和高频脉冲变压器T201的初级输入端一连接;
    所述电压钳位电路二包括二极管D203和二极管D204;二极管D203和二极管D204连接后与供电模块连接;二极管D203和二极管D204的连接处分别与高频放大器U202和高频脉冲变压器T201的初级输入端二连接。
  8. 根据权利要求6所述的基于SiC功率器件的全桥LLC谐振型等离子体电 源,其特征在于:所述高频驱动信号产生电路包括电阻R201、电阻R202、电阻R203、电阻R204、电阻R205、泄排电阻R206、电容C202、电容C203、二极管D205、二极管D206、二极管D207、二极管D208、稳压二极管ZD201、稳压二极管ZD202、稳压二极管ZD203和N型功率开关管Q201;高频脉冲变压器T201的次级输出端一通过依次连接的电阻R202和二极管D205与高频脉冲变压器T201的次级输出端二连接;N型功率开关管Q201源极和二极管D206连接后并联在电阻R202上;二极管D207和电阻R203连接形成串接电路,之后与稳压二极管ZD201串联后并联在N型功率开关管Q201栅源极上;稳压二极管ZD203和稳压二极管ZD202反向串联后并联在所述串接电路上;电阻R204、二极管D208和泄排电阻R206串联后并联在所述串接电路上;电阻R201与二极管D205并联;电容C202与稳压二极管ZD201并联;电阻R205与二极管D208并联;电容C203与泄排电阻R206并联;电容C203的两端分别与高频全桥逆变模块连接。
  9. 根据权利要求6所述的基于SiC功率器件的全桥LLC谐振型等离子体电源,其特征在于:所述谐振模式控制芯片是指型号为NCP1395B的谐振模式控制芯片。
PCT/CN2018/074687 2017-10-26 2018-01-31 基于SiC功率器件的全桥LLC谐振型等离子体电源 WO2019080400A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/02052A ZA202002052B (en) 2017-10-26 2020-05-04 Sic power device-based full-bridge llc resonant plasma power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711017397.5A CN107707136B (zh) 2017-10-26 2017-10-26 基于SiC功率器件的全桥LLC谐振型等离子体电源
CN201711017397.5 2017-10-26

Publications (1)

Publication Number Publication Date
WO2019080400A1 true WO2019080400A1 (zh) 2019-05-02

Family

ID=61182481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074687 WO2019080400A1 (zh) 2017-10-26 2018-01-31 基于SiC功率器件的全桥LLC谐振型等离子体电源

Country Status (3)

Country Link
CN (1) CN107707136B (zh)
WO (1) WO2019080400A1 (zh)
ZA (1) ZA202002052B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953246A (zh) * 2021-02-23 2021-06-11 哈尔滨工业大学(深圳) 一种高频功率源系统和负载驱动系统
CN113037125A (zh) * 2021-03-15 2021-06-25 无锡复溪电子科技有限公司 一种用于产生低温等离子体的谐振重频高压脉冲电源
CN113765396A (zh) * 2021-09-03 2021-12-07 广西中科蓝谷半导体科技有限公司 一种高集成度acdc开关电源芯片
CN116191550A (zh) * 2023-03-29 2023-05-30 苏州博沃创新能源科技有限公司 一种基于SiC的家庭光储充一体系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108127239B (zh) * 2018-03-02 2023-12-01 华南理工大学 铝合金机器人变极性等离子弧智能穿孔焊接系统
CN108811291A (zh) * 2018-06-18 2018-11-13 安徽航天环境工程有限公司 一种低温等离子装置
CN108738223B (zh) * 2018-06-18 2020-11-06 安徽航天环境工程有限公司 一种气态废物的等离子处理装置
EP3605582A1 (en) 2018-08-02 2020-02-05 TRUMPF Huettinger Sp. Z o. o. Power converter and power supply system
CN110190818A (zh) * 2019-06-20 2019-08-30 云南电网有限责任公司电力科学研究院 一种电流放大器
CN110868073B (zh) * 2019-08-26 2021-04-13 哈尔滨工业大学 一种基于多绕组变压器耦合的串联SiC MOSFET驱动电路
CN112039341B (zh) * 2019-11-13 2021-12-31 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种对称半桥lc串联谐振正弦功率变换电路的驱动方法
CN112039342B (zh) * 2019-11-13 2021-12-31 扬州船用电子仪器研究所(中国船舶重工集团公司第七二三研究所) 一种对称半桥谐振开环直流比例变换器的驱动电路
CN211405872U (zh) * 2019-12-27 2020-09-01 天津工业大学 一种基于GaN功率器件的整流系统
CN112467998B (zh) * 2020-10-14 2022-03-29 华南理工大学 一种能量密度可调整的多工作模式等离子体电源
CN112332504A (zh) * 2020-10-19 2021-02-05 西安电子科技大学芜湖研究院 一种智能充电器电源控制系统、控制方法、计算机设备及应用
CN113262038B (zh) * 2021-06-19 2024-04-16 安徽奥弗医疗设备科技股份有限公司 一种等离子体手术刀电源控制系统
CN114362558A (zh) * 2022-01-04 2022-04-15 广州赛隆增材制造有限责任公司 电子枪高压电源
CN115603585A (zh) * 2022-10-25 2023-01-13 江苏省送变电有限公司(Cn) 功放电源自适应调整装置及调整方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101391340A (zh) * 2008-11-05 2009-03-25 江苏科技大学 空气等离子切割机
CN203911762U (zh) * 2014-06-06 2014-10-29 华中科技大学 一种llc谐振变换装置
JP2016082747A (ja) * 2014-10-17 2016-05-16 ローム株式会社 スイッチ駆動回路及びこれを用いたスイッチング電源装置
CN206547018U (zh) * 2017-03-15 2017-10-10 泰科天润半导体科技(北京)有限公司 一种基于碳化硅mosfet的充电模组
CN207368899U (zh) * 2017-10-26 2018-05-15 华南理工大学 基于SiC功率器件的全桥LLC谐振型等离子体电源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201118531Y (zh) * 2007-10-18 2008-09-17 青岛海信电器股份有限公司 外接变压器式驱动电路
JP2016025722A (ja) * 2014-07-18 2016-02-08 株式会社リコー インバータ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101391340A (zh) * 2008-11-05 2009-03-25 江苏科技大学 空气等离子切割机
CN203911762U (zh) * 2014-06-06 2014-10-29 华中科技大学 一种llc谐振变换装置
JP2016082747A (ja) * 2014-10-17 2016-05-16 ローム株式会社 スイッチ駆動回路及びこれを用いたスイッチング電源装置
CN206547018U (zh) * 2017-03-15 2017-10-10 泰科天润半导体科技(北京)有限公司 一种基于碳化硅mosfet的充电模组
CN207368899U (zh) * 2017-10-26 2018-05-15 华南理工大学 基于SiC功率器件的全桥LLC谐振型等离子体电源

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112953246A (zh) * 2021-02-23 2021-06-11 哈尔滨工业大学(深圳) 一种高频功率源系统和负载驱动系统
CN113037125A (zh) * 2021-03-15 2021-06-25 无锡复溪电子科技有限公司 一种用于产生低温等离子体的谐振重频高压脉冲电源
CN113765396A (zh) * 2021-09-03 2021-12-07 广西中科蓝谷半导体科技有限公司 一种高集成度acdc开关电源芯片
CN113765396B (zh) * 2021-09-03 2023-08-25 广西中科蓝谷半导体科技有限公司 一种高集成度acdc开关电源芯片
CN116191550A (zh) * 2023-03-29 2023-05-30 苏州博沃创新能源科技有限公司 一种基于SiC的家庭光储充一体系统

Also Published As

Publication number Publication date
CN107707136B (zh) 2020-04-07
ZA202002052B (en) 2021-05-26
CN107707136A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2019080400A1 (zh) 基于SiC功率器件的全桥LLC谐振型等离子体电源
US10700589B2 (en) Wide-operating-range resonant-transition soft-switched converter
US7518895B2 (en) High-efficiency power converter system
CN101854120B (zh) 一种高效率多功能反激变换器
TWI459697B (zh) 直流對直流轉換器、電力變換器及其控制方法
CN108521223B (zh) 开关电源电路
CN108539984B (zh) 开关电源电路的pfwm控制系统
CN102946196B (zh) 高功率因数恒流驱动电路及恒流装置
TWI446133B (zh) Method and control device for tail current control isolated converter
CN108390567B (zh) 一种零电压开关Boost电路及其控制方法
CN108964474A (zh) 一种基于llc谐振变换器的三模态整流拓扑结构
CN107834853A (zh) 以抖动频率进行斜坡时间调制的开关式功率转换器控制器
CN205792229U (zh) 一种中大功率场合高功率因数直流电源
CN102377354A (zh) 变流器
WO2018126557A1 (zh) 基于pfc与llc谐振的智能半桥正弦波电压转换电路
CN202997938U (zh) 高功率因数恒流驱动电路及恒流装置
US20230253885A1 (en) Soft-switching pulse-width modulated dc-dc power converter
CN104795984A (zh) 电源转换器
TWI650927B (zh) 用於主開關切換轉換的零電壓開關式返馳變換器
CN113676057B (zh) 一种基于二次电流模拟的llc同步整流电路
TWI617126B (zh) 電源轉換器及其控制方法
CN107332453B (zh) 一种单级式光伏离网逆变器及其控制方法
CN105939555B (zh) Led驱动装置及其控制电路和控制方法
CN106208765B (zh) 用于准谐振工作模式的Boost PFC变换器的控制装置和控制方法
CN207368899U (zh) 基于SiC功率器件的全桥LLC谐振型等离子体电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/08/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18871066

Country of ref document: EP

Kind code of ref document: A1