WO2019080343A1 - "一"字型有源保偏光纤及其制备方法 - Google Patents

"一"字型有源保偏光纤及其制备方法

Info

Publication number
WO2019080343A1
WO2019080343A1 PCT/CN2017/118441 CN2017118441W WO2019080343A1 WO 2019080343 A1 WO2019080343 A1 WO 2019080343A1 CN 2017118441 W CN2017118441 W CN 2017118441W WO 2019080343 A1 WO2019080343 A1 WO 2019080343A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
base pipe
stress
cladding layer
active polarization
Prior art date
Application number
PCT/CN2017/118441
Other languages
English (en)
French (fr)
Inventor
冯术娟
赵霞
周震华
缪振华
候树虎
徐律
卞新海
朱婷停
张俊逸
Original Assignee
江苏法尔胜光通信科技有限公司
江苏法尔胜光子有限公司
江苏法尔胜光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏法尔胜光通信科技有限公司, 江苏法尔胜光子有限公司, 江苏法尔胜光电科技有限公司 filed Critical 江苏法尔胜光通信科技有限公司
Publication of WO2019080343A1 publication Critical patent/WO2019080343A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres

Definitions

  • the invention relates to a polarization maintaining optical fiber, in particular to a "one" type active polarization maintaining optical fiber and a preparation method thereof.
  • Active fiber is an optical fiber capable of generating laser light or optical amplification, and is mainly used for fiber lasers and fiber amplifiers.
  • the laser is required to be linearly polarized output.
  • the use of a linearly polarized fiber laser instead of a light source and a polarizer in a fiber optic gyroscope improves the polarization characteristics of the input light while simplifying the assembly process of the fiber optic gyroscope, thereby effectively improving the accuracy of the fiber optic gyroscope.
  • a linearly polarized fiber laser is used as an input light in a stress sensor to obtain a fiber sensor with high sensitivity and stability.
  • linearly polarized fiber lasers can improve the accuracy and stability of equipment such as nonlinear frequency conversion and coherent beam groups. They are used in many military and civilian fields such as positioning guidance, aerospace, communications, material processing, 3D printing and optical research. Important application prospects. Linearly polarized fiber lasers have important applications in the field of ultra-high power coherent synthetic lasers and high-precision fiber laser radars. Active polarization-maintaining fibers are the main components of linear polarization fiber lasers. The production of active polarization-maintaining fibers is very large. The extent determines the performance of coherent synthetic lasers and fiber laser radar systems.
  • active polarization-maintaining fibers Unlike conventional active optical fibers, active polarization-maintaining fibers generally form non-circular symmetric stress by adding substances with high expansion coefficients (B, Al, Ge, etc.) around the core of doped quantitative rare earth elements. Prepared from the area. When the linearly polarized seed source passes through a certain axis of the active polarization-maintaining fiber core layer, the optical power is amplified after a certain distance and still substantially maintains its polarization state.
  • substances with high expansion coefficients B, Al, Ge, etc.
  • Common active polarization-maintaining fibers can be divided into panda type, bow tie type, ellipse US20040156607A1 according to the shape of the stress zone.
  • the preparation process of Panda-type active polarization-maintaining fiber is mentioned.
  • the rare earth active standard preform is prepared first, and the stress is prepared.
  • Rods, standard preform punches, stress bars are inserted into standard preforms with holes, and are drawn into active polarization-maintaining fibers.
  • the process of the method is complicated, and the prepared fiber stress-applying area is large.
  • US 20040156607 A1 describes a method for preparing a prefabricated rod by vapor phase etching and drawing a strand-tie type erbium-doped polarization-maintaining fiber. The preparation process is simple, but the area of the fiber stress-affected zone is increased.
  • U.S. Patent No. 20060191295A1) provides a method for cold working to prepare an active elliptical stress zone polarization-maintaining fiber by depositing and collapsing on an MCVD lathe to form a structurally symmetric preform with a stress zone, and then prefabricating The rods are symmetrically cut to the appropriate quartz portion and then drawn into the fiber on the drawing tower, but the method requires cold working. If the processing is not good, the fiber strength is affected, and the method is time consuming, waste, and costly.
  • the object of the present invention is to provide a "one" type active polarization maintaining fiber with small stress acting area, simple production process and low production cost.
  • the technical content of the invention is a "one" type active polarization-maintaining fiber, characterized in that its cross-sectional structure from outer to inner is a base tube layer, an outer cladding layer, a stress acting region, an inner cladding layer and a core layer respectively.
  • the shape of the stress action zone is "one" long strip shape, the ratio of the area of the stress action zone to the cross-sectional area of the fiber is less than 10%, and the aspect ratio of the outer cladding layer is 1.5-4;
  • the main component of the core layer is silica and is doped with the following mole percent of elements:
  • Fluorine 0.1 to 0.5.
  • Base tube layer silicon dioxide
  • Outer layer silica doping element: phosphorus, fluorine;
  • Inner cladding silica doping element: phosphorus, fluorine;
  • Core layer silica doping element: aluminum, bismuth, phosphorus, fluorine.
  • the "one" type active polarization-maintaining fiber adopts the well-known wire drawing technology for the "one" type active polarization-maintaining rod, that is, the active polarization-maintaining rod is drawn into a quartz fiber, and a low-refraction is coated on the outside of the quartz fiber. The coating is subjected to ultraviolet curing treatment; then an acrylic fiber coating is applied and UV-cured to prepare a double-clad "one" type active polarization-maintaining fiber.
  • the cross-sectional structure of the "one" type polarization-maintaining rod should be from the outside to the inside: the base tube
  • the layer, the outer cladding layer, the stress acting region, the inner cladding layer and the core layer, the shape of the stress acting region is a long strip of "one” character, and the ratio of the area of the stress acting region to the cross-sectional area of the light rod is less than 10%, and the further stress acting region
  • the ratio of the area to the cross-sectional area of the light rod is 2 to 4%.
  • the MCVD method is a well-known method for producing a preform.
  • the production of the "one" type active polarization maintaining rod and the production of the bow tie type polarization maintaining rod are basically the same in process, except that during the directional etching
  • the etching process of the bow-tie type light rod engraves the stress-applying area on the opposite sides of the inner wall of the base pipe, so that the stress-applying area of the polarized polarization-maintaining rod is a bow-tie type; and the "one" type polarization-maintaining light
  • the etch process of the rod does not completely penetrate the stress-applying zone on the opposite sides of the inner wall of the base pipe, leaving a small thickness in the stress-applying zone at that place, even if the stress layers deposited in the base pipe are not completely separated, thereby causing collapse
  • the stress-applying area of the polarization-maintaining rod is in the shape of
  • the silica loose layer is soaked in the rare earth-containing soaking solution, and then oxidized to form a "type active polarization beam The core layer of the rod.
  • the MCVD method is a well-known method for producing a preform, and the main steps are as follows:
  • the pre-treatment can achieve the effect of preheating the base pipe and effectively eliminating impurities and bubbles on the inner wall of the base pipe;
  • the deposition process is followed by deposition of an outer cladding layer doped with phosphorus and fluorine, stress layer deposition with boron element, inner cladding deposition with phosphorus and fluorine, and core layer deposition; After the deposition process is finished, an etching process is performed to gradually etch the stress layer inside the base pipe to be heated;
  • the base pipe is subjected to forward collapse and reverse collapse to form a solid bow tie type polarization-maintaining rod
  • the polarization-maintaining rod is polished to obtain a transparent bow-tie type polarization-maintaining rod which is quartz;
  • the polarization-maintaining rod is thinned to obtain a bow-tie type polarization-maintaining fiber.
  • a method for preparing a "one" type active polarization maintaining fiber comprises the following steps:
  • the treated base pipe is sequentially subjected to an outer cladding layer doped with phosphorus and fluorine, a stress layer deposited with boron element, and an inner cladding layer doped with phosphorus and fluorine, wherein the stress layer deposition process ends.
  • the stress layer on the inner side of the heated tube is gradually etched, and the stress-applying area at the place is not completely etched, leaving a small thickness in the stress-applying area, and the inside of the base tube
  • the deposited stress layer is not completely separated; the directional etching is to make the base pipe no longer rotate, and there is a fluorine-containing corrosive gas in the base pipe; a fire head or a pair of fired two fire heads are used along the base pipe outside the base pipe Axial movement back and forth;
  • step (3) The base pipe deposited in the inner cladding layer in step (2) is passed into the SiCl 4 and SF 6 gas at 1500-1660 degrees for the loose layer deposition of the fluorine-doped silica, and the volume flow rate of the SiCl 4 is 150. ⁇ 300sccm, the volume flow rate of SF 6 is 10 ⁇ 20sccm.
  • the tail pipe of the base pipe is cut, and then immersed in the soaking aqueous solution for 0.5 ⁇ 1.5 hours. After the soaking, N 2 is blown into the base pipe.
  • the water inside the silica loose layer, the soaking aqueous solution contains AlCl 3 , YbCl 3 and H 3 PO 4 , the molar concentration of AlCl 3 is 0.01-0.5%, the molar concentration of YbCl 3 is 0.01-0.5%, H 3 The molar concentration of PO 4 is 0.01 to 0.5%;
  • the base pipe is reconnected to the tail pipe, and then the O 2 is introduced into the silica loose layer of the aluminum oxide, the bismuth and the phosphorus in the base pipe at 850 to 950 ° C. oxide, O 2 is fed for 30 to 60 minutes, O 2 into a volume flow of 190 ⁇ 210sccm; Cl 2 then pass into the silica substrate tube in loose layers were dried, Cl 2 into The time is 30-60 minutes, the volume flow rate of Cl 2 is 190-210sccm; and the loose layer of silica is sintered into a core layer at 1600-2000 °C;
  • the base pipe, the outer cladding layer, the stress zone, the inner cladding layer and the core layer are positively collapsed and reversed at 2100 to 2200 ° C by the base pipe in which the silica loose layer in the step (4) is sintered into a core layer. Collapse to form an active polarization-maintaining optical fiber preform having a shape of a stress zone of "one";
  • the transparent "one" type active polarization-preserving rod is drawn into a quartz fiber, and a layer of low-refractive-index paint is coated on the outside of the quartz fiber, and subjected to ultraviolet curing; then a layer of acrylic is applied.
  • the resin fiber coating is prepared by UV curing to form a double-clad "one" type active polarization-maintaining fiber.
  • the two fire heads are symmetrically and symmetrical on both sides of the base pipe along the axial direction of the base pipe in a plane passing through the center of the base pipe. Move to heat the tube wall.
  • the base pipe that can be used is getting thicker and thicker, and the wall thickness of the base pipe is also allowed to be larger, and the volume of the single preform thus produced is also larger and larger, and the length of the stretchable fiber is increased. It is also getting longer and longer, the production cost can be significantly reduced, and the uniformity of the parameters of a single batch of fiber can be significantly improved.
  • the invention can use a plurality of outer diameters (the maximum outer diameter can reach more than 30 mm), a plurality of wall thicknesses and a plurality of cross-sectional areas of the base tube as the active polarization maintaining rod, and the outer diameter of the base tube ranges from 12 to 35 mm, and the wall thickness The range is from 1.5 to 3.5 mm, and the cross-sectional area is in the range of 95 to 320 mm 2 .
  • the "one" type active polarization-maintaining fiber has the characteristics of small stress action zone.
  • FIG. 1 is a schematic cross-sectional structural view of an "one" type active polarization-maintaining fiber of the present invention.
  • FIG. 2 is a schematic view showing the manufacturing process of the "one" type active polarization maintaining rod of the present invention.
  • the "one" type active polarization-maintaining fiber shown in FIG. 1 has a cross-sectional structure from the outside to the inside: a base pipe layer 11, an outer cladding layer 12, a stress acting region 13, an inner cladding layer 14, and a core layer 15,
  • the shape of the stress acting region 13 is "one" long strip shape
  • the outer cladding layer 12 has a length L
  • the outer cladding layer 12 has a width W.
  • Figure 2 is a schematic diagram showing the manufacturing process of the "one" type active polarization maintaining rod, which is performed on the MCVD lathe for pretreatment of the base pipe, deposition of the outer cladding, deposition stress layer, directional etching, deposition of the inner cladding, deposition
  • Embodiment 1 a method for preparing an "one" type active polarization-maintaining fiber, comprising the following steps:
  • the treated base pipe is sequentially subjected to outer layer deposition, stress layer deposition and inner cladding deposition, wherein directional etching is performed after the stress layer deposition process is finished, and hexafluoride is introduced into the base pipe during directional etching.
  • Sulfur corrosive gas two fire heads fired on both sides of the base pipe are symmetrical symmetrically on both sides of the base pipe along the axial direction of the base pipe in a plane passing through the center of the base pipe to heat the pipe wall to heat the pipe
  • the stress layer on the inner side of the base pipe is gradually etched, so that the stress action zone at the place is not completely etched, leaving a small thickness in the stress action zone, and the stress layer deposited in the base pipe is not completely separated;
  • the base pipe deposited in the inner cladding layer in the step (2) is passed through the SiCl 4 and SF 6 gas at 1600 degrees to deposit a fluorine-containing silica loose layer, and the volume flow rate of the SiCl 4 is 200 sccm, SF 6 The volume flow rate of the inlet is 12sccm.
  • the tail pipe of the base pipe is cut, and then immersed in the soaking aqueous solution for 1 hour. After the soaking, N 2 is blown into the base pipe to dry the water inside the silica loose body.
  • the soaking aqueous solution contains AlCl 3 , YbCl 3 and H 3 PO 4 , the molar concentration of AlCl 3 is 0.2%, the molar concentration of YbCl 3 is 0.02%, and the molar concentration of H 3 PO 4 is 0.3%;
  • the base pipe is reconnected to the tail pipe, and then the O 2 is first oxidized at 900 ° C to oxidize the aluminum, bismuth and phosphorus of the silica loose layer in the base pipe.
  • O 2 into a time of 45 minutes O 2 is introduced into the volume flow of 200 sccm; Cl 2 then pass into the silica substrate tube in loose layers were dried, Cl 2 into a time of 45 minutes, The volume flow rate of Cl 2 is 200 sccm; and the silica loose layer is sintered to a core layer at 1950 ° C;
  • the base pipe, the outer cladding layer, the stress zone, the inner cladding layer and the core layer are positively collapsed and collapsed at 2150 ° C by the base pipe in which the silica loose layer in the step (4) is sintered into a core layer.
  • the active polarization-maintaining optical fiber preform with the shape of the stress zone is “one”; the ratio of the area of the stress action zone to the cross-sectional area of the light bar is 2.8%; the aluminum, germanium, phosphorus and fluorine doping in the core layer
  • the molar percentage of impurities is as follows:
  • Phosphorus is: 3.8,
  • Fluorine is: 0.4;
  • the "one" type active polarization-preserving rod in the first embodiment is drawn into a quartz fiber having a diameter of 125 um; the quartz fiber is first coated with a low-refractive-index coating and subjected to ultraviolet curing; Then coated with a layer of acrylic fiber coating, UV-cured to prepare a "one" type active polarization-maintaining fiber; the area of the stress-affected zone accounts for 2.8% of the cross-sectional area of the fiber, and the aspect ratio of the outer layer Is 2.
  • the main performance indicators of the "one" type active polarization-maintaining fiber are shown in Table 1:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

一种"一"字型有源保偏光纤及其制备方法,其特征为:光纤横截面结构由外到里分别是基管层(11)、外包层(12)、应力作用区(13)、内包层(14)和芯层(15),应力作用区(13)的形状为"一"字长条形,应力作用区(13)的面积占光纤截面积的比例小于10%,外包层(12)的长宽比为1.5~4;芯层(15)的主要组分为二氧化硅,并掺杂铝、镱、磷和氟元素。具有应力作用区小、生产流程简单、低生产成本的优点。

Description

“一”字型有源保偏光纤及其制备方法 技术领域
本发明涉及一种保偏光纤,尤其涉及一种“一”字型有源保偏光纤及其制备方法。
背景技术
有源光纤是指能够产生激光或者具备光放大功能的光纤,主要用于光纤激光器与光纤放大器。随着光纤激光雷达探测技术的飞速发展,人们对有源光纤激光器的性能提出了更高要求,即要求激光器为线偏振输出。采用线偏振光纤激光器代替光纤陀螺仪中的光源与偏振器,其在简化光纤陀螺仪装配工艺的同时改善了输入光的偏振特性,从而能有效提高光纤陀螺仪的精度。同样的,将线偏振光纤激光器作为输入光应用于应力传感器中,可以获得高灵敏度和稳定性好的光纤传感器。此外,线偏振光纤激光器还能提高非线性变频、相干光束组等设备仪器的精确度及稳定性,在定位制导、航天航空、通讯、材料加工、3D打印及光学研究等许多军用及民用领域具有重要的应用前景。线偏振光纤激光器在超高功率相干合成激光器与高精度光纤激光雷达探测领域有着重要应用,有源保偏光纤作为线偏振光纤激光器中的主要组成部分,有源保偏光纤的制作水平在很大程度上决定着相干合成激光器与光纤激光雷达系统的性能。
与传统的有源光纤不同,有源保偏光纤一般是通过在掺杂定量稀土元素的纤芯周围添加入具有膨胀系数高的物质(B、Al、Ge等),形成非圆对称的应力作用区而制备成的。当线偏振的种子光源,经过有源保偏光纤芯层的某个轴上,经过一段距离后光功率被放大且仍能基本保持其偏振态。
常见的有源保偏光纤根据应力区形状的不同可分为熊猫型、领结型、椭圆US20040156607A1提到了熊猫型的有源保偏光纤的制备过程,先制备掺稀土有源标准预制棒、制备应力棒、标准预制棒打孔、应力棒塞入带孔的标准预制棒中、进行 拉丝成有源保偏光纤。此方法工艺过程复杂,且制备的光纤应力作用区面积较大。US 20040156607 A1介绍了一种通过气相刻蚀法制备预制棒,并拉丝获得领结型掺镱保偏光纤的方法,此方法制备过程简单,但光纤应力作用区面积加大。美国专利US 20060191295A1)就提供了一种冷加工制备有源椭圆型应力区保偏光纤的方法,即在MCVD车床上通过沉积和塌缩,制成一带应力区的结构对称的预制棒,然后在预制棒两边对称切去适当的石英部分,然后在拉丝塔上拉成光纤,但该方法需要进行冷加工,如果处理不好,会影响光纤强度,并且该法费时、废料,成本高。
发明内容
针对以上缺点,本发明的目的在于提供一种应力作用区小、生产流程简单、低生产成本的“一”字型有源保偏光纤。
本发明的技术内容为,一种“一”字型有源保偏光纤,其特征为它的横截面结构由外到里分别是基管层、外包层、应力作用区、内包层和芯层,应力作用区的形状为“一”字长条形,应力作用区的面积占光纤截面积的比例小于10%,外包层的长宽比为1.5~4;
芯层的主要组分为二氧化硅,并掺杂如下摩尔百分比的元素:
铝:1~6,
镱:0.3~0.6,
磷:1~5,
氟:0.1~0.5。
“一”字型有源保偏光纤各层的主要成分:
基管层:二氧化硅;
外包层:二氧化硅掺杂元素:磷、氟;
应力区:二氧化硅掺杂元素:硼;
内包层:二氧化硅掺杂元素:磷、氟;
芯层:二氧化硅掺杂元素:铝、镱、磷、氟。
“一”字型有源保偏光纤由“一”字型有源保偏光棒采用公知的拉丝技术,即将有源保偏光棒拉细成石英光纤,在石英光纤外面先涂覆一层低折射率涂料,经过 紫外固化处理;然后再涂覆一层丙烯酸树脂光纤涂料,经过紫外固化处理,制备成双包层“一”字型有源保偏光纤。
由于“一”字型有源保偏光纤由“一”字型有源保偏光棒拉细制得,所以“一”字型保偏光棒其横截面结构由外到里也应该是:基管层、外包层、应力作用区、内包层和芯层,应力作用区的形状为“一”字长条形,应力作用区的面积占光棒横截面面积的比例小于10%,进一步应力作用区的面积占光棒横截面面积的比例为2~4%。
MCVD法为公知的生产预制棒的方法,利用此法,生产“一”字型有源保偏光棒与生产领结型保偏光棒在工艺上基本相同,不同之处是:在进行定向刻蚀时领结型光棒的刻蚀工艺将基管内壁对向两侧的应力作用区刻得很透,从而使塌缩后的保偏光棒的应力作用区呈领结型;而“一”字型保偏光棒的刻蚀工艺将基管内壁对向两侧的应力作用区不完全刻透,让该处的应力作用区留有一点厚度,即使基管内沉积的应力层不完全分开,从而使塌缩后的保偏光棒的应力作用区呈“一”字长条形;“一”字型有源保偏光棒与“一”字型保偏光棒在外包层、应力作用区、内包层的工艺基本相同,不同处是:将沉积的二氧化硅疏松体层烧结成芯层前,使二氧化硅疏松体层在含稀土元素的浸泡溶液中浸泡,然后进行氧化,形成一”字型有源保偏光棒的芯层。
MCVD法为公知的生产预制棒的方法,主要步骤为:
1、先对基管进行预处理,预处理可以达到使基管预热和有效消除基管内壁杂质和气泡的效果;
2、随后进行沉积工序,沉积工序依次为掺有磷与氟元素的外包层沉积、掺有硼元素的应力层沉积、掺有磷与氟元素的内包层沉积和芯层沉积;其中在应力层沉积工序结束后进行刻蚀工艺,使被加热处的基管内侧的应力层被逐渐刻蚀透;
3、沉积结束后对基管进行正向塌缩和反向塌缩,制成一根实心的领结型保偏光棒;
4、塌缩结束后,对保偏光棒进行抛光,制得呈石英的透明状的领结型保偏光棒;
5、将保偏光棒拉细,制得领结型保偏光纤。
“一”字型有源保偏光纤的制备方法,其包括如下步骤:
(1)、基管的预处理,使基管预热和有效消除基管内壁的杂质和气泡;
(2)、将处理过的基管依次进行掺有磷与氟元素的外包层沉积、掺有硼元素的应力层沉积和掺有磷与氟元素的内包层沉积,其中在应力层沉积工序结束后进行定向刻蚀,使被加热处的基管内侧的应力层被逐渐刻蚀,且使该处的应力作用区不被完全刻透,让该处的应力作用区留有一点厚度,基管内沉积的应力层不完全分开;定向刻蚀即为使基管不再转动,在基管内通有含氟的腐蚀性气体;在基管外用一束火头或两边对烧的两束火头沿基管的轴向来回移动;
(3)、将步骤(2)中内包层沉积后的基管在1500~1650度通入SiCl 4和SF 6气体进行掺氟二氧化硅疏松体层沉积,SiCl 4通入的体积流量为150~300sccm,SF 6通入的体积流量为10~20sccm,沉积结束后将基管的尾管切断,然后浸入浸泡水溶液中浸泡0.5~1.5小时,浸泡结束后在基管中通入N 2吹干二氧化硅疏松体层内部的水份,浸泡水溶液中含有AlCl 3、YbCl 3和H 3PO 4,AlCl 3的摩尔浓度为0.01~0.5%,YbCl 3的摩尔浓度为0.01~0.5%,H 3PO 4的摩尔浓度为0.01~0.5%;
(4)、将步骤(3)吹干后的基管再重新接上尾管,然后在850~950℃先通入O 2对基管中的二氧化硅疏松体层的铝、镱、磷进行氧化,O 2通入的时间为30~60分钟,O 2通入的体积流量为190~210sccm;然后再通入Cl 2对基管中的二氧化硅疏松体层进行干燥,Cl 2通入的时间为30~60分钟,Cl 2通入的体积流量为190~210sccm;再在1600~2000℃将二氧化硅疏松体层烧结成芯层;
(5)、将步骤(4)中二氧化硅疏松体层烧结成芯层的基管在2100~2200℃将基管、外包层、应力区、内包层和芯层进行正向塌缩和反向塌缩,制成应力区形状为“一”字的有源保偏光纤预制棒;
(6)、对“一”字的有源保偏光纤预制棒进行抛光,制得呈石英的透明状的“一”字型有源保偏光棒;
(7)、将透明状的“一”字型有源保偏光棒拉细成石英光纤,在石英光纤外面先涂覆一层低折射率涂料,经过紫外固化处理;然后再涂覆一层丙烯酸树脂光纤涂料,经过紫外固化处理,制备成双包层“一”字型有源保偏光纤。
以上生产方法中,当定向刻蚀时在基管外用一束火头时,该束火头沿基管一侧的轴向来回移动,一侧刻蚀完成后,将基管翻转180度,然后对基管的另一侧进行 刻蚀。
以上生产方法中,当定向刻蚀时在基管外用两边对烧的两束火头时,两束火头在通过基管中心的平面内沿基管的轴向对称地在基管的两侧进行来回移动以加热管壁。
随着MCVD设备的不断改进,可使用的基管越来越粗,基管的壁厚也允许较大,由此制得的单根预制棒的体积也越来越大,可拉光纤的长度也越来越长,生产成本可以明显降低,而单批光纤各项参数的均匀性则可明显改善。
本发明可以采用多种外径(最大外径可达到30mm以上)、多种壁厚和多种截面积的基管做有源保偏光棒,基管外径的范围为12~35mm,壁厚的范围为1.5~3.5mm,截面积的范围为95~320mm 2
本发明所具有的优点是:
(1)、“一”字型有源保偏光纤具有应力作用区小的特点。
(2)、“一”字型有源保偏光纤具有良好的保偏性能、环境温度适应性、耐弯曲性能和机械强度。
(3)、“一”字型有源保偏光纤的制备方法流程简单。
附图说明
图1为本发明“一”字型有源保偏光纤的横截面结构示意图。
图2为本发明“一”字型有源保偏光棒的制造流程示意图。
具体实施方式
如图1所示的“一”字型有源保偏光纤,其横截面结构由外到里分别是:基管层11、外包层12、应力作用区13、内包层14和芯层15,其应力作用区13的形状为“一”字长条形,外包层12的长度为L,外包层12的宽度为W。
如图2所示“一”字型有源保偏光棒的制造流程示意图,其为在MCVD车床上进行基管的预处理、沉积外包层、沉积应力层、定向刻蚀、沉积内包层、沉积疏松体、溶液浸泡疏松体、疏松体氧化干燥、疏松体层烧结、正向塌缩、反向塌缩、抛光等工序,制成“一”字型有源保偏预制棒。
实施例1、“一”字型有源保偏光纤的制备方法,其包括如下步骤:
(1)、基管的预处理,使基管预热和有效消除基管内壁的杂质和气泡;其中基管的直径为32mm,壁厚为2.5mm,基管的横截面积为231.5mm 2
(2)、将处理过的基管依次进行外包层沉积、应力层沉积和内包层沉积,其中在应力层沉积工序结束后进行定向刻蚀,在定向刻蚀时在基管内通入六氟化硫腐蚀性气体;在基管外用两边对烧的两束火头在通过基管中心的平面内沿基管的轴向对称地在基管的两侧进行来回移动来加热管壁,使被加热处的基管内侧的应力层被逐渐刻蚀,且使该处的应力作用区不被完全刻透,让该处的应力作用区留有一点厚度,基管内沉积的应力层不完全分开;
(3)、将步骤(2)中内包层沉积后的基管在1600度通入SiCl 4和SF 6气体进行掺氟二氧化硅疏松体层沉积,SiCl 4通入的体积流量为200sccm,SF 6通入的体积流量为12sccm,沉积结束后将基管的尾管切断,然后浸入浸泡水溶液中浸泡1小时,浸泡结束后在基管中通入N 2吹干二氧化硅疏松体内部的水份,浸泡水溶液中含有AlCl 3、YbCl 3和H 3PO 4,AlCl 3的摩尔浓度为0.2%,YbCl 3的摩尔浓度为0.02%,H 3PO 4的摩尔浓度为0.3%;
(4)、将步骤(3)吹干后的基管再重新接上尾管,然后在900℃先通入O 2对基管中的二氧化硅疏松体层的铝、镱、磷进行氧化,O 2通入的时间为45分钟,O 2通入的体积流量为200sccm;然后再通入Cl 2对基管中的二氧化硅疏松体层进行干燥,Cl 2通入的时间为45分钟,Cl 2通入的体积流量为200sccm;再在1950℃将二氧化硅疏松体层烧结成芯层;
(5)、将步骤(4)中二氧化硅疏松体层烧结成芯层的基管在2150℃将基管、外包层、应力区、内包层和芯层进行正向塌缩和反向塌缩,制成应力区形状为“一”字的有源保偏光纤预制棒;应力作用区的面积占光棒的横切面积的比例为2.8%;芯层中铝、镱、磷和氟掺杂的摩尔百分比如下:
铝为:4.2,
镱为:0.5,
磷为:3.8,
氟为:0.4;
(6)、对“一”字的有源保偏光纤预制棒进行抛光,制得呈石英的透明状的“一”字型有源保偏光棒。
实施例2、将实施例1中的“一”字型有源保偏光棒拉制成直径为125um的石英光纤;先在石英光纤先涂覆一层低折射率涂料,经过紫外固化处理;然后再涂覆一层丙烯酸树脂光纤涂料,经过紫外固化处理,制备成“一”字型有源保偏光纤;应力作用区的面积占光纤的横切面积的比例2.8%,外包层的长宽比为2。该“一”字型有源保偏光纤的主要性能指标如表1:
Figure PCTCN2017118441-appb-000001
表1

Claims (3)

  1. 一种“一”字型有源保偏光纤,其特征为它的横截面结构由外到里分别是基管层、外包层、应力作用区、内包层和芯层,应力作用区的形状为“一”字长条形,应力作用区的面积占光纤截面积的比例小于10%,外包层的长宽比为1.5~4;
    芯层的主要组分为二氧化硅,并掺杂如下摩尔百分比的元素:
    铝:1~6;
    镱:0.3~0.6;
    磷:1~5;
    氟:0.1~0.5。
  2. 一种“一”字型有源保偏光棒,其特征为它的横截面结构由外到里分别是基管层、外包层、应力作用区、内包层和芯层,应力作用区的形状为“一”字长条形,应力作用区的面积占光纤截面积的比例小于10%,外包层的长宽比为1.5~4;
    芯层的主要组分为二氧化硅,并掺杂如下摩尔百分比的元素:
    铝:1~6;
    镱:0.3~0.6;
    磷:1~5;
    氟:0.1~0.5。
  3. “一”字型有源保偏光纤的制备方法,其包括如下步骤:
    (1)、基管的预处理,使基管预热和有效消除基管内壁的杂质和气泡;
    (2)、将处理过的基管依次进行掺有磷与氟元素的外包层沉积、掺有硼元素的应力层沉积和掺有磷与氟元素的内包层沉积,其中在应力层沉积工序结束后进行定向刻蚀,使被加热处的基管内侧的应力层被逐渐刻蚀,且使该处的应力作用区不被完全刻透,让该处的应力作用区留有一点厚度,基管内沉积的应力层不完全分开;定向刻蚀即为使基管不再转动,在基管内通有含氟的腐蚀性气体;在基管外用一束火头或两边对烧的两束火头沿基管的轴向来回移动;
    (3)、将步骤(2)中内包层沉积后的基管在1500~1650度通入SiCl 4和SF 6气体进行掺氟二氧化硅疏松体层沉积,SiCl 4通入的体积流量为150~300sccm,SF 6通入的体积流量为10~ 20sccm,沉积结束后将基管的尾管切断,然后浸入浸泡水溶液中浸泡0.5~1.5小时,浸泡结束后在基管中通入N 2吹干二氧化硅疏松体层内部的水份,浸泡水溶液中含有AlCl 3、YbCl 3和H 3PO 4,AlCl 3的摩尔浓度为0.01~0.5%,YbCl 3的摩尔浓度为0.01~0.5%,H 3PO 4的摩尔浓度为0.01~0.5%;
    (4)、将步骤(3)吹干后的基管再重新接上尾管,然后在850~950℃先通入O 2对基管中的二氧化硅疏松体层的铝、镱、磷进行氧化,O 2通入的时间为30~60分钟,O 2通入的体积流量为190~210sccm;然后再通入Cl 2对基管中的二氧化硅疏松体层进行干燥,Cl 2通入的时间为30~60分钟,Cl 2通入的体积流量为190~210sccm;再在1600~2000℃将二氧化硅疏松体层烧结成芯层;
    (5)、将步骤(4)中二氧化硅疏松体层烧结成芯层的基管在2100~2200℃将基管、外包层、应力区、内包层和芯层进行正向塌缩和反向塌缩,制成应力区形状为“一”字的有源保偏光纤预制棒;
    (6)、对“一”字的有源保偏光纤预制棒进行抛光,制得呈石英的透明状的“一”字型有源保偏光棒;
    (7)、将透明状的“一”字型有源保偏光棒拉细成石英光纤,在石英光纤外面先涂覆一层低折射率涂料,经过紫外固化处理;然后再涂覆一层丙烯酸树脂光纤涂料,经过紫外固化处理,制备成双包层“一”字型有源保偏光纤。
PCT/CN2017/118441 2017-10-27 2017-12-26 "一"字型有源保偏光纤及其制备方法 WO2019080343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711027082.9A CN107918169A (zh) 2017-10-27 2017-10-27 “一”字型有源保偏光纤及其制备方法
CN201711027082.9 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019080343A1 true WO2019080343A1 (zh) 2019-05-02

Family

ID=61895089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118441 WO2019080343A1 (zh) 2017-10-27 2017-12-26 "一"字型有源保偏光纤及其制备方法

Country Status (2)

Country Link
CN (1) CN107918169A (zh)
WO (1) WO2019080343A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109399910B (zh) * 2018-11-23 2020-09-01 中国科学院西安光学精密机械研究所 大芯径光纤预制棒和光纤的制备方法
CN110244405B (zh) * 2019-06-18 2020-07-07 烽火通信科技股份有限公司 一种多波段领结型保偏光纤
CN110746109A (zh) * 2019-09-25 2020-02-04 无锡法尔胜光电科技有限公司 一种保偏光纤的制备方法
CN111559857A (zh) * 2020-04-22 2020-08-21 无锡法尔胜光电科技有限公司 一种一字型保偏光纤预制棒及一字型保偏光纤制造方法
CN112390524A (zh) * 2020-11-17 2021-02-23 大族激光科技产业集团股份有限公司 光纤预制棒制备方法、光纤制备方法和光纤
CN112596151B (zh) * 2020-11-24 2022-11-04 江苏法尔胜光电科技有限公司 一种掺铒保偏有源光纤及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156607A1 (en) * 2003-01-17 2004-08-12 Farroni Julia A. Multimode polarization maintaining double clad fiber
CN1632629A (zh) * 2004-12-29 2005-06-29 江苏法尔胜光子有限公司 “一”字型保偏光纤及其生产方法
CN101122653A (zh) * 2007-09-14 2008-02-13 中国科学院上海光学精密机械研究所 强耦合的多芯光纤
CN102086089A (zh) * 2010-12-27 2011-06-08 富通集团有限公司 一种制造掺稀土光纤预制棒的方法
CN104865634A (zh) * 2015-06-11 2015-08-26 长飞光纤光缆股份有限公司 一种掺镱光纤及其制备方法
CN106116136A (zh) * 2016-06-29 2016-11-16 中国科学院上海光学精密机械研究所 镱铝磷氟掺杂的石英光纤预制棒芯棒及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201229414Y (zh) * 2008-06-13 2009-04-29 北京玻璃研究院 棒型保偏光纤
US8977095B2 (en) * 2012-09-24 2015-03-10 Corning Incorporated Polarization maintaining optical fibers with intracore stress mechanisms
CN106495470A (zh) * 2016-10-17 2017-03-15 中国科学院上海光学精密机械研究所 钕镱共掺杂石英激光玻璃及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040156607A1 (en) * 2003-01-17 2004-08-12 Farroni Julia A. Multimode polarization maintaining double clad fiber
CN1632629A (zh) * 2004-12-29 2005-06-29 江苏法尔胜光子有限公司 “一”字型保偏光纤及其生产方法
CN101122653A (zh) * 2007-09-14 2008-02-13 中国科学院上海光学精密机械研究所 强耦合的多芯光纤
CN102086089A (zh) * 2010-12-27 2011-06-08 富通集团有限公司 一种制造掺稀土光纤预制棒的方法
CN104865634A (zh) * 2015-06-11 2015-08-26 长飞光纤光缆股份有限公司 一种掺镱光纤及其制备方法
CN106116136A (zh) * 2016-06-29 2016-11-16 中国科学院上海光学精密机械研究所 镱铝磷氟掺杂的石英光纤预制棒芯棒及其制备方法

Also Published As

Publication number Publication date
CN107918169A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
WO2019080343A1 (zh) "一"字型有源保偏光纤及其制备方法
CN104865634B (zh) 一种掺镱光纤及其制备方法
CN102992613B (zh) 一种稀土均匀掺杂光纤预制棒芯棒及其制备方法
CN112456788B (zh) 一种高功率用保偏型光纤及其制备方法
CN110850522A (zh) 一种部分掺稀土光纤及其制备方法
JP3622816B2 (ja) 光増幅用ファイバ及びその製造方法
CN104865635B (zh) 一种椭圆包层保偏大模场增益光纤
JP2008280240A (ja) 光ファイバプリフォームのクラッド対コア比D/dが低いコアロッドのD/dの増加方法
CN114721087B (zh) 一种三包层铒镱共掺光纤及其制备方法与应用
CN111470769A (zh) 一种稀土掺杂少模光纤的制备方法
JPS5957925A (ja) 高複屈折光フアイバ−用プレフオ−ムおよびその製法
CN113277727A (zh) 一种芯包比渐变的锥芯光纤的制备方法及锥芯光纤
CN109399910B (zh) 大芯径光纤预制棒和光纤的制备方法
CN114573226B (zh) 一种有源光纤及其制备方法
CN111620558B (zh) 一种椭圆芯保偏光纤的制造方法
CN112456789B (zh) 一种葫芦型保偏光纤及其制备方法
CN107500524B (zh) 一种稀土掺杂光纤预制棒及其制备方法
CN112596151B (zh) 一种掺铒保偏有源光纤及其制备方法
CN107179580B (zh) 用于剥除高功率包层光的侧耦合光纤及其制备方法
US9739937B2 (en) Elliptical cladding polarization-maintaining large-mode-area gain fiber
RU2433091C1 (ru) Способ изготовления кварцевых заготовок одномодовых волоконных световодов, устройство для его осуществления и заготовки, изготовленные данным способом
CN210166530U (zh) 一种“一”字型单偏振光纤
RU2511023C1 (ru) Способ изготовления анизотропных одномодовых волоконных световодов
RU2155359C2 (ru) Способ изготовления волоконных световодов, сохраняющих поляризацию излучения
RU2396580C1 (ru) Способ изготовления одномодовых волоконных световодов, сохраняющих поляризацию излучения

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929614

Country of ref document: EP

Kind code of ref document: A1