WO2019080094A1 - 一种信号的测量及选择方法及装置、计算机存储介质 - Google Patents

一种信号的测量及选择方法及装置、计算机存储介质

Info

Publication number
WO2019080094A1
WO2019080094A1 PCT/CN2017/108035 CN2017108035W WO2019080094A1 WO 2019080094 A1 WO2019080094 A1 WO 2019080094A1 CN 2017108035 W CN2017108035 W CN 2017108035W WO 2019080094 A1 WO2019080094 A1 WO 2019080094A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink signals
downlink
signal
signals
selecting
Prior art date
Application number
PCT/CN2017/108035
Other languages
English (en)
French (fr)
Inventor
史志华
陈文洪
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2017/108035 priority Critical patent/WO2019080094A1/zh
Priority to CN201780090492.XA priority patent/CN110603833B/zh
Publication of WO2019080094A1 publication Critical patent/WO2019080094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a signal measurement and selection method and apparatus, and a computer storage medium.
  • next-generation wireless communication technology NR, New Radio
  • 5G / NR multi-beam Multi-beam
  • Beam The entire cell, that is, each beam covers a small range, and the effect of multiple beams covering the entire cell is realized by sweeping in time.
  • different beams are identified by different signals carried by the beam, such as a SS block (Synchronous Signal Block) and a Channel State Information-Reference Signal (CSI-RS).
  • SS block Synchronous Signal Block
  • CSI-RS Channel State Information-Reference Signal
  • the terminal needs to measure certain signals in a Multi-beam system, and based on the measurement results to determine which beam transmission quality is better, and report relevant information (such as which signal quality is better, and its corresponding measurement result) to the terminal.
  • relevant information such as which signal quality is better, and its corresponding measurement result
  • the signal strength of the downlink signal is generally used to determine which beam transmission quality is better.
  • the transmission of the beam carrying the PDCCH is determined by a Hypothetical Physical Downlink Control Channel (BLER).
  • BLER Hypothetical Physical Downlink Control Channel
  • an embodiment of the present invention provides a method and device for measuring and selecting a signal, and a computer storage medium.
  • the terminal measures N downlink signals, where N is a positive integer
  • the terminal selects, according to the measurement result of the N downlink signals and the identified downlink signal, K downlink signals that meet a preset condition from the N downlink signals, where K is a positive integer equal to or less than N.
  • the terminal selects, based on the measurement result of the N downlink signals and the identified downlink signal, the K downlink signals that meet the preset condition from the N downlink signals, including:
  • the terminal removes the identified downlink signal from the N downlink signals to obtain M downlink signals, where M is a positive integer less than or equal to N;
  • the terminal selects a downlink signal with the best K measurement results according to the measurement result of the M downlink signals.
  • the terminal selects, based on the measurement result of the N downlink signals and the identified downlink signal, the K downlink signals that meet the preset condition from the N downlink signals, including:
  • the terminal selects, according to the measurement result, the M downlink signals other than the identified downlink signal, and selects the selected downlink signal in the order of the M downlink signals.
  • the selected downlink signals are selected according to a preset rule to obtain K downlink signals.
  • the identified downlink signals are selected according to a preset rule, including:
  • the measurement result corresponding to each downlink signal is selected from good to bad;
  • the performance of the Hypothetical PDCCH BLER corresponding to each downlink signal is selected from good to bad.
  • the method further includes:
  • the terminal reports the selected K downlink signals and/or the measurement results corresponding to the downlink signals to the network.
  • the downlink signal includes:
  • a measuring unit configured to measure N downlink signals, where N is a positive integer
  • a calculating unit configured to determine a Hypothetical PDCCH BLER corresponding to at least one downlink signal of the N downlink signals, and identify a downlink signal that the Hypothetical PDCCH BLER does not meet the requirement;
  • the selecting unit is configured to select, according to the measurement result of the N downlink signals and the identified downlink signal, K downlink signals that meet a preset condition from the N downlink signals, where K is equal to or less than N Integer.
  • the selecting unit includes:
  • the removal sub-determining unit is configured to remove the identified downlink signals from the N downlink signals to obtain M downlink signals, where M is a positive integer less than or equal to N;
  • a first selection subunit configured to select according to the measurement result of the M downlink signals
  • the K signals are optimal for the downlink signal.
  • the selecting unit includes:
  • the second selection subunit is configured to select, according to the measurement result, the M downlink signals other than the identified downlink signal, and select the selected downlink signal selection order in the M After the downlink signals, the identified downlink signals are selected according to a preset rule to obtain K downlink signals.
  • the second selection sub-unit is further configured to select, according to the measured downlink signal, a good-to-difference according to the measurement result corresponding to each downlink signal; or, for each downlink signal that is identified, The performance of the Hypothetical PDCCH BLER corresponding to each downlink signal is selected from good to bad.
  • the device further includes:
  • the reporting unit is configured to report the selected K downlink signals and/or the downlink signal corresponding measurement results to the network.
  • the downlink signal includes:
  • the computer storage medium provided by the embodiment of the present invention has computer executable instructions stored thereon, and the computer executable instructions are implemented by the processor to implement the measurement and selection method of the foregoing signals.
  • the terminal performs measurement on the N downlink signals, where N is a positive integer.
  • the terminal determines a Hypothetical PDCCH BLER corresponding to at least one downlink signal of the N downlink signals, and identifies a Hypothetical PDCCH BLER.
  • the downlink signal that does not meet the requirement; the terminal selects, according to the measurement result of the N downlink signals and the identified downlink signal, K downlink signals that meet the preset condition from the N downlink signals, where K is A positive integer less than or equal to N.
  • the technical solution of the embodiment of the present invention is adopted for Multi-beam
  • the measurement and selection of multiple beams in the system proposes a reasonable and effective method, combining the measurement results of signal strength and the failed beam determined based on Hypothetical PDCCH BLER, and reasonably selecting a better quality beam, thereby improving the beam.
  • the quality of the report improves the performance of the system.
  • FIG. 1 is a schematic flow chart of a method for measuring and selecting a signal according to an embodiment of the present invention
  • FIG. 2 is a first schematic structural diagram of a signal measuring and selecting apparatus according to an embodiment of the present invention
  • FIG. 3 is a second schematic structural diagram of a signal measuring and selecting apparatus according to an embodiment of the present invention.
  • FIG. 4 is a third schematic structural diagram of a signal measuring and selecting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • SS block Different SS blocks are transmitted on different beams, and the terminal can identify different beams through different SS blocks.
  • CSI-RS Different CSI-RSs are transmitted on different beams, and the terminals identify different beams through CSI-RS.
  • the terminal performs signal strength measurement on downlink signals carried on each beam, for example, measuring reference signal received power of the physical layer (L1-RSRP, Layer1-(Reference Signal Receiving Power).
  • L1-RSRP Layer1-(Reference Signal Receiving Power).
  • the Multi-beam system includes: beam1, beam2, beam3, and beam4, wherein beam1 corresponds to downlink signal 1, beam2 corresponds to downlink signal 2, beam3 corresponds to downlink signal 3, and beam4 corresponds to downlink signal 4.
  • the signal strength of the downlink signal 1 is P1
  • the signal strength of the downlink signal 2 is P2
  • the signal strength of the downlink signal 3 is P3
  • the signal strength of the downlink signal 4 is P4.
  • the terminal performs Hypothetical PDCCH BLER calculation on the downlink signal carried on each beam in the Multi-beam system.
  • the calculation steps of the Hypothetical PDCCH BLER generally include:
  • the terminal measures the signal strength of the downlink signal and the signal strength of the interference signal, and calculates a corresponding Signal to Interference plus Noise Ratio (SINR).
  • SINR Signal to Interference plus Noise Ratio
  • the terminal estimates the BLER of the PDCCH according to the SINR, that is, the Hypothetical PDCCH BLER.
  • the terminal determines whether the Hypothetical PDCCH BLER is greater than or equal to the threshold. When yes, it determines that the beam corresponding to the downlink signal has failed, that is, beam failure.
  • the embodiment of the present invention combines two methods to reasonably select a better beam (that is, a downlink signal).
  • FIG. 1 is a schematic flowchart of a method for measuring and selecting a signal according to an embodiment of the present invention. As shown in FIG. 1 , the method for measuring and selecting a signal includes the following steps:
  • Step 101 The terminal measures N downlink signals, where N is a positive integer.
  • the N downlink signals are respectively carried in N beams, and the N beams are beams in the Multi-beam system.
  • the downlink signal may have different configurations, for example, the downlink signal includes: CSI-RS; or, SS block; or, CSI-RS and SS block. Among them, different downlink signals are transmitted through different beams.
  • measuring the N downlink signals means measuring the signal strength of the N downlink signals.
  • Step 102 The terminal determines a Hypothetical PDCCH BLER corresponding to at least one downlink signal of the N downlink signals, and identifies that the Hypothetical PDCCH BLER does not meet the required downlink signal.
  • the beam corresponding to the downlink signal is considered to have failed, and thus the downlink signals are identified, that is, the beam where the failure occurs is identified.
  • Step 103 The terminal selects, according to the measurement result of the N downlink signals and the identified downlink signal, K downlink signals that meet a preset condition from the N downlink signals, where K is less than or equal to N. A positive integer.
  • the terminal removes the identified downlink signal from the N downlink signals to obtain M downlink signals, where M is a positive integer less than or equal to N; and the terminal is configured according to the M downlink signals.
  • the measurement result selects the downlink signal with the best K measurement results. Then, the terminal corresponding to the selected K downlink signals and/or the downlink signals The measurement results are reported to the network.
  • the downlink signal is corresponding to the beam.
  • the beams that have been determined to have failed by the Hypothetical PDCCH BLER are excluded, and the remaining beams are based on the signal strength from large to small.
  • the first K beams are selected in sequence, and the selected K beams are reported to the network.
  • the terminal selects, according to the measurement result, the M downlink signals other than the identified downlink signal, and selects the selected downlink signal in the order of the downlink signals.
  • the identified downlink signals are selected according to a preset rule to obtain K downlink signals.
  • the terminal reports the selected K downlink signals and/or the measurement results corresponding to the downlink signals to the network.
  • the measurement result corresponding to each downlink signal is selected from good to bad; or, for each of the identified downlink signals, the performance of the Hypothetical PDCCH BLER corresponding to each downlink signal is performed from good to bad. select.
  • the downlink signal is mapped to the beam, and those beams that have been determined to have failed by the Hypothetical PDCCH BLER are queued to all other beams, and the other beams are sorted according to the signal strength in descending order. Those beams of the failure are sorted as follows: sorted by signal strength or sorted according to Hypothetical PDCCH BLER.
  • the beam that has not failed is preferentially reported, and the failure may occur from the 5th. Select an optimal beam in the beam for reporting.
  • the technical solutions of the embodiments of the present invention are further described in detail below with reference to specific application examples.
  • the following application examples include CSI-RS as an example.
  • the downlink signal includes SS block, or CSI-RS and SS.
  • the block is also applicable to the technical solution of the embodiment of the present invention.
  • the network configuration UE measures N CSI-RSs and selects K optimal signals for reporting.
  • the terminal measures the signal strength of the N CSI-RSs, and the obtained measurement results are P1, . . . , PN. At the same time, the terminal judges that the beam in which the failure occurs is beam 1 and beam 2 through the Hypothetical PDCCH BLER.
  • the terminal When selecting the K optimal signals for reporting, the terminal does not consider beam 1 and beam 2 where the failure occurs, that is, only the measurement results corresponding to beam 3, ..., beamN, only N-2 beams that have not failed.
  • the K beams with the best signal strength are selected for reporting.
  • the network configuration terminal measures N CSI-RSs and selects K optimal signals for reporting.
  • the terminal measures the signal strength of the N CSI-RSs, and the obtained measurement results are P1, . . . , PN. At the same time, the terminal judges that the beam in which the failure occurs is beam 1 and beam 2 through the Hypothetical PDCCH BLER.
  • the beam 1 and beam 2 where the failure occurs are arranged after all other beams. That is, the optimal beam is selected preferentially from beam 3, ..., beamN. If K-1 beams are selected after beam 3 to beamN is selected, the optimal beam is selected from beam 1 and beam 2, from beam 1 There are two ways to select the optimal beam from beam 2: 1) select the beam with the highest signal quality; 2) select the beam with the smallest Hytera PDCCH BLER.
  • FIG. 2 is a first schematic structural diagram of a signal measuring and selecting apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes:
  • the measuring unit 201 is configured to measure N downlink signals, where N is a positive integer;
  • the calculating unit 202 is configured to determine at least one downlink signal pair of the N downlink signals The Hypothetical PDCCH BLER, and identifies the downlink signal that the Hypothetical PDCCH BLER does not meet the requirements;
  • the selecting unit 203 is configured to select, according to the measurement result of the N downlink signals and the identified downlink signal, K downlink signals that meet a preset condition from the N downlink signals, where K is less than or equal to N A positive integer.
  • each unit in the measurement and selection device of the signal shown in FIG. 2 can be realized by a program running on a processor, or can be realized by a specific logic circuit.
  • FIG. 3 is a second structural diagram of a signal measuring and selecting apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes:
  • the measuring unit 301 is configured to measure N downlink signals, where N is a positive integer;
  • the calculating unit 302 is configured to determine a Hypothetical PDCCH BLER corresponding to at least one downlink signal of the N downlink signals, and identify a downlink signal that the Hypothetical PDCCH BLER does not meet the requirement;
  • the selecting unit 303 is configured to select, according to the measurement result of the N downlink signals and the identified downlink signal, K downlink signals that meet a preset condition from the N downlink signals, where K is less than or equal to N A positive integer.
  • the selecting unit 303 includes:
  • the removal sub-determining unit 3031 is configured to remove the identified downlink signals from the N downlink signals to obtain M downlink signals, where M is a positive integer less than or equal to N;
  • the first selecting subunit 3032 is configured to select, according to the measurement result of the M downlink signals, a downlink signal that is optimal for the K measurement results.
  • the device further includes:
  • the reporting unit 304 is configured to select the K downlink signals and/or the downlink The measurement result corresponding to the signal is reported to the network.
  • the downlink signal includes:
  • each unit in the signal measurement and selection apparatus of the signal shown in FIG. 3 can be understood by referring to the related description of the measurement and selection methods of the foregoing signals.
  • the function of each unit in the signal measurement and selection apparatus shown in FIG. 3 can be realized by a program running on a processor, or can be realized by a specific logic circuit.
  • FIG. 4 is a third structural diagram of a signal measuring and selecting apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes:
  • the measuring unit 401 is configured to measure N downlink signals, where N is a positive integer;
  • the calculating unit 402 is configured to determine a Hypothetical PDCCH BLER corresponding to at least one downlink signal of the N downlink signals, and identify that the Hypothetical PDCCH BLER does not meet the required downlink signal;
  • the selecting unit 403 is configured to select, according to the measurement result of the N downlink signals and the identified downlink signal, K downlink signals that meet a preset condition from the N downlink signals, where K is less than or equal to N A positive integer.
  • the selecting unit 403 includes:
  • the second selection sub-unit 4031 is configured to select, according to the measurement result, the M downlink signals other than the identified downlink signal, and select the selected downlink signal selection order in the N downlink signals After the M downlink signals, the identified downlink signals are selected according to a preset rule to obtain K downlink signals.
  • the second selection subunit 4031 is further configured to be identified Each of the downlink signals is selected according to the measurement result corresponding to each downlink signal from good to bad; or, for each of the identified downlink signals, the performance of the Hypothetical PDCCH BLER corresponding to each downlink signal is selected from good to bad.
  • the device further includes:
  • the reporting unit 404 is configured to report the selected K downlink signals and/or the downlink signal corresponding measurement results to the network.
  • the downlink signal includes:
  • each unit in the measurement and selection device of the signal shown in FIG. 4 can be realized by a program running on a processor, or can be realized by a specific logic circuit.
  • the above-mentioned signal measuring and selecting device can also be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a stand-alone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • an embodiment of the present invention further provides a computer storage medium in which a calculation is stored.
  • the machine executable instructions when executed by the processor, implement the measurement and selection method of the above-described signals of the embodiments of the present invention.
  • the terminal 50 may include one or more (only one shown) processor 502 (the processor 502 may include but is not limited to micro processing).
  • a processing device such as a Micro Controller Unit (MCU) or a Programmable Gate Array (FPGA), a memory 504 for storing data, and a transmission device 506 for communication functions.
  • MCU Micro Controller Unit
  • FPGA Programmable Gate Array
  • memory 504 for storing data
  • transmission device 506 for communication functions.
  • terminal 50 may also include more or fewer components than shown in FIG. 5, or have a different configuration than that shown in FIG.
  • the memory 504 can be used to store software programs and modules of the application software, such as program instructions/modules corresponding to the measurement and selection methods of the signals in the embodiment of the present invention, and the processor 502 runs the software programs and modules stored in the memory 504, thereby The above methods are implemented by performing various functional applications and data processing.
  • Memory 504 can include high speed random access memory and can also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 504 can further include memory remotely located relative to processor 502, which can be connected to terminal 50 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 506 is for receiving or transmitting data via a network.
  • the network specific example described above may include a wireless network provided by a communication provider of the terminal 50.
  • the transmission device 506 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 506 can be a radio frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF radio frequency
  • the disclosed method and smart device may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one second processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号的测量及选择方法及装置、计算机存储介质,所述方法包括:终端对N个下行信号进行测量,N为正整数;所述终端确定所述N个下行信号中至少一个下行信号对应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。

Description

一种信号的测量及选择方法及装置、计算机存储介质 技术领域
本发明涉及无线通信技术领域,尤其涉及一种信号的测量及选择方法及装置、计算机存储介质。
背景技术
第五代(5G,5th Generation)移动通信技术也称为新一代无线通信技术(NR,New Radio),5G/NR中的多波束(Multi-beam)系统通过不同的波束(beam)来覆盖整个小区,即每个beam覆盖一个较小的范围,通过时间上的扫描(sweeping)来实现多个beam覆盖整个小区的效果。目前,不同的beam通过它所承载的不同信号来进行识别,如同步信号块(SS block,Synchronous Signal block)、信道状态信息参考信号(CSI-RS,Channel State Information-Reference Signal)。
终端在一个Multi-beam系统中需要去测量某些信号,并且基于测量结果来判断哪些beam的传输质量比较好,同时把相关信息(例如哪些信号质量较好,以及其对应的测量结果)上报给网络。
在原先的beam测量中,一般通过下行信号的信号强度来判定哪些beam的传输质量较好。在第三代合作伙伴计算(3GPP,3rd Generation Partnership Project)RAN1会议中,引入了通过假设物理下行控制信道块差错率(Hypothetical PDCCH BLER,Hypothetical Physical Downlink Control Channel BLER)来判定承载PDCCH的beam的传输质量的好坏。然而,通过这两种方式来判定哪些beam的传输质量较好,会得到不同的结果,如何合理地确定出传输质量较好的beam是亟待解决的问题。
发明内容
为解决上述技术问题,本发明实施例提供了一种信号的测量及选择方法及装置、计算机存储介质。
本发明实施例提供的信号的测量及选择方法,包括:
终端对N个下行信号进行测量,N为正整数;
所述终端确定所述N个下行信号中至少一个下行信号对应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;
所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。
本发明实施例中,所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,包括:
所述终端从所述N个下行信号中去除所标识出的下行信号,得到M个下行信号,M为小于等于N的正整数;
所述终端根据所述M个下行信号的测量结果,选择出K个测量结果最优的下行信号。
本发明实施例中,所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,包括:
所述终端对所述N个下行信号中除所标识的下行信号以外的M个下行信号按照测量结果进行选择,并将所标识出的下行信号的选择顺序排在所述M个下行信号的后面,其中,所标识的下行信号之间按照预设规则进行选择,得到K个下行信号。
本发明实施例中,所标识的下行信号之间按照预设规则进行选择,包括:
针对所标识的各个下行信号,按照各个下行信号对应的测量结果由好到差进行选择;或者,
针对所标识的各个下行信号,按照各个下行信号对应的Hypothetical PDCCH BLER性能由好到差进行选择。
本发明实施例中,所述方法还包括:
所述终端将选择出的所述K个下行信号和/或所述下行信号对应的测量结果上报给网络。
本发明实施例中,所述下行信号包括:
CSI-RS;或者,
SS block;或者,
CSI-RS和SS block。
本发明实施例提供的信号的测量及选择装置,包括:
测量单元,配置为对N个下行信号进行测量,N为正整数;
计算单元,配置为确定所述N个下行信号中至少一个下行信号对应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;
选择单元,配置为基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。
本发明实施例中,所述选择单元包括:
去除子确定单元,配置为从所述N个下行信号中去除所标识出的下行信号,得到M个下行信号,M为小于等于N的正整数;
第一选择子单元,配置为根据所述M个下行信号的测量结果,选择出 K个测量结果最优的下行信号。
本发明实施例中,所述选择单元包括:
第二选择子单元,配置为对所述N个下行信号中除所标识的下行信号以外的M个下行信号按照测量结果进行选择,并将所标识出的下行信号的选择顺序排在所述M个下行信号的后面,其中,所标识的下行信号之间按照预设规则进行选择,得到K个下行信号。
本发明实施例中,所述第二选择子单元,还配置为针对所标识的各个下行信号,按照各个下行信号对应的测量结果由好到差进行选择;或者,针对所标识的各个下行信号,按照各个下行信号对应的Hypothetical PDCCH BLER性能由好到差进行选择。
本发明实施例中,所述装置还包括:
上报单元,配置为将选择出的所述K个下行信号和/或所述下行信号对应的测量结果上报给网络。
本发明实施例中,所述下行信号包括:
CSI-RS;或者,
SS block;或者,
CSI-RS和SS block。
本发明实施例提供的计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现上述的信号的测量及选择方法。
本发明实施例的技术方案中,终端对N个下行信号进行测量,N为正整数;所述终端确定所述N个下行信号中至少一个下行信号对应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。采用本发明实施例的技术方案,针对Multi-beam 系统中多个beam的测量及选择提出了一种合理有效的方法,结合了信号强度的测量结果以及基于Hypothetical PDCCH BLER而确定出的失败波束,合理选择出质量较好的波束,从而提高了波束的上报质量,改善了系统的性能。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例的信号的测量及选择方法的流程示意图;
图2为本发明实施例的信号的测量及选择装置的结构组成示意图一;
图3为本发明实施例的信号的测量及选择装置的结构组成示意图二;
图4为本发明实施例的信号的测量及选择装置的结构组成示意图三;
图5为本发明实施例的终端的结构组成示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
为便于理解本发明实施例的技术方案,以下对本发明实施例涉及到的关键术语及概念进行解释说明。
1、不同的beam通过它上面承载的不同信号来识别。
1.1)SS block:不同的beam上传输不同的SS block,终端可以通过不同的SS block来识别出不同的beam。
1.2)CSI-RS:不同的beam上传输不同的CSI-RS,终端通过CSI-RS来识别出不同的beam。
本发明实施例的以下技术方案均基于beam上承载的下行信号来实施,下行信号实际和物理的beam对应。
2、通过对下行信号的信号强度进行测量,来确定各beam的质量。
终端在Multi-beam系统中,对各个beam上承载的下行信号进行信号强度的测量,例如测量物理层的参考信号接收功率(L1-RSRP,Layer1-(Reference Signal Receiving Power)。
例如:Multi-beam系统包括:beam1、beam2、beam3、beam4,其中,beam1对应下行信号1,beam2对应下行信号2,beam3对应下行信号3,beam4对应下行信号4。下行信号1的信号强度为P1,下行信号2的信号强度为P2,下行信号3的信号强度为P3,下行信号4的信号强度为P4。
下行信号的信号强度越强,则代表该下行信号对应的beam的质量越好。
3、通过对下行信号的Hypothetical PDCCH BLER进行计算,来确定各beam的质量。
终端在Multi-beam系统中,对各个beam上承载的下行信号进行Hypothetical PDCCH BLER的计算,这里,Hypothetical PDCCH BLER的计算步骤大致包括:
3.1)终端测量下行信号的信号强度以及干扰信号的信号强度,并计算相应的信干燥比(SINR,Signal to Interference plus Noise Ratio)
3.2)终端根据SINR推测PDCCH的BLER,也即Hypothetical PDCCH BLER。
3.3)终端判断Hypothetical PDCCH BLER是否大于等于门限值,是时,判定下行信号对应的beam发生了失败(failure),也即beam failure。
上述方案中,Hypothetical PDCCH BLER越大,则对应的beam的质量越差;相反,Hypothetical PDCCH BLER越小,则对应的beam的质量越好。
以上两种对beam的质量进行判定的方式,结果有时并不一致,本发明实施例结合了两种方式合理地选择出较优的beam(也即下行信号)。
图1为本发明实施例的信号的测量及选择方法的流程示意图,如图1所示,所述信号的测量及选择方法包括以下步骤:
步骤101:终端对N个下行信号进行测量,N为正整数。
本发明实施例中,N个下行信号分别承载在N个beam中,这个N个beam为Multi-beam系统中beam。
在一实施方式中,所述下行信号可以有不同的配置,例如所述下行信号包括:CSI-RS;或者,SS block;或者,CSI-RS和SS block。其中,不同的下行信号通过不同的波束传输。
这里,对N个下行信号进行测量是指:对N个下行信号的信号强度进行测量。
步骤102:所述终端确定所述N个下行信号中至少一个下行信号对应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号。
本发明实施例中,对于Hypothetical PDCCH BLER大于等于门限值的下行信号而言,认为该下行信号对应的beam发生了failure,因而,标识出这些下行信号,也即标识出了发生failure的beam。
步骤103:所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。
在一实施方式中,所述终端从所述N个下行信号中去除所标识出的下行信号,得到M个下行信号,M为小于等于N的正整数;所述终端根据所述M个下行信号的测量结果,选择出K个测量结果最优的下行信号。而后,所述终端将选择出的所述K个下行信号和/或所述下行信号对应的 测量结果上报给网络。
上述方案中,将下行信号对应到beam上来,不同的beam进行信号强度比较时,先排除通过Hypothetical PDCCH BLER判定为发生了failure的那些beam,在剩下的beam中基于信号强度由大到小的顺序选择出前K个beam,将所选择出的K个beam上报给网络。
在另一实施方式中,所述终端对所述N个下行信号中除所标识的下行信号以外的M个下行信号按照测量结果进行选择,并将所标识出的下行信号的选择顺序排在所述M个下行信号的后面,其中,所标识的下行信号之间按照预设规则进行选择,得到K个下行信号。而后,所述终端将选择出的所述K个下行信号和/或所述下行信号对应的测量结果上报给网络。这里,针对所标识的各个下行信号,按照各个下行信号对应的测量结果由好到差进行选择;或者,针对所标识的各个下行信号,按照各个下行信号对应的Hypothetical PDCCH BLER性能由好到差进行选择。
上述方案中,将下行信号对应到beam上来,将通过Hypothetical PDCCH BLER判定为发生了failure的那些beam排到其他所有的beam之后,对于其他的beam按照信号强度由大到小的顺序排序,对于发生了failure的那些beam按照进行如下排序:按照信号强度进行排序、或者按照Hypothetical PDCCH BLER进行排序。
例如:总共测量6个beam,需要上报较佳的2个beam,其中发现已有5个beam发生failure了,则优先选则未发生failure的beam上报,同时还可以从这5个发生了failure的beam中选择一个最优的beam进行上报。
以下结合具体应用示例对本发明实施例的技术方案做进一步详细描述,以下应用示例中以下行信号包括CSI-RS为例,本领域技术人员应当理解,下行信号包括SS block、或者CSI-RS和SS block同样适用于本发明实施例的技术方案。
应用示例一:(去除发生了failure的beam)
网络配置UE对N个CSI-RS进行测量,并从中选择K个最优的信号进行上报。
具体实现时,终端对N个CSI-RS的信号强度进行测量,获得的测量结果为P1,…,PN。同时,终端通过Hypothetical PDCCH BLER判断发生failure的beam为beam 1和beam 2。
终端在挑选K个最优的信号进行上报时,不考虑发生了failure的beam 1和beam 2,即只考虑beam 3,…,beamN对应的测量结果,只从N-2个未发生failure的beam中选择信号强度最优的K个beam进行上报。
应用示例二:(对发生了failure的beam,降低该beam的优先级)
网络配置终端对N个CSI-RS进行测量,并从中选择K个最优的信号进行上报。
终端对N个CSI-RS的信号强度进行测量,获得的测量结果为P1,…,PN。同时,终端通过Hypothetical PDCCH BLER判断发生failure的beam为beam 1和beam 2。
终端在挑选K个最优的信号进行上报时,把发生failure的beam 1和beam 2排列在其他所有的beam之后。即优先从beam 3,…,beamN选择最优的beam,如果选完beam 3到beamN才选择出K-1个beam,则从beam 1和beam 2中选择最优的1个beam,从beam 1和beam 2中选择最优的beam有两种方法:1)选择信号质量最大的beam;2)选择Hypothetical PDCCH BLER最小的beam。
图2为本发明实施例的信号的测量及选择装置的结构组成示意图一,如图2所示,所述装置包括:
测量单元201,配置为对N个下行信号进行测量,N为正整数;
计算单元202,配置为确定所述N个下行信号中至少一个下行信号对 应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;
选择单元203,配置为基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。
本领域技术人员应当理解,图2所示的信号的测量及选择装置中的各单元的实现功能可参照前述信号的测量及选择方法的相关描述而理解。图2所示的信号的测量及选择装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图3为本发明实施例的信号的测量及选择装置的结构组成示意图二,如图3所示,所述装置包括:
测量单元301,配置为对N个下行信号进行测量,N为正整数;
计算单元302,配置为确定所述N个下行信号中至少一个下行信号对应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;
选择单元303,配置为基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。
本发明实施例中,所述选择单元303包括:
去除子确定单元3031,配置为从所述N个下行信号中去除所标识出的下行信号,得到M个下行信号,M为小于等于N的正整数;
第一选择子单元3032,配置为根据所述M个下行信号的测量结果,选择出K个测量结果最优的下行信号。
本发明实施例中,所述装置还包括:
上报单元304,配置为将选择出的所述K个下行信号和/或所述下行 信号对应的测量结果上报给网络。
本发明实施例中,所述下行信号包括:
CSI-RS;或者,
SS block;或者,
CSI-RS和SS block;
其中,不同的下行信号通过不同的波束传输。
本领域技术人员应当理解,图3所示的信号的测量及选择装置中的各单元的实现功能可参照前述信号的测量及选择方法的相关描述而理解。图3所示的信号的测量及选择装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
图4为本发明实施例的信号的测量及选择装置的结构组成示意图三,如图4所示,所述装置包括:
测量单元401,配置为对N个下行信号进行测量,N为正整数;
计算单元402,配置为确定所述N个下行信号中至少一个下行信号对应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;
选择单元403,配置为基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。
本发明实施例中,所述选择单元403包括:
第二选择子单元4031,配置为对所述N个下行信号中除所标识的下行信号以外的M个下行信号按照测量结果进行选择,并将所标识出的下行信号的选择顺序排在所述M个下行信号的后面,其中,所标识的下行信号之间按照预设规则进行选择,得到K个下行信号。
本发明实施例中,所述第二选择子单元4031,还配置为针对所标识 的各个下行信号,按照各个下行信号对应的测量结果由好到差进行选择;或者,针对所标识的各个下行信号,按照各个下行信号对应的Hypothetical PDCCH BLER性能由好到差进行选择。
本发明实施例中,所述装置还包括:
上报单元404,配置为将选择出的所述K个下行信号和/或所述下行信号对应的测量结果上报给网络。
本发明实施例中,所述下行信号包括:
CSI-RS;或者,
SS block;或者,
CSI-RS和SS block;
其中,不同的下行信号通过不同的波束传输。
本领域技术人员应当理解,图4所示的信号的测量及选择装置中的各单元的实现功能可参照前述信号的测量及选择方法的相关描述而理解。图4所示的信号的测量及选择装置中的各单元的功能可通过运行于处理器上的程序而实现,也可通过具体的逻辑电路而实现。
本发明实施例上述信号的测量及选择装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算 机可执行指令,该计算机可执行指令被处理器执行时实现本发明实施例的上述信号的测量及选择方法。
图5为本发明实施例的终端的结构组成示意图,如图5所示,终端50可以包括一个或多个(图中仅示出一个)处理器502(处理器502可以包括但不限于微处理器(MCU,Micro Controller Unit)或可编程逻辑器件(FPGA,Field Programmable Gate Array)等的处理装置)、用于存储数据的存储器504、以及用于通信功能的传输装置506。本领域普通技术人员可以理解,图5所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,终端50还可包括比图5中所示更多或者更少的组件,或者具有与图5所示不同的配置。
存储器504可用于存储应用软件的软件程序以及模块,如本发明实施例中的信号的测量及选择方法对应的程序指令/模块,处理器502通过运行存储在存储器504内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器504可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器504可进一步包括相对于处理器502远程设置的存储器,这些远程存储器可以通过网络连接至终端50。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置506用于经由一个网络接收或者发送数据。上述的网络具体实例可包括终端50的通信供应商提供的无线网络。在一个实例中,传输装置506包括一个网络适配器(NIC,Network Interface Controller),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置506可以为射频(RF,Radio Frequency)模块,其用于通过无线方式与互联网进行通讯。
本发明实施例所记载的技术方案之间,在不冲突的情况下,可以任意组合。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法和智能设备,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个第二处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (13)

  1. 一种信号的测量及选择方法,所述方法包括:
    终端对N个下行信号进行测量,N为正整数;
    所述终端确定所述N个下行信号中至少一个下行信号对应的假设物理下行控制信道块差错率Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;
    所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。
  2. 根据权利要求1所述的信号的测量及选择方法,其中,所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,包括:
    所述终端从所述N个下行信号中去除所标识出的下行信号,得到M个下行信号,M为小于等于N的正整数;
    所述终端根据所述M个下行信号的测量结果,选择出K个测量结果最优的下行信号。
  3. 根据权利要求1所述的信号的测量及选择方法,其中,所述终端基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,包括:
    所述终端对所述N个下行信号中除所标识的下行信号以外的M个下行信号按照测量结果进行选择,并将所标识出的下行信号的选择顺序排在所述M个下行信号的后面,其中,所标识的下行信号之间按照预设规则进行选择,得到K个下行信号。
  4. 根据权利要求3所述的信号的测量及选择方法,其中,所标识的下行信号之间按照预设规则进行选择,包括:
    针对所标识的各个下行信号,按照各个下行信号对应的测量结果由好到差进行选择;或者,
    针对所标识的各个下行信号,按照各个下行信号对应的Hypothetical PDCCH BLER性能由好到差进行选择。
  5. 根据权利要求1所述的信号的测量及选择方法,其中,所述方法还包括:
    所述终端将选择出的所述K个下行信号和/或所述下行信号对应的测量结果上报给网络。
  6. 根据权利要求1至5任一项所述的信号的测量及选择方法,其中,所述下行信号包括:
    信道状态信息参考信号CSI-RS;或者,
    同步信号块SS block;或者,
    CSI-RS和SS block。
  7. 一种信号的测量及选择装置,所述装置包括:
    测量单元,配置为对N个下行信号进行测量,N为正整数;
    计算单元,配置为确定所述N个下行信号中至少一个下行信号对应的Hypothetical PDCCH BLER,并标识出Hypothetical PDCCH BLER不满足要求的下行信号;
    选择单元,配置为基于所述N个下行信号的测量结果以及所标识出的下行信号,从所述N个下行信号中选择出满足预设条件的K个下行信号,K为小于等于N的正整数。
  8. 根据权利要求7所述的信号的测量及选择装置,其中,所述选择单元包括:
    去除子确定单元,配置为从所述N个下行信号中去除所标识出的下行信号,得到M个下行信号,M为小于等于N的正整数;
    第一选择子单元,配置为根据所述M个下行信号的测量结果,选择出K个测量结果最优的下行信号。
  9. 根据权利要求7所述的信号的测量及选择装置,其中,所述选择单元包括:
    第二选择子单元,配置为对所述N个下行信号中除所标识的下行信号以外的M个下行信号按照测量结果进行选择,并将所标识出的下行信号的选择顺序排在所述M个下行信号的后面,其中,所标识的下行信号之间按照预设规则进行选择,得到K个下行信号。
  10. 根据权利要求9所述的信号的测量及选择装置,其中,所述第二选择子单元,还配置为针对所标识的各个下行信号,按照各个下行信号对应的测量结果由好到差进行选择;或者,针对所标识的各个下行信号,按照各个下行信号对应的Hypothetical PDCCH BLER性能由好到差进行选择。
  11. 根据权利要求7所述的信号的测量及选择装置,其中,所述装置还包括:
    上报单元,配置为将选择出的所述K个下行信号和/或所述下行信号对应的测量结果上报给网络。
  12. 根据权利要求7至11任一项所述的信号的测量及选择装置,其中,所述下行信号包括:
    CSI-RS;或者,
    SS block;或者,
    CSI-RS和SS block。
  13. 一种计算机存储介质,其上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现权利要求1-6任一项所述的方法步骤。
PCT/CN2017/108035 2017-10-27 2017-10-27 一种信号的测量及选择方法及装置、计算机存储介质 WO2019080094A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/108035 WO2019080094A1 (zh) 2017-10-27 2017-10-27 一种信号的测量及选择方法及装置、计算机存储介质
CN201780090492.XA CN110603833B (zh) 2017-10-27 2017-10-27 一种信号的测量及选择方法及装置、计算机存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/108035 WO2019080094A1 (zh) 2017-10-27 2017-10-27 一种信号的测量及选择方法及装置、计算机存储介质

Publications (1)

Publication Number Publication Date
WO2019080094A1 true WO2019080094A1 (zh) 2019-05-02

Family

ID=66246138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108035 WO2019080094A1 (zh) 2017-10-27 2017-10-27 一种信号的测量及选择方法及装置、计算机存储介质

Country Status (2)

Country Link
CN (1) CN110603833B (zh)
WO (1) WO2019080094A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162673A (zh) * 2015-04-17 2016-11-23 华为技术有限公司 波束选择方法及终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9859959B2 (en) * 2013-02-01 2018-01-02 Telefonaktiebolaget Lm Ericsson (Publ) Method for alignment of multi-beam antennas in a non line-of-sight scenario
US9571180B2 (en) * 2014-10-16 2017-02-14 Ubiqomm Llc Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162673A (zh) * 2015-04-17 2016-11-23 华为技术有限公司 波束选择方法及终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Radio link monitoring", 3GPP TSG-RAN WG1 NR AD HOC #3, RL-1716157, 21 September 2017 (2017-09-21), XP051339615 *
ZTE: "WF on IS/OOS for RLM", 3GPP TSG RAN WG1 MEETING #90, RL-1714674, 25 August 2017 (2017-08-25), pages 1 - 7, XP051328228 *

Also Published As

Publication number Publication date
CN110603833A (zh) 2019-12-20
CN110603833B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
JP7179156B2 (ja) 信号伝送方法及び通信機器
RU2670604C1 (ru) Способ и аппарат для мониторинга качества линии радиосвязи
US20190089579A1 (en) Method and apparatus for a unified radio link failure
US11304251B2 (en) Transmitting and receiving a data unit
CN104081684B (zh) 基于信道状态信息参考信号的协作式多点配置的装置
WO2018171631A1 (zh) 无线链路失败检测方法和用户设备
TWI549530B (zh) 無線通訊系統中用於無線電鏈結問題及回復偵測之技術
CN108112030B (zh) 信息上报的触发方法和装置、信号的选择方法和装置
WO2019029400A1 (en) SYSTEM AND METHOD FOR BEAM FAILURE RECOVERY
US20200145173A1 (en) Communication Method, Terminal Device, and Network Device
JP6396585B2 (ja) 参照信号受信品質の報告の方法及び装置
US11489576B2 (en) Resolving ambiguities related to NR cell quality derivation
JP7278407B2 (ja) ダウンリンククリアチャネル評価障害の指示
WO2021227715A1 (zh) 候选波束测量方法、终端、网络设备、芯片系统及介质
US20160198355A1 (en) Signal Measurement Method, User Equipment and Base Station
CN113455038A (zh) 用于波束故障恢复的方法及设备
WO2022084270A1 (en) Managing resources in a radio access network
US11096041B2 (en) Allocation of a 5G radio base station to a group of radio base stations cooperating to constitute a system area
US20150079980A1 (en) Transmision Point Selection
WO2019080094A1 (zh) 一种信号的测量及选择方法及装置、计算机存储介质
KR20230097132A (ko) 빔 장애 검출
EP4133781A1 (en) Method for logging coverage enhancement level change in low complexity user equipment
CN114342552A (zh) 非连续传输dtx检测
JP2016518781A (ja) 協調送信セットを決定するための方法および基地局
CN112236954B (zh) 用于高效链路重配置的客户端设备、网络接入节点和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930116

Country of ref document: EP

Kind code of ref document: A1