WO2019079927A1 - 控制方法、无人飞行器、服务器和计算机可读存储介质 - Google Patents

控制方法、无人飞行器、服务器和计算机可读存储介质

Info

Publication number
WO2019079927A1
WO2019079927A1 PCT/CN2017/107285 CN2017107285W WO2019079927A1 WO 2019079927 A1 WO2019079927 A1 WO 2019079927A1 CN 2017107285 W CN2017107285 W CN 2017107285W WO 2019079927 A1 WO2019079927 A1 WO 2019079927A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
control base
uav
control
aerial vehicle
Prior art date
Application number
PCT/CN2017/107285
Other languages
English (en)
French (fr)
Inventor
张肖
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201780004666.6A priority Critical patent/CN108698693A/zh
Priority to PCT/CN2017/107285 priority patent/WO2019079927A1/zh
Publication of WO2019079927A1 publication Critical patent/WO2019079927A1/zh
Priority to US16/842,215 priority patent/US20200245217A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/326Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by proximity to another entity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/083Reselecting an access point wherein at least one of the access points is a moving node

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a control method, an unmanned aerial vehicle, a server, and a computer readable storage medium.
  • the operating radius of the UAV is limited.
  • Embodiments of the present invention provide a control method, an unmanned aerial vehicle, a server, and a computer readable storage medium.
  • the present invention provides a control method for at least two control base stations to control an unmanned aerial vehicle.
  • At least two of the control base stations include a first control base station having a fixed position and a second control base station, the first control base station being a control base station currently communicating with the UAV.
  • the control method includes: acquiring location information of the second control base station, determining that a distance between the unmanned aerial vehicle and the second control base station is smaller than between the unmanned aerial vehicle and the first control base station Distance, and establishing communication with the second control base station.
  • the present invention provides a control method for controlling an unmanned aerial vehicle by at least two control base stations. At least two of the control base stations include a first control base station having a fixed position and a second control base station, the first control base station being a control base station currently communicating with the UAV.
  • the control method includes: receiving a result that a distance between the UAV and the second control base station is smaller than a distance between the UAV and the second control base station, and receiving the unmanned aerial vehicle
  • the communication status is transferred by the first control base station to the information of the second control base station, and the data acquisition is initiated by the first control base station to switch to the second control base station.
  • the present invention provides a control method for a server to control an unmanned aerial vehicle through at least two control base stations.
  • At least two of the control base stations include a first control base station having a fixed position and a second control base station, the first control base station being a control base station currently communicating with the UAV.
  • the control method includes: the UAV acquiring location information of the second control base station, the UAV determining that a distance between the UAV and the second control base station is less than the first control a distance between the base stations, the UAV establishing communication with the second control base station, and the UAV transferring the communication state of the UAV from the first control base station to the second control The information of the base station is fed back to the server.
  • the present invention provides an unmanned aerial vehicle in which at least two control base stations control the unmanned aerial vehicle. At least two of the control base stations include a first control base station having a fixed position and a second control base station, the first control base station being a control base station currently communicating with the UAV.
  • the UAV includes a communication module and a processor.
  • the communication module is configured to acquire location information of the second control base station; the processor is configured to determine that a distance between the unmanned aerial vehicle and the second control base station is smaller than the unmanned aerial vehicle and the first Controlling a distance between the base stations; the communication module is further configured to establish communication with the second control base station.
  • the present invention provides a server for controlling an unmanned aerial vehicle by at least two control base stations.
  • At least two of the control base stations include a first control base station having a fixed position and a second control base station, the first control base station being a control base station currently communicating with the UAV.
  • the server includes a communication module, and the communication module is configured to: receive a result that a distance between the UAV and the second control base station is smaller than a distance between the UAV and the second control base station Receiving, by the first control base station, information about a communication state of the unmanned aerial vehicle transferred to the second control base station, and transmitting data from the first control base station to the second control base station.
  • the present invention provides a communication system including a server and an unmanned aerial vehicle that controls the unmanned aerial vehicle through at least two control base stations.
  • At least two of the control base stations include a first control base station having a fixed position and a second control base station, the first control base station being a control base station currently communicating with the unmanned aerial vehicle, the unmanned flight
  • the first communication module is configured to acquire location information of the second control base station, and the processor is configured to determine between the unmanned aerial vehicle and the second control base station The distance is smaller than a distance between the first control base station; the first communication module is further configured to: establish communication with the second control base station, and communicate the communication state of the UAV by the first control base station Information transferred to the second control base station is fed back to the server.
  • the present invention provides a computer readable storage medium comprising a computer program for use in conjunction with an electronic device.
  • the computer program can be executed by a processor to perform the control method described above.
  • the control method, the unmanned aerial vehicle, the server and the computer readable storage medium of the embodiments of the present invention use at least two control base stations to communicate with the unmanned aerial vehicle, and when the distance between the unmanned aerial vehicle and the first control base station is relatively long, no one The communication state of the aircraft can be switched from the first control base station to the second control base station to maintain good communication between the UAV and the second control base station that is closer together, thereby expanding the operating radius of the UAV.
  • FIG. 1 is a flow chart of a control method of some embodiments of the present invention.
  • FIG. 2 is a block diagram of a communication system in accordance with some embodiments of the present invention.
  • FIG. 3 is a schematic diagram of a scenario of a control method according to some embodiments of the present invention.
  • 4 to 10 are schematic flow charts of a control method according to some embodiments of the present invention.
  • FIG. 11 is a block diagram of a communication system in accordance with some embodiments of the present invention.
  • 12 to 14 are schematic flow charts of a control method according to some embodiments of the present invention.
  • 15 is a block diagram of a communication system in accordance with some embodiments of the present invention.
  • 16 to 22 are schematic flow charts of a control method according to some embodiments of the present invention.
  • the present invention provides a control method.
  • the control method is used for control of the unmanned aerial vehicle 10 by at least two control base stations 20.
  • the at least two control base stations 20 include a first control base station 21 having a fixed position and a second control base station 22 having a fixed position.
  • the first control base station 21 is a control base station 20 that is currently in communication with the unmanned aerial vehicle 10.
  • Control methods include:
  • the control method of the embodiment of the present invention can be implemented by the unmanned aerial vehicle 10 of the embodiment of the present invention, and at least two control base stations 20 control the unmanned aerial vehicle 10.
  • the at least two control base stations 20 comprise a first control base station 21 having a fixed position and a second control base station 22, the first control base station 21 being a control base station 20 currently communicating with the unmanned aerial vehicle 10.
  • the UAV 10 includes a first communication module 11 and a first processor 12. Both step S12 and step S16 can be implemented by the first communication module 11, and step S14 can be implemented by the first processor 12.
  • the first communication module 11 can be used to acquire the location information of the second control base station 22, and the second control The base station 22 establishes communication.
  • the first processor 12 can be used to determine that the distance between the UAV 10 and the second control base station 22 is less than the distance between the UAV 10 and the first control base station 21.
  • the unmanned aerial vehicle 10 can communicate with the control base station 20 by means of wireless communication (for example, wifi or the like).
  • wireless communication for example, wifi or the like.
  • the UAV 10 only communicates with one control base station 20 when the existing UAV 10 performs a mission (e.g., line inspection, etc.).
  • a mission e.g., line inspection, etc.
  • the communication signal between the UAV 10 and the control base station 20 is weak.
  • the aircraft 10 can only perform a return flight operation. As such, the operating radius of the UAV 10 is greatly limited.
  • the UAV 10 of the embodiment of the present invention flies along a predetermined route, and the plurality of control base stations 20 are numbered in a predetermined order to switch the communication state of the UAV 10.
  • the unmanned aerial vehicle 10 communicates with the first control base station 21 for a period of time after takeoff, for example, the unmanned aerial vehicle 10 flies to the position A, at which time the position A is closer to the first control base station 21, and therefore, no
  • the human aircraft 10 is in communication with the first control base station 21.
  • the distance between the UAV 10 and the first control base station 21 is further and farther, and the distance between the UAV 10 and the first control base station 21 is greater than a certain setting.
  • the communication signal between the UAV 10 and the first control base station 21 can be considered to be weak.
  • the location information of the first control base station 21 can be sent to the unmanned aerial vehicle 10 in real time by the first control base station 21.
  • the UAV 10 acquires the position information of the sequentially numbered second control base station 22 and determines between the UAV 10 and the second control base station 22. The distance is less than the distance of the UAV 10 from the first control base station 21 to establish communication with the second control base station 22.
  • the communication signal between the UAV 10 and the second control base station 22 is The communication signal between the unmanned aerial vehicle 10 and the first control base station 21 is strong, so that when the communication state of the unmanned aerial vehicle 10 is switched from the first control base station 21 to the second control base station 22, the unmanned aerial vehicle 10 and the second control The base station 22 is capable of maintaining good communication.
  • the unmanned aerial vehicle 10 can also directly detect the strength of the communication signal between itself and the first control base station 21 (for example, detecting a signal to noise ratio, etc.), and acquire when the strength of the detected communication signal is less than a certain intensity threshold.
  • the base station 22 establishes communication.
  • the location information of the first control base station 21 may be sent by the UAV 10 to the first control base station 21 to obtain an acquisition command for acquiring the location information of the first control base station 21 when the strength of the communication signal is less than a certain intensity threshold.
  • the first control base station 21 transmits its own position information to the unmanned aerial vehicle 10, or the first control base station 21 can also transmit its own position information to the unmanned aerial vehicle 10 in real time. As such, to ensure that the UAV 10 is able to maintain good communication with the second control base station 22.
  • a plurality of control base stations 20 are all in communication with server 30.
  • the UAV 10 switches its own communication state from the first control base station 21 to the second control base station 22, the UAV 10 transmits the communication status switching information to the server 30.
  • the server 30 can select the control base station 20 currently communicating with the unmanned aerial vehicle 10 to perform the transfer of the control command.
  • the control method of the embodiment of the present invention and the unmanned aerial vehicle 10 use at least two control base stations 20 to communicate with the unmanned aerial vehicle 10, and when the distance between the unmanned aerial vehicle 10 and the first control base station 21 is relatively long, the unmanned aerial vehicle 10
  • the communication state can be switched from the first control base station 21 to the second control base station 22 to maintain the UAV 10 in good communication with the second control base station 22 that is closer together, thereby expanding the operating radius of the UAV 10.
  • control method of the embodiment of the present invention further includes:
  • S111 Acquire location information of the first control base station 21;
  • S112 Acquire location information of the unmanned aerial vehicle 10.
  • the obtaining the location information of the second control base station 22 in step S12 includes:
  • S121 Send an acquisition instruction for acquiring location information of the second control base station 22 to the first control base station 21;
  • S122 Receive location information of the second control base station 22 that is sent by the first control base station 21 according to the acquisition instruction.
  • S13 Calculate the distance between the UAV 10 and the first control base station 21 according to the position information of the UAV 10 and the position information of the first control base station 21, according to the position information of the UAV 10 and the second control base station 22.
  • the position information calculates the distance between the UAV 10 and the second control base station 22.
  • step S111, step S121, and step S122 may be implemented by the first communication module 11, and step S112 and step S113 may be implemented by the first processor 12.
  • the first communication module 11 can also be used to acquire the location information of the first control base station 21 and send an acquisition command for acquiring the location information of the second control base station 22 to the first control base station 21.
  • the first processor 12 is further configured to acquire location information of the UAV 10 and receive location information of the second control base station 22 that the first control base station 21 transmits according to the acquisition instruction. Calculating the distance between the UAV 10 and the first control base station 21 based on the position information of the UAV 10 and the position information of the first control base station 21, based on the position information of the UAV 10 and the position information of the second control base station 22. The distance between the UAV 10 and the second control base station 22 is calculated.
  • the location information of the control base station 20 refers to the coordinates of the control base station 20. That is to say, the position information of the first control base station 21 refers to the coordinates of the first control base station 21, and the position information of the second control base station 22 refers to the coordinates of the second control base station 22.
  • the position information of the unmanned aerial vehicle 10 refers to the coordinates of the unmanned aerial vehicle 10. Both the coordinates of the control base station 20 and the coordinates of the UAV 10 can be measured by global satellite navigation systems (e.g., GPS, BDS, GLONASS, etc.).
  • the location information of the first control base station 21 may be sent to the unmanned aerial vehicle 10 in real time, or the first communication module 11 of the unmanned aerial vehicle 10 may send an acquisition instruction for acquiring the location information of the first control base station 21 to the first control base station.
  • the first control base station 21 transmits its own position information to the unmanned aerial vehicle 10.
  • the position information of the UAV 10 itself can be read by the first processor 12 from the sensor.
  • the second control base station 22 determines the location information of the second control base station 22 when the first communication module 11 of the UAV 10 transmits the location information of the second control base station 22 to the first control base station 21.
  • the location information is sent to the UAV 10 .
  • the plurality of control base stations 20 are all in communication with the server 30 (for example, the plurality of control base stations 20 can communicate with the server 30 via wired communication such as Ethernet), and the location information of the plurality of control base stations 20 can be stored in the server 30. Therefore, when the first control base station 21 receives the acquisition command for acquiring the location information of the second control base station 22, the first control base station 21 acquires the location information of the second control base station 22 from the server 30, and then forwards the location information to the second control base station 22.
  • Unmanned aerial vehicle 10 10.
  • the location information of the plurality of control base stations 20 can also be stored in a memory (not shown) of the UAV 10 .
  • the unmanned aerial vehicle 10 acquires the position information of each of the control base stations 20, it can be directly read from the memory by the first processor 12.
  • the acquisition order of the position information of the first control base station 21, the position information of the second control base station 22, and the position information of the self-propelled aircraft 10 may be arbitrary.
  • the order of obtaining the location information may be the location information of the first control base station 21, the location information of the first control base station 21, and the location information of the UAV 10 itself; or the order of acquiring the location information may also be the UAV 10
  • the location information of the first control base station 21, the location information of the first control base station 21, and the location information of the first control base station 21; or the unmanned aerial vehicle 10 can simultaneously acquire its own location information and the location information of the first control base station 21, and then acquire the first The position information and the like of the second control base station 22 are not limited herein.
  • the first processor 12 can calculate the unmanned aerial vehicle 10 and the first according to the plurality of coordinates.
  • the distance of the base station 21 is controlled, and the distance between the UAV 10 and the second control base station 22.
  • the calculating the distance between the UAV 10 and the first control base station 21 according to the position information of the UAV 10 and the position information of the first control base station 21 in the step S13 can be calculated by calculating the coordinates and the first control of the UAV 10 The distance between the coordinates of the base station 21 is obtained;
  • Calculating the distance between the UAV 10 and the second control base station 22 based on the position information of the UAV 10 and the position information of the second control base station 22 in step S13 can be calculated by calculating the coordinates of the UAV 10 and the second control base station 22. The distance between the coordinates is obtained.
  • the UAV 10 can compare its own distance from the first control base station 21 with the distance between itself and the second control base station 22, and the distance between itself and the second control base station 22 is less than itself and the first When the distance between the base stations 21 is controlled, the communication state is switched from the first control base station 21 to the second control base station 22 to improve the communication quality.
  • establishing communication with the second control base station 22 in step S16 includes:
  • S162 Establish communication with the second control base station 22 when the second control base station 22 agrees to establish communication.
  • both step S161 and step S162 can be implemented by the first communication module 11. That is to say, the first communication module 11 can also be used to transmit a communication request to establish communication to the second control base station 22, and to establish communication with the second control base station 22 when the second control base station 22 agrees to establish communication.
  • the first communication module 11 of the UAV 10 transmits and establishes.
  • the communication request for communication is to the second control base station 22.
  • the second control base station 22 receives the communication request to establish communication, if the second control base station 22 agrees to establish communication, it sends a feedback signal agreeing to establish communication to the unmanned aerial vehicle 10.
  • the first communication module 11 of the UAV 10 can transfer its own communication state from the first control base station 21 to the second control base station 22.
  • the second control base station 22 is fully turned on, and the second control base station 22 receives external wireless signals in real time so that the UAV 10 can attempt to interact with the second
  • the control base station 22 receives the unmanned aerial vehicle 10 communication request signal in time when establishing communication.
  • the second control base station 22 can also be in a standby state (here, the standby state refers to only turning on the power, but not performing external wireless signal reception).
  • the standby state refers to only turning on the power, but not performing external wireless signal reception.
  • the UAV 10 wants to switch its communication state from the first control base station 21 to the second control base station 22, the UAV 10 can transmit a reminder signal to the first control base station 21, and the first control base station 21 will give a reminder signal. It is forwarded to the server 30, and then sent by the server 30 to the second control base station 22 to remind the second control base station 22 to turn on the function of receiving the external wireless signal.
  • the unmanned aerial vehicle 10 transmits a wireless signal establishing a communication request for communication to the second control base station 22, and after receiving the signal of the communication request, the second control base station 22 transmits a feedback signal agreeing to establish communication to the unmanned aerial vehicle 10.
  • the first communication module 11 of the UAV 10 can transfer its own communication state from the first control base station 21 to the second control base station 22.
  • establishing communication with the second control base station 22 in step S16 includes:
  • S164 Establish communication with the second control base station 22 when the UAV 10 agrees to establish communication.
  • both step S163 and step S164 may be implemented by the first communication module 11. That is, the first communication module 11 can also be used to receive a communication request from the second control base station 22 to establish communication, and to establish communication with the second control base station 22 when the UAV 10 agrees to establish communication.
  • the second control base station 22 transmits a signal for establishing a communication request for communication in real time or every other interval.
  • the first communication module 11 of the UAV 10 receives the communication request transmitted by the second control base station 22, and transmits the consent.
  • a feedback signal of the communication is established to the second control base station 22.
  • the second control base station 22 maintains communication with the UAV 10 in real time upon receiving the feedback signal.
  • the unmanned aerial vehicle 10 may also send a reminder signal to the first control base station 21, by the first control base station.
  • the wake-up signal is forwarded to the server 30, which in turn is sent by the server 30 to the second control base station 22 to alert the second control base station 22 to actively send a communication request to establish communication to the UAV 10.
  • the first communication module 11 of the UAV 10 receives the communication request transmitted by the second control base station 22 and transmits a feedback signal agreeing to establish communication to the second control base station 22.
  • the second control base station 22 maintains communication with the UAV 10 in real time upon receiving the feedback signal.
  • establishing communication with the second control base station 22 in step S16 includes:
  • S166 Receive the consent handover response from the first control base station 21, and send the consent request information to the second control base station 22.
  • step S163, step S165, and step S166 may all be implemented by the first communication module 11. That is to say, the first communication module 11 is further configured to receive a communication request for establishing communication transmitted from the second control base station 22, send a handover request to the first control base station 21, and receive an agreed handover response from the first control base station 21. Sending consent request information to the second control base station 22.
  • the second control base station 22 transmits a signal for establishing a communication request for communication in real time or every other interval.
  • the first communication module 11 of the UAV 10 receives the communication request transmitted by the second control base station 22.
  • the unmanned aerial vehicle 10 transmits a handover request to the first control base station 21, and transmits the consent request information to the second control base station 22 upon receiving the consent handover response from the first control base station 21.
  • the unmanned aerial vehicle 10 may also send a reminder signal to the first control base station 21, by the first control base station.
  • the reminder signal is forwarded to the server 30, which in turn is sent by the server 30 to the second control base station 22 to alert the second control base station 22 to actively send a communication request to establish communication to the unmanned aerial vehicle 10.
  • the unmanned aerial vehicle 10 Upon receiving the communication request, the unmanned aerial vehicle 10 transmits a handover request to the first control base station 21, and transmits the consent request information to the second control base station 22 upon receiving the consent handover response from the first control base station 21.
  • the UAV 10 and the first control base station 21 are transmitting the map transmission data, and if the UAV 10 does not negotiate with the first control base station 21 for the handover control base station 20, the UAV 10 directly disconnecting the communication with the first control base station 21 may cause a momentary interruption of the data transmission of the picture, affecting the continuity and real-time performance of the data transmission.
  • the user sends a control command to control the flight of the unmanned aerial vehicle 10 to the first control base station 21 by the server 30, and then forwards the control command to the unmanned aerial vehicle 10 by the first control base station 21, if the unmanned aerial vehicle 10 If the first control base station 21 does not perform the negotiation of the handover control base station 20, the direct disconnection of the unmanned aerial vehicle 10 from the first control base station 21 may affect the user's manipulation of the unmanned aerial vehicle 10.
  • control method of the embodiment of the present invention further includes:
  • S171 Acquire location information of the third control base station 23 when communication establishment failure between the UAV 10 and the second control base station 22 fails;
  • S173 Establish communication with the third control base station 23.
  • step S171 and step S173 may be implemented by the first communication module 11, and step S172 may be implemented by the first processor 12.
  • the first communication module 11 can also be used to acquire the location information of the third control base station 23 when the communication establishment between the UAV 10 and the second control base station 22 fails, and establish with the third control base station 23. Communication.
  • the first processor 12 can also be used to determine that the distance between the UAV 10 and the third control base station 23 is less than the distance between the UAV 10 and the first control base station 21.
  • the communication establishment failure between the UAV 10 and the second control base station 22 refers to the unmanned aerial vehicle 10
  • the feedback signal sent by the second control base station 22 is not received, and at this time, the unmanned aerial vehicle 10 and the second control base station 22 cannot transmit signals, or the unmanned aerial vehicle 10
  • the received signal of the feedback signal of the second control base station 22 is relatively low, and the communication quality between the UAV 10 and the second control base station 22 is poor.
  • the communication signal between the UAV 10 and the second control base station 22 is weakened. Therefore, when the communication establishment between the unmanned aerial vehicle 10 and the second control base station 22 fails, the unmanned aerial vehicle 10 acquires the position information of the sequentially numbered third control base station 23, and determines the unmanned aerial vehicle 10 and the third control base station. Communication between the third control base station 23 is established when the distance between 23 is less than the distance between the UAV 10 and the first control base station 21.
  • the acquisition of the location information of the third control base station 23 is similar to the acquisition of the location information of the second control base station 22, calculating the distance between the UAV 10 and the third control base station 23, and calculating the UAV 10 and the second control.
  • the method of the distance between the base stations 22 is similar, and the manner in which the UAV 10 establishes communication with the third control base station 23 is similar to the method in which the UAV 10 establishes communication with the second control base station 22, and will not be described again.
  • the UAV 10 switches the communication state from the first control base station 21 to the third control base station 23 to maintain the UAV 10 in good communication with the third control base station 23. Further, the UAV 10 transmits the switching information of the communication state to the server 30 via the third control base station 23.
  • control method of the embodiment of the present invention further includes:
  • the UAV 10 further includes a flight controller 13.
  • Step S18 can be implemented by the flight controller 13. That is, the flight controller 13 can be used to control the UAV 10 to return when the communication establishment between the UAV 10 and the third control base station 23 fails.
  • the flight controller 13 directly controls the unmanned aerial vehicle 10 to return when the communication establishment between the unmanned aerial vehicle 10 and the third control base station 23 fails.
  • the UAV 10 may also attempt to establish communication with the fourth control base station 20, and may also be in the unmanned The failure of the aircraft 10 to establish communication with the fourth control base station 20 is to continue to attempt to communicate with the fifth control base station 20. That is to say, the number of control base stations 20 that attempt to establish communication before the UAV 10 returns to the aircraft can be specifically set by the user according to actual conditions.
  • the invention also provides a computer readable storage medium.
  • the computer readable storage medium includes a computer program for use with an electronic device, which can be executed by the first processor 12 to perform at least two control base stations 20 for controlling the unmanned aerial vehicle 10 as described in any of the above embodiments. Control Method.
  • the electronic device is an unmanned aerial vehicle 10.
  • the computer program can be executed by the first processor 12 to perform the control method described in the following steps: reading the location information of the second control base station 22 from the first communication module 11 to determine the unmanned aerial vehicle 10 and the second control base station The distance between 22 is less than the distance between the UAV 10 and the first control base station 21, and the first communication module 11 is controlled to establish communication with the second control base station 22.
  • the computer program can also be executed by the first processor 12 to perform the control method described in the following steps: reading the position information of the first control base station 21 from the first communication module 11 and acquiring the position of the unmanned aerial vehicle 10 from the sensor. Information, and calculating the distance between the UAV 10 and the first control base station 21 based on the position information of the UAV 10 and the position information of the first control base station 21, according to the position information of the UAV 10 and the second control base station 22 Location information The distance between the UAV 10 and the second control base station 22 is calculated.
  • the present invention provides a control method for controlling the unmanned aerial vehicle 10 by at least two control base stations 20.
  • the at least two control base stations 20 include a first control base station 21 having a fixed position and a second control base station 22 having a fixed position.
  • the first control base station 21 is a control base station 20 that is currently in communication with the unmanned aerial vehicle 10.
  • Control methods include:
  • S22 a result of receiving a distance between the UAV 10 and the second control base station 22 that is smaller than a distance between the UAV 10 and the second control base station 22;
  • S26 Switching data acquisition from the first control base station 21 to the second control base station 22.
  • the control method of the embodiment of the present invention can be implemented by the server 30 of the embodiment of the present invention.
  • the server 30 of the embodiment of the present invention controls the unmanned aerial vehicle 10 through at least two control base stations 20.
  • the server 30 includes a second communication module 31. Step S22, step S24, and step S26 may each be implemented by the second communication module 31.
  • the second communication module 31 can be used to receive the result that the distance between the UAV 10 and the second control base station 22 is smaller than the distance between the UAV 10 and the second control base station 22, and receive the UAV 10
  • the communication state is transferred from the first control base station 21 to the second control base station 22, and the data acquisition is derived from the first control base station 21 to the second control base station 22.
  • the server 30 remotely controls and monitors the unmanned aerial vehicle 10 through at least two control base stations 20.
  • the server 30 controls the unmanned aerial vehicle 10 through the first control base station 21, and when the unmanned aerial vehicle 10 communicates with the second control base station 22, the server 30 passes the second The control base station 22 controls the unmanned aerial vehicle 10. That is, the server 30 controls the unmanned aerial vehicle 10 by the control base station 20 that communicates with the unmanned aerial vehicle 10 at the current time. Therefore, the server 30 must know which of the plurality of control base stations 20 the control base station 20 communicating with the UAV 10 at the current time is.
  • the UAV 10 when the communication state of the UAV 10 is switched from the first control base station 21 to the second control base station 22, the UAV 10 will have a smaller distance between the UAV 10 and the second control base station 22 than the UAV 10
  • the result of the distance to the second control base station 22 and the transfer information of the communication state are transmitted to the second control base station 22, and are forwarded by the second control base station 22 to the server 30, and the second communication module 31 of the server 30 receives the result and The information is transferred and the data acquisition source is switched from the first control base station 21 to the second control base station 22.
  • the server 30 can grasp the flight status and communication status of the UAV 10 in real time.
  • control method of the embodiment of the present invention further includes:
  • S211 Receive an acquisition instruction for acquiring location information of the second control base station 22 forwarded by the first control base station 21, and the acquisition instruction is sent by the unmanned aerial vehicle 10 to the first control base station 21.
  • S212 Send location information of the second control base station 22 to the unmanned aerial vehicle 10.
  • both step S211 and step S212 can be implemented by the second communication module 31. That is, the second communication module 31 is further configured to receive an acquisition instruction for acquiring the location information of the second control base station 22 forwarded by the first control base station 21, and the acquisition instruction is sent by the unmanned aerial vehicle 10 to the first control base station 21, And transmitting the location information of the second control base station 22 to the unmanned aerial vehicle 10.
  • the plurality of control base stations 20 are all in communication with the server 30 (for example, the plurality of control base stations 20 can communicate with the server 30 via wired communication such as Ethernet), and the location information of the plurality of control base stations 20 are stored in the server 30.
  • the UAV 10 acquires the location information of the second control base station 22
  • the UAV 10 transmits an acquisition command for acquiring the location information of the second control base station 22 to the first control base station 21, and the first control base station 21 forwards the acquisition command.
  • the second communication module 31 of the server 30 transmits the location information of the second control base station 22 to the first control base station 21, and then forwards it to the unmanned aerial vehicle 10 by the first control base station 21. In this way, the unmanned aerial vehicle 10 can acquire the position information of the second control base station 22.
  • control method of the embodiment of the present invention further includes:
  • S27 Receive data information sent by the control base station 20 currently communicating with the unmanned aerial vehicle 10. The data information is transmitted by the unmanned aerial vehicle 10 to the current control base station 20.
  • step S27 can be implemented by the second communication module 31. That is to say, the second communication module 31 can also be used to receive data information transmitted by the control base station 20 currently communicating with the unmanned aerial vehicle 10. The data information is transmitted by the unmanned aerial vehicle 10 to the current control base station 20.
  • the data information includes at least one of parameter information of the UAV 10, environmental information acquired by the unmanned aerial vehicle 10 by the mounted load, and parameter information of the load carried by the UAV 10 . That is to say, the data information may include only the parameter information of the unmanned aerial vehicle 10, or only the unmanned aerial vehicle 10 acquires environmental information by the loaded load, or only the parameter information of the load carried by the unmanned aerial vehicle 10. The data information may also include parameter information of the UAV 10 and the unmanned aerial vehicle 10 acquiring environmental information by the loaded load, or at the same time including the unmanned aerial vehicle 10 acquiring the environmental information and the load carried by the UAV 10 by the loaded load.
  • the parameter information includes both parameter information of the UAV 10 and parameter information of the load carried by the UAV 10 .
  • the data information may include the parameter information of the UAV 10, the environmental information of the UAV 10 acquired by the mounted load, and the parameter information of the load carried by the UAV 10 .
  • the parameter information of the UAV 10 may be information such as coordinates, pitch angle, flight speed, battery power, and the like of the UAV 10 .
  • the unmanned aerial vehicle 10 acquires environmental information from the mounted load, and may be information such as an image or video captured by a camera mounted on the UAV 10 .
  • the parameter information of the load mounted on the UAV 10 may be information such as the pitch angle of the pan/tilt mounted on the UAV 10 .
  • the unmanned aerial vehicle 10 transmits the data information to the control base station 20 with which it is currently communicating, and is then forwarded by the control base station 20 to the server 30, and the second communication module 31 of the server 30 is responsible for receiving the above-described data information.
  • the server 30 can fully grasp the flight status of the UAV 10 and facilitate remote control of the UAV 10 by the server 30.
  • control method of the embodiment of the present invention further includes:
  • S28 Sending a remote control command to the control base station 20 currently communicating with the unmanned aerial vehicle 10 to control the UAV 10 to fly through the current control base station 20.
  • step S28 can be implemented by the second communication module 31. That is, the second communication module 31 can also be used to transmit remote control commands to the control base station 20 currently communicating with the UAV 10 to control the UAV 10 to fly through the current control base station 20.
  • the user inputs a remote control command through an external device (eg, a laptop, a tablet, a mobile phone, etc.) that communicates with the server 30, and the server 30 transmits the remote control command to the control base station 20 currently communicating with the unmanned aerial vehicle 10, and then The base station forwards remote control commands to the unmanned aerial vehicle 10.
  • an external device eg, a laptop, a tablet, a mobile phone, etc.
  • the base station forwards remote control commands to the unmanned aerial vehicle 10.
  • the UAV 10 performs a task
  • the user can remotely control the UAV 10 to fly and capture an image or video of the target area through the server 30; the user can remotely control the UAV 10 through the server 30 in the event of a sudden change in weather. Return and land in time to ensure the safety of the UAV 10.
  • the invention also provides a computer readable storage medium comprising a computer program usable in conjunction with an electronic device.
  • the computer program can be executed by the second processor 32 to perform the control method for controlling the unmanned aerial vehicle 10 by at least two control base stations 20 as described in any of the above embodiments.
  • the electronic device is the server 30.
  • the computer program can be executed by the second processor 32 to complete the control method described in the following steps: controlling the second communication module 31 to receive a distance between the UAV 10 and the second control base station 22 that is less than the UAV 10 and the As a result of controlling the distance between the base stations 22, receiving the information of the communication state of the UAV 10 from the first control base station 21 to the second control base station 22, and switching the data acquisition from the first control base station 21 to the second The base station 22 is controlled.
  • the computer program can be executed by the second processor 32 to perform the control method described in the following steps: controlling the second communication module 31 to receive the acquisition of the location information of the second control base station 22 forwarded by the first control base station 21.
  • the acquisition command is transmitted by the unmanned aerial vehicle 10 to the first control base station 21, and the position information of the second control base station 22 is transmitted to the unmanned aerial vehicle 10.
  • the present invention provides a control method for the server 30 to control the unmanned aerial vehicle 10 via at least two control base stations 20.
  • the at least two control base stations 20 include a first control base station 21 and a second control base station 22 having fixed positions.
  • the first control base station 21 is a control base station 20 that is currently in communication with the unmanned aerial vehicle 10.
  • Control methods include:
  • the UAV 10 acquires location information of the second control base station 22;
  • the UAV 10 determines that the distance between the UAV 10 and the second control base station 22 is smaller than the distance between the first control base stations 21;
  • S36 The UAV 10 feeds back information of the communication state of the UAV 10 from the first control base station 21 to the second control base station 22 to the server 30.
  • the control method of the embodiment of the present invention may be implemented by the communication system 100 of the embodiment of the present invention.
  • the communication system 100 of an embodiment of the present invention includes an unmanned aerial vehicle 10, a server 30, and at least two control base stations 20.
  • the at least two control base stations 20 include a first control base station 21 and a second control base station 22 having fixed positions, and the first control base station 21 is a control base station 20 currently communicating with the unmanned aerial vehicle 10.
  • the UAV 10 includes a first communication module 11 and a first processor 12.
  • Step S32, step S35 and step S36 can all be implemented by the first communication module 11.
  • Step S24 can be implemented by the first processor 12.
  • the first communication module 11 can be used to acquire the location information of the second control base station 22, establish communication with the second control base station 22, and transfer the communication state of the UAV 10 from the first control base station 21 to the second.
  • the information controlling the base station 22 is fed back to the server 30.
  • the first processor 12 can be configured to acquire location information of the second control base station 22.
  • the unmanned aerial vehicle 10 can communicate with the control base station 20 by means of wireless communication (for example, wifi or the like).
  • the plurality of control base stations 20 can communicate with the server 30 via a wired communication method such as Ethernet.
  • the UAV 10 only communicates with one control base station 20 when the existing UAV 10 performs a mission (e.g., line inspection, etc.).
  • a mission e.g., line inspection, etc.
  • the communication signal between the UAV 10 and the control base station 20 is weak.
  • the aircraft 10 can only perform a return flight operation. As such, the operating radius of the UAV 10 is greatly limited.
  • the UAV 10 of the embodiment of the present invention flies along a predetermined route, and the plurality of control base stations 20 are numbered in a predetermined order to switch the communication state of the UAV 10.
  • the unmanned aerial vehicle 10 communicates with the first control base station 21 for a period of time after takeoff, for example, the unmanned aerial vehicle 10 flies to the position A, at which time the position A is closer to the first control base station 21, and therefore, no
  • the human aircraft 10 is in communication with the first control base station 21.
  • the distance between the UAV 10 and the first control base station 21 is further and farther, and the distance between the UAV 10 and the first control base station 21 is greater than a certain setting.
  • the communication signal between the UAV 10 and the first control base station 21 can be considered to be weak.
  • the location information of the first control base station 21 can be sent to the unmanned aerial vehicle 10 in real time by the first control base station 21.
  • the UAV 10 acquires the position information of the sequentially numbered second control base station 22 and determines between the UAV 10 and the second control base station 22.
  • the communication signal between the UAV 10 and the second control base station 22 is The communication signal between the unmanned aerial vehicle 10 and the first control base station 21 is strong, so that when the communication state of the unmanned aerial vehicle 10 is switched from the first control base station 21 to the second control base station 22, the unmanned aerial vehicle 10 and the second control The base station 22 is capable of maintaining good communication.
  • the unmanned aerial vehicle 10 can forward the data information to the server 30 through the second control base station 22, and the server 30 can also forward the control command to the second control base station 22 to Unmanned aerial vehicle 10.
  • the unmanned aerial vehicle 10 can also directly detect the strength of the communication signal between itself and the first control base station 21 (for example, detecting a signal to noise ratio, etc.), and acquire when the strength of the detected communication signal is less than a certain intensity threshold. First controlling the location information of the base station 21 and the second control base station 22, and determining that the distance between the UAV 10 and the second control base station 22 is less than the distance between the UAV 10 and the first control base station 21 and the second control The base station 22 establishes communication, and then the information for transferring its own communication state from the first control base station 21 to the second control base station 22 is fed back to the server 30.
  • the server 30 for example, detecting a signal to noise ratio, etc.
  • the location information of the first control base station 21 may be sent by the UAV 10 to the first control base station 21 to obtain an acquisition command for acquiring the location information of the first control base station 21 when the strength of the communication signal is less than a certain intensity threshold.
  • the first control base station 21 transmits its own position information to the unmanned aerial vehicle 10, or the first control base station 21 can also transmit its own position information to the unmanned aerial vehicle 10 in real time. As such, to ensure that the UAV 10 is able to maintain good communication with the second control base station 22. Further, in a state where the UAV 10 and the second control base station 22 maintain good communication, the UAV 10 can forward data information to the server 30 through the second control base station 22, and the server 30 can also be forwarded through the second control base station 22. The control command is directed to the unmanned aerial vehicle 10.
  • the control method and communication system 100 of the embodiment of the present invention uses at least two control base stations 20 to communicate with the unmanned aerial vehicle 10, and the communication of the unmanned aerial vehicle 10 when the distance between the unmanned aerial vehicle 10 and the first control base station 21 is relatively long.
  • the state can be switched from the first control base station 21 to the second control base station 22 to maintain the UAV 10 in good communication with the second control base station 22 that is closer together, thereby expanding the operating radius of the UAV 10.
  • control method of the embodiment of the present invention further includes:
  • S311 Acquire location information of the first control base station 21;
  • S312 Acquire location information of the unmanned aerial vehicle 10.
  • Step S32 Obtaining the location information of the second control base station 22 by the UAV 10 further includes:
  • the UAV 10 transmits an acquisition command for acquiring the location information of the second control base station 22 to the first control base station 21;
  • the server 30 receives the acquisition instruction forwarded by the first control base station 21;
  • the server 30 sends the location information of the second control base station 22 to the first control base station 21 according to the acquisition instruction;
  • the UAV 10 receives the location information of the second control base station 22 forwarded by the first control base station 21.
  • the UAV 10 calculates the distance between the UAV 10 and the first control base station 21 based on the position information of the UAV 10 and the position information of the first control base station 21, according to the position information of the UAV 10 and the second
  • the position information of the base station 22 is controlled to calculate the distance between the UAV 10 and the second control base station 22.
  • server 30 includes a second communication module 31.
  • Step S311, step S321, and step S324 can all be implemented by the first communication module 11.
  • Both step S322 and step S323 can be implemented by the first communication module 11.
  • Both step S312 and step S33 can be implemented by the first processor 12.
  • the first communication module 11 is further configured to acquire the location information of the first control base station 21, send an acquisition command for acquiring the location information of the second control base station 22 to the first control base station 21, and receive the first control base station 21
  • the forwarded second control base station 22 has location information.
  • the first processor 12 is further configured to acquire position information of the UAV 10, and calculate a distance between the UAV 10 and the first control base station 21 according to the position information of the UAV 10 and the position information of the first control base station 21.
  • the distance between the UAV 10 and the second control base station 22 is calculated based on the position information of the UAV 10 and the position information of the second control base station 22.
  • the second communication module 31 is configured to receive the acquisition instruction forwarded by the first control base station 21, and send the location information of the second control base station 22 to the first control base station 21 according to the acquisition instruction.
  • the location information of the control base station 20 refers to the coordinates of the control base station 20. That is to say, the position information of the first control base station 21 refers to the coordinates of the first control base station 21, and the position information of the second control base station 22 refers to the coordinates of the second control base station 22.
  • the position information of the unmanned aerial vehicle 10 refers to the coordinates of the unmanned aerial vehicle 10. Both the coordinates of the control base station 20 and the coordinates of the UAV 10 can be measured by global satellite navigation systems (e.g., GPS, BDS, GLONASS, etc.).
  • the location information of the first control base station 21 may be sent to the unmanned aerial vehicle 10 in real time, or the first communication module 11 of the unmanned aerial vehicle 10 may send an acquisition instruction for acquiring the location information of the first control base station 21 to the first control base station.
  • the first control base station 21 transmits its own position information to the unmanned aerial vehicle 10.
  • the position information of the UAV 10 itself can be read by the first processor 12 from the sensor.
  • the second control base station 22 determines the location information of the second control base station 22 when the first communication module 11 of the UAV 10 transmits the location information of the second control base station 22 to the first control base station 21.
  • the location information is sent to the UAV 10 .
  • the location information of the plurality of control base stations 20 may be stored in the server 30. Therefore, when the first control base station 21 receives the acquisition command of the location information of the second control base station 22 transmitted by the UAV 10, the first control base station 21 forwards the acquisition command for acquiring the location information of the second control base station 22 to the server. After receiving the instruction, the second communication module 31 of the server 30 transmits the location information of the second control base station 22 to the first control base station 21, and then forwards it to the unmanned aerial vehicle 10 by the first control base station 21.
  • the location information of the plurality of control base stations 20 may also be stored in the memory (not shown) of the UAV 10 .
  • the unmanned aerial vehicle 10 acquires the position information of each of the control base stations 20, it can be directly read from the memory by the first processor 12.
  • the acquisition order of the position information of the first control base station 21, the position information of the second control base station 22, and the position information of the self-propelled aircraft 10 may be arbitrary.
  • the order of obtaining the location information may be the location information of the first control base station 21, the location information of the first control base station 21, and the location information of the UAV 10 itself; or the order of acquiring the location information may also be the UAV 10
  • the location information of the first control base station 21, the location information of the first control base station 21, and the location information of the first control base station 21; or the unmanned aerial vehicle 10 can simultaneously acquire its own location information and the location information of the first control base station 21, and then acquire the first The position information and the like of the second control base station 22 are not limited herein.
  • the first processor 12 can calculate the unmanned aerial vehicle 10 and the first according to the plurality of coordinates.
  • the distance of the base station 21 is controlled, and the distance between the UAV 10 and the second control base station 22.
  • step S33 the UAV 10 calculates the distance between the UAV 10 and the first control base station 21 based on the position information of the UAV 10 and the position information of the first control base station 21, and can calculate the coordinates of the UAV 10 by The distance between the coordinates of the first control base station 21 is obtained; in step S33, the unmanned aerial vehicle 10 calculates between the unmanned aerial vehicle 10 and the second control base station 22 based on the position information of the unmanned aerial vehicle 10 and the position information of the second control base station 22. The distance can be obtained by calculating the distance between the coordinates of the UAV 10 and the coordinates of the second control base station 22.
  • the UAV 10 can compare its own distance from the first control base station 21 with the distance between itself and the second control base station 22, and the distance between itself and the second control base station 22 is less than itself and the first When the distance between the base stations 21 is controlled, the communication state is switched from the first control base station 21 to the second control base station 22 to improve the communication quality.
  • step S35 of establishing communication between the UAV 10 and the second control base station 22 includes:
  • S352 The UAV 10 establishes communication with the second control base station 22 when the second control base station 22 agrees to establish communication.
  • both step S351 and step S352 can be implemented by the first communication module 11. That is, the first communication module 11 can be further configured to transmit a communication request to establish communication to the second control base station 22, and establish communication with the second control base station 22 when the second control base station 22 agrees to establish communication.
  • the first processor 12 determines that the distance between the UAV 10 and the second control base station 22 is less than the distance between the UAV 10 and the first control base station 21, so that the first communication module 11 of the UAV 10 transmits the establishment.
  • the communication request for communication is to the second control base station 22.
  • the second control base station 22 After the second control base station 22 receives the communication request to establish communication, if the second control base station 22 agrees to establish communication, it sends a feedback signal agreeing to establish communication to the unmanned aerial vehicle 10. After receiving the feedback signal, the first communication module 11 of the UAV 10 can transfer its own communication state from the first control base station 21 to the second control base station 22.
  • the second control base station 22 is fully turned on, and the second control base station 22 receives external wireless signals in real time so that the UAV 10 can attempt to interact with the second
  • the control base station 22 receives the unmanned aerial vehicle 10 communication request signal in time when establishing communication.
  • the second control base station 22 can also be in a standby state (here, the standby state refers to only turning on the power, but not performing external wireless signal reception).
  • the standby state refers to only turning on the power, but not performing external wireless signal reception.
  • the UAV 10 wants to switch its communication state from the first control base station 21 to the second control base station 22, the UAV 10 can transmit a reminder signal to the first control base station 21, and the first control base station 21 will give a reminder signal. It is forwarded to the server 30, and then sent by the server 30 to the second control base station 22 to remind the second control base station 22 to turn on the function of receiving the external wireless signal.
  • the unmanned aerial vehicle 10 transmits a wireless signal establishing a communication request for communication to the second control base station 22, and after receiving the signal of the communication request, the second control base station 22 transmits a feedback signal agreeing to establish communication to the unmanned aerial vehicle 10.
  • the first communication module 11 of the UAV 10 can transfer its own communication state from the first control base station 21 to the second control base station 22.
  • step S35 of establishing communication between the UAV 10 and the second control base station 22 includes:
  • S353 The UAV 10 receives a communication request from the second control base station 22 to establish communication;
  • S354 The UAV 10 establishes communication with the second control base station 22 when the UAV 10 agrees to establish communication.
  • both step S353 and step S354 can be implemented by the first communication module 11. That is, the first communication module 11 can be further configured to receive a communication request from the second control base station 22 to establish communication, and to establish communication with the second control base station 22 when the UAV 10 agrees to establish communication.
  • the second control base station 22 transmits a signal for establishing a communication request for communication in real time or every other interval.
  • the first communication module 11 of the UAV 10 receives the communication request transmitted by the second control base station 22, and transmits the consent.
  • a feedback signal of the communication is established to the second control base station 22.
  • the second control base station 22 maintains communication with the UAV 10 in real time upon receiving the feedback signal.
  • the unmanned aerial vehicle 10 may also send a reminder signal to the first control base station 21, by the first control base station.
  • the reminder signal is forwarded to the server 30, which in turn is sent by the server 30 to the second control base station 22 to alert the second control base station 22 to actively send a communication request to establish communication to the unmanned aerial vehicle 10.
  • the first communication module 11 of the UAV 10 receives the communication request transmitted by the second control base station 22 and transmits a feedback signal agreeing to establish communication to the second control base station 22.
  • the second control base station 22 maintains communication with the UAV 10 in real time upon receiving the feedback signal.
  • step S35 of establishing communication between the UAV 10 and the second control base station 22 includes:
  • S353 The UAV 10 receives a communication request from the second control base station 22 to establish communication;
  • the UAV 10 receives the consent handover response from the first control base station 21, and transmits the consent request information to the second control base station 22.
  • step S353, step S355, and step S356 can each be implemented by the first communication module 11. That is to say, the first communication module 11 can be further configured to receive the second control base station 22
  • the transmitted communication request to establish communication transmits a handover request to the first control base station 21, and receives a consent handover response from the first control base station 21, and transmits the consent request information to the second control base station 22.
  • the second control base station 22 transmits a signal for establishing a communication request for communication in real time or every other interval.
  • the first communication module 11 of the UAV 10 receives the communication request transmitted by the second control base station 22.
  • the unmanned aerial vehicle 10 transmits a handover request to the first control base station 21, and transmits the consent request information to the second control base station 22 upon receiving the consent handover response from the first control base station 21.
  • the unmanned aerial vehicle 10 may also send a reminder signal to the first control base station 21, by the first control base station.
  • the reminder signal is forwarded to the server 30, which in turn is sent by the server 30 to the second control base station 22 to alert the second control base station 22 to actively send a communication request to establish communication to the unmanned aerial vehicle 10.
  • the unmanned aerial vehicle 10 Upon receiving the communication request, the unmanned aerial vehicle 10 transmits a handover request to the first control base station 21, and transmits the consent request information to the second control base station 22 upon receiving the consent handover response from the first control base station 21.
  • the UAV 10 and the first control base station 21 are transmitting the map transmission data, and if the UAV 10 does not negotiate with the first control base station 21 for the handover control base station 20, the UAV 10 directly disconnecting the communication with the first control base station 21 may cause a momentary interruption of the data transmission of the picture, affecting the continuity and real-time performance of the data transmission.
  • the user sends a control command to control the flight of the unmanned aerial vehicle 10 to the first control base station 21 by the server 30, and then forwards the control command to the unmanned aerial vehicle 10 by the first control base station 21, if the unmanned aerial vehicle 10 If the first control base station 21 does not perform the negotiation of the handover control base station 20, the direct disconnection of the unmanned aerial vehicle 10 from the first control base station 21 may affect the user's manipulation of the unmanned aerial vehicle 10.
  • control method of the embodiment of the present invention further includes:
  • the UAV 10 determines that the distance between the UAV 10 and the third control base station 23 is smaller than the distance between the UAV 10 and the first control base station 21;
  • S374 The UAV 10 feeds back information of the communication state of the UAV 10 from the first control base station 21 to the third control base station 23 to the server 30.
  • step S371, step S373, and step S374 can all be implemented by the first communication module 11.
  • Step S372 can be implemented by the first processor 12.
  • the first communication module 11 can also be used to acquire the location information of the third control base station 23 when the communication establishment between the UAV 10 and the second control base station 22 fails, and establish communication with the third control base station 23, And information for transferring the communication state of the UAV 10 from the first control base station 21 to the third control base station 23 is fed back to the server 30.
  • the first processing module can also be used to determine that the distance between the UAV 10 and the third control base station 23 is less than the distance between the UAV 10 and the first control base station 21.
  • the communication establishment failure between the UAV 10 and the second control base station 22 refers to that after the UAV 10 sends a communication request to establish communication to the second control base station 22, the second control base station 22 does not receive the transmission.
  • the feedback signal at this time, the signal cannot be transmitted between the UAV 10 and the second control base station 22, or the signal-to-noise ratio of the feedback signal of the second control base station 22 received by the UAV 10 is low, and the UAV 10 is at this time.
  • the communication quality with the second control base station 22 is poor.
  • the unmanned aerial vehicle 10 acquires the position information of the sequentially numbered third control base station 23, and determines the unmanned aerial vehicle 10 and the third control base station.
  • the distance between 23 is less than the unmanned aerial vehicle 10 and the first Communication with the third control base station 23 is established when the distance between the base stations 21 is controlled.
  • the acquisition of the location information of the third control base station 23 is similar to the acquisition of the location information of the second control base station 22, calculating the distance between the UAV 10 and the third control base station 23, and calculating the UAV 10 and the second control.
  • the method of the distance between the base stations 22 is similar, and the manner in which the UAV 10 establishes communication with the third control base station 23 is similar to the method in which the UAV 10 establishes communication with the second control base station 22, and will not be described again.
  • the UAV 10 switches the communication state from the first control base station 21 to the third control base station 23 to maintain the UAV 10 in good communication with the third control base station 23. Further, the UAV 10 transmits the switching information of the communication state to the server 30 via the third control base station 23. Thus, the UAV 10 can forward the data information to the server 30 through the third control base station 23, and the server 30 can also pass The third control base station 23 forwards the control command to the unmanned aerial vehicle 10.
  • control method of the embodiment of the present invention further includes:
  • the UAV 10 further includes a flight controller 13.
  • the flight controller 13 can be used to control the UAV 10 to return when communication establishment failure between the UAV 10 and the third control base station 23 fails.
  • the flight controller 13 directly controls the unmanned aerial vehicle 10 to return when the communication establishment between the unmanned aerial vehicle 10 and the third control base station 23 fails.
  • the UAV 10 may also attempt to establish communication with the fourth control base station 20, and may also be in the unmanned The failure of the aircraft 10 to establish communication with the fourth control base station 20 is to continue to attempt to communicate with the fifth control base station 20. That is to say, the number of control base stations 20 that attempt to establish communication before the UAV 10 returns to the aircraft can be specifically set by the user according to actual conditions.
  • control method of the embodiment of the present invention further includes:
  • the server 30 receives information that the communication state of the UAV 10 is transferred from the first control base station 21 to the second control base station 22;
  • the server 30 switches the data acquisition from the first control base station 21 to the second control base station 22.
  • step S391, step S392, and step S393 can all be implemented by the second pass new module. That is, the second communication module 31 can be used to receive the result that the distance between the UAV 10 and the second control base station 22 is smaller than the distance between the UAV 10 and the second control base station 22, and receive the UAV 10
  • the communication state is transferred from the first control base station 21 to the second control base station 22, and the data acquisition is derived from the first control base station 21 to the second control base station 22.
  • the server 30 remotely controls and monitors the unmanned aerial vehicle 10 through at least two control base stations 20.
  • the server 30 controls the unmanned aerial vehicle 10 through the first control base station 21, and when the unmanned aerial vehicle 10 communicates with the second control base station 22, the server 30 passes the second The control base station 22 controls the unmanned aerial vehicle 10. That is, the server 30 controls the unmanned aerial vehicle 10 by the control base station 20 that communicates with the unmanned aerial vehicle 10 at the current time. Therefore, the server 30 must know which of the plurality of control base stations 20 the control base station 20 communicating with the UAV 10 at the current time is.
  • the UAV 10 when the communication state of the UAV 10 is switched from the first control base station 21 to the second control base station 22, the UAV 10 will fly unmanned.
  • the result of the distance between the walker 10 and the second control base station 22 being smaller than the distance between the UAV 10 and the second control base station 22 and the transfer information of the communication state are transmitted to the second control base station 22, and are controlled by the second control base station 22 forwarded to the server 30, the second communication module 31 of the server 30 receives the result and the transfer information, and switches the data acquisition source from the first control base station 21 to the second control base station 22.
  • the server 30 can grasp the flight status and communication status of the UAV 10 in real time.
  • control method of the embodiment of the present invention further includes:
  • the server 30 receives the data information transmitted by the control base station 20 currently communicating with the unmanned aerial vehicle 10. The data information is transmitted by the unmanned aerial vehicle 10 to the current control base station 20.
  • step S394 can be implemented by the second communication module 31. That is to say, the second communication module 31 can also be used to receive data information transmitted by the control base station 20 currently communicating with the unmanned aerial vehicle 10. Among them, the data information is transmitted by the unmanned aerial vehicle 10 to the current control base station 20.
  • the data information includes at least one of parameter information of the UAV 10, environmental information acquired by the unmanned aerial vehicle 10 by the mounted load, and parameter information of the load carried by the UAV 10 . That is to say, the data information may include only the parameter information of the unmanned aerial vehicle 10, or only the unmanned aerial vehicle 10 acquires environmental information by the loaded load, or only the parameter information of the load carried by the unmanned aerial vehicle 10. The data information may also include parameter information of the UAV 10 and the unmanned aerial vehicle 10 acquiring environmental information by the loaded load, or at the same time including the unmanned aerial vehicle 10 acquiring the environmental information and the load carried by the UAV 10 by the loaded load.
  • the parameter information includes both parameter information of the UAV 10 and parameter information of the load carried by the UAV 10 .
  • the data information may include the parameter information of the UAV 10, the environmental information of the UAV 10 acquired by the mounted load, and the parameter information of the load carried by the UAV 10 .
  • the parameter information of the UAV 10 may be information such as coordinates, pitch angle, flight speed, battery power, and the like of the UAV 10 .
  • the unmanned aerial vehicle 10 acquires environmental information from the mounted load, and may be information such as an image or video captured by a camera mounted on the UAV 10 .
  • the parameter information of the load mounted on the UAV 10 may be information such as the pitch angle of the pan/tilt mounted on the UAV 10 .
  • the unmanned aerial vehicle 10 transmits the data information to the control base station 20 with which it is currently communicating, and is then forwarded by the control base station 20 to the server 30, and the second communication module 31 of the server 30 is responsible for receiving the above-described data information.
  • the server 30 can fully grasp the flight status of the UAV 10 and facilitate remote control of the UAV 10 by the server 30.
  • control method of the embodiment of the present invention further includes:
  • the server 30 sends a remote control command to the control base station 20 currently communicating with the unmanned aerial vehicle 10 to control the unmanned aerial vehicle 10 to fly through the current control base station 20.
  • step S395 can be implemented by the second communication module 31. That is to say, the second communication module 31 can also be used to transmit remote control commands to the control base station 20 currently communicating with the unmanned aerial vehicle 10 to control the unmanned aerial vehicle 10 to fly through the current control base station 20.
  • the user inputs a remote control command through an external device (eg, a laptop, a tablet, a mobile phone, etc.) that communicates with the server 30, and the server 30 transmits the remote control command to the control base station 20 currently communicating with the unmanned aerial vehicle 10, and then The base station forwards remote control commands to the unmanned aerial vehicle 10.
  • an external device eg, a laptop, a tablet, a mobile phone, etc.
  • the base station forwards remote control commands to the unmanned aerial vehicle 10.
  • the UAV 10 performs a task
  • the user can remotely control the UAV 10 to fly and capture an image or video of the target area through the server 30; the user can remotely control the UAV 10 through the server 30 in the event of a sudden change in weather. Return and land in time to ensure the safety of the UAV 10.
  • the invention also provides a computer readable storage medium comprising a computer program usable in conjunction with an electronic device.
  • a portion of the computer program can be executed by the first processor 12, and another portion of the computer program can be executed by the second processor 32 to perform the control for the server 30 by at least two control base stations 20 as described in any of the above embodiments.
  • the electronic device is the unmanned aerial vehicle 10 and the server 30.
  • a computer program can be executed by the first processor 12 to perform the control method described in the following steps: unmanned flight
  • the first processor 12 of the device 10 reads the location information of the second control base station 22 from the first communication module 11, and determines that the distance between the UAV 10 and the second control base station 22 is smaller than the UAV 10 and the first control.
  • the distance between the base stations 21 and the control first communication module 11 establish communication with the second control base station 22.
  • the computer program can also be executed by the first processor 12 to perform the control method described in the following steps: the first processor 12 of the UAV 10 reads the location information of the first control base station 21 from the first communication module 11. Obtaining the position information of the unmanned aerial vehicle 10 from the sensor, and calculating the distance between the unmanned aerial vehicle 10 and the first control base station 21 according to the position information of the unmanned aerial vehicle 10 and the position information of the first control base station 21, according to the unmanned aerial vehicle The position information of 10 and the position information of the second control base station 22 calculate the distance between the UAV 10 and the second control base station 22.
  • the computer program can be executed by the second processor 32 to complete the control method described in the following steps: the second processor 32 of the server 30 controls the second communication module 31 to receive between the UAV 10 and the second control base station 22.
  • the information indicating that the communication state of the UAV 10 is transferred from the first control base station 21 to the second control base station 22, and the data acquisition is derived
  • the first control base station 21 switches to the second control base station 22.
  • the computer program can be executed by the second processor 32 to perform the control method described in the following steps: controlling the second communication module 31 to receive the acquisition of the location information of the second control base station 22 forwarded by the first control base station 21.
  • the command, the acquisition command is transmitted by the unmanned aerial vehicle 10 to the first control base station 21, and the position information of the second control base station 22 is transmitted to the unmanned aerial vehicle 10.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be performed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if executed in hardware, as in another embodiment, it can be performed by any one of the following techniques or combinations thereof known in the art: having logic gates for performing logic functions on data signals Discrete logic circuit, ASIC with suitable combination logic gate, programmable gate array (PGA), on-site Programmable Gate Array (FPGA), etc.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be executed in the form of hardware or in the form of software functional modules.
  • the integrated modules, if executed in the form of software functional modules and sold or used as separate products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种控制方法。控制方法用于至少两个控制基站(20)对无人飞行器(10)的控制。至少两个控制基站(20)包括具有固定位置的第一控制基站(21)和固定位置的第二控制基站(22)。第一控制基站(21)为当前与所述无人飞行器通信的控制基站(20)。控制方法包括:获取第二控制基站(22)的位置信息;确定无人飞行器(10)与第二控制基站(22)之间的距离小于无人飞行器(10)与第一控制基站(21)之间的距离;与第二控制基站(22)建立通信。本发明还公开了一种无人飞行器(10)、服务器(30)和计算机可读存储介质。

Description

控制方法、无人飞行器、服务器和计算机可读存储介质 技术领域
本发明涉及通信技术领域,特别涉及一种控制方法、无人飞行器、服务器和计算机可读存储介质。
背景技术
目前,受限于控制基站的射频发射功率,无人飞行器的作业半径有限。
发明内容
本发明的实施例提供一种控制方法、无人飞行器、服务器和计算机可读存储介质。
本发明提供一种控制方法用于至少两个控制基站对无人飞行器的控制。至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站。所述控制方法包括:获取所述第二控制基站的位置信息,确定所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第一控制基站之间的距离,以及与所述第二控制基站建立通信。
本发明提供一种控制方法用于通过至少两个控制基站控制无人飞行器。至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站。所述控制方法包括:接收所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第二控制基站之间的距离的结果,接收所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息,以及将数据获取源自所述第一控制基站切换至所述第二控制基站。
本发明提供一种控制方法用于服务器通过至少两个控制基站控制无人飞行器。至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站。所述控制方法包括:所述无人飞行器获取所述第二控制基站的位置信息,所述无人飞行器确定所述无人飞行器与所述第二控制基站之间的距离小于所述第一控制基站之间的距离,所述无人飞行器与所述第二控制基站建立通信,以及所述无人飞行器将所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息反馈至所述服务器。
本发明提供一种无人飞行器,至少两个控制基站控制所述无人飞行器。至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站。所述无人飞行器包括通信模块和处理器。所述通信模块用于获取所述第二控制基站的位置信息;所述处理器用于确定所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第一控制基站之间的距离;所述通信模块还用于与所述第二控制基站建立通信。
本发明提供一种服务器,用于通过至少两个控制基站控制无人飞行器。至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站。所述服务器包括通信模块,所述通信模块用于:接收所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第二控制基站之间的距离的结果,接收所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息,以及将数据获取源自所述第一控制基站切换至所述第二控制基站。
本发明提供一种通信系统,包括服务器和无人飞行器,所述服务器通过至少两个控制基站控制所述无人飞行器。至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站,所述无人飞行 器包括第一通信模块和处理器,所述第一通信模块用于获取所述第二控制基站的位置信息;所述处理器用于确定所述无人飞行器与所述第二控制基站之间的距离小于所述第一控制基站之间的距离;所述第一通信模块还用于:与所述第二控制基站建立通信,以及将所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息反馈至所述服务器。
本发明提供一种计算机可读存储介质包括与电子装置结合使用的计算机程序。所述计算机程序可被处理器执行以完成上述的控制方法。
本发明实施方式的控制方法、无人飞行器、服务器和计算机可读存储介质采用至少两个控制基站与无人飞行器通信,在无人飞行器与第一控制基站之间的距离较远时,无人飞行器的通信状态可从第一控制基站切换至第二控制基站,以使得无人飞行器与相距较近的第二控制基站保持良好通信,从而扩大无人飞行器的作业半径。
本发明的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实施方式的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明某些实施方式的控制方法的流程示意图。
图2是本发明某些实施方式的通信系统的模块示意图。
图3是本发明某些实施方式的控制方法的场景示意图。
图4至图10是本发明某些实施方式的控制方法的流程示意图。
图11是本发明某些实施方式的通信系统的模块示意图。
图12至图14是本发明某些实施方式的控制方法的流程示意图。
图15是本发明某些实施方式的通信系统的模块示意图。
图16至图22是本发明某些实施方式的控制方法的流程示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请一并参阅图1至2,本发明提供一种控制方法。控制方法用于至少两个控制基站20对无人飞行器10的控制。至少两个控制基站20包括具有固定位置的第一控制基站21和固定位置的第二控制基站22。第一控制基站21为当前与所述无人飞行器10通信的控制基站20。控制方法包括:
S12:获取第二控制基站22的位置信息;
S14:确定无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21之间的距离;和
S16:与第二控制基站22建立通信。
本发明实施方式的控制方法可以由本发明实施方式的无人飞行器10实现,至少两个控制基站20控制无人飞行器10。至少两个控制基站20包括具有固定位置的第一控制基站21和第二控制基站22,第一控制基站21为当前与无人飞行器10通信的控制基站20。无人飞行器10包括第一通信模块11和第一处理器12。步骤S12和步骤S16均可以由第一通信模块11实现,步骤S14可以由第一处理器12实现。
也即是说,第一通信模块11可用于获取第二控制基站22的位置信息,及与第二控制 基站22建立通信。第一处理器12可用于确定无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21之间的距离。
其中,无人飞行器10可通过无线通信方式(例如,wifi等)与控制基站20通信。
可以理解,现有的无人飞行器10执行飞行任务(例如,线路巡检等)时,无人飞行器10仅和一个控制基站20进行通信。当无人飞行器10与控制基站20的距离较远或者无人飞行器10与控制基站20之间存在地形遮挡时,无人飞行器10与控制基站20之间的通信信号较弱,此时,无人飞行器10只能执行返航操作。如此,极大地限制了无人飞行器10的作业半径。
请结合图3,本发明实施方式的无人飞行器10沿预定的航线飞行,多个控制基站20按预定顺序编号,以便无人飞行器10的通信状态的切换。具体地,无人飞行器10起飞后的一段时间内与第一控制基站21通信,例如,无人飞行器10飞行至位置A,此时位置A与第一控制基站21的距离较近,因此,无人飞行器10与第一控制基站21通信。在无人飞行器10继续飞行的过程中,无人飞行器10与第一控制基站21之间的距离越来越远,当无人飞行器10与第一控制基站21之间的距离大于某个设定的距离阈值时(例如,无人飞行器10飞行至位置B),可认为无人飞行器10与第一控制基站21之间的通信信号已经较弱。其中,第一控制基站21的位置信息可以由第一控制基站21实时发送给无人飞行器10。为确保无人飞行器10能够与控制基站20保持良好通信,此时无人飞行器10获取顺序编号的第二控制基站22的位置信息,并在确定无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21的距离时与第二控制基站22建立通信。如此,由于无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21之间的距离,因此,无人飞行器10与第二控制基站22之间的通信信号较无人飞行器10与第一控制基站21之间的通信信号强,从而当无人飞行器10的通信状态自第一控制基站21切换至第二控制基站22时,无人飞行器10与第二控制基站22能够保持良好通信。
此外,无人飞行器10也可直接检测自身与第一控制基站21之间的通信信号强弱(例如,检测信噪比等),并在检测到的通信信号的强度小于某个强度阈值时获取第一控制基站21和第二控制基站22的位置信息,并在确定无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21的距离时与第二控制基站22建立通信。其中,第一控制基站21的位置信息可由无人飞行器10在检测到通信信号的强度小于某个强度阈值时发送获取第一控制基站21的位置信息的获取指令至第一控制基站21,以使第一控制基站21将自身的位置信息发送至无人飞行器10,或者第一控制基站21也可实时向无人飞行器10发送自身的位置信息。如此,以确保无人飞行器10能够与第二控制基站22保持良好通信。
多个控制基站20均与服务器30通信。在无人飞行器10将自身的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10会将通信状态的切换信息发送至服务器30。如此,在用户通过服务器30发送控制无人飞行器10飞行的控制指令时,服务器30可以选择当前与无人飞行器10通信的控制基站20进行控制指令的转发。
本发明实施方式的控制方法和无人飞行器10采用至少两个控制基站20与无人飞行器10通信,在无人飞行器10与第一控制基站21之间的距离较远时,无人飞行器10的通信状态可从第一控制基站21切换至第二控制基站22,以使得无人飞行器10与相距较近的第二控制基站22保持良好通信,从而扩大无人飞行器10的作业半径。
请参阅图4,在某些实施方式中,本发明实施方式的控制方法还包括:
S111:获取第一控制基站21的位置信息;
S112:获取无人飞行器10的位置信息。
步骤S12获取第二控制基站22的位置信息包括:
S121:发送获取第二控制基站22的位置信息的获取指令至第一控制基站21;和
S122:接收第一控制基站21根据获取指令发送的第二控制基站22的位置信息。
本发明实施方式的控制方法还包括:
S13:根据无人飞行器10的位置信息和第一控制基站21的位置信息计算无人飞行器10与第一控制基站21之间的距离,根据无人飞行器10的位置信息和第二控制基站22的位置信息计算无人飞行器10与第二控制基站22之间的距离。
请再参阅图2,在某些实施方式中,步骤S111、步骤S121和步骤S122可以由第一通信模块11实现,步骤S112和步骤S113可以由第一处理器12实现。
也即是说,第一通信模块11还可用于获取第一控制基站21的位置信息,以及发送获取第二控制基站22的位置信息的获取指令至第一控制基站21。第一处理器12还可用于获取无人飞行器10的位置信息,以及接收第一控制基站21根据获取指令发送的第二控制基站22的位置信息。根据无人飞行器10的位置信息和第一控制基站21的位置信息计算无人飞行器10与第一控制基站21之间的距离,根据无人飞行器10的位置信息和第二控制基站22的位置信息计算无人飞行器10与第二控制基站22之间的距离。
其中,控制基站20的位置信息指的是控制基站20的坐标。也即是说,第一控制基站21的位置信息指的是第一控制基站21的坐标,第二控制基站22的位置信息指的是第二控制基站22的坐标。无人飞行器10的位置信息指的是无人飞行器10的坐标。控制基站20的坐标和无人飞行器10坐标均可由全球卫星导航系统(如,GPS、BDS、GLONASS等)测得。
具体地,第一控制基站21的位置信息可实时发送至无人飞行器10,或者在无人飞行器10的第一通信模块11发送获取第一控制基站21的位置信息的获取指令至第一控制基站21时,第一控制基站21将自身的位置信息发送至无人飞行器10。无人飞行器10自身的位置信息可由第一处理器12从传感器中读取。第二控制基站22的位置信息是在无人飞行器10的第一通信模块11发送获取第二控制基站22的位置信息至第一控制基站21时,由第一控制基站21将第二控制基站22的位置信息发送至无人飞行器10的。其中,多个控制基站20均与服务器30通信(例如,多个控制基站20可通过以太网等有线通信方式与服务器30通信),多个控制基站20的位置信息均可存储在服务器30中。因此,第一控制基站21接收到无人飞行器10发送的获取第二控制基站22的位置信息的获取指令时,第一控制基站21从服务器30中获取第二控制基站22的位置信息后转发给无人飞行器10。
当然,在某些实施方式中,由于多个控制基站20的位置均是固定的,因此,多个控制基站20的位置信息也均可存储在无人飞行器10的存储器(图未示)中。无人飞行器10要获取各个控制基站20的位置信息时可通过第一处理器12从存储器中直接读取。
需要说明的是,无人飞行器10获取第一控制基站21的位置信息、第二控制基站22的位置信息及自身的位置信息的获取顺序可以是任意的。例如,位置信息的获取顺序可以是第一控制基站21的位置信息、第一控制基站21的位置信息、无人飞行器10自身的位置信息;或者,位置信息获取的顺序也可以是无人飞行器10自身的位置信息、第一控制基站21的位置信息、第一控制基站21的位置信息;又或者,无人飞行器10可同时获取自身的位置信息和第一控制基站21的位置信息,再获取第二控制基站22的位置信息等,在此不做限定。
无人飞行器10获取到第一控制基站21、第二控制基站22及自身的位置信息(即,坐标)后,第一处理器12即可根据上述的多个坐标计算出无人飞行器10与第一控制基站21的距离,以及无人飞行器10与第二控制基站22的距离。其中步骤S13中的根据无人飞行器10的位置信息与第一控制基站21的位置信息计算无人飞行器10与第一控制基站21之间的距离可以通过计算无人飞行器10的坐标与第一控制基站21的坐标之间的距离得到; 步骤S13中根据无人飞行器10的位置信息与第二控制基站22的位置信息计算无人飞行器10与第二控制基站22之间的距离可通过计算无人飞行器10的坐标与第二控制基站22的坐标之间的距离得到。
如此,无人飞行器10可将自身和第一控制基站21的距离与自身和第二控制基站22之间的距离相比较,并在自身和第二控制基站22之间的距离小于自身和第一控制基站21之间的距离时,将通信状态由第一控制基站21切换至第二控制基站22以提升通信质量。
请参阅图5,在某些实施方式中,步骤S16与第二控制基站22建立通信包括:
S161:发送建立通信的通信请求至第二控制基站22;和
S162:在第二控制基站22同意建立通信时与第二控制基站22建立通信。
请再参阅图2,在某些实施方式中,步骤S161和步骤S162均可以由第一通信模块11实现。也即是说,第一通信模块11还可用于发送建立通信的通信请求至第二控制基站22,以及在第二控制基站22同意建立通信时与第二控制基站22建立通信。
具体地,在第一处理器12确定无人飞行器10与第二控制基站22的距离小于无人飞行器10与第一控制基站21的距离时,无人飞行器10的第一通信模块11会发送建立通信的通信请求至第二控制基站22。第二控制基站22接收到建立通信的通信请求后,若第二控制基站22同意建立通信,则会发送同意建立通信的反馈信号至无人飞行器10。无人飞行器10的第一通信模块11接收到反馈信号后,即可将自身的通信状态由第一控制基站21转移至第二控制基站22。
在某些具体实施例中,在无人飞行器10的整个飞行期间,第二控制基站22全程开启,且第二控制基站22实时接收外界的无线信号,从而可以在无人飞行器10试图与第二控制基站22建立通信时及时接收到无人飞行器10通信请求信号。
当然,在另一些具体实施例中,第二控制基站22也可处于待机状态(此处的待机状态指的是仅接通电源,但不进行外界的无线信号接收)。当无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10可发送提醒信号至第一控制基站21,由第一控制基站21将提醒信号转发至服务器30,再由服务器30发送至第二控制基站22以提醒第二控制基站22开启接收外界无线信号的功能。随后,无人飞行器10发送建立通信的通信请求的无线信号至第二控制基站22,第二控制基站22接收到通信请求的信号后,向无人飞行器10发送同意建立通信的反馈信号。无人飞行器10的第一通信模块11接收到反馈信号后,即可将自身的通信状态由第一控制基站21转移至第二控制基站22。
请参阅图6,在某些实施方式中,在某些实施方式中,步骤S16与第二控制基站22建立通信包括:
S163:接收来自第二控制基站22发送的建立通信的通信请求;和
S164:在无人飞行器10同意建立通信时与第二控制基站22建立通信。
请再参阅图2,在某些实施方式中,步骤S163和步骤S164均可以由第一通信模块11实现。也即是说,第一通信模块11还可用于接收来自第二控制基站22发送的建立通信的通信请求,以及在无人飞行器10同意建立通信时与第二控制基站22建立通信。
具体地,在无人飞行器10的整个飞行过程中,第二控制基站22实时发送或每间隔一小段时间发送建立通信的通信请求的信号。在无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10的第一通信模块11接收第二控制基站22发送的通信请求,并发送同意建立通信的反馈信号至第二控制基站22。第二控制基站22接收到反馈信号后即实时保持与无人飞行器10的通信。
当然,在无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,也可以由无人飞行器10发送提醒信号至第一控制基站21,由第一控制基站21将提 醒信号转发至服务器30,再由服务器30发送至第二控制基站22以提醒第二控制基站22主动发送建立通信的通信请求至无人飞行器10。无人飞行器10的第一通信模块11接收第二控制基站22发送的通信请求,并发送同意建立通信的反馈信号至第二控制基站22。第二控制基站22接收到反馈信号后即实时保持与无人飞行器10的通信。
请参阅图7,在某些实施方式中,步骤S16与第二控制基站22建立通信包括:
S163:接收来自第二控制基站22发送的建立通信的通信请求;
S165:向第一控制基站21发送切换请求;和
S166:接收来自第一控制基站21的同意切换响应,发送同意请求信息至第二控制基站22。
请再参阅图2,在某些实施方式中,步骤S163、步骤S165和步骤S166均可以由第一通信模块11实现。也即是说,第一通信模块11还可用于接收来自第二控制基站22发送的建立通信的通信请求,向第一控制基站21发送切换请求,以及接收来自第一控制基站21的同意切换响应,发送同意请求信息至第二控制基站22。
具体地,在无人飞行器10的整个飞行过程中,第二控制基站22实时发送或每间隔一小段时间发送建立通信的通信请求的信号。在无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10的第一通信模块11接收第二控制基站22发送的通信请求。无人飞行器10在接收到通信请求后,向第一控制基站21发送切换请求,并在接收到来自第一控制基站21的同意切换响应时才发送同意请求信息至第二控制基站22。或者,在无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,也可以由无人飞行器10发送提醒信号至第一控制基站21,由第一控制基站21将提醒信号转发至服务器30,再由服务器30发送至第二控制基站22以提醒第二控制基站22主动发送建立通信的通信请求至无人飞行器10。无人飞行器10在接收到通信请求后,向第一控制基站21发送切换请求,并在接收到来自第一控制基站21的同意切换响应时才发送同意请求信息至第二控制基站22。可以理解,某些情况下,例如,无人飞行器10与第一控制基站21正传输图传数据,若无人飞行器10未与第一控制基站21进行切换控制基站20的协商,则无人飞行器10直接断开与第一控制基站21的通信可能导致图传数据传输的立时中断,影响数据传输的连续性和实时性。再例如,在用户将控制无人飞行器10飞行的控制指令由服务器30发送至第一控制基站21,再由第一控制基站21转发控制指令至无人飞行器10的过程中,若无人飞行器10未与第一控制基站21进行切换控制基站20的协商,则无人飞行器10直接断开与第一控制基站21的通信会影响用户对无人飞行器10的操控。
请参阅图8,在某些实施方式中,本发明实施方式的控制方法还包括:
S171:在无人飞行器10与第二控制基站22之间的通信建立失败时,获取第三控制基站23的位置信息;
S172:确定无人飞行器10与第三控制基站23之间的距离小于无人飞行器10与所述第一控制基站21之间的距离;和
S173:与第三控制基站23建立通信。
请再参阅图8,在某些实施方式中,步骤S171和步骤S173可以由第一通信模块11实现,步骤S172可以由第一处理器12实现。
也即是说,第一通信模块11还可用于在无人飞行器10与第二控制基站22之间的通信建立失败时,获取第三控制基站23的位置信息,以及与第三控制基站23建立通信。第一处理器12还可用于确定无人飞行器10与第三控制基站23之间的距离小于无人飞行器10与所述第一控制基站21之间的距离。
其中,无人飞行器10与第二控制基站22之间的通信建立失败指的是在无人飞行器10 向第二控制基站22发出建立通信的通信请求后,未接收到第二控制基站22发送的反馈信号,此时无人飞行器10与第二控制基站22之间无法传递信号,或者无人飞行器10接收到的第二控制基站22的反馈信号的信噪比较低,此时无人飞行器10与第二控制基站22之间的通信质量较差。
可以理解,在无人飞行器10与第二控制基站22的通信链路上存在地形遮挡时,无人飞行器10和第二控制基站22之间的通信信号会减弱。因此,在无人飞行器10与第二控制基站22之间的通信建立失败时,无人飞行器10获取顺序编号的第三控制基站23的位置信息,并在确定无人飞行器10与第三控制基站23之间的距离小于无人飞行器10与所述第一控制基站21之间的距离时与第三控制基站23建立通信。其中,第三控制基站23的位置信息的获取与第二控制基站22的位置信息的获取类似,计算无人飞行器10与第三控制基站23之间的距离与计算无人飞行器10与第二控制基站22之间的距离的方法类似,无人飞行器10与第三控制基站23建立通信的方式与无人飞行器10与第二控制基站22建立通信的方法类似,再次不再赘述。
如此,无人飞行器10将通信状态由第一控制基站21切换至第三控制基站23,以使无人飞行器10与第三控制基站23保持良好通信。进一步地,无人飞行器10还将通信状态的切换信息经由第三控制基站23发送至服务器30。
请参阅图9,在某些实施方式中,本发明实施方式的控制方法还包括:
S18:在无人飞行器10与第三控制基站23之间的通信建立失败时,控制无人飞行器10返航。
请再参阅图2,在某些实施方式中,无人飞行器10还包括飞行控制器13。步骤S18可以由飞行控制器13实现。也即是说,飞行控制器13可用于在无人飞行器10与第三控制基站23之间的通信建立失败时,控制无人飞行器10返航。
可以理解,在无人飞行器10与第三控制基站23之间的通信建立失败时,若无人飞行器10沿航线继续飞行,则无人飞行器10与第一控制基站21的距离越来越远,无人飞行器10与第一控制基站21之间的通信信号越来越弱,而无人飞行器10又无法找到另一个可以控制基站20以保持自身与控制基站20之间的良好通信,此时可能导致无人飞行器10失联等问题。因此,为确保无人飞行器10的安全性,在在无人飞行器10与第三控制基站23之间的通信建立失败时,飞行控制器13直接控制无人飞行器10返航。
当然,在某些具体实施例中,在无人飞行器10与第三控制基站23之间的通信建立失败时,无人飞行器10还可尝试与第四控制基站20建立通信,还可在无人飞行器10与第四控制基站20建立通信失败是继续尝试与第五控制基站20通信。也即是说,无人飞行器10返航前尝试建立通信的控制基站20的个数可由用户根据实际情况具体设定。
本发明还提供一种计算机可读存储介质。计算机可读存储介质包括与电子装置结合使用的计算机程序,计算机程序可被第一处理器12执行以完成上述任意一项实施方式所述的用于至少两个控制基站20控制无人飞行器10的控制方法。其中,电子装置为无人飞行器10。
例如,计算机程序可被第一处理器12执行以完成以下步骤所述的控制方法:从第一通信模块11中读取第二控制基站22的位置信息,确定无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21之间的距离,以及控制第一通信模块11与第二控制基站22建立通信。
再例如,计算机程序还可被第一处理器12执行以完成以下步骤所述的控制方法:从第一通信模块11读取第一控制基站21的位置信息,从传感器获取无人飞行器10的位置信息,以及根据无人飞行器10的位置信息和第一控制基站21的位置信息计算无人飞行器10与第一控制基站21之间的距离,根据无人飞行器10的位置信息和第二控制基站22的位置信息 计算无人飞行器10与第二控制基站22之间的距离。
请一并参阅图10和图11,本发明提供一种控制方法,控制方法用于通过至少两个控制基站20控制无人飞行器10。至少两个控制基站20包括具有固定位置的第一控制基站21和固定位置的第二控制基站22。第一控制基站21为当前与无人飞行器10通信的控制基站20。控制方法包括:
S22:接收无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第二控制基站22之间的距离的结果;
S24:接收无人飞行器10的通信状态由第一控制基站21转移至第二控制基站22的信息;和
S26:将数据获取源自第一控制基站21切换至第二控制基站22。
本发明实施方式的控制方法可以由本发明实施方式的服务器30实现。本发明实施方式的服务器30通过至少两个控制基站20控制无人飞行器10。服务器30包括第二通信模块31。步骤S22、步骤S24和步骤S26均可以由第二通信模块31实现。
也即是说,第二通信模块31可用于接收无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第二控制基站22之间的距离的结果,接收无人飞行器10的通信状态由第一控制基站21转移至第二控制基站22的信息,以及将数据获取源自第一控制基站21切换至第二控制基站22。
具体地,服务器30通过至少两个控制基站20对无人飞行器10进行远程控制及监控。在无人飞行器10与第一控制基站21通信时,服务器30通过第一控制基站21对无人飞行器10进行控制,在无人飞行器10与第二控制基站22进行通信时,服务器30通过第二控制基站22对无人飞行器10进行控制。也即是说,服务器30通过当前时刻下与无人飞行器10通信的控制基站20对无人飞行器10进行控制。因此,服务器30必须获知当前时刻下与无人飞行器10通信的控制基站20为多个控制基站20中的哪一个。具体地,无人飞行器10的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10会将无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第二控制基站22之间的距离的结果以及通信状态的转移信息发送至第二控制基站22,并由第二控制基站22转发至服务器30,服务器30的第二通信模块31接收该结果和转移信息,并将数据获取源从第一控制基站21切换至第二控制基站22。如此,服务器30可实时掌握无人飞行器10的飞行状态及通信状态。
请参阅图12,在某些实施方式中,本发明实施方式的控制方法还包括:
S211:接收由第一控制基站21转发的获取第二控制基站22的位置信息的获取指令,获取指令由无人飞行器10发送至第一控制基站21。
S212:发送第二控制基站22的位置信息至无人飞行器10。
请再参阅图11,在某些实施方式中,步骤S211和步骤S212均可以由第二通信模块31实现。也即是说,第二通信模块31还用于接收由第一控制基站21转发的获取第二控制基站22的位置信息的获取指令,获取指令由无人飞行器10发送至第一控制基站21,以及发送第二控制基站22的位置信息至无人飞行器10。
具体地,多个控制基站20均与服务器30通信(例如,多个控制基站20可通过以太网等有线通信方式与服务器30通信),且多个控制基站20的位置信息均存储在服务器30中。无人飞行器10要获取第二控制基站22的位置信息时,无人飞行器10会发送获取第二控制基站22的位置信息的获取指令至第一控制基站21,第一控制基站21转发该获取指令至服务器30。服务器30的第二通信模块31接收该获取指令后,将第二控制基站22的位置信息发送至第一控制基站21,再由第一控制基站21转发至无人飞行器10。如此,无人飞行器10即可获取到第二控制基站22的位置信息。
请参阅图13,在某些实施方式中,本发明实施方式的控制方法还包括:
S27:接收当前与无人飞行器10通信的控制基站20发送的数据信息。其中,数据信息由无人飞行器10发送至当前所述控制基站20。
请再参阅图11,在某些实施方式中,步骤S27可以由第二通信模块31实现。也即是说,第二通信模块31还可用于接收当前与无人飞行器10通信的控制基站20发送的数据信息。其中,数据信息由无人飞行器10发送至当前所述控制基站20。
其中,数据信息包括无人飞行器10的参数信息、无人飞行器10通过搭载的负载获取到环境信息、无人飞行器10搭载的负载的参数信息中的至少一种。也即是说,数据信息可以仅包括无人飞行器10的参数信息,或仅包括无人飞行器10通过搭载的负载获取到环境信息,或仅包括无人飞行器10搭载的负载的参数信息。数据信息也可同时包括无人飞行器10的参数信息和无人飞行器10通过搭载的负载获取到环境信息,或同时包括无人飞行器10通过搭载的负载获取到环境信息和无人飞行器10搭载的负载的参数信息,或同时包括无人飞行器10的参数信息和无人飞行器10搭载的负载的参数信息。数据信息还可同时包括无人飞行器10的参数信息、无人飞行器10通过搭载的负载获取到环境信息、无人飞行器10搭载的负载的参数信息三者。
具体地,例如,无人飞行器10的参数信息可以是无人飞行器10的坐标、俯仰角、飞行速度、电池电量等信息。无人飞行器10通过搭载的负载获取到环境信息可以是无人飞行器10搭载的摄像头拍摄的图像或视频等信息。无人飞行器10搭载的负载的参数信息可以是无人飞行器10搭载的云台的俯仰角等信息。
无人飞行器10将数据信息发送至当前与其通信的控制基站20,再由该控制基站20转发至服务器30,服务器30的第二通信模块31负责接收上述的数据信息。如此,服务器30可充分掌握无人飞行器10的飞行状态,便于服务器30对无人飞行器10的远程控制。
请参阅图14,在某些实施方式中,本发明实施方式的控制方法还包括:
S28:发送远程控制指令至当前与无人飞行器10通信的控制基站20以通过当前控制基站20控制所述无人飞行器10飞行。
请再参阅图11,在某些实施方式中,步骤S28可以由第二通信模块31实现。也即是说,第二通信模块31还可用于发送远程控制指令至当前与无人飞行器10通信的控制基站20以通过当前控制基站20控制所述无人飞行器10飞行。
具体地,用户通过与服务器30通信的外部设备(例如笔记本电脑、平板电脑、手机等)输入远程控制指令,服务器30将远程控制指令发送至当前与无人飞行器10通信的控制基站20,再由该基站转发远程控制指令至无人飞行器10。如此,在无人飞行器10执行任务时,用户可通过服务器30远程控制无人飞行器10飞行及拍摄目标区域的图像或视频;在遇上突变天气时,用户可通过服务器30远程控制无人飞行器10及时返航和降落,以确保无人飞行器10的安全性。
本发明还提供一种计算机可读存储介质,该计算机可读存储介质包括能够与电子装置结合使用的计算机程序。计算机程序可被第二处理器32执行以完成上述任一实施方式所述的用于通过至少两个控制基站20控制无人飞行器10的控制方法。其中,电子装置为服务器30。
例如,计算机程序可被第二处理器32执行以完成以下步骤所述的控制方法:控制第二通信模块31接收无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第二控制基站22之间的距离的结果,接收无人飞行器10的通信状态由第一控制基站21转移至第二控制基站22的信息,以及将数据获取源自第一控制基站21切换至第二控制基站22。
再例如,计算机程序还可被第二处理器32执行以完成以下步骤所述的控制方法:控制第二通信模块31接收由第一控制基站21转发的获取第二控制基站22的位置信息的获取指 令,获取指令由无人飞行器10发送至第一控制基站21,以及发送第二控制基站22的位置信息至无人飞行器10。
请一并参阅图14和图15,本发明提供一种控制方法,控制方法用于服务器30通过至少两个控制基站20控制无人飞行器10。至少两个控制基站20包括具有固定位置的第一控制基站21和第二控制基站22。第一控制基站21为当前与无人飞行器10通信的控制基站20。控制方法包括:
S32:无人飞行器10获取第二控制基站22的位置信息;
S34:无人飞行器10确定无人飞行器10与第二控制基站22之间的距离小于第一控制基站21之间的距离;
S35:无人飞行器10与第二控制基站22建立通信;和
S36:无人飞行器10将无人飞行器10的通信状态由第一控制基站21转移至第二控制基站22的信息反馈至服务器30。
请再参阅图15,本发明实施方式的控制方法可以由本发明实施方式的通信系统100实现。本发明实施方式的通信系统100包括无人飞行器10、服务器30和至少两个控制基站20。其中,至少两个控制基站20包括具有固定位置的第一控制基站21和第二控制基站22,第一控制基站21为当前与无人飞行器10通信的控制基站20。无人飞行器10包括第一通信模块11和第一处理器12。步骤S32、步骤S35和步骤S36均可以第一通信模块11实现。步骤S24可以由第一处理器12实现。
也即是说,第一通信模块11可用于获取第二控制基站22的位置信息,与第二控制基站22建立通信,以及将无人飞行器10的通信状态由第一控制基站21转移至第二控制基站22的信息反馈至服务器30。第一处理器12可用于获取第二控制基站22的位置信息。
其中,无人飞行器10可通过无线通信方式(例如,wifi等)与控制基站20通信。多个控制基站20可通过以太网等有线通信方式与服务器30通信。
可以理解,现有的无人飞行器10执行飞行任务(例如,线路巡检等)时,无人飞行器10仅和一个控制基站20进行通信。当无人飞行器10与控制基站20的距离较远或者无人飞行器10与控制基站20之间存在地形遮挡时,无人飞行器10与控制基站20之间的通信信号较弱,此时,无人飞行器10只能执行返航操作。如此,极大地限制了无人飞行器10的作业半径。
请再结合图3,本发明实施方式的无人飞行器10沿预定的航线飞行,多个控制基站20按预定顺序编号,以便无人飞行器10的通信状态的切换。具体地,无人飞行器10起飞后的一段时间内与第一控制基站21通信,例如,无人飞行器10飞行至位置A,此时位置A与第一控制基站21的距离较近,因此,无人飞行器10与第一控制基站21通信。在无人飞行器10继续飞行的过程中,无人飞行器10与第一控制基站21之间的距离越来越远,当无人飞行器10与第一控制基站21之间的距离大于某个设定的距离阈值时(例如,无人飞行器10飞行至位置B),可认为无人飞行器10与第一控制基站21之间的通信信号已经较弱。其中,第一控制基站21的位置信息可以由第一控制基站21实时发送给无人飞行器10。为确保无人飞行器10能够与控制基站20保持良好通信,此时无人飞行器10获取顺序编号的第二控制基站22的位置信息,并在确定无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21的距离时与第二控制基站22建立通信,随后,将自身的通信状态由第一控制基站21转移至第二控制基站22的信息反馈至服务器30。如此,由于无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21之间的距离,因此,无人飞行器10与第二控制基站22之间的通信信号较无人飞行器10与第一控制基站21之间的通信信号强,从而当无人飞行器10的通信状态自第一控制基站21切换至第二控制基站22时,无人飞行器10与第二控制基站22能够保持良好通信。进一步地, 在无人飞行器10与第二控制基站22保持良好通信的状态下,无人飞行器10可通过第二控制基站22转发数据信息至服务器30,服务器30也可通过第二控制基站22转发控制指令至无人飞行器10。
此外,无人飞行器10也可直接检测自身与第一控制基站21之间的通信信号强弱(例如,检测信噪比等),并在检测到的通信信号的强度小于某个强度阈值时获取第一控制基站21和第二控制基站22的位置信息,并在确定无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21的距离时与第二控制基站22建立通信,随后,将自身的通信状态由第一控制基站21转移至第二控制基站22的信息反馈至服务器30。其中,第一控制基站21的位置信息可由无人飞行器10在检测到通信信号的强度小于某个强度阈值时发送获取第一控制基站21的位置信息的获取指令至第一控制基站21,以使第一控制基站21将自身的位置信息发送至无人飞行器10,或者第一控制基站21也可实时向无人飞行器10发送自身的位置信息。如此,以确保无人飞行器10能够与第二控制基站22保持良好通信。进一步地,在无人飞行器10与第二控制基站22保持良好通信的状态下,无人飞行器10可通过第二控制基站22转发数据信息至服务器30,服务器30也可通过第二控制基站22转发控制指令至无人飞行器10。
本发明实施方式的控制方法和通信系统100采用至少两个控制基站20与无人飞行器10通信,在无人飞行器10与第一控制基站21之间的距离较远时,无人飞行器10的通信状态可从第一控制基站21切换至第二控制基站22,以使得无人飞行器10与相距较近的第二控制基站22保持良好通信,从而扩大无人飞行器10的作业半径。
请一并参阅图16和图17,在某些实施方式中,本发明实施方式的控制方法还包括:
S311:获取第一控制基站21的位置信息;
S312:获取无人飞行器10的位置信息。
步骤S32无人飞行器10获取第二控制基站22的位置信息还包括:
S321:无人飞行器10发送获取第二控制基站22的位置信息的获取指令至第一控制基站21;
S322:服务器30接收第一控制基站21转发的获取指令;
S323:服务器30根据获取指令发送第二控制基站22的位置信息至第一控制基站21;和
S324:无人飞行器10接收第一控制基站21转发的第二控制基站22的位置信息。
本发明实施方式的控制方法还包括:
S33:无人飞行器10根据无人飞行器10的位置信息和第一控制基站21的位置信息计算无人飞行器10与第一控制基站21之间的距离,根据无人飞行器10的位置信息和第二控制基站22的位置信息计算无人飞行器10与第二控制基站22之间的距离。
请再参阅图15,在某些实施方式中,服务器30包括第二通信模块31。步骤S311、步骤S321和步骤S324均可以由第一通信模块11实现。步骤S322和步骤S323均可以由第一通信模块11实现。步骤S312和步骤S33均可以由第一处理器12实现。
也即是说,第一通信模块11还可用于获取第一控制基站21的位置信息,发送获取第二控制基站22的位置信息的获取指令至第一控制基站21,以及接收第一控制基站21转发的第二控制基站22的位置信息。第一处理器12还可用于获取无人飞行器10的位置信息,以及根据无人飞行器10的位置信息和第一控制基站21的位置信息计算无人飞行器10与第一控制基站21之间的距离,根据无人飞行器10的位置信息和第二控制基站22的位置信息计算无人飞行器10与第二控制基站22之间的距离。第二通信模块31可用于接收第一控制基站21转发的获取指令,以及根据获取指令发送第二控制基站22的位置信息至第一控制基站21。
其中,控制基站20的位置信息指的是控制基站20的坐标。也即是说,第一控制基站21的位置信息指的是第一控制基站21的坐标,第二控制基站22的位置信息指的是第二控制基站22的坐标。无人飞行器10的位置信息指的是无人飞行器10的坐标。控制基站20的坐标和无人飞行器10坐标均可由全球卫星导航系统(如,GPS、BDS、GLONASS等)测得。
具体地,第一控制基站21的位置信息可实时发送至无人飞行器10,或者在无人飞行器10的第一通信模块11发送获取第一控制基站21的位置信息的获取指令至第一控制基站21时,第一控制基站21将自身的位置信息发送至无人飞行器10。无人飞行器10自身的位置信息可由第一处理器12从传感器中读取。第二控制基站22的位置信息是在无人飞行器10的第一通信模块11发送获取第二控制基站22的位置信息至第一控制基站21时,由第一控制基站21将第二控制基站22的位置信息发送至无人飞行器10的。其中,多个控制基站20的位置信息均可存储在服务器30中。因此,第一控制基站21接收到无人飞行器10发送的获取第二控制基站22的位置信息的获取指令时,第一控制基站21将获取第二控制基站22的位置信息的获取指令转发至服务器30,服务器30的第二通信模块31接收该指令后将第二控制基站22的位置信息发送给第一控制基站21,再由第一控制基站21转发给无人飞行器10。
当然,在某些实施方式中,由于多个控制基站20的位置均是固定的,因此,多个控制基站20的位置信息也可均存储在无人飞行器10的存储器(图未示)中。无人飞行器10要获取各个控制基站20的位置信息时可通过第一处理器12从存储器中直接读取。
需要说明的是,无人飞行器10获取第一控制基站21的位置信息、第二控制基站22的位置信息及自身的位置信息的获取顺序可以是任意的。例如,位置信息的获取顺序可以是第一控制基站21的位置信息、第一控制基站21的位置信息、无人飞行器10自身的位置信息;或者,位置信息获取的顺序也可以是无人飞行器10自身的位置信息、第一控制基站21的位置信息、第一控制基站21的位置信息;又或者,无人飞行器10可同时获取自身的位置信息和第一控制基站21的位置信息,再获取第二控制基站22的位置信息等,在此不做限定。
无人飞行器10获取到第一控制基站21、第二控制基站22及自身的位置信息(即,坐标)后,第一处理器12即可根据上述的多个坐标计算出无人飞行器10与第一控制基站21的距离,以及无人飞行器10与第二控制基站22的距离。其中步骤S33中无人飞行器10根据无人飞行器10的位置信息与第一控制基站21的位置信息计算无人飞行器10与第一控制基站21之间的距离可以通过计算无人飞行器10的坐标与第一控制基站21的坐标之间的距离得到;步骤S33中无人飞行器10根据无人飞行器10的位置信息与第二控制基站22的位置信息计算无人飞行器10与第二控制基站22之间的距离可通过计算无人飞行器10的坐标与第二控制基站22的坐标之间的距离得到。
如此,无人飞行器10可将自身和第一控制基站21的距离与自身和第二控制基站22之间的距离相比较,并在自身和第二控制基站22之间的距离小于自身和第一控制基站21之间的距离时,将通信状态由第一控制基站21切换至第二控制基站22以提升通信质量。
请参阅图18,在某些实施方式中,步骤S35无人飞行器10与第二控制基站22建立通信包括:
S351:无人飞行器10发送建立通信的通信请求至第二控制基站22;和
S352:无人飞行器10在第二控制基站22同意建立通信时与第二控制基站22建立通信。
请再参阅图15,在某些实施方式中,步骤S351和步骤S352均可以由第一通信模块11实现。也即是说,第一通信模块11可进一步用于发送建立通信的通信请求至第二控制基站22,以及在第二控制基站22同意建立通信时与第二控制基站22建立通信。
具体地,在第一处理器12确定无人飞行器10与第二控制基站22的距离小于无人飞行器10与第一控制基站21的距离使,无人飞行器10的第一通信模块11会发送建立通信的通信请求至第二控制基站22。第二控制基站22接收到建立通信的通信请求后,若第二控制基站22同意建立通信,则会发送同意建立通信的反馈信号至无人飞行器10。无人飞行器10的第一通信模块11接收到反馈信号后,即可将自身的通信状态由第一控制基站21转移至第二控制基站22。
在某些具体实施例中,在无人飞行器10的整个飞行期间,第二控制基站22全程开启,且第二控制基站22实时接收外界的无线信号,从而可以在无人飞行器10试图与第二控制基站22建立通信时及时接收到无人飞行器10通信请求信号。
当然,在另一些具体实施例中,第二控制基站22也可处于待机状态(此处的待机状态指的是仅接通电源,但不进行外界的无线信号接收)。当无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10可发送提醒信号至第一控制基站21,由第一控制基站21将提醒信号转发至服务器30,再由服务器30发送至第二控制基站22以提醒第二控制基站22开启接收外界无线信号的功能。随后,无人飞行器10发送建立通信的通信请求的无线信号至第二控制基站22,第二控制基站22接收到通信请求的信号后,向无人飞行器10发送同意建立通信的反馈信号。无人飞行器10的第一通信模块11接收到反馈信号后,即可将自身的通信状态由第一控制基站21转移至第二控制基站22。
请参阅图19,在某些实施方式中,步骤S35无人飞行器10与第二控制基站22建立通信包括:
S353:无人飞行器10接收来自第二控制基站22发送的建立通信的通信请求;和
S354:在无人飞行器10同意建立通信时无人飞行器10与第二控制基站22建立通信。
请再参阅图15,在某些实施方式中,步骤S353和步骤S354均可以由第一通信模块11实现。也即是说,第一通信模块11可进一步用于接收来自第二控制基站22发送的建立通信的通信请求,以及在无人飞行器10同意建立通信时与第二控制基站22建立通信。
具体地,在无人飞行器10的整个飞行过程中,第二控制基站22实时发送或每间隔一小段时间发送建立通信的通信请求的信号。在无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10的第一通信模块11接收第二控制基站22发送的通信请求,并发送同意建立通信的反馈信号至第二控制基站22。第二控制基站22接收到反馈信号后即实时保持与无人飞行器10的通信。
当然,在无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,也可以由无人飞行器10发送提醒信号至第一控制基站21,由第一控制基站21将提醒信号转发至服务器30,再由服务器30发送至第二控制基站22以提醒第二控制基站22主动发送建立通信的通信请求至无人飞行器10。无人飞行器10的第一通信模块11接收第二控制基站22发送的通信请求,并发送同意建立通信的反馈信号至第二控制基站22。第二控制基站22接收到反馈信号后即实时保持与无人飞行器10的通信。
请参阅图20,在某些实施方式中,步骤S35无人飞行器10与第二控制基站22建立通信包括:
S353:无人飞行器10接收来自第二控制基站22发送的建立通信的通信请求;
S354:无人飞行器10向第一控制基站21发送切换请求;和
S355:无人飞行器10接收来自第一控制基站21的同意切换响应,发送同意请求信息至第二控制基站22。
请再参阅图15,在某些实施方式中,步骤S353、步骤S355和步骤S356均可以由第一通信模块11实现。也即是说,第一通信模块11可进一步用于接收来自第二控制基站22发 送的建立通信的通信请求,向第一控制基站21发送切换请求,以及接收来自第一控制基站21的同意切换响应,发送同意请求信息至第二控制基站22。
具体地,在无人飞行器10的整个飞行过程中,第二控制基站22实时发送或每间隔一小段时间发送建立通信的通信请求的信号。在无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10的第一通信模块11接收第二控制基站22发送的通信请求。无人飞行器10在接收到通信请求后,向第一控制基站21发送切换请求,并在接收到来自第一控制基站21的同意切换响应时才发送同意请求信息至第二控制基站22。或者,在无人飞行器10想将自身的通信状态由第一控制基站21切换至第二控制基站22时,也可以由无人飞行器10发送提醒信号至第一控制基站21,由第一控制基站21将提醒信号转发至服务器30,再由服务器30发送至第二控制基站22以提醒第二控制基站22主动发送建立通信的通信请求至无人飞行器10。无人飞行器10在接收到通信请求后,向第一控制基站21发送切换请求,并在接收到来自第一控制基站21的同意切换响应时才发送同意请求信息至第二控制基站22。可以理解,某些情况下,例如,无人飞行器10与第一控制基站21正传输图传数据,若无人飞行器10未与第一控制基站21进行切换控制基站20的协商,则无人飞行器10直接断开与第一控制基站21的通信可能导致图传数据传输的立时中断,影响数据传输的连续性和实时性。再例如,在用户将控制无人飞行器10飞行的控制指令由服务器30发送至第一控制基站21,再由第一控制基站21转发控制指令至无人飞行器10的过程中,若无人飞行器10未与第一控制基站21进行切换控制基站20的协商,则无人飞行器10直接断开与第一控制基站21的通信会影响用户对无人飞行器10的操控。
请参阅图21,在某些实施方式中,本发明实施方式的控制方法还包括:
S371:在无人飞行器10与第二控制基站22之间的通信建立失败时,无人飞行器10获取第三控制基站23的位置信息;
S372:无人飞行器10确定无人飞行器10与第三控制基站23之间的距离小于无人飞行器10与第一控制基站21之间的距离;
S373:无人飞行器10与第三控制基站23建立通信;和
S374:无人飞行器10将无人飞行器10的通信状态由第一控制基站21转移至第三控制基站23的信息反馈至服务器30。
请再参阅图15,在某些实施方式中,步骤S371、步骤S373和步骤S374均可以由第一通信模块11实现。步骤S372可以由第一处理器12实现。
也即是说,第一通信模块11还可用于在无人飞行器10与第二控制基站22之间的通信建立失败时获取第三控制基站23的位置信息,与第三控制基站23建立通信,以及将无人飞行器10的通信状态由第一控制基站21转移至第三控制基站23的信息反馈至服务器30。第一处理模块还可用于确定无人飞行器10与第三控制基站23之间的距离小于无人飞行器10与第一控制基站21之间的距离。
其中,无人飞行器10与第二控制基站22之间的通信建立失败指的是在无人飞行器10向第二控制基站22发出建立通信的通信请求后,未接收到第二控制基站22发送的反馈信号,此时无人飞行器10与第二控制基站22之间无法传递信号,或者无人飞行器10接收到的第二控制基站22的反馈信号的信噪比较低,此时无人飞行器10与第二控制基站22之间的通信质量较差。
可以理解,在无人飞行器10与第二控制基站22的通信链路上存在地形遮挡时,无人飞行器10和第二控制基站22之间的通信信号会减弱。因此,在无人飞行器10与第二控制基站22之间的通信建立失败时,无人飞行器10获取顺序编号的第三控制基站23的位置信息,并在确定无人飞行器10与第三控制基站23之间的距离小于无人飞行器10与所述第一 控制基站21之间的距离时与第三控制基站23建立通信。其中,第三控制基站23的位置信息的获取与第二控制基站22的位置信息的获取类似,计算无人飞行器10与第三控制基站23之间的距离与计算无人飞行器10与第二控制基站22之间的距离的方法类似,无人飞行器10与第三控制基站23建立通信的方式与无人飞行器10与第二控制基站22建立通信的方法类似,再次不再赘述。
如此,无人飞行器10将通信状态由第一控制基站21切换至第三控制基站23,以使无人飞行器10与第三控制基站23保持良好通信。进一步地,无人飞行器10还将通信状态的切换信息经由第三控制基站23发送至服务器30,如此,无人飞行器10可通过第三控制基站23转发数据信息至服务器30,服务器30也可通过第三控制基站23转发控制指令至无人飞行器10。
请再参阅图21,在某些实施方式中,本发明实施方式的控制方法还包括:
S38:在无人飞行器10与第三控制基站23之间的通信建立失败时,无人飞行器10返航。
请再参阅图15,在某些实施方式中,无人飞行器10还包括飞行控制器13。飞行控制器13可用于在无人飞行器10与第三控制基站23之间的通信建立失败时控制无人飞行器10返航。
可以理解,在无人飞行器10与第三控制基站23之间的通信建立失败时,若无人飞行器10沿航线继续飞行,则无人飞行器10与第一控制基站21的距离越来越远,无人飞行器10与第一控制基站21之间的通信信号越来越弱,而无人飞行器10又无法找到另一个可以控制基站20以保持自身与控制基站20之间的良好通信,此时可能导致无人飞行器10失联等问题。因此,为确保无人飞行器10的安全性,在在无人飞行器10与第三控制基站23之间的通信建立失败时,飞行控制器13直接控制无人飞行器10返航。
当然,在某些具体实施例中,在无人飞行器10与第三控制基站23之间的通信建立失败时,无人飞行器10还可尝试与第四控制基站20建立通信,还可在无人飞行器10与第四控制基站20建立通信失败是继续尝试与第五控制基站20通信。也即是说,无人飞行器10返航前尝试建立通信的控制基站20的个数可由用户根据实际情况具体设定。
请参阅图22,在某些实施方式中,本发明实施方式的控制方法还包括:
S39:服务器30接收无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第二控制基站22之间的距离的结果;
S392:服务器30接收无人飞行器10的通信状态由第一控制基站21转移至第二控制基站22的信息;和
S393:服务器30将数据获取源自第一控制基站21切换至第二控制基站22。
请再参阅图15,在某些实施方式中,步骤S391、步骤S392和步骤S393均可以由第二通过新模块实现。也即是说,第二通信模块31可用于接收无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第二控制基站22之间的距离的结果,接收无人飞行器10的通信状态由第一控制基站21转移至第二控制基站22的信息,以及将数据获取源自第一控制基站21切换至第二控制基站22。
具体地,服务器30通过至少两个控制基站20对无人飞行器10进行远程控制及监控。在无人飞行器10与第一控制基站21通信时,服务器30通过第一控制基站21对无人飞行器10进行控制,在无人飞行器10与第二控制基站22进行通信时,服务器30通过第二控制基站22对无人飞行器10进行控制。也即是说,服务器30通过当前时刻下与无人飞行器10通信的控制基站20对无人飞行器10进行控制。因此,服务器30必须获知当前时刻下与无人飞行器10通信的控制基站20为多个控制基站20中的哪一个。具体地,无人飞行器10的通信状态由第一控制基站21切换至第二控制基站22时,无人飞行器10会将无人飞 行器10与第二控制基站22之间的距离小于无人飞行器10与第二控制基站22之间的距离的结果以及通信状态的转移信息发送至第二控制基站22,并由第二控制基站22转发至服务器30,服务器30的第二通信模块31接收该结果和转移信息,并将数据获取源从第一控制基站21切换至第二控制基站22。如此,服务器30可实时掌握无人飞行器10的飞行状态及通信状态。
请再参阅图22,在某些实施方式中,本发明实施方式的控制方法还包括:
S394:服务器30接收当前与无人飞行器10通信的控制基站20发送的数据信息。数据信息由无人飞行器10发送至当前控制基站20。
请再参阅图15,在某些实施方式中,步骤S394可以由第二通信模块31实现。也即是说,第二通信模块31还可用于接收当前与无人飞行器10通信的控制基站20发送的数据信息。其中,数据信息由无人飞行器10发送至当前控制基站20。
其中,数据信息包括无人飞行器10的参数信息、无人飞行器10通过搭载的负载获取到环境信息、无人飞行器10搭载的负载的参数信息中的至少一种。也即是说,数据信息可以仅包括无人飞行器10的参数信息,或仅包括无人飞行器10通过搭载的负载获取到环境信息,或仅包括无人飞行器10搭载的负载的参数信息。数据信息也可同时包括无人飞行器10的参数信息和无人飞行器10通过搭载的负载获取到环境信息,或同时包括无人飞行器10通过搭载的负载获取到环境信息和无人飞行器10搭载的负载的参数信息,或同时包括无人飞行器10的参数信息和无人飞行器10搭载的负载的参数信息。数据信息还可同时包括无人飞行器10的参数信息、无人飞行器10通过搭载的负载获取到环境信息、无人飞行器10搭载的负载的参数信息三者。
具体地,例如,无人飞行器10的参数信息可以是无人飞行器10的坐标、俯仰角、飞行速度、电池电量等信息。无人飞行器10通过搭载的负载获取到环境信息可以是无人飞行器10搭载的摄像头拍摄的图像或视频等信息。无人飞行器10搭载的负载的参数信息可以是无人飞行器10搭载的云台的俯仰角等信息。
无人飞行器10将数据信息发送至当前与其通信的控制基站20,再由该控制基站20转发至服务器30,服务器30的第二通信模块31负责接收上述的数据信息。如此,服务器30可充分掌握无人飞行器10的飞行状态,便于服务器30对无人飞行器10的远程控制。
请再参阅图22,在某些实施方式中,本发明实施方式的控制方法还包括:
S395:服务器30发送远程控制指令至当前与无人飞行器10通信的控制基站20以通过当前控制基站20控制无人飞行器10飞行。
请再参阅图15,在某些实施方式中,步骤S395可以由第二通信模块31实现。也即是说,第二通信模块31还可用于发送远程控制指令至当前与无人飞行器10通信的控制基站20以通过当前控制基站20控制无人飞行器10飞行。
具体地,用户通过与服务器30通信的外部设备(例如笔记本电脑、平板电脑、手机等)输入远程控制指令,服务器30将远程控制指令发送至当前与无人飞行器10通信的控制基站20,再由该基站转发远程控制指令至无人飞行器10。如此,在无人飞行器10执行任务时,用户可通过服务器30远程控制无人飞行器10飞行及拍摄目标区域的图像或视频;在遇上突变天气时,用户可通过服务器30远程控制无人飞行器10及时返航和降落,以确保无人飞行器10的安全性。
本发明还提供一种计算机可读存储介质,该计算机可读存储介质包括能够与电子装置结合使用的计算机程序。计算机程序中一部分可被第一处理器12,计算机程序中的另一部分可被第二处理器32执行以完成上述任一实施方式所述的用于服务器30通过至少两个控制基站20控制无人飞行器10的控制方法。其中,电子装置为无人飞行器10和服务器30。
例如,计算机程序可被第一处理器12执行以完成以下步骤所述的控制方法:无人飞行 器10的第一处理器12从第一通信模块11中读取第二控制基站22的位置信息,确定无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第一控制基站21之间的距离,以及控制第一通信模块11与第二控制基站22建立通信。
再例如,计算机程序还可被第一处理器12执行以完成以下步骤所述的控制方法:无人飞行器10的第一处理器12从第一通信模块11读取第一控制基站21的位置信息,从传感器获取无人飞行器10的位置信息,以及根据无人飞行器10的位置信息和第一控制基站21的位置信息计算无人飞行器10与第一控制基站21之间的距离,根据无人飞行器10的位置信息和第二控制基站22的位置信息计算无人飞行器10与第二控制基站22之间的距离。
再例如,计算机程序可被第二处理器32执行以完成以下步骤所述的控制方法:服务器30的第二处理器32控制第二通信模块31接收无人飞行器10与第二控制基站22之间的距离小于无人飞行器10与第二控制基站22之间的距离的结果,接收无人飞行器10的通信状态由第一控制基站21转移至第二控制基站22的信息,以及将数据获取源自第一控制基站21切换至第二控制基站22。
再例如,计算机程序还可被第二处理器32执行以完成以下步骤所述的控制方法:控制第二通信模块31接收由第一控制基站21转发的获取第二控制基站22的位置信息的获取指令,获取指令由无人飞行器10发送至第一控制基站21,以及发送第二控制基站22的位置信息至无人飞行器10。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场 可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (65)

  1. 一种控制方法,用于至少两个控制基站对无人飞行器的控制,其特征在于,至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站,所述控制方法包括:
    获取所述第二控制基站的位置信息;
    确定所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第一控制基站之间的距离;和
    与所述第二控制基站建立通信。
  2. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:
    获取所述第一控制基站的位置信息;
    获取所述无人飞行器的位置信息;和
    根据所述无人飞行器的位置信息和所述第一控制基站的位置信息计算所述无人飞行器与所述第一控制基站之间的距离,根据所述无人飞行器的位置信息和所述第二控制基站的位置信息计算所述无人飞行器与所述第二控制基站之间的距离。
  3. 根据权利要求2所述的控制方法,其特征在于,所述控制基站的位置信息包括所述控制基站的坐标,所述无人飞行器的位置信息包括所述无人飞行器的坐标。
  4. 根据权利要求3所述的控制方法,其特征在于,所述根据所述无人飞行器的位置信息和所述第一控制基站的位置信息计算所述无人飞行器与所述第一控制基站的距离是通过计算所述无人飞行器的坐标与所述第一控制基站的坐标之间的距离得到的;
    所述根据所述无人飞行器的位置信息和所述第二控制基站的位置信息计算所述无人飞行器和所述第二控制基站之间的距离是通过计算所述无人飞行器的坐标与所述第二控制基站的坐标之间的距离得到的。
  5. 根据权利要求1所述的控制方法,其特征在于,所述获取所述第二控制基站的位置信息的步骤包括:
    发送获取所述第二控制基站的位置信息的获取指令至所述第一控制基站;和
    接收所述第一控制基站根据所述获取指令发送的所述第二控制基站的位置信息。
  6. 根据权利要求5所述的控制方法,其特征在于,至少两个所述控制基站的位置信息均存储在服务器中,至少两个所述控制基站均与所述服务器通信,所述无人飞行器接收的所述第二控制基站的位置信息是由所述第一控制基站根据所述获取指令从所述服务器中获取并转发至所述无人飞行器的。
  7. 根据权利要求1所述的控制方法,其特征在于,至少两个所述控制基站的位置信息均存储在所述无人飞行器中。
  8. 根据权利要求1所述的控制方法,其特征在于,所述与所述第二控制基站建立通信的步骤包括:
    发送建立通信的通信请求至所述第二控制基站;和
    在所述第二控制基站同意建立通信时与所述第二控制基站建立通信。
  9. 根据权利要求1所述的控制方法,其特征在于,所述与所述第二控制基站建立通信的步骤包括:
    接收来自所述第二控制基站发送的建立通信的通信请求;和
    在所述无人飞行器同意建立通信时与所述第二控制基站建立通信。
  10. 根据权利要求1所述的控制方法,其特征在于,所述与所述第二控制基站建立通信的步骤包括:
    接收来自所述第二控制基站发送的建立通信的通信请求;
    向所述第一控制基站发送切换请求;和
    接收来自所述第一控制基站的同意切换响应,发送同意请求信息至所述第二控制基站。
  11. 根据权利要求1所述的控制方法,其特征在于,在所述无人飞行器与所述第二控制基站之间的通信建立失败时,所述控制方法还包括:
    获取第三控制基站的位置信息;
    确定所述无人飞行器与所述第三控制基站之间的距离小于所述无人飞行器与所述第一控制基站之间的距离;和
    与所述第三控制基站建立通信。
  12. 根据权利要求11所述的控制方法,其特征在于,在所述无人飞行器与所述第三控制基站之间的通信建立失败时,所述控制方法还包括:
    控制所述无人飞行器返航。
  13. 一种控制方法,用于通过至少两个控制基站控制无人飞行器,其特征在于,至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站,所述控制方法包括:
    接收所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第二控制基站之间的距离的结果;
    接收所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息;和
    将数据获取源自所述第一控制基站切换至所述第二控制基站。
  14. 根据权利要求13所述的控制方法,其特征在于,所述控制方法还包括:
    发送所述第二控制基站的位置信息至所述无人飞行器。
  15. 根据权利要求14所述的控制方法,其特征在于,所述控制方法还包括:
    接收由所述第一控制基站转发的获取所述第二控制基站的位置信息的获取指令,所述获取指令由所述无人飞行器发送至所述第一控制基站。
  16. 根据权利要求13所述的控制方法,其特征在于,所述控制方法还包括:
    接收当前与所述无人飞行器通信的控制基站发送的数据信息,所述数据信息由所述无人飞行器发送至当前所述控制基站。
  17. 根据权利要求16所述的控制方法,其特征在于,所述数据信息包括所述无人飞行器的参数信息、所述无人飞行器通过搭载的负载获取到的环境信息、所述无人飞行器搭载的所述负载的参数信息中的至少一种。
  18. 根据权利要求13所述的控制方法,其特征在于,所述控制方法还包括:
    发送远程控制指令至当前与所述无人飞行器通信的控制基站以通过当前所述控制基站控制所述无人飞行器飞行。
  19. 一种控制方法,用于服务器通过至少两个控制基站控制无人飞行器,其特征在于,至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站,所述控制方法包括:
    所述无人飞行器获取所述第二控制基站的位置信息;
    所述无人飞行器确定所述无人飞行器与所述第二控制基站之间的距离小于所述第一控制基站之间的距离;
    所述无人飞行器与所述第二控制基站建立通信;和
    所述无人飞行器将所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息反馈至所述服务器。
  20. 根据权利要求19所述的控制方法,其特征在于,所述控制方法还包括:
    所述无人飞行器获取所述第一控制基站的位置信息;
    所述无人飞行器获取自身的位置信息;和
    所述无人飞行器根据所述无人飞行器的位置信息和所述第一控制基站的位置信息计算所述无人飞行器与所述第一控制基站之间的距离,根据所述无人飞行器的位置信息和所述第二控制基站的位置信息计算所述无人飞行器与所述第二控制基站之间的距离。
  21. 根据权利要求20所述的控制方法,其特征在于,所述控制基站的位置信息包括所述控制基站的坐标,所述无人飞行器的位置信息包括所述无人飞行器的坐标。
  22. 根据权利要求21所述的控制方法,其特征在于,所述无人飞行器与所述第一控制基站之间的距离是通过所述无人飞行器的坐标与所述第一控制基站的坐标之间的距离得到的;
    所述无人飞行器与所述第二控制基站之间的距离是通过所述无人飞行器的坐标与所述第二控制基站的坐标之间的距离得到的。
  23. 根据权利要求19所述的控制方法,其特征在于,所述控制基站的位置信息存储在所述服务器中,所述无人飞行器获取所述第二控制基站的位置信息的步骤包括:
    所述无人飞行器发送获取所述第二控制基站的位置信息的获取指令至所述第一控制基站;
    所述服务器接收所述第一控制基站转发的所述获取指令;
    所述服务器根据所述获取指令发送所述第二控制基站的位置信息至所述第一控制基站;和
    所述无人飞行器接收所述第一控制基站转发的所述第二控制基站的位置信息。
  24. 根据权利要求19所述的控制方法,其特征在于,所述无人飞行器与所述第二控制基站建立通信的步骤包括:
    所述无人飞行器发送建立通信的通信请求至所述第二控制基站;和
    在所述第二控制基站同意建立通信时,所述无人飞行器与所述第二控制基站建立通信。
  25. 根据权利要求19所述的控制方法,其特征在于,所述无人飞行器与所述第二控制基站建立通信的步骤包括:
    所述无人飞行器接收来自所述第二控制基站发送的建立通信的通信请求;和
    在所述无人飞行器同意建立通信时所述无人飞行器与所述第二控制基站建立通信。
  26. 根据权利要求19所述的控制方法,其特征在于,所述无人飞行器与所述第二控制基站建立通信的步骤还包括:
    所述无人飞行器接收来自所述第二控制基站发送的建立通信的通信请求;
    所述无人飞行器向所述第一控制基站发送切换请求;和
    所述无人飞行器接收来自所述第一控制基站的同意切换响应,发送同意请求信息至所述第二控制基站。
  27. 根据权利要求19所述的控制方法,其特征在于,在所述无人飞行器与所述第二控制基站之间的通信建立失败时,所述控制方法还包括:
    所述无人飞行器获取第三控制基站的位置信息;
    所述无人飞行器确定所述无人飞行器与所述第三控制基站之间的距离小于所述无人飞行器与所述第一控制基站之间的距离;
    所述无人飞行器与所述第三控制基站建立通信;和
    所述无人飞行器将所述无人飞行器的通信状态由所述第一控制基站转移至所述第三控制基站的信息反馈至所述服务器。
  28. 根据权利要求27所述的控制方法,其特征在于,在所述无人飞行器与所述第三控制基站之间的通信建立失败时,所述控制方法还包括:
    所述无人飞行器返航。
  29. 根据权利要求19所述的控制方法,其特征在于,所述控制方法还包括:
    所述服务器接收所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第二控制基站之间的距离的结果;
    所述服务器接收所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息;和
    所述服务器将数据获取源自所述第一控制基站切换至所述第二控制基站。
  30. 根据权利要求19所述的控制方法,其特征在于,所述控制方法还包括:
    所述服务器接收当前与所述无人飞行器通信的控制基站发送的数据信息,所述数据信息由所述无人飞行器发送至当前所述控制基站。
  31. 根据权利要求30所述的控制方法,其特征在于,所述数据信息包括所述无人飞行器的参数信息、所述无人飞行器通过搭载的负载获取到的环境信息、所述无人飞行器搭载的所述负载的参数信息中的至少一种。
  32. 根据权利要求19所述的控制方法,其特征在于,所述控制方法还包括:
    所述服务器发送远程控制指令至当前与所述无人飞行器通信的控制基站以通过当前所述控制基站控制所述无人飞行器飞行。
  33. 一种无人飞行器,至少两个控制基站控制所述无人飞行器,其特征在于,至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站,所述无人飞行器包括通信模块和处理器,所述通信模块用于获取所述第二控制基站的位置信息;
    所述处理器用于确定所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第一控制基站之间的距离;
    所述通信模块还用于与所述第二控制基站建立通信。
  34. 根据权利要求33所述的无人飞行器,其特征在于,所述通信模块还用于获取所述第一控制基站的位置信息;
    所述处理器还用于:
    获取所述无人飞行器的位置信息;和
    根据所述无人飞行器的位置信息和所述第一控制基站的位置信息计算所述无人飞行器与所述第一控制基站之间的距离,根据所述无人飞行器的位置信息和所述第二控制基站的位置信息计算所述无人飞行器与所述第二控制基站之间的距离。
  35. 根据权利要求34所述的无人飞行器,其特征在于,所述控制基站的位置信息包括所述控制基站的坐标,所述无人飞行器的位置信息包括所述无人飞行器的坐标。
  36. 根据权利要求35所述的无人飞行器,其特征在于,所述根据所述无人飞行器的位置信息和所述第一控制基站的位置信息计算所述无人飞行器与所述第一控制基站的距离是通过计算所述无人飞行器的坐标与所述第一控制基站的坐标之间的距离得到的;
    所述根据所述无人飞行器的位置信息和所述第二控制基站的位置信息计算所述无人飞行器和所述第二控制基站之间的距离是通过计算所述无人飞行器的坐标与所述第二控制基站的坐标之间的距离得到的。
  37. 根据权利要求33所述的无人飞行器,其特征在于,所述通信模块进一步用于:
    发送获取所述第二控制基站的位置信息的获取指令至所述第一控制基站;和
    接收所述第一控制基站根据所述获取指令发送的所述第二控制基站的位置信息。
  38. 根据权利要求37所述的无人飞行器,其特征在于,至少两个所述控制基站的位置信息均存储在服务器中,至少两个所述控制基站均与所述服务器通信,所述无人飞行器接收的所述第二控制基站的位置信息是由所述第一控制基站根据所述获取指令从所述服务器中获取并转发至所述无人飞行器的。
  39. 根据权利要求33所述的无人飞行器,其特征在于,至少两个所述控制基站的位置 信息均存储在所述无人飞行器中。
  40. 根据权利要求33所述的无人飞行器,其特征在于,所述通信模块还用于:
    发送建立通信的通信请求至所述第二控制基站;和
    在所述第二控制基站同意建立通信时与所述第二控制基站建立通信。
  41. 根据权利要求33所述的无人飞行器,其特征在于,所述通信模块还用于:
    接收来自所述第二控制基站发送的建立通信的通信请求;和
    在所述无人飞行器同意建立通信时与所述第二控制基站建立通信。
  42. 根据权利要求33所述的无人飞行器,其特征在于,所述通信模块还用于:
    接收来自所述第二控制基站发送的建立通信的通信请求;
    向所述第一控制基站发送切换请求;和
    接收来自所述第一控制基站的同意切换响应,发送同意请求信息至所述第二控制基站。
  43. 根据权利要求33所述的无人飞行器,其特征在于,在所述无人飞行器与所述第二控制基站之间的通信建立失败时,所述通信模块还用于获取第三控制基站的位置信息;
    所述处理器还用于确定所述无人飞行器与所述第三控制基站之间的距离小于所述无人飞行器与所述第一控制基站之间的距离;和
    所述通信模块还用于与所述第三控制基站建立通信。
  44. 根据权利要求33所述的无人飞行器,其特征在于,所述无人飞行器还包括飞行控制器,所述飞行控制器用于在所述无人飞行器与所述第三控制基站之间的通信建立失败时,控制所述无人飞行器返航。
  45. 一种服务器,用于通过至少两个控制基站控制无人飞行器,其特征在于,至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站,所述服务器包括通信模块,所述通信模块用于:
    接收所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第二控制基站之间的距离的结果;
    接收所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息;和
    将数据获取源自所述第一控制基站切换至所述第二控制基站。
  46. 根据权利要求45所述的服务器,其特征在于,所述通信模块还用于发送所述第二控制基站的位置信息至所述无人飞行器。
  47. 根据权利要求46所述的服务器,其特征在于,所述通信模块还用于接收由所述第一控制基站转发的获取所述第二控制基站的位置信息的获取指令,所述获取指令由所述无人飞行器发送至所述第一控制基站。
  48. 根据权利要求45所述的服务器,其特征在于,所述通信模块还用于接收当前与所述无人飞行器通信的控制基站发送的数据信息,所述数据信息由所述无人飞行器发送至当前所述控制基站。
  49. 根据权利要求48所述的服务器,其特征在于,所述数据信息包括所述无人飞行器的参数信息、所述无人飞行器通过搭载的负载获取到的环境信息、所述无人飞行器搭载的所述负载的参数信息中的至少一种。
  50. 根据权利要求45所述的服务器,其特征在于,所述通信模块还用于发送远程控制指令至当前与所述无人飞行器通信的控制基站以通过当前所述控制基站控制所述无人飞行器飞行。
  51. 一种通信系统,包括服务器和无人飞行器,所述服务器通过至少两个控制基站控制所述无人飞行器,其特征在于,至少两个所述控制基站包括具有固定位置的第一控制基站和第二控制基站,所述第一控制基站为当前与所述无人飞行器通信的控制基站,所述无 人飞行器包括第一通信模块和处理器,所述第一通信模块用于获取所述第二控制基站的位置信息;
    所述处理器用于确定所述无人飞行器与所述第二控制基站之间的距离小于所述第一控制基站之间的距离;
    所述第一通信模块还用于:
    与所述第二控制基站建立通信;和
    将所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息反馈至所述服务器。
  52. 根据权利要求50所述的通信系统,其特征在于,所述第一通信模块还用于获取所述第一控制基站的位置信息;
    所述处理器还用于:
    获取所述无人飞行器的位置信息;和
    根据所述无人飞行器的位置信息和所述第一控制基站的位置信息计算所述无人飞行器与所述第一控制基站之间的距离,根据所述无人飞行器的位置信息和所述第二控制基站的位置信息计算所述无人飞行器与所述第二控制基站之间的距离。
  53. 根据权利要求52所述的通信系统,其特征在于,所述控制基站的位置信息包括所述控制基站的坐标,所述无人飞行器的位置信息包括所述无人飞行器的坐标。
  54. 根据权利要求53所述的通信系统,其特征在于,所述无人飞行器与所述第一控制基站之间的距离是通过所述无人飞行器的坐标与所述第一控制基站的坐标之间的距离得到的;
    所述无人飞行器与所述第二控制基站之间的距离是通过所述无人飞行器的坐标与所述第二控制基站的坐标之间的距离得到的。
  55. 根据权利要求51所述的通信系统,其特征在于,所述控制基站的位置信息存储在所述服务器中,所述第一通信模块还用于发送获取所述第二控制基站的位置信息的获取指令至所述第一控制基站;
    所述服务器包括第二通信模块,所述第二通信模块用于:
    接收所述第一控制基站转发的所述获取指令;和
    根据所述获取指令发送所述第二控制基站的位置信息至所述第一控制基站;
    所述第一通信模块还用于接收所述第一控制基站转发的所述第二控制基站的位置信息。
  56. 根据权利要求51所述的通信系统,其特征在于,所述第一通信模块还用于:
    发送建立通信的通信请求至所述第二控制基站;和
    在所述第二控制基站同意建立通信时与所述第二控制基站建立通信。
  57. 根据权利要求51所述的通信系统,其特征在于,所述第一通信模块还用于:
    接收来自所述第二控制基站发送的建立通信的通信请求;和
    在所述无人飞行器同意建立通信时与所述第二控制基站建立通信。
  58. 根据权利要求51所述的通信系统,其特征在于,所述第一通信模块还用于:
    接收来自所述第二控制基站发送的建立通信的通信请求;
    向所述第一控制基站发送切换请求;和
    接收来自所述第一控制基站的同意切换响应,发送同意请求信息至所述第二控制基站。
  59. 根据权利要求51所述的通信系统,其特征在于,在所述无人飞行器与所述第二控制基站之间的通信建立失败时,所述第一通信模块还用于获取第三控制基站的位置信息;
    所述处理器还用于确定所述无人飞行器与所述第三控制基站之间的距离小于所述无人飞行器与所述第一控制基站之间的距离;
    所述第一通信基站还用于:
    与所述第三控制基站建立通信;和
    将所述无人飞行器的通信状态由所述第一控制基站转移至所述第三控制基站的信息反馈至所述服务器。
  60. 根据权利要求59所述的通信系统,其特征在于,所述无人飞行器还包括飞行控制器,所述飞行控制器用于在所述无人飞行器与所述第三控制基站之间的通信建立失败时控制无人飞行器返航。
  61. 根据权利要求51所述的通信系统,其特征在于,所述第二通信模块还用于:
    接收所述无人飞行器与所述第二控制基站之间的距离小于所述无人飞行器与所述第二控制基站之间的距离的结果;
    接收所述无人飞行器的通信状态由所述第一控制基站转移至所述第二控制基站的信息;和
    将数据获取源自所述第一控制基站切换至所述第二控制基站。
  62. 根据权利要求51所述的通信系统,其特征在于,所述第二通信模块还用于接收当前与所述无人飞行器通信的控制基站发送的数据信息,所述数据信息由所述无人飞行器发送至当前所述控制基站。
  63. 根据权利要求62所述的通信系统,其特征在于,所述数据信息包括所述无人飞行器的参数信息、所述无人飞行器通过搭载的负载获取到的环境信息、所述无人飞行器搭载的所述负载的参数信息中的至少一种。
  64. 根据权利要求51所述的通信系统,其特征在于,所述第二通信模块还用于发送远程控制指令至当前与所述无人飞行器通信的控制基站以通过当前所述控制基站控制所述无人飞行器飞行。
  65. 一种计算机可读存储介质,其特征在于,包括与电子装置结合使用的计算机程序,所述计算机程序可被处理器执行以完成权利要求1至12任意一项所述的控制方法;或
    所述计算机程序可被处理器执行以完成权利要求13至18任意一项所述的控制方法;或
    所述计算机程序可被处理器执行以完成权利要求19至32任意一项所述的控制方法。
PCT/CN2017/107285 2017-10-23 2017-10-23 控制方法、无人飞行器、服务器和计算机可读存储介质 WO2019079927A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780004666.6A CN108698693A (zh) 2017-10-23 2017-10-23 控制方法、无人飞行器、服务器和计算机可读存储介质
PCT/CN2017/107285 WO2019079927A1 (zh) 2017-10-23 2017-10-23 控制方法、无人飞行器、服务器和计算机可读存储介质
US16/842,215 US20200245217A1 (en) 2017-10-23 2020-04-07 Control method, unmanned aerial vehicle, server and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/107285 WO2019079927A1 (zh) 2017-10-23 2017-10-23 控制方法、无人飞行器、服务器和计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/842,215 Continuation US20200245217A1 (en) 2017-10-23 2020-04-07 Control method, unmanned aerial vehicle, server and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2019079927A1 true WO2019079927A1 (zh) 2019-05-02

Family

ID=63844045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107285 WO2019079927A1 (zh) 2017-10-23 2017-10-23 控制方法、无人飞行器、服务器和计算机可读存储介质

Country Status (3)

Country Link
US (1) US20200245217A1 (zh)
CN (1) CN108698693A (zh)
WO (1) WO2019079927A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020249305A1 (de) * 2019-06-08 2020-12-17 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines fahrzeuges
US11279481B2 (en) 2017-05-12 2022-03-22 Phirst Technologies, Llc Systems and methods for tracking, evaluating and determining a response to emergency situations using unmanned airborne vehicles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109947135B (zh) * 2019-04-30 2020-07-07 南昌大学 一种网联无人机的飞行轨迹确定方法及系统
CN112119648A (zh) * 2019-08-29 2020-12-22 深圳市大疆创新科技有限公司 控制方法、远程服务器、控制站及存储介质
JP7342762B2 (ja) * 2020-03-30 2023-09-12 トヨタ自動車株式会社 制御システム、制御方法、及びプログラム
US11528666B2 (en) * 2020-09-03 2022-12-13 T-Mobile Usa, Inc. Unmanned aerial vehicle transmission power adjustment
WO2022198579A1 (zh) * 2021-03-25 2022-09-29 深圳市大疆创新科技有限公司 可移动平台的定位方法、可移动平台、系统及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105334863A (zh) * 2015-11-23 2016-02-17 杨珊珊 一种多控制端的无人机及其控制台和控制切换方法
CN105516684A (zh) * 2016-01-15 2016-04-20 南彦勃 电网输电线巡视方法
US20160330771A1 (en) * 2015-04-14 2016-11-10 Verizon Patent And Licensing Inc. Radio access network for unmanned aerial vehicles
CN106597369A (zh) * 2016-12-07 2017-04-26 中国联合网络通信集团有限公司 一种无人机的控制方法、控制平台、控制系统
CN107121987A (zh) * 2017-06-08 2017-09-01 广东容祺智能科技有限公司 一种无人机多端远程接续控制的链路系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980573B (zh) * 2010-10-27 2013-07-10 华为技术有限公司 一种节能方法、装置及天馈系统
CN103581978B (zh) * 2013-10-29 2016-09-14 华为技术有限公司 通信方法、站点控制器、控制中心和站点管理系统
CN105227631B (zh) * 2015-05-28 2021-08-13 罗克韦尔柯林斯公司 一种支持无人机操作的分层系统
CN205427623U (zh) * 2015-11-23 2016-08-03 杨珊珊 一种多控制端的无人机及其控制台和系统
CN105610087B (zh) * 2016-01-15 2018-02-13 南彦勃 电网输电线巡视系统
CN105516685A (zh) * 2016-01-15 2016-04-20 南彦勃 电力电网输电线巡视方法
CN105610960A (zh) * 2016-01-15 2016-05-25 南彦勃 电力电网输电线巡视系统
CN106102110A (zh) * 2016-06-21 2016-11-09 北京小米移动软件有限公司 切换控制权的方法及控制终端
CN106444811A (zh) * 2016-10-26 2017-02-22 徐州飞梦电子科技有限公司 利用信号强度切换控制植保无人机的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160330771A1 (en) * 2015-04-14 2016-11-10 Verizon Patent And Licensing Inc. Radio access network for unmanned aerial vehicles
CN105334863A (zh) * 2015-11-23 2016-02-17 杨珊珊 一种多控制端的无人机及其控制台和控制切换方法
CN105516684A (zh) * 2016-01-15 2016-04-20 南彦勃 电网输电线巡视方法
CN106597369A (zh) * 2016-12-07 2017-04-26 中国联合网络通信集团有限公司 一种无人机的控制方法、控制平台、控制系统
CN107121987A (zh) * 2017-06-08 2017-09-01 广东容祺智能科技有限公司 一种无人机多端远程接续控制的链路系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11279481B2 (en) 2017-05-12 2022-03-22 Phirst Technologies, Llc Systems and methods for tracking, evaluating and determining a response to emergency situations using unmanned airborne vehicles
WO2020249305A1 (de) * 2019-06-08 2020-12-17 Robert Bosch Gmbh Verfahren und vorrichtung zum betreiben eines fahrzeuges

Also Published As

Publication number Publication date
CN108698693A (zh) 2018-10-23
US20200245217A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
WO2019079927A1 (zh) 控制方法、无人飞行器、服务器和计算机可读存储介质
US10476581B2 (en) Extending wireless signal coverage with drones
WO2017163973A1 (ja) 無人移動装置、引継方法、プログラム
WO2018191965A1 (zh) 天线对准方法和地面控制端
US11032859B2 (en) Electronic device for controlling data communication of external electronic device and communication system
JP2020038633A (ja) 自動運転車両の遠隔制御方法、遠隔制御装置、サーバ、遠隔制御システム、コンピュータプログラム製品および記憶媒体
US10978799B2 (en) Directional antenna tracking method and communication device
KR101530581B1 (ko) 무인 이동체 원격제어 시스템 및 방법
US10299314B2 (en) Autonomous mobile robot, movement control method, movement control program, and system
US11247578B2 (en) Electric charging stations with docking management and methods of use
US11932391B2 (en) Wireless communication relay system using unmanned device and method therefor
US11877253B2 (en) Aircraft time synchronization system and method
US11160031B2 (en) Transmission power control for wireless communication systems
JP2017114270A (ja) 特定ビーコン追跡機能を有する無人飛行体および追跡ビーコン発信ユニット
WO2020154959A1 (zh) 多负载图传方法、控制系统、控制终端、无人机和服务器
US10725479B2 (en) Aerial vehicle landing method, aerial vehicle, and computer readable storage medium
JP7194682B2 (ja) 飛行制御装置
WO2019109250A1 (zh) 控制方法、任务机、控制端、中继机和可读存储介质
JP6594212B2 (ja) 通信装置およびその制御方法、通信システム
WO2021035641A1 (zh) 控制方法、远程服务器、控制站及存储介质
KR20190071238A (ko) 전자 장치 간의 무선 통신을 수행하는 방법, 이를 위한 전자 장치
WO2019019118A1 (zh) 可移动平台的控制方法、设备及可移动平台
US11470463B2 (en) Vehicle control apparatus, vehicle recording medium, and vehicle control method
JP2006213302A (ja) 携帯電話回線による移動物体の広域・高精度制御方式
CN109286435B (zh) 数据传输方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930138

Country of ref document: EP

Kind code of ref document: A1