WO2019019118A1 - 可移动平台的控制方法、设备及可移动平台 - Google Patents

可移动平台的控制方法、设备及可移动平台 Download PDF

Info

Publication number
WO2019019118A1
WO2019019118A1 PCT/CN2017/094761 CN2017094761W WO2019019118A1 WO 2019019118 A1 WO2019019118 A1 WO 2019019118A1 CN 2017094761 W CN2017094761 W CN 2017094761W WO 2019019118 A1 WO2019019118 A1 WO 2019019118A1
Authority
WO
WIPO (PCT)
Prior art keywords
rtk data
satellite signal
positioning
moment
compensation value
Prior art date
Application number
PCT/CN2017/094761
Other languages
English (en)
French (fr)
Inventor
闫光
彭昭亮
陈超彬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2017/094761 priority Critical patent/WO2019019118A1/zh
Priority to CN201780016748.2A priority patent/CN108885465A/zh
Publication of WO2019019118A1 publication Critical patent/WO2019019118A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/02Details of the space or ground control segments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • the embodiments of the present invention relate to the field of drones, and in particular, to a method, a device, and a movable platform for controlling a mobile platform.
  • Real-time kinematic is a global navigation satellite system (GNSS) high-precision positioning technology with a positioning accuracy of up to centimeter.
  • GNSS global navigation satellite system
  • Two stations are required in the RTK-based positioning operation scheme: the base station and the rover, which are user receivers and can be installed on different movable platforms such as unmanned aerial vehicles and automobiles.
  • the rover needs to receive the data transmitted by the base station in order to complete the RTK positioning, thereby obtaining the precise position.
  • the RTK data received by the user receiver may be invalid, and the RTK positioning cannot be completed according to the RTK data.
  • the navigation task based on the location information may be abnormally executed, which affects the safe operation of the mobile platform.
  • the embodiment of the invention provides a control method, a device and a movable platform of a mobile platform, so as to improve the reliability of the mobile platform to perform the navigation task and ensure the safe operation of the mobile platform.
  • a first aspect of the embodiments of the present invention provides a method for controlling a mobile platform, including:
  • the mobile station When the RTK data received at the first moment is invalid, the mobile station performs a navigation task switching according to the RTK data and the satellite signal to control the navigation platform to perform the navigation task according to the satellite signal.
  • a second aspect of the embodiments of the present invention provides a control device for a mobile platform, including: a communication interface, a positioning receiver, and a processor;
  • the communication interface is configured to receive RTK data
  • the positioning receiver is configured to receive a satellite signal
  • the processor is used to:
  • the mobile station When the RTK data received at the first moment is invalid, the mobile station performs a navigation task switching according to the RTK data and the satellite signal to control the navigation platform to perform the navigation task according to the satellite signal.
  • a third aspect of the embodiments of the present invention provides a mobile platform, including:
  • a power system mounted to the fuselage for providing operating power
  • control device provided by the second aspect.
  • the control method, device and mobile platform of the mobile platform provided by the embodiments of the present invention receive RTK data through a communication interface, and the positioning receiver receives satellite signals.
  • the mobile station controls the mobile according to the RTK data and the satellite signal.
  • the platform performs the navigation task switching to perform the navigation task according to the satellite signal control mobile platform, so that the mobile platform can still complete the navigation task according to the satellite signal when the RTK data is invalid, thereby improving the reliability of the mobile platform performing the navigation task and ensuring the movable The platform runs safely.
  • FIG. 1 is a flowchart of a method for controlling a mobile platform according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of a system applicable to a control method of a mobile platform according to an embodiment of the present invention
  • FIG. 3 is a network architecture diagram of a method for controlling a mobile platform according to an embodiment of the present disclosure
  • FIG. 4 is a network architecture applicable to a control method of a mobile platform according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a module of a flight controller according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • FIG. 10 is a structural diagram of a control device of a mobile platform according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be in the middle. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a flowchart of a method for controlling a mobile platform according to an embodiment of the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • Step S101 Receive RTK data through a communication interface.
  • the execution body of the method of the embodiment may be a control device for controlling the movement of the movable platform in the movable platform, and the movable platform may be an unmanned aerial vehicle, a car, a ship, etc., and the embodiment is illustrated by an unmanned aerial vehicle. Description.
  • the unmanned aerial vehicle is provided with a control device, a communication interface, and a positioning receiver.
  • the control device is used to control the flight of the unmanned aerial vehicle
  • the communication interface is used to receive the RTK data
  • the positioning receiver is configured to receive the satellite signal.
  • the control device may be a flight controller of an unmanned aerial vehicle, or may be other general-purpose or dedicated processors. In this embodiment, a flight controller is schematically illustrated.
  • the communication interface receives RTK data including the following possible situations:
  • the communication interface of the UAV is specifically a radio station communication interface.
  • the UAV 10 includes a control device 20, a radio station communication interface 21, a positioning receiver 22, and a radio station communication interface. 21 receives the RTK data broadcast by the RTK base station 23.
  • the communication interface of the UAV is specifically a wireless network communication interface.
  • the reference station 31 receives the satellite signal transmitted by the satellite 24 and generates RTK data, and the reference station 31 connects the RTK through the network.
  • the data is transmitted to the wireless base station 32 of the operator, and the network may be a wired network or a wireless network, that is, the reference station 31 may transmit the RTK data to the wireless base station 32 of the operator through a wired manner, or may be wireless.
  • the RTK data is transmitted to the wireless base station 32 of the operator.
  • the radio base station 32 transmits RTK data to the unmanned aerial vehicle 10, and the radio network communication interface 33 of the unmanned aerial vehicle 10 receives the RTK data transmitted by the radio base station 32.
  • the base station 31 receives the satellite signal transmitted by the satellite 24 and generates RTK data, and the base station 31 transmits the RTK data to the operator's wireless base station 32 via the network, and the radio base station 32
  • the RTK data is transmitted to the ground station 34, which transmits the RTK data to the unmanned aerial vehicle 10, and the wireless network communication interface 33 receives the RTK data transmitted by the ground station 34.
  • the ground station 34 may specifically be a remote controller, a smart phone, a tablet computer, a ground control station, and the like, and combinations thereof.
  • Step S102 Receive a satellite signal by using a positioning receiver.
  • the positioning receiver 22 can receive satellite signals transmitted by the satellite 24.
  • the positioning receiver may be a GNSS receiver.
  • the positioning receiver is at least one of a GPS receiver, a Beidou receiver, a Galileo receiver, and a GLONASS receiver.
  • the satellite 24 is specifically A satellite of a navigation system corresponding to the receiver.
  • Step S103 When the RTK data received at the first time is invalid, the mobile station performs a navigation task according to the RTK data and the satellite signal to control the mobile platform to perform the navigation task according to the satellite signal. .
  • the flight controller may determine the positioning information of the unmanned aerial vehicle according to the RTK data and the satellite signal, or determine the positioning information of the unmanned aerial vehicle based only on the satellite signal, and the positioning information of the unmanned aerial vehicle may include the latitude and longitude information and the height. Information, etc.
  • the flight controller can perform navigation tasks based on the RTK data and the satellite signals, or can perform navigation tasks based only on satellite signals. Since the accuracy of the positioning information of the unmanned aerial vehicle determined according to the RTK data and the satellite signal is high, that is, the accuracy of the positioning information of the unmanned aerial vehicle determined by the RTK positioning method is higher than the positioning information of the unmanned aerial vehicle determined only by the satellite signal. The accuracy is high, therefore, when the RTK data is valid, the flight controller preferentially performs navigation tasks based on the RTK data and the satellite signals.
  • the validity of the RTK data is determined by various factors such as the radio signal quality between the RTK base station 23 and the radio station communication interface 21, the network bandwidth between the base station 31 and the radio base station 32, and the satellite 24 transmitting to the base station 31.
  • the quality of the satellite signal, the transmission and reception power of the ground station 34, etc. may cause the RTK data to suddenly become ineffective.
  • the flight controller needs to switch from performing the navigation task according to the RTK data and the satellite signal to performing the navigation task according to the satellite signal.
  • the flight controller may include two functional modules, which are respectively a first module and a second module, which are only schematic descriptions herein, and do not limit functional modules inside the flight controller.
  • the first module can acquire the RTK data received by the communication interface and locate the satellite signal received by the receiver.
  • the first module receives the RTK data and the satellite signal at the same time, and the first module periodically receives RTK data and satellite signals.
  • the first module can determine a positioning information of the UAV based on the RTK data and the satellite signal, the positioning information is specifically RTK differential positioning coordinates; the first module can determine another positioning information of the UAV according to the satellite signal, the positioning The information is specifically a single point positioning coordinate; since the accuracy of the RTK differential positioning coordinate is higher than the accuracy of the single point positioning coordinate, when the RTK data is valid, the first module preferentially outputs the RTK differential positioning coordinate to the second module, and the second module is based on The RTK differential positioning coordinates perform navigation tasks. When the RTK data is invalid, the first module outputs the single point positioning coordinates to the second module, and the second module performs the navigation task according to the single point positioning coordinates.
  • the first module may output an identifier bit at the same time of outputting the positioning coordinate, where the identifier bit is used to identify whether the positioning coordinate output by the first module is an RTK differential positioning coordinate or a single point positioning coordinate, and the output of the first module. Whether the positioning coordinates are valid, etc.
  • a first switch may be disposed between the first module and the communication interface
  • a second switch may be disposed between the first module and the positioning receiver
  • the flight controller may control the first switch according to a control command sent by the ground station.
  • the second switch that is, the user can control whether the first module receives the RTK data through the ground station, and whether the satellite signal is received, thereby controlling the flight controller to perform the navigation task according to the RTK data and the satellite signal, or perform the navigation task according to the satellite signal. For example, when the first switch is turned off, even if the communication interface continuously receives RTK data, the flight controller performs the navigation task only based on the satellite signal.
  • the RTK data is received through the communication interface, and the positioning receiver receives the satellite signal.
  • the mobile station performs the navigation task according to the RTK data and the satellite signal to control the mobile platform to perform the navigation task according to the satellite signal.
  • the mobile platform can still complete the navigation task when the RTK data is invalid, improve the reliability of the mobile platform to perform the navigation task, and ensure the safe operation of the mobile platform.
  • Embodiments of the present invention provide a method for controlling a mobile platform.
  • FIG. 6 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention. As shown in Figure 6, in Figure 1
  • the control method of the mobile platform further includes: determining whether the RTK data received at the first moment is valid, and specifically determining whether the RTK data received at the first moment is valid, including the following steps:
  • Step S601 Acquire RTK data received by the communication interface at the first moment.
  • Step S602 Acquire a satellite signal received by the positioning receiver at the first moment.
  • the first module acquires the RTK data received by the communication interface at the first time t, and the first module acquires the satellite signal received by the positioning receiver at the first time t.
  • Step S603 determining first positioning information of the movable platform according to the RTK data and the satellite signal.
  • the first module determines, according to the RTK data received by the communication interface at the first time t and the satellite signal received by the positioning receiver at the first time t, the first positioning information of the unmanned aerial vehicle at the first time t, the first positioning
  • the information is specifically RTK differential positioning coordinates, and the RTK differential positioning coordinates may be two-dimensional coordinates or three-dimensional coordinates. Taking the three-dimensional coordinates as an example, the RTK differential positioning coordinates include the latitude and longitude and height of the UAV at the first time t.
  • Step S604 determining second positioning information of the movable platform according to the satellite signal.
  • the first module further determines the second positioning information of the unmanned aerial vehicle at the first time t according to the satellite signal received by the positioning receiver at the first time t, the second positioning information is specifically a single point positioning coordinate, a single point
  • the positioning coordinates may be two-dimensional coordinates or three-dimensional coordinates. Taking three-dimensional coordinates as an example, the single-point positioning coordinates include the latitude and longitude and height of the UAV at the first time t.
  • Step S605 Determine, according to the first positioning information and the second positioning information, whether the RTK data received at the first moment is valid.
  • the first module determines whether the RTK data received by the communication interface at the first time t is valid according to the RTK differential positioning coordinates and the single point positioning coordinates at the first time t.
  • the determining, according to the first positioning information and the second positioning information, whether the RTK data received at the first time is valid includes: determining between the first positioning information and the second positioning information a first positioning error; determining whether the RTK data received at the first time is valid according to the first positioning error.
  • the first module determines, according to the first positioning error between the RTK differential positioning coordinate and the single-point positioning coordinate at the first time t, whether the RTK data received by the communication interface at the first time t has effect.
  • the first positioning error may include at least a latitude and longitude error, and in some embodiments the first positioning error further includes a height error.
  • the first module determines the latitude and longitude error according to the latitude and longitude corresponding to the latitude and longitude of the RTK differential positioning coordinate at the first time t and the latitude and longitude corresponding to the single point positioning coordinate, and determines the height corresponding to the RTK differential positioning coordinate at the first time t and the height corresponding to the single point positioning coordinate.
  • the height error determines whether the RTK data received by the communication interface at the first time t is valid according to the latitude and longitude error or/and the height error.
  • Determining whether the RTK data received at the first time is valid according to the first positioning error comprises: determining, when the first positioning error is greater than or equal to a preset positioning error threshold, determining the received at the first time RTK data is invalid. For example, when the latitude and longitude error is greater than or equal to the preset latitude and longitude error threshold, the first module determines that the RTK data received by the communication interface at the first time t is invalid; or/and, when the height error is greater than or equal to the preset height error threshold The first module determines that the RTK data received by the communication interface at the first time t is invalid.
  • the RTK data received by the communication interface at the first moment is acquired, and the satellite signal received by the positioning receiver at the first moment is acquired, and the first positioning information of the movable platform is determined according to the RTK data and the satellite signal, according to the satellite.
  • the signal determines the second positioning information of the movable platform, determines whether the RTK data received at the first moment is valid according to the first positioning information and the second positioning information, and avoids an abnormality of the navigation task due to invalidation of the RTK data.
  • Embodiments of the present invention provide a method for controlling a mobile platform.
  • FIG. 7 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • the control method of the movable platform further includes: determining a first handover compensation value; correspondingly, the according to the RTK data and the The satellite signal control mobile platform performs a navigation task switching to control the mobile platform to perform the navigation task according to the satellite signal, including: controlling a mobile platform to perform a navigation task according to the RTK data and the satellite signal to The satellite signal and the first handoff compensation value control the movable platform to perform the navigation task.
  • the flight controller needs to switch from performing the navigation task according to the RTK data and the satellite signal to performing the navigation task according to the satellite signal. Since the RTK data is valid, the RTK differential positioning coordinates determined based on the RTK data and the satellite signal at the same time and the single point determined according to the satellite signal There is a certain position error between the positioning coordinates.
  • the RTK data received at the first moment is invalid, if the navigation task is performed directly according to the single-point positioning coordinates determined by the satellite signal, the unmanned aerial vehicle may not be able to pass the first moment. The previous motion trajectory smoothly transitions to the motion trajectory at the beginning and after the first moment.
  • the flight controller is based on the RTK data. Performing a navigation task with the satellite signal to switch to performing the navigation task based on the satellite signal and the first handover compensation value.
  • the determining the first handover compensation value includes the following steps:
  • Step S701 Acquire RTK data received by the communication interface at a historical time before the first time.
  • Step S702 Acquire a satellite signal received by the positioning receiver at a historical moment before the first moment.
  • the first module determines the first unmanned aerial vehicle at the first time t according to the RTK data received by the communication interface at the first time t and the satellite signal received by the positioning receiver at the first time t.
  • Positioning information determining, according to the satellite signal received by the positioning receiver at the first time t, the second positioning information of the UAV at the first time t; if the first positioning information and the second positioning information are between The first positioning error is greater than or equal to the preset positioning error threshold, and it is determined that the RTK data received at the first moment is invalid.
  • the first module may store the RTK data received by the communication interface at a historical time before the first time t, and may also store the satellite signal corresponding to the satellite signal received by the positioning receiver at the historical time before the first time t. Satellite data.
  • the first module acquires the RTK data received by the communication interface at a time before the first time t, that is, at the time t-1, and the acquiring the positioning receiver receives the time before the first time t, that is, t-1. Satellite data corresponding to the satellite signal.
  • Step S703 determining third positioning information of the movable platform according to the RTK data of the historical moment and the satellite signal of the historical moment.
  • the first module determines the third positioning information of the UAV at time t-1 according to the RTK data at the time t1 of the first time t, that is, the t-1 time and the satellite data corresponding to the satellite signal, and the third positioning information is specifically RTK.
  • Differential positioning coordinates which may include the latitude and longitude and altitude of the UAV at time t-1.
  • Step S704 Determine fourth positioning information of the movable platform according to the satellite signal of the historical moment.
  • the first module further determines the fourth positioning information of the unmanned aerial vehicle at time t-1 according to the satellite data corresponding to the satellite signal at the time t1 of the first time t, that is, the fourth positioning information is specifically Point positioning coordinates, which may include the latitude and longitude and altitude of the UAV at time t-1.
  • Step S705 Determine a second positioning error between the third positioning information and the fourth positioning information as the first switching compensation value.
  • the second positioning error between the third positioning information and the fourth positioning information may include a latitude and longitude error between the latitude and longitude corresponding to the RTK differential positioning coordinate at t1 and the longitude and latitude corresponding to the single point positioning coordinate at the time t-1. And the height error between the height corresponding to the RTK differential positioning coordinates at time t-1 and the height corresponding to the single point positioning coordinates at time t-1.
  • the first module determines the second positioning error as the first switching compensation value at the first time t
  • the first switching compensation value may include a latitude and longitude compensation value and a height compensation value, specifically, the RTK differential positioning at the time t-1
  • the latitude and longitude error between the latitude and longitude corresponding to the coordinates of the longitude and latitude corresponding to the coordinate and the single point positioning coordinate at the time t-1 is used as the latitude and longitude compensation value
  • the height corresponding to the RTK differential positioning coordinate at the time t-1 and the height corresponding to the single point positioning coordinate at the time t-1 The height error between the two is used as the height compensation value.
  • the first module outputs the second positioning information and the first switching compensation value to the second module at the first time t, where the second positioning information is specifically a single point positioning coordinate, where the single point positioning coordinate includes the unmanned aerial vehicle at the first The latitude and longitude and the height of the time t, the second module performs the navigation task according to the second positioning information and the first switching compensation value at the first time t.
  • the second module is the latitude and longitude of the single point positioning coordinate at the first time t
  • the latitude and longitude compensation value is added, and the height compensation value is added to the height of the single-point positioning coordinate at the first time t, and the single-point positioning coordinate after the first time t compensation is obtained, and the single-point positioning coordinate after the compensation according to the first time t is obtained. Perform navigation tasks.
  • the first module determines the unmanned aerial vehicle at time t+1 according to the satellite signal received by the positioning receiver at time t+1.
  • Single-point positioning coordinates, and transmitting the single-point positioning coordinates and the first switching compensation value at time t+1 to the second module, and the second module adds the latitude and longitude compensation value to the latitude and longitude of the single-point positioning coordinates at time t+1 , the height compensation value is added to the height of the single point positioning coordinate at time t+1,
  • the single point positioning coordinate after the compensation at time t+1 is obtained, and the navigation task is executed according to the single point positioning coordinate compensated at time t+1.
  • the principle that the second module executes the navigation task according to the output of the first module is consistent with the principle that the second module performs the navigation task according to the output of the first module at time t+1. I will not repeat them here.
  • the flight controller switches from performing the navigation task according to the RTK data and the satellite signal to performing the navigation task according to the satellite signal and the first handover compensation value, so that the UAV can be from the first The motion trajectory before the moment smoothly transitions to the motion trajectory at the beginning and after the first moment.
  • Embodiments of the present invention provide a method for controlling a mobile platform.
  • FIG. 8 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention. As shown in FIG. 8, on the basis of the embodiment shown in FIG. 1, the method in this embodiment may include:
  • Step S801 receiving RTK data through a communication interface.
  • Step S801 is consistent with step S101, and the specific principles and processes are not described herein again.
  • Step S802 Receive a satellite signal by using a positioning receiver.
  • Step S802 is the same as step S102. The specific principles and processes are not described here.
  • Step S803 when the RTK data received at the first time is invalid, the mobile station performs a navigation task according to the RTK data and the satellite signal control to perform the navigation task according to the satellite signal control mobile platform.
  • Step S803 is the same as step S103. The specific principles and processes are not described here.
  • Step S804 determining whether the RTK data received at the second time becomes valid.
  • the second moment may be a certain moment after the first moment in the above embodiment.
  • the RTK data is invalid at the first time, and the RTK data may become valid as time passes, and therefore, it is possible to detect in real time whether the RTK data becomes valid after the first time.
  • the determining whether the RTK data received at the second moment becomes valid includes the following:
  • Step 1 Obtain the RTK data received by the communication interface at the second moment.
  • Step 2 Acquire a satellite signal received by the positioning receiver at the second moment.
  • the first module acquires the number of RTKs received by the communication interface at the second moment. According to the same, at the same time, the first module acquires the satellite signal received by the positioning receiver at the second moment.
  • Step 3 Determine fifth positioning information of the movable platform according to the RTK data and the satellite signal.
  • the first module determines the fifth positioning information of the unmanned aerial vehicle at the second moment according to the RTK data received by the communication interface at the second moment and the satellite signal received by the positioning receiver at the second moment, where the fifth positioning information is specifically RTK differential positioning coordinates, which may include the latitude and longitude and altitude of the UAV at the second moment.
  • Step 4 Determine sixth positioning information of the movable platform according to the satellite signal.
  • the first module further determines, according to the satellite signal received by the positioning receiver at the second moment, the sixth positioning information of the unmanned aerial vehicle at the second moment, where the sixth positioning information is specifically a single point positioning coordinate, and the single point positioning
  • the coordinates may include the latitude and longitude and altitude of the UAV at the second moment.
  • Step 5 Determine, according to the fifth positioning information and the sixth positioning information, whether the RTK data received at the second moment becomes valid.
  • the first module determines whether the RTK data received by the communication interface at the second time becomes valid according to the RTK differential positioning coordinates and the single point positioning coordinates at the second moment.
  • the determining, according to the fifth positioning information and the sixth positioning information, whether the RTK data received at the second moment becomes valid includes: determining the fifth positioning information and the sixth positioning information. a third positioning error between the two; determining whether the RTK data received at the second time becomes valid according to the third positioning error.
  • the first module determines whether the RTK data received by the communication interface at the second time becomes valid according to the third positioning error between the RTK differential positioning coordinates and the single-point positioning coordinates at the second moment.
  • the third positioning error includes a latitude and longitude error and a height error.
  • the first module determines the latitude and longitude error according to the latitude and longitude corresponding to the latitude and longitude of the RTK differential positioning coordinate at the second moment and the latitude and longitude of the single point positioning coordinate, and determines the height error according to the height corresponding to the RTK differential positioning coordinate at the second moment and the height corresponding to the single point positioning coordinate.
  • the first module determines whether the RTK data received by the communication interface at the second time becomes valid according to the latitude and longitude error or/and the height error.
  • Determining, according to the third positioning error, whether the RTK data received at the second moment becomes valid including: when the third positioning error is less than or equal to a preset positioning error threshold At this time, it is determined that the RTK data received at the second time becomes valid. For example, when the latitude and longitude error is less than or equal to the preset latitude and longitude error threshold, the first module determines that the RTK data received by the communication interface at the second time becomes valid; or/and, when the height error is less than or equal to the preset height error At the threshold, the first module determines that the RTK data received by the communication interface at the second time becomes valid.
  • Step S805 when the RTK data received at the second moment becomes valid, the mobile platform is controlled to perform the navigation task according to the satellite signal and the first handover compensation value to switch according to the RTK data and the The satellite signal control mobile platform performs the navigation task.
  • the flight controller when the first time RTK data is invalid, the flight controller performs the navigation task according to the satellite signal and the first handover compensation value.
  • the flight controller when receiving at the second time, When the RTK data becomes active, the flight controller switches from performing the navigation task according to the satellite signal and the first handover compensation value to performing the navigation task based on the RTK data and the satellite signal.
  • the flight controller switches the navigation task to the RTK data by performing the navigation task according to the satellite signal and the first handover compensation value.
  • the navigation task is performed with the satellite signal, so that the flight controller can perform the navigation task according to the RTK differential positioning coordinates, thereby improving the navigation accuracy.
  • Embodiments of the present invention provide a method for controlling a mobile platform.
  • FIG. 9 is a flowchart of a method for controlling a mobile platform according to another embodiment of the present invention.
  • the control method of the mobile platform further includes: determining a second handover compensation value; correspondingly, the according to the satellite signal and the first handover Compensating the value control mobile platform to perform the navigation task switching to control the mobile platform to perform the navigation task according to the RTK data and the satellite signal, comprising: controlling according to the satellite signal and the first handover compensation value
  • the movable platform performs the navigation task switching to control the movable platform to perform the navigation task according to the satellite signal, the RTK data, and the second handover compensation value.
  • the flight controller when the RTK data received at the second time instant becomes valid, the flight controller performs the guidance according to the satellite signal and the first switching compensation value.
  • the navigation task is switched to perform the navigation task based on the RTK data and the satellite signal. Since when the RTK data is valid, there is a certain position error between the RTK differential positioning coordinates determined according to the RTK data and the satellite signal at the same time and the single-point positioning coordinates determined according to the satellite signal and the first switching compensation value, when When the RTK data received at the second moment becomes valid, if the navigation task is directly performed according to the RTK data and the RTK differential positioning coordinates determined by the satellite signal, the unmanned aerial vehicle may not be able to move from the second moment.
  • the trajectory smoothly transitions to the motion trajectory at the beginning and after the second moment.
  • the flight controller is based on the satellite signal and
  • the first handover compensation value performs the navigation task switching to perform the navigation task according to the satellite signal, the RTK data, and the second handover compensation value.
  • the determining the second handover compensation value includes: determining, according to the fifth positioning information, the sixth positioning information, and the first switching compensation value, when the third positioning error is less than or equal to a preset positioning error threshold
  • the second switching compensation value is described.
  • the second switching compensation value may include a latitude and longitude compensation value and a height compensation value.
  • the height of the unmanned aerial vehicle determined according to the RTK data and the satellite signal is 11 meters, and the height of the unmanned aerial vehicle determined according to the satellite signal is 7 meters, and the height error between 11 meters and 7 meters is less than
  • the height error threshold is set to determine that the RTK data at the second moment becomes valid. Assume that the height compensation value of the first switching compensation value is 3 meters. If the RTK data is still invalid at the second time, the second module shown in FIG. 5 will add 3 meters to the base of 7 meters to obtain 10 meters.
  • the height compensation value may be -1 such that the positioning height of the unmanned aerial vehicle on which the second module is based when performing the navigation task at the second time is still 10 meters.
  • the latitude and longitude compensation value for the second handover compensation value can be determined by a similar method, and will not be described again here.
  • the first module determines the RTK differential positioning coordinates of the UAV based on the RTK data and the satellite signal, and transmits the RTK differential positioning coordinate and the second switching compensation value to The second module, the second module adds the second switching compensation value to the compensated RTK differential positioning coordinates based on the RTK differential positioning coordinates, and performs the navigation task according to the compensated RTK differential positioning coordinates.
  • the second switching compensation value is decremented with time after the second time.
  • the navigation task is a reference point-based navigation task
  • the reference point includes at least one of a return point, a target end point, and a target point surrounding the flight.
  • the control method of the mobile platform further includes:
  • Step S901 Before executing the navigation task, determine a first reference point according to the RTK data received by the communication interface and the satellite signal received by the positioning receiver.
  • Step S902 Determine a second reference point according to the satellite signal received by the positioning receiver.
  • the flight controller may receive the RTK data according to the communication interface and the satellite received by the positioning receiver.
  • the signal determines a first reference point, determines a second reference point according to the satellite signal received by the positioning receiver, and sets a flag bit that has been recorded by the first reference point and a flag bit that has been recorded by the second reference point.
  • the first reference point may specifically be an RTK reference point, and the RTK reference point includes an RTK coordinate and a height of the unmanned aerial vehicle before the flight controller performs the navigation task
  • the second reference point may specifically be a GPS reference point
  • the GPS reference point includes a flight controller to perform Navigate the GPS coordinates and altitude of the unmanned aerial vehicle before the mission.
  • the flight controller Before the flight controller performs the navigation task, if the RTK data received by the communication interface is invalid and the satellite signal received by the positioning receiver is valid, the flight controller determines the second reference point according to the satellite signal received by the positioning receiver, and passes The communication system of the UAV sends a prompt message to the ground station, the prompt information is used to prompt the user that the second reference point has been recorded, and the first reference point is not recorded.
  • the flight controller Before the flight controller performs the navigation task, if the RTK data received by the communication interface and the satellite signal received by the positioning receiver are invalid, the flight controller will not be able to record the first reference point and the second reference point.
  • the controller sends a prompt message to the ground station through the communication system of the unmanned aerial vehicle, and the prompt information is used to prompt the user that the first reference point and the second reference point cannot be recorded, and the navigation task based on the reference point cannot be performed.
  • the flight controller when the flight controller performs the navigation task, it checks whether the first parameter is recorded. The test point, the second reference point, and checking whether the first switch between the first module and the communication interface is turned on, and the second switch between the first module and the positioning receiver is turned on.
  • the flight controller does not record the first reference point but records the second reference point, even if the first switch between the first module and the communication interface is closed, the first module only determines the single point positioning coordinate of the unmanned aerial vehicle according to the satellite signal.
  • the second module performs a navigation task according to the single point positioning coordinate and the second reference point.
  • the flight controller records the first reference point and the second reference point, the first switch between the first module and the communication interface is closed, and the second switch between the first module and the positioning receiver is closed, then the first module defaults
  • the RTK differential positioning coordinates of the UAV are determined according to the RTK data and the satellite signal, and the second module performs the navigation task according to the RTK differential positioning coordinates and the first reference point.
  • the first module determines the single point positioning coordinate of the unmanned aerial vehicle by default according to the satellite signal, and the second module performs navigation according to the single point positioning coordinate and the second reference point. task.
  • Step S903 When the RTK data received at the first time is invalid, the reference point switching compensation value is determined.
  • the flight controller When performing the navigation task, when the RTK data is valid, the default reference point is the first reference point, and if the RTK data received at the first time is invalid, the flight controller performs navigation according to the RTK data and the satellite signal.
  • the task is switched to perform the navigation task according to the satellite signal and the first handover compensation value.
  • the reference point of the navigation task that is, the first reference point, also needs to be switched, and the reference point is determined before the first reference point is switched. Switch the compensation value.
  • the determining the reference point switching compensation value comprises: determining a reference point switching compensation value according to the first switching compensation value.
  • the first switching compensation value is a reference point switching compensation value.
  • Step S904 determining a third reference point according to the reference point switching compensation value and the second reference point.
  • the reference point switching compensation value is added to the second reference point to obtain a third reference point.
  • Step S905 Switching the reference point of the navigation task from the first reference point to the third reference point.
  • the flight controller switches the reference point of the navigation task from the first reference point to the third reference point. After the reference point of the navigation task is switched from the first reference point to the third reference point, The flight controller re-plans the navigation path according to the third reference point, and controls the unmanned aerial vehicle flight according to the re-planned navigation path, so that the unmanned aerial vehicle smoothly transitions to the re-planned navigation path.
  • the flight controller switches from performing the navigation task according to the satellite signal and the first handover compensation value to the satellite signal, the RTK data, the first The second switching compensation value performs the navigation task.
  • the reference point of the navigation task that is, the third reference point, also needs to be switched.
  • the reference point switching compensation value is determined, and the reference point switching compensation value may be the second switching compensation value, in the first reference.
  • the reference point switching compensation value is added on the basis of the point to obtain a fourth reference point.
  • the flight controller switches the reference point of the navigation task from the third reference point to the fourth reference point.
  • the flight controller After the reference point of the navigation task is switched from the third reference point to the fourth reference point, the flight controller re-plans the navigation path according to the fourth reference point, and controls the unmanned aerial vehicle flight according to the re-planned navigation path, so that the unmanned aerial vehicle Smooth transition to the re-planned navigation path.
  • the navigation task may also be a navigation task without a reference point.
  • the flight controller switches the execution of the navigation task according to the satellite signal and the first handover compensation value to The navigation task is performed according to the satellite signal, the RTK data, and the second handover compensation value, so that the UAV can smoothly transition from the motion trajectory before the second moment to the motion trajectory starting and after the second moment.
  • Embodiments of the present invention provide a control device for a mobile platform.
  • 10 is a structural diagram of a control device of a mobile platform according to an embodiment of the present invention.
  • the control device 100 of the mobile platform includes: a communication interface 101, a positioning receiver 102, and a processor 103;
  • the device 103 may be one or more, the one or more processors 103 working separately or in cooperation;
  • the processor 103 is respectively connected with the communication interface 101 and the positioning receiver 102;
  • the communication interface 101 is for receiving RTK data; positioning and receiving
  • the machine 102 is configured to receive a satellite signal;
  • the processor 103 is configured to: when the RTK data received at the first time is invalid, switch the mobile platform to perform the navigation task according to the RTK data and the satellite signal to The satellite signal control mobile platform performs the navigation task.
  • control device of the mobile platform provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 1 and will not be further described herein.
  • the RTK data is received through the communication interface, and the positioning receiver receives the satellite signal.
  • the mobile station performs the navigation task according to the RTK data and the satellite signal to control the mobile platform to perform the navigation task according to the satellite signal.
  • the mobile platform can still complete the navigation task when the RTK data is invalid, improve the reliability of the mobile platform to perform the navigation task, and ensure the safe operation of the mobile platform.
  • Embodiments of the present invention provide a control device for a mobile platform.
  • the processor 103 is further configured to: determine whether the RTK data received at the first time is valid.
  • the processor 103 is configured to: when the RTK data received at the first time is valid, specifically: acquiring RTK data received by the communication interface at the first moment; acquiring a satellite signal received by the positioning receiver at the first moment; Determining, by the RTK data and the satellite signal, first positioning information of the movable platform; determining second positioning information of the movable platform according to the satellite signal; determining, according to the first positioning information and the second positioning information, Whether the RTK data received at a time is valid.
  • the processor 103 is configured to determine, according to the first positioning information and the second positioning information, whether the RTK data received at the first time is valid, specifically, determining, by using the first positioning information and the second positioning information, a first positioning error between the two; determining whether the RTK data received at the first time is valid according to the first positioning error.
  • the determining, by the processor 103, whether the RTK data received at the first time is valid according to the first positioning error is specifically used to: when the first positioning error is greater than or equal to a preset positioning error threshold, determining that the first The RTK data received at the moment is invalid.
  • control device of the mobile platform provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 6, and details are not described herein again.
  • the RTK data received by the communication interface at the first moment is acquired, and the satellite signal received by the positioning receiver at the first moment is acquired, and the first positioning information of the movable platform is determined according to the RTK data and the satellite signal, according to the satellite.
  • the signal determines the second positioning information of the movable platform, determines whether the RTK data received at the first moment is valid according to the first positioning information and the second positioning information, and avoids an abnormality of the navigation task due to invalidation of the RTK data.
  • Embodiments of the present invention provide a control device for a mobile platform.
  • the processor 103 is further configured to: determine a first handover compensation value; the processor 103 controls the mobile platform to perform a navigation task according to the RTK data and the satellite signal to switch to When the satellite signal controls the mobile platform to perform the navigation task, specifically, the method is: controlling a mobile platform to perform a navigation task according to the RTK data and the satellite signal to be based on the satellite signal and the first switch The compensation value controls the movable platform to perform the navigation task.
  • the processor 103 is specifically configured to: acquire RTK data received by the communication interface at a historical moment before the first moment; and acquire a satellite signal received by the positioning receiver at a historical moment before the first moment; Determining third positioning information of the movable platform according to the RTK data of the historical moment and the satellite signal of the historical moment; determining fourth positioning information of the movable platform according to the satellite signal of the historical moment; and the third positioning A second positioning error between the information and the fourth positioning information is determined as the first switching compensation value.
  • the flight controller switches from performing the navigation task according to the RTK data and the satellite signal to performing the navigation task according to the satellite signal and the first handover compensation value, so that the UAV can be from the first The motion trajectory before the moment smoothly transitions to the motion trajectory at the beginning and after the first moment.
  • Embodiments of the present invention provide a control device for a mobile platform.
  • the processor 103 is further configured to: determine whether the RTK data received at the second moment becomes valid. Specifically, the processor 103 determines whether the RTK data received at the second time is valid, and is used to: obtain the RTK data received by the communication interface at the second time; and acquire the received by the positioning receiver at the second time.
  • a satellite signal determining, according to the RTK data and the satellite signal, fifth positioning information of the movable platform; determining, according to the satellite signal, sixth positioning information of the movable platform; according to the fifth positioning information and the sixth The positioning information determines whether the RTK data received at the second time becomes valid.
  • the processor 103 determines, according to the fifth positioning information and the sixth positioning information, that the second time When the received RTK data becomes valid, the method is specifically configured to: determine a third positioning error between the fifth positioning information and the sixth positioning information; and determine, according to the third positioning error, the second time Whether the received RTK data becomes valid.
  • the processor 103 determines, according to the third positioning error, whether the RTK data received at the second time time is valid, and is specifically configured to: when the third positioning error is less than or equal to a preset positioning error threshold, determine The RTK data received at the second time becomes valid.
  • the processor 103 is further configured to: switch the mobile platform to perform the navigation task according to the satellite signal and the first handover compensation value to be The RTK data and the satellite signal control mobile platform perform the navigation task.
  • control device of the mobile platform provided by the embodiment of the present invention are similar to the embodiment shown in FIG. 8 and will not be further described herein.
  • the flight controller switches the navigation task to the RTK data by performing the navigation task according to the satellite signal and the first handover compensation value.
  • the navigation task is performed with the satellite signal, so that the flight controller can perform the navigation task according to the RTK differential positioning coordinates, thereby improving the navigation accuracy.
  • Embodiments of the present invention provide a control device for a mobile platform.
  • the processor 103 is further configured to: determine a second handover compensation value; the processor 103 controls the mobile platform to perform the performing according to the satellite signal and the first handover compensation value.
  • the method is: controlling the mobile platform according to the satellite signal and the first handover compensation value to perform the The navigation task switches to control the movable platform to perform the navigation task according to the satellite signal, the RTK data, and the second handover compensation value.
  • the processor 103 determines the second handover compensation value, specifically, when the third positioning error is less than or equal to the preset positioning error threshold, determining, according to the fifth positioning information, the sixth positioning information, and the first switching compensation value, The second switching compensation value.
  • the second handover compensation value is decremented with time.
  • the navigation task is a reference point-based navigation task; the processor 103 is further configured to: Before performing the navigation task, determining a first reference point according to the RTK data received by the communication interface and the satellite signal received by the positioning receiver; determining a second reference point according to the satellite signal received by the positioning receiver; When the RTK data received at the moment is invalid, determining a reference point switching compensation value; determining a third reference point according to the reference point switching compensation value and the second reference point; and switching the reference point of the navigation task from the first reference point to the third Reference point.
  • the processor 103 is specifically configured to: determine the reference point switching compensation value according to the first switching compensation value.
  • the reference point includes at least one of a return point, a target end point, and a target point surrounding the flight.
  • the movable platform includes an unmanned aerial vehicle.
  • control device of the mobile platform provided by the embodiment of the present invention are similar to those of the embodiment shown in FIG. 9, and details are not described herein again.
  • the flight controller switches the execution of the navigation task according to the satellite signal and the first handover compensation value to The navigation task is performed according to the satellite signal, the RTK data, and the second handover compensation value, so that the UAV can smoothly transition from the motion trajectory before the second moment to the motion trajectory starting and after the second moment.
  • the embodiment of the invention provides a mobile platform, which is specifically an unmanned aerial vehicle.
  • 11 is a structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • the unmanned aerial vehicle 1100 includes a fuselage, a power system, and a flight controller 1118.
  • the power system includes at least one of the following: a motor 1107, a propeller 1106 and an electronic governor 1117, a power system is mounted to the fuselage for providing flight power; and a flight controller 1118 is communicatively coupled to the power system for controlling the UAV flight.
  • the unmanned aerial vehicle 1100 further includes: a sensing system 1108 , a communication system 1110 , a supporting device 1102 , and a shooting device 1104 .
  • the supporting device 1102 may specifically be a cloud platform, and the communication system 1110 may specifically include receiving
  • the receiver is configured to receive a wireless signal transmitted by the antenna 1114 of the ground station 1112, and 1116 represents an electromagnetic wave generated during communication between the receiver and the antenna 1114.
  • the RTK data is received through the communication interface, and the positioning receiver receives the satellite signal.
  • the mobile station performs the navigation task according to the RTK data and the satellite signal to control the mobile platform to perform the navigation task according to the satellite signal.
  • the mobile platform can still complete the navigation task when the RTK data is invalid, improve the reliability of the mobile platform to perform the navigation task, and ensure the safe operation of the mobile platform.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Navigation (AREA)

Abstract

一种可移动平台的控制方法、设备及可移动平台,该方法包括:通过通讯接口(21,101)接收RTK数据;通过定位接收机(22,102)接收卫星信号;当在第一时刻接收到的RTK数据无效时,将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务。通过通讯接口(21,101)接收RTK数据,以及定位接收机(22,102)接收卫星信号,当RTK数据无效时,将根据RTK数据和卫星信号控制可移动平台执行导航任务切换为根据卫星信号控制可移动平台执行导航任务,使得可移动平台在RTK数据无效时依然能够完成导航任务,提高了可移动平台执行导航任务的可靠性,保证可移动平台安全运行。

Description

可移动平台的控制方法、设备及可移动平台 技术领域
本发明实施例涉及无人机领域,尤其涉及一种可移动平台的控制方法、设备及可移动平台。
背景技术
实时动态载波差分定位(Real-time kinematic,RTK)是一种全球卫星导航系统(Global Navigation Satellite System,GNSS)高精度定位技术,其定位精度可以达到厘米级。基于RTK的定位作业方案中需要两个站点:基准站和流动站,流动站为用户接收机,可以安装在不同可移动平台上,如无人飞行器、汽车等。其中,流动站需要接收基准站所传输的数据,才能完成RTK定位,从而获取到精确位置。
目前,由于建筑物遮挡、通讯故障、信号干扰等原因会出现用户接收机接收到的RTK数据无效的情况,无法根据RTK数据完成RTK定位。此时,如果没有相应的安全策略,可能会导致基于位置信息的导航任务执行异常,影响可移动平台的安全运行。
发明内容
本发明实施例提供一种可移动平台的控制方法、设备及可移动平台,以提高可移动平台执行导航任务的可靠性,保证可移动平台安全运行。
本发明实施例的第一方面是提供一种可移动平台的控制方法,包括:
通过通讯接口接收RTK数据;
通过定位接收机接收卫星信号;
当在第一时刻接收到的RTK数据无效时,将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务。
本发明实施例的第二方面是提供一种可移动平台的控制设备,包括:通讯接口、定位接收机、处理器;
所述通讯接口,用于接收RTK数据;
所述定位接收机,用于接收卫星信号;
所述处理器用于:
当在第一时刻接收到的RTK数据无效时,将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务。
本发明实施例的第三方面是提供一种可移动平台,包括:
机身;
动力系统,安装在所述机身,用于提供运行动力;
以及第二方面提供的控制设备。
本发明实施例提供的可移动平台的控制方法、设备及可移动平台,通过通讯接口接收RTK数据,以及定位接收机接收卫星信号,当RTK数据无效时,将根据RTK数据和卫星信号控制可移动平台执行导航任务切换为根据卫星信号控制可移动平台执行导航任务,使得可移动平台在RTK数据无效时依然能够根据卫星信号完成导航任务,提高了可移动平台执行导航任务的可靠性,保证可移动平台安全运行。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的可移动平台的控制方法的流程图;
图2为本发明实施例提供的可移动平台的控制方法适用的系统结构图;
图3为本发明实施例提供的可移动平台的控制方法适用的网络架构图;
图4为本发明实施例提供的可移动平台的控制方法适用的网络架构 图;
图5为本发明实施例提供的飞行控制器的模块结构示意图;
图6为本发明另一实施例提供的可移动平台的控制方法的流程图;
图7为本发明另一实施例提供的可移动平台的控制方法的流程图;
图8为本发明另一实施例提供的可移动平台的控制方法的流程图;
图9为本发明另一实施例提供的可移动平台的控制方法的流程图;
图10为本发明实施例提供的可移动平台的控制设备的结构图;
图11为本发明实施例提供的无人飞行器的结构图。
附图标记:
10-无人飞行器   20-控制设备    21-无线电台通讯接口
22-定位接收机   23-RTK基站     24-卫星   31-基准站
32-无线基站     33-无线网络通讯接口      34-地面站
100-控制设备     101-通讯接口          102-定位接收机
103-处理器       1100-无人飞行器
1107-电机     1106-螺旋桨      1117-电子调速器
1118-飞行控制器     1108-传感系统    1110-通信系统
1102-支撑设备       1104-拍摄设备    1112-地面站
1114-天线           1116-电磁波
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书 中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种可移动平台的控制方法。图1为本发明实施例提供的可移动平台的控制方法的流程图。如图1所示,本实施例中的方法,可以包括:
步骤S101、通过通讯接口接收RTK数据。
本实施例方法的执行主体可以是可移动平台中用于控制可移动平台移动的控制设备,可移动平台具体可以是无人飞行器、汽车、船舶等,本实施例以无人飞行器来作示意性说明。
在本实施例中,无人飞行器上设置有控制设备、通讯接口、定位接收机,控制设备用于控制无人飞行器飞行,通讯接口用于接收RTK数据,定位接收机用于接收卫星信号。其中,控制设备具体可以是无人飞行器的飞行控制器,也可以是其他通用或者专用的处理器,在本实施例中以飞行控制器来作示意性说明。通讯接口接收RTK数据包括如下几种可能的情况:
一种可能的情况是:无人飞行器的通讯接口具体为无线电台通讯接口,如图2所示,无人飞行器10包括控制设备20、无线电台通讯接口21、定位接收机22,无线电台通讯接口21接收RTK基站23广播的RTK数据。
另一种可能的情况是:无人飞行器的通讯接口具体为无线网络通讯接口,如图3所示,基准站31接收卫星24发送的卫星信号,并生成RTK数据,基准站31通过网络将RTK数据传输给运营商的无线基站32,该网络可以是有线网络,也可以是无线网络,即基准站31可通过有线的方式将RTK数据传输给运营商的无线基站32,也可以通过无线的方式将RTK数据传输给运营商的无线基站32。无线基站32向无人飞行器10发送RTK数据,无人飞行器10的无线网络通讯接口33接收无线基站32发送的RTK数据。
再一种可能的情况是:如图4所示,基准站31接收卫星24发送的卫星信号,并生成RTK数据,基准站31通过网络将RTK数据传输给运营商的无线基站32,无线基站32将RTK数据发送给地面站34,地面站34向无人飞行器10发送该RTK数据,无线网络通讯接口33接收地面站34发送的RTK数据。在本实施例中,地面站34具体可以是遥控器、智能手机、平板电脑、地面控制站等及其组合。
步骤S102、通过定位接收机接收卫星信号。
如图2-图4所示,定位接收机22可接收卫星24发送的卫星信号。在本实施例中,定位接收机可以为GNSS接收机,具体地,定位接收机为GPS接收机、北斗接收机、伽利略接收机、格洛纳斯接收机中的至少一种,卫星24具体为与接收机对应的导航系统的卫星。
步骤S103、当在第一时刻接收到的RTK数据无效时,将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务。
在本实施例中,飞行控制器可以根据RTK数据和卫星信号确定无人飞行器的定位信息,也可以只根据卫星信号确定无人飞行器的定位信息,无人飞行器的定位信息可以包括经纬度信息、高度信息等。飞行控制器既可以根据所述RTK数据和所述卫星信号执行导航任务,也可以只根据卫星信号执行导航任务。由于根据RTK数据和卫星信号确定的无人飞行器的定位信息的精度较高,即通过RTK定位的方式确定的无人飞行器的定位信息的精度比只通过卫星信号确定的无人飞行器的定位信息的精度要高,因此,当RTK数据有效时,飞行控制器优先根据所述RTK数据和所述卫星信号执行导航任务。
但是,RTK数据的有效性决定于诸多因素,例如,RTK基站23与无线电台通讯接口21之间的无线信号质量、基准站31与无线基站32之间的网络带宽、卫星24向基准站31发送的卫星信号的质量、地面站34的收发功率等,从而导致RTK数据可能会突然无效。
因此,当某一时刻无人飞行器的通讯接口接收到的RTK数据无效时,飞行控制器需要由根据所述RTK数据和所述卫星信号执行导航任务切换为根据所述卫星信号执行所述导航任务。
如图5所示,在本实施例中,飞行控制器可以包括两个功能模块,分别为第一模块和第二模块,此处只是示意性说明,并不限定飞行控制器内部的功能模块。其中,第一模块可以获取通讯接口接收到的RTK数据,以及定位接收机接收到的卫星信号,可选的,第一模块在同一时刻接收到RTK数据和卫星信号,且第一模块周期性接收RTK数据和卫星信号。第一模块根据RTK数据和卫星信号可确定出无人飞行器的一个定位信息,该定位信息具体为RTK差分定位坐标;第一模块根据卫星信号可确定出无人飞行器的另一个定位信息,该定位信息具体为单点定位坐标;由于RTK差分定位坐标的精度比单点定位坐标的精度高,因此,当RTK数据有效时,第一模块优先输出RTK差分定位坐标给第二模块,第二模块根据RTK差分定位坐标执行导航任务。当RTK数据无效时,第一模块输出单点定位坐标给第二模块,第二模块根据单点定位坐标执行导航任务。可选的,第一模块在输出定位坐标的同时还可以输出一个标识位,该标识位用于标识第一模块输出的定位坐标是RTK差分定位坐标还是单点定位坐标,以及第一模块输出的定位坐标是否有效等。
另外,第一模块和通讯接口之间还可以设置有第一开关,第一模块和定位接收机之间还可以设置有第二开关,飞行控制器可以根据地面站发送的控制指令控制第一开关和第二开关,即用户可以通过地面站控制第一模块是否接收RTK数据,以及是否接收卫星信号,从而控制飞行控制器根据RTK数据和卫星信号执行导航任务,或者根据卫星信号执行导航任务。例如,当第一开关断开时,即使通讯接口不断的接收RTK数据,飞行控制器只根据所述卫星信号执行所述导航任务。
本实施例通过通讯接口接收RTK数据,以及定位接收机接收卫星信号,当RTK数据无效时,将根据RTK数据和卫星信号控制可移动平台执行导航任务切换为根据卫星信号控制可移动平台执行导航任务,使得可移动平台在RTK数据无效时依然能够完成导航任务,提高了可移动平台执行导航任务的可靠性,保证可移动平台安全运行。
本发明实施例提供一种可移动平台的控制方法。图6为本发明另一实施例提供的可移动平台的控制方法的流程图。如图6所示,在图1所示实 施例的基础上,可移动平台的控制方法还包括:确定在第一时刻接收到的RTK数据是否有效,具体的,确定在第一时刻接收到的RTK数据是否有效,包括如下步骤:
步骤S601、获取通讯接口在第一时刻接收到的RTK数据。
步骤S602、获取定位接收机在第一时刻接收到的卫星信号。
如图5所示,第一模块获取通讯接口在第一时刻t接收到的RTK数据,同时,第一模块获取定位接收机在第一时刻t接收到的卫星信号。
步骤S603、根据所述RTK数据和所述卫星信号确定可移动平台的第一定位信息。
第一模块根据通讯接口在第一时刻t接收到的RTK数据和定位接收机在第一时刻t接收到的卫星信号,确定无人飞行器在第一时刻t的第一定位信息,该第一定位信息具体为RTK差分定位坐标,RTK差分定位坐标可以是二维坐标,也可以是三维坐标,以三维坐标为例,该RTK差分定位坐标包括无人飞行器在第一时刻t的经纬度和高度。
步骤S604、根据所述卫星信号确定可移动平台的第二定位信息。
同时,第一模块还根据定位接收机在第一时刻t接收到的卫星信号,确定无人飞行器在第一时刻t的第二定位信息,该第二定位信息具体为单点定位坐标,单点定位坐标可以是二维坐标,也可以是三维坐标,以三维坐标为例,该单点定位坐标包括无人飞行器在第一时刻t的经纬度和高度。
步骤S605、根据所述第一定位信息和所述第二定位信息确定在第一时刻接收到的RTK数据是否有效。
第一模块根据第一时刻t时的RTK差分定位坐标和单点定位坐标确定通讯接口在第一时刻t接收到的RTK数据是否有效。
具体的,所述根据所述第一定位信息和所述第二定位信息确定在第一时刻接收到的RTK数据是否有效,包括:确定所述第一定位信息与所述第二定位信息之间的第一定位误差;根据所述第一定位误差确定在第一时刻接收到的RTK数据是否有效。
例如,第一模块根据第一时刻t时RTK差分定位坐标和单点定位坐标之间的第一定位误差确定通讯接口在第一时刻t接收到的RTK数据是否有 效。具体的,第一定位误差可以至少包括经纬度误差,在某些实施例中第一定位误差还包括高度误差。第一模块根据第一时刻t的RTK差分定位坐标对应的经纬度和单点定位坐标对应的经纬度确定经纬度误差,根据第一时刻t的RTK差分定位坐标对应的高度和单点定位坐标对应的高度确定高度误差,第一模块根据该经纬度误差或/及该高度误差,确定通讯接口在第一时刻t接收到的RTK数据是否有效。
所述根据所述第一定位误差确定在第一时刻接收到的RTK数据是否有效,包括:当所述第一定位误差大于或等于预设的定位误差阈值时,确定在第一时刻接收到的RTK数据无效。例如,当经纬度误差大于或等于预设的经纬度误差阈值时,第一模块确定通讯接口在第一时刻t接收到的RTK数据无效;或/及,当高度误差大于或等于预设的高度误差阈值时,第一模块确定通讯接口在第一时刻t接收到的RTK数据无效。
本实施例通过获取通讯接口在第一时刻接收到的RTK数据,以及获取定位接收机在第一时刻接收到的卫星信号,根据RTK数据和卫星信号确定可移动平台的第一定位信息,根据卫星信号确定可移动平台的第二定位信息,根据第一定位信息和第二定位信息确定在第一时刻接收到的RTK数据是否有效,避免由于RTK数据无效而导致导航任务出现异常。
本发明实施例提供一种可移动平台的控制方法。图7为本发明另一实施例提供的可移动平台的控制方法的流程图。如图7所示,在图1或图6所示实施例的基础上,可移动平台的控制方法还包括:确定第一切换补偿值;相应的,所述将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务,包括:将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务。
例如,当在第一时刻接收到的RTK数据无效时,飞行控制器需要由根据所述RTK数据和所述卫星信号执行导航任务切换为根据所述卫星信号执行所述导航任务。由于当RTK数据有效时,在同一时刻根据RTK数据和卫星信号确定出的RTK差分定位坐标和根据卫星信号确定出的单点 定位坐标之间存在一定的位置误差,当在第一时刻接收到的RTK数据无效时,如果直接根据卫星信号确定出的单点定位坐标执行导航任务,可能会导致无人飞行器无法从第一时刻之前的运动轨迹平滑过渡到第一时刻开始及之后的运动轨迹,为了避免该问题,在本实施例中,当在第一时刻接收到的RTK数据无效时,飞行控制器由根据所述RTK数据和所述卫星信号执行导航任务切换为根据所述卫星信号和所述第一切换补偿值执行所述导航任务。
具体的,所述确定第一切换补偿值,包括如下步骤:
步骤S701、获取通讯接口在第一时刻前的历史时刻接收到的RTK数据。
步骤S702、获取定位接收机在第一时刻前的历史时刻接收到的卫星信号。
如图5所示,第一模块根据通讯接口在第一时刻t接收到的RTK数据和定位接收机在第一时刻t接收到的卫星信号,确定出无人飞行器在第一时刻t的第一定位信息;根据定位接收机在第一时刻t接收到的卫星信号,确定出无人飞行器在第一时刻t的第二定位信息;若所述第一定位信息与所述第二定位信息之间的第一定位误差大于或等于预设的定位误差阈值,则确定在第一时刻接收到的RTK数据无效。
在本实施例中,第一模块可以存储通讯接口在第一时刻t之前的历史时刻接收到的RTK数据,也可以存储定位接收机在第一时刻t之前的历史时刻接收到的卫星信号对应的卫星数据。
可选的,第一模块获取通讯接口在第一时刻t的前一时刻即t-1时刻接收到的RTK数据,以及获取定位接收机在第一时刻t的前一时刻即t-1时刻接收到的卫星信号对应的卫星数据。
步骤S703、根据所述历史时刻的RTK数据和所述历史时刻的卫星信号确定可移动平台的第三定位信息。
第一模块根据第一时刻t的前一时刻即t-1时刻的RTK数据和卫星信号对应的卫星数据确定无人飞行器在t-1时刻的第三定位信息,该第三定位信息具体为RTK差分定位坐标,该RTK差分定位坐标可以包括无人飞行器在t-1时刻的经纬度和高度。
步骤S704、根据所述历史时刻的卫星信号确定可移动平台的第四定位信息。
同时,第一模块还根据第一时刻t的前一时刻即t-1时刻的卫星信号对应的卫星数据确定无人飞行器在t-1时刻的第四定位信息,该第四定位信息具体为单点定位坐标,该单点定位坐标可以包括无人飞行器在t-1时刻的经纬度和高度。
步骤S705、将所述第三定位信息和所述第四定位信息之间的第二定位误差确定为所述第一切换补偿值。
所述第三定位信息和所述第四定位信息之间的第二定位误差可以包括t-1时刻RTK差分定位坐标对应的经纬度和t-1时刻单点定位坐标对应的经纬度之间的经纬度误差,以及t-1时刻RTK差分定位坐标对应的高度和t-1时刻单点定位坐标对应的高度之间的高度误差。
第一模块将第二定位误差确定为第一时刻t的所述第一切换补偿值,所述第一切换补偿值可以包括经纬度补偿值和高度补偿值,具体的,t-1时刻RTK差分定位坐标对应的经纬度和t-1时刻单点定位坐标对应的经纬度之间的经纬度误差作为经纬度补偿值,t-1时刻RTK差分定位坐标对应的高度和t-1时刻单点定位坐标对应的高度之间的高度误差作为高度补偿值。
第一模块在第一时刻t输出第二定位信息和所述第一切换补偿值给第二模块,该第二定位信息具体为单点定位坐标,该单点定位坐标包括无人飞行器在第一时刻t的经纬度和高度,第二模块在第一时刻t根据第二定位信息和所述第一切换补偿值执行导航任务,具体的,第二模块在第一时刻t为单点定位坐标的经纬度补上经纬度补偿值,在第一时刻t为单点定位坐标的高度补上高度补偿值,得到第一时刻t补偿后的单点定位坐标,并根据第一时刻t补偿后的单点定位坐标执行导航任务。
同理,在第一时刻t之后例如t+1时刻,如果RTK数据依然无效,则第一模块根据定位接收机在t+1时刻接收到的卫星信号,确定无人飞行器在t+1时刻的单点定位坐标,并将t+1时刻的单点定位坐标和所述第一切换补偿值传输给第二模块,第二模块为t+1时刻的单点定位坐标的经纬度补上经纬度补偿值,为t+1时刻的单点定位坐标的高度补上高度补偿值, 得到t+1时刻补偿后的单点定位坐标,并根据t+1时刻补偿后的单点定位坐标执行导航任务。如果t+2时刻及之后的时刻RTK数据依然无效,则第二模块根据第一模块的输出执行导航任务的原理与t+1时刻第二模块根据第一模块的输出执行导航任务的原理一致,此处不再赘述。
本实施例中,在第一时刻RTK数据无效时,飞行控制器由根据RTK数据和卫星信号执行导航任务切换为根据卫星信号和第一切换补偿值执行导航任务,使得无人飞行器能够从第一时刻之前的运动轨迹平滑过渡到第一时刻开始及之后的运动轨迹。
本发明实施例提供一种可移动平台的控制方法。图8为本发明另一实施例提供的可移动平台的控制方法的流程图。如图8所示,在图1所示实施例的基础上,本实施例中的方法,可以包括:
步骤S801、通过通讯接口接收RTK数据。
步骤S801与步骤S101一致,具体原理及过程此处不再赘述。
步骤S802、通过定位接收机接收卫星信号。
步骤S802与步骤S102一致,具体原理及过程此处不再赘述。
步骤S803、当在第一时刻接收到的RTK数据无效时,将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务。
步骤S803与步骤S103一致,具体原理及过程此处不再赘述。
步骤S804、确定在第二时刻接收到的RTK数据是否变为有效。
在本实施例中,第二时刻可以是上述实施例中第一时刻之后的某个时刻。根据上述实施例可知,在第一时刻RTK数据无效,随着时间的推移,RTK数据可能会变得有效,因此,在第一时刻之后可以实时检测RTK数据是否变为有效。
具体的,所述确定在第二时刻接收到的RTK数据是否变为有效,包括如下:
步骤1、获取通讯接口在第二时刻接收到的RTK数据。
步骤2、获取定位接收机在第二时刻接收到的卫星信号。
如图5所示,第一模块获取通讯接口在第二时刻接收到的RTK数 据,同时,第一模块获取定位接收机在第二时刻接收到的卫星信号。
步骤3、根据所述RTK数据和所述卫星信号确定可移动平台的第五定位信息。
第一模块根据通讯接口在第二时刻接收到的RTK数据和定位接收机在第二时刻接收到的卫星信号,确定无人飞行器在第二时刻的第五定位信息,该第五定位信息具体为RTK差分定位坐标,该RTK差分定位坐标可以包括无人飞行器在第二时刻的经纬度和高度。
步骤4、根据所述卫星信号确定可移动平台的第六定位信息。
同时,第一模块还根据定位接收机在第二时刻接收到的卫星信号,确定无人飞行器在第二时刻的第六定位信息,该第六定位信息具体为单点定位坐标,该单点定位坐标可以包括无人飞行器在第二时刻的经纬度和高度。
步骤5、根据所述第五定位信息和所述第六定位信息确定在第二时刻接收到的RTK数据是否变为有效。
第一模块根据第二时刻的RTK差分定位坐标和单点定位坐标确定通讯接口在第二时刻接收到的RTK数据是否变为有效。
具体的,所述根据所述第五定位信息和所述第六定位信息确定在第二时刻接收到的RTK数据是否变为有效,包括:确定所述第五定位信息与所述第六定位信息之间的第三定位误差;根据所述第三定位误差确定在第二时刻接收到的RTK数据是否变为有效。
例如,第一模块根据第二时刻的RTK差分定位坐标和单点定位坐标之间的第三定位误差确定通讯接口在第二时刻接收到的RTK数据是否变为有效。具体的,第三定位误差包括经纬度误差和高度误差。第一模块根据第二时刻的RTK差分定位坐标对应的经纬度和单点定位坐标对应的经纬度确定经纬度误差,根据第二时刻的RTK差分定位坐标对应的高度和单点定位坐标对应的高度确定高度误差,第一模块根据该经纬度误差或/及该高度误差,确定通讯接口在第二时刻接收到的RTK数据是否变为有效。
所述根据所述第三定位误差确定在第二时刻接收到的RTK数据是否变为有效,包括:当所述第三定位误差小于或等于预设的定位误差阈值 时,确定在第二时刻接收到的RTK数据变为有效。例如,当经纬度误差小于或等于预设的经纬度误差阈值时,第一模块确定通讯接口在第二时刻接收到的RTK数据变为有效;或/及,当高度误差小于或等于预设的高度误差阈值时,第一模块确定通讯接口在第二时刻接收到的RTK数据变为有效。
步骤S805、当在第二时刻接收到的RTK数据变为有效时,将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述RTK数据和所述卫星信号控制可移动平台执行所述导航任务。
根据上述实施例可知,当第一时刻RTK数据无效时,飞行控制器根据所述卫星信号和所述第一切换补偿值执行所述导航任务,在本实施例中,当在第二时刻接收到的RTK数据变为有效时,飞行控制器由根据所述卫星信号和所述第一切换补偿值执行所述导航任务切换为根据所述RTK数据和所述卫星信号执行所述导航任务。
本实施例通过在第一时刻之后的第二时刻检测RTK数据是否变为有效,当RTK数据变为有效时,飞行控制器由根据卫星信号和第一切换补偿值执行导航任务切换为根据RTK数据和卫星信号执行导航任务,使得飞行控制器可以根据RTK差分定位坐标来执行导航任务,提高导航的精确度。
本发明实施例提供一种可移动平台的控制方法。图9为本发明另一实施例提供的可移动平台的控制方法的流程图。如图9所示,在图8所示实施例的基础上,可移动平台的控制方法还包括:确定第二切换补偿值;相应的,所述将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述RTK数据和所述卫星信号控制可移动平台执行所述导航任务,包括:将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述卫星信号、所述RTK数据、所述第二切换补偿值控制可移动平台执行所述导航任务。
例如上述实施例所述的,当在第二时刻接收到的RTK数据变为有效时,飞行控制器由根据所述卫星信号和所述第一切换补偿值执行所述导 航任务切换为根据所述RTK数据和所述卫星信号执行所述导航任务。由于当RTK数据有效时,在同一时刻根据RTK数据和卫星信号确定出的RTK差分定位坐标和根据卫星信号和第一切换补偿值确定出的单点定位坐标之间存在一定的位置误差,当在第二时刻接收到的RTK数据变为有效时,如果直接根据所述RTK数据和所述卫星信号确定出的RTK差分定位坐标执行导航任务,可能会导致无人飞行器无法从第二时刻之前的运动轨迹平滑过渡到第二时刻开始及之后的运动轨迹,为了避免该问题,在本实施例中,当在第二时刻接收到的RTK数据变为有效时,飞行控制器由根据所述卫星信号和所述第一切换补偿值执行所述导航任务切换为根据所述卫星信号、所述RTK数据、所述第二切换补偿值执行所述导航任务。
具体的,所述确定第二切换补偿值,包括:当所述第三定位误差小于或等于预设的定位误差阈值时,根据第五定位信息、第六定位信息和第一切换补偿值确定所述第二切换补偿值。第二切换补偿值可以包括经纬度补偿值和高度补偿值。
例如,在第二时刻,根据RTK数据和卫星信号确定的无人飞行器的高度为11米,根据卫星信号确定的无人飞行器的高度为7米,11米和7米之间的高度误差小于预设的高度误差阈值,确定第二时刻的RTK数据变为有效。假设第一切换补偿值的高度补偿值为3米,如果在第二时刻,RTK数据依然无效,则如图5所示的第二模块将在7米的基础上补3米得到10米,将10米作为其在第二时刻执行导航任务时所依据的无人飞行器的定位高度,但是,当第二时刻RTK数据恢复有效时,需要根据RTK数据和卫星信号执行导航任务,如果直接将11米作为第二模块在第二时刻执行导航任务时所依据的无人飞行器的定位高度,可能会导致无人飞行器的飞行高度出现跳跃,因此,需要在11米的基础上补一个高度补偿值,该高度补偿值可以是-1,使得第二模块在第二时刻执行导航任务时所依据的无人飞行器的定位高度还是10米。对于第二切换补偿值的经纬度补偿值可以采用类似的方法确定,此处不再赘述。
在第二时刻,第一模块根据RTK数据和卫星信号确定出无人飞行器的RTK差分定位坐标,并将RTK差分定位坐标和第二切换补偿值传输给 第二模块,第二模块在RTK差分定位坐标的基础上补上第二切换补偿值得到补偿后的RTK差分定位坐标,并根据补偿后的RTK差分定位坐标执行导航任务。
由于RTK差分定位坐标的精确度比单点定位坐标的精确度高,在第二时刻之后,所述第二切换补偿值是随时间递减的。
另外,在本实施例以及上述实施例中,所述导航任务为基于参考点的导航任务,所述参考点至少包括返航点、目标终点、环绕飞行的目标点中的一种。相应的,可移动平台的控制方法还包括:
步骤S901、在执行所述导航任务前,根据通讯接口接收到的RTK数据和定位接收机接收到的卫星信号确定第一参考点。
步骤S902、根据定位接收机接收到的卫星信号确定第二参考点。
在飞行控制器执行导航任务前,如果通讯接口接收到的RTK数据和定位接收机接收到的卫星信号均有效,则飞行控制器可以根据通讯接口接收到的RTK数据和定位接收机接收到的卫星信号确定第一参考点,根据定位接收机接收到的卫星信号确定第二参考点,并设置第一参考点已记录的标识位和第二参考点已记录的标识位。第一参考点具体可以是RTK参考点,RTK参考点包括飞行控制器执行导航任务前无人飞行器的RTK坐标和高度,第二参考点具体可以是GPS参考点,GPS参考点包括飞行控制器执行导航任务前无人飞行器的GPS坐标和高度。
在飞行控制器执行导航任务前,如果通讯接口接收到的RTK数据无效,定位接收机接收到的卫星信号有效,则飞行控制器根据定位接收机接收到的卫星信号确定第二参考点,并通过无人飞行器的通信系统向地面站发送提示信息,该提示信息用于提示用户第二参考点已记录、第一参考点未记录。
在飞行控制器执行导航任务前,如果通讯接口接收到的RTK数据和定位接收机接收到的卫星信号均无效,则飞行控制器将无法记录第一参考点和第二参考点,此时,飞行控制器通过无人飞行器的通信系统向地面站发送提示信息,该提示信息用于提示用户第一参考点和第二参考点均无法记录,无法执行基于参考点的导航任务。
如图5所示,当飞行控制器执行导航任务时,检查是否记录有第一参 考点、第二参考点,以及检查第一模块和通讯接口之间的第一开关是否开启,第一模块和定位接收机之间的第二开关否开启。
若飞行控制器没有记录第一参考点,但记录有第二参考点,即使第一模块和通讯接口之间的第一开关闭合,第一模块只根据卫星信号确定无人飞行器的单点定位坐标,第二模块根据该单点定位坐标和第二参考点执行导航任务。
若飞行控制器记录有第一参考点和第二参考点,第一模块和通讯接口之间的第一开关闭合,第一模块和定位接收机之间的第二开关闭合,则第一模块默认根据RTK数据和卫星信号确定无人飞行器的RTK差分定位坐标,第二模块根据该RTK差分定位坐标和第一参考点执行导航任务。
若第一模块和通讯接口之间的第一开关断开,则第一模块默认根据卫星信号确定无人飞行器的单点定位坐标,第二模块根据该单点定位坐标和第二参考点执行导航任务。
步骤S903、当在第一时刻接收到的RTK数据无效时,确定参考点切换补偿值。
在执行导航任务时,当RTK数据有效时,默认参考点为第一参考点,若在第一时刻接收到的RTK数据无效,则飞行控制器由根据所述RTK数据和所述卫星信号执行导航任务切换为根据所述卫星信号和所述第一切换补偿值执行所述导航任务,相应的,导航任务的参考点即第一参考点也需要切换,在切换第一参考点之前,确定参考点切换补偿值。所述确定参考点切换补偿值,包括:根据第一切换补偿值确定参考点切换补偿值。可选的,第一切换补偿值为参考点切换补偿值。
步骤S904、根据所述参考点切换补偿值和第二参考点确定第三参考点。
具体的,在第二参考点的基础上补上该参考点切换补偿值得到第三参考点。
步骤S905、将导航任务的参考点从第一参考点切换为第三参考点。
在第一时刻,飞行控制器将导航任务的参考点从第一参考点切换为第三参考点。导航任务的参考点从第一参考点切换为第三参考点之后, 飞行控制器根据第三参考点重新规划导航路径,并按照重新规划后的导航路径控制无人飞行器飞行,以使无人飞行器平滑过渡到重新规划后的导航路径。
当在第二时刻RTK数据变为有效时,飞行控制器由根据所述卫星信号和所述第一切换补偿值执行所述导航任务切换为根据所述卫星信号、所述RTK数据、所述第二切换补偿值执行所述导航任务。相应的,导航任务的参考点即第三参考点也需要切换,在切换第三参考点之前,确定参考点切换补偿值,该参考点切换补偿值可以为第二切换补偿值,在第一参考点的基础上补上该参考点切换补偿值得到第四参考点。在第二时刻,飞行控制器将导航任务的参考点从第三参考点切换为第四参考点。导航任务的参考点从第三参考点切换为第四参考点之后,飞行控制器根据第四参考点重新规划导航路径,并按照重新规划后的导航路径控制无人飞行器飞行,以使无人飞行器平滑过渡到重新规划后的导航路径。
此外,在本实施例以及上述实施例中,所述导航任务还可以为无参考点的导航任务。
本实施例通过确定第二切换补偿值,当在第二时刻接收到的RTK数据变为有效时,飞行控制器由根据所述卫星信号和所述第一切换补偿值执行所述导航任务切换为根据所述卫星信号、所述RTK数据、所述第二切换补偿值执行所述导航任务,使得无人飞行器能够从第二时刻之前的运动轨迹平滑过渡到第二时刻开始及之后的运动轨迹。
本发明实施例提供一种可移动平台的控制设备。图10为本发明实施例提供的可移动平台的控制设备的结构图,如图10所示,可移动平台的控制设备100包括:通讯接口101、定位接收机102、处理器103;所述处理器103可以为一个或多个,所述一个或多个处理器103单独或协同工作;处理器103分别与通讯接口101和定位接收机102通讯连接;通讯接口101用于接收RTK数据;定位接收机102用于接收卫星信号;处理器103用于:当在第一时刻接收到的RTK数据无效时,将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务。
本发明实施例提供的可移动平台的控制设备的具体原理和实现方式均与图1所示实施例类似,此处不再赘述。
本实施例通过通讯接口接收RTK数据,以及定位接收机接收卫星信号,当RTK数据无效时,将根据RTK数据和卫星信号控制可移动平台执行导航任务切换为根据卫星信号控制可移动平台执行导航任务,使得可移动平台在RTK数据无效时依然能够完成导航任务,提高了可移动平台执行导航任务的可靠性,保证可移动平台安全运行。
本发明实施例提供一种可移动平台的控制设备。在图10所示实施例提供的技术方案的基础上,处理器103还用于:确定在第一时刻接收到的RTK数据是否有效。处理器103确定在第一时刻接收到的RTK数据是否有效时,具体用于:获取通讯接口在第一时刻接收到的RTK数据;获取定位接收机在第一时刻接收到的卫星信号;根据所述RTK数据和所述卫星信号确定可移动平台的第一定位信息;根据所述卫星信号确定可移动平台的第二定位信息;根据所述第一定位信息和所述第二定位信息确定在第一时刻接收到的RTK数据是否有效。
处理器103根据所述第一定位信息和所述第二定位信息确定在第一时刻接收到的RTK数据是否有效时,具体用于:确定所述第一定位信息与所述第二定位信息之间的第一定位误差;根据所述第一定位误差确定在第一时刻接收到的RTK数据是否有效。
处理器103根据所述第一定位误差确定在第一时刻接收到的RTK数据是否有效时,具体用于:当所述第一定位误差大于或等于预设的定位误差阈值时,确定在第一时刻接收到的RTK数据无效。
本发明实施例提供的可移动平台的控制设备的具体原理和实现方式均与图6所示实施例类似,此处不再赘述。
本实施例通过获取通讯接口在第一时刻接收到的RTK数据,以及获取定位接收机在第一时刻接收到的卫星信号,根据RTK数据和卫星信号确定可移动平台的第一定位信息,根据卫星信号确定可移动平台的第二定位信息,根据第一定位信息和第二定位信息确定在第一时刻接收到的RTK数据是否有效,避免由于RTK数据无效而导致导航任务出现异常。
本发明实施例提供一种可移动平台的控制设备。在上述实施例提供的技术方案的基础上,处理器103还用于:确定第一切换补偿值;处理器103将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务时,具体用于:将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务。
处理器103确定第一切换补偿值时,具体用于:获取通讯接口在第一时刻前的历史时刻接收到的RTK数据;获取定位接收机在第一时刻前的历史时刻接收到的卫星信号;根据所述历史时刻的RTK数据和所述历史时刻的卫星信号确定可移动平台的第三定位信息;根据所述历史时刻的卫星信号确定可移动平台的第四定位信息;将所述第三定位信息和所述第四定位信息之间的第二定位误差确定为所述第一切换补偿值。
本发明实施例提供的的具体原理和实现方式均与图7所示实施例类似,此处不再赘述。
本实施例中,在第一时刻RTK数据无效时,飞行控制器由根据RTK数据和卫星信号执行导航任务切换为根据卫星信号和第一切换补偿值执行导航任务,使得无人飞行器能够从第一时刻之前的运动轨迹平滑过渡到第一时刻开始及之后的运动轨迹。
本发明实施例提供一种可移动平台的控制设备。在上述实施例提供的技术方案的基础上,处理器103还用于:确定在第二时刻接收到的RTK数据是否变为有效。具体的,处理器103确定在第二时刻接收到的RTK数据是否变为有效时,具体用于:获取通讯接口在第二时刻接收到的RTK数据;获取定位接收机在第二时刻接收到的卫星信号;根据所述RTK数据和所述卫星信号确定可移动平台的第五定位信息;根据所述卫星信号确定可移动平台的第六定位信息;根据所述第五定位信息和所述第六定位信息确定在第二时刻接收到的RTK数据是否变为有效。
处理器103根据所述第五定位信息和所述第六定位信息确定在第二时 刻接收到的RTK数据是否变为有效时,具体用于:确定所述第五定位信息与所述第六定位信息之间的第三定位误差;根据所述第三定位误差确定在第二时刻接收到的RTK数据是否变为有效。
处理器103根据所述第三定位误差确定在第二时刻接收到的RTK数据是否变为有效时,具体用于:当所述第三定位误差小于或等于预设的定位误差阈值时,确定在第二时刻接收到的RTK数据变为有效。
当在第二时刻接收到的RTK数据变为有效时,处理器103还用于:将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述RTK数据和所述卫星信号控制可移动平台执行所述导航任务。
本发明实施例提供的可移动平台的控制设备的具体原理和实现方式均与图8所示实施例类似,此处不再赘述。
本实施例通过在第一时刻之后的第二时刻检测RTK数据是否变为有效,当RTK数据变为有效时,飞行控制器由根据卫星信号和第一切换补偿值执行导航任务切换为根据RTK数据和卫星信号执行导航任务,使得飞行控制器可以根据RTK差分定位坐标来执行导航任务,提高导航的精确度。
本发明实施例提供一种可移动平台的控制设备。在上述实施例提供的技术方案的基础上,处理器103还用于:确定第二切换补偿值;处理器103将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述RTK数据和所述卫星信号控制可移动平台执行所述导航任务时,具体用于:将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述卫星信号、所述RTK数据、所述第二切换补偿值控制可移动平台执行所述导航任务。
处理器103确定第二切换补偿值时,具体用于:当所述第三定位误差小于或等于预设的定位误差阈值时,根据第五定位信息、第六定位信息和第一切换补偿值确定所述第二切换补偿值。可选的,所述第二切换补偿值是随时间递减的。
另外,所述导航任务为基于参考点的导航任务;处理器103还用于: 在执行所述导航任务前,根据通讯接口接收到的RTK数据和定位接收机接收到的卫星信号确定第一参考点;根据定位接收机接收到的卫星信号确定第二参考点;当在第一时刻接收到的RTK数据无效时,确定参考点切换补偿值;根据所述参考点切换补偿值和第二参考点确定第三参考点;将导航任务的参考点从第一参考点切换为第三参考点。
处理器103确定参考点切换补偿值时,具体用于:根据第一切换补偿值确定参考点切换补偿值。
所述参考点至少包括返航点、目标终点、环绕飞行的目标点中的一种。
所述可移动平台包括无人飞行器。
本发明实施例提供的可移动平台的控制设备的具体原理和实现方式均与图9所示实施例类似,此处不再赘述。
本实施例通过确定第二切换补偿值,当在第二时刻接收到的RTK数据变为有效时,飞行控制器由根据所述卫星信号和所述第一切换补偿值执行所述导航任务切换为根据所述卫星信号、所述RTK数据、所述第二切换补偿值执行所述导航任务,使得无人飞行器能够从第二时刻之前的运动轨迹平滑过渡到第二时刻开始及之后的运动轨迹。
本发明实施例提供一种可移动平台,该可移动平台具体为无人飞行器。图11为本发明实施例提供的无人飞行器的结构图,如图11所示,无人飞行器1100包括:机身、动力系统和飞行控制器1118,所述动力系统包括如下至少一种:电机1107、螺旋桨1106和电子调速器1117,动力系统安装在所述机身,用于提供飞行动力;飞行控制器1118与所述动力系统通讯连接,用于控制所述无人飞行器飞行。
另外,如图11所示,无人飞行器1100还包括:传感系统1108、通信系统1110、支撑设备1102、拍摄设备1104,其中,支撑设备1102具体可以是云台,通信系统1110具体可以包括接收机,接收机用于接收地面站1112的天线1114发送的无线信号,1116表示接收机和天线1114通信过程中产生的电磁波。
在本实施例中,飞行控制器1118的具体原理和实现方式均与上述实 施例类似,此处不再赘述。
本实施例通过通讯接口接收RTK数据,以及定位接收机接收卫星信号,当RTK数据无效时,将根据RTK数据和卫星信号控制可移动平台执行导航任务切换为根据卫星信号控制可移动平台执行导航任务,使得可移动平台在RTK数据无效时依然能够完成导航任务,提高了可移动平台执行导航任务的可靠性,保证可移动平台安全运行。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上 述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (40)

  1. 一种可移动平台的控制方法,其特征在于,包括:
    通过通讯接口接收RTK数据;
    通过定位接收机接收卫星信号;
    当在第一时刻接收到的RTK数据无效时,将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定在第一时刻接收到的RTK数据是否有效。
  3. 根据权利要求2所述的方法,其特征在于,所述确定在第一时刻接收到的RTK数据是否有效,包括:
    获取通讯接口在第一时刻接收到的RTK数据;
    获取定位接收机在第一时刻接收到的卫星信号;
    根据所述RTK数据和所述卫星信号确定可移动平台的第一定位信息;
    根据所述卫星信号确定可移动平台的第二定位信息;
    根据所述第一定位信息和所述第二定位信息确定在第一时刻接收到的RTK数据是否有效。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述第一定位信息和所述第二定位信息确定在第一时刻接收到的RTK数据是否有效,包括:
    确定所述第一定位信息与所述第二定位信息之间的第一定位误差;
    根据所述第一定位误差确定在第一时刻接收到的RTK数据是否有效。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一定位误差确定在第一时刻接收到的RTK数据是否有效,包括:
    当所述第一定位误差大于或等于预设的定位误差阈值时,确定在第一时刻接收到的RTK数据无效。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述方法还包括:
    确定第一切换补偿值;
    所述将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务,包括:
    将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务。
  7. 根据权利要求6所述的方法,其特征在于,所述确定第一切换补偿值,包括:
    获取通讯接口在第一时刻前的历史时刻接收到的RTK数据;
    获取定位接收机在第一时刻前的历史时刻接收到的卫星信号;
    根据所述历史时刻的RTK数据和所述历史时刻的卫星信号确定可移动平台的第三定位信息;
    根据所述历史时刻的卫星信号确定可移动平台的第四定位信息;
    将所述第三定位信息和所述第四定位信息之间的第二定位误差确定为所述第一切换补偿值。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    当在第二时刻接收到的RTK数据变为有效时,将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述RTK数据和所述卫星信号控制可移动平台执行所述导航任务。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    确定在第二时刻接收到的RTK数据是否变为有效。
  10. 根据权利要求9所述的方法,其特征在于,所述确定在第二时刻接收到的RTK数据是否变为有效,包括:
    获取通讯接口在第二时刻接收到的RTK数据;
    获取定位接收机在第二时刻接收到的卫星信号;
    根据所述RTK数据和所述卫星信号确定可移动平台的第五定位信息;
    根据所述卫星信号确定可移动平台的第六定位信息;
    根据所述第五定位信息和所述第六定位信息确定在第二时刻接收到的RTK数据是否变为有效。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第五定位信息和所述第六定位信息确定在第二时刻接收到的RTK数据是否变为有效,包括:
    确定所述第五定位信息与所述第六定位信息之间的第三定位误差;
    根据所述第三定位误差确定在第二时刻接收到的RTK数据是否变为有效。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述第三定位误差确定在第二时刻接收到的RTK数据是否变为有效,包括:
    当所述第三定位误差小于或等于预设的定位误差阈值时,确定在第二时刻接收到的RTK数据变为有效。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述方法还包括:
    确定第二切换补偿值;
    所述将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述RTK数据和所述卫星信号控制可移动平台执行所述导航任务,包括:
    将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述卫星信号、所述RTK数据、所述第二切换补偿值控制可移动平台执行所述导航任务。
  14. 根据权利要求13所述的方法,其特征在于,所述确定第二切换补偿值,包括:
    当第三定位误差小于或等于预设的定位误差阈值时,根据第五定位信息、第六定位信息和第一切换补偿值确定所述第二切换补偿值。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第二切换补偿值是随时间递减的。
  16. 根据权利要求3-15任一项所述的方法,其特征在于,所述导航任务为基于参考点的导航任务,所述方法还包括:
    在执行所述导航任务前,根据通讯接口接收到的RTK数据和定位接 收机接收到的卫星信号确定第一参考点;
    根据定位接收机接收到的卫星信号确定第二参考点;
    当在第一时刻接收到的RTK数据无效时,确定参考点切换补偿值;
    根据所述参考点切换补偿值和第二参考点确定第三参考点;
    将导航任务的参考点从第一参考点切换为第三参考点。
  17. 根据权利要求16所述的方法,其特征在于,所述确定参考点切换补偿值,包括:
    根据第一切换补偿值确定参考点切换补偿值。
  18. 根据权利要求16或17所述的方法,其特征在于,所述参考点至少包括返航点、目标终点、环绕飞行的目标点中的一种。
  19. 根据权利要求1-18任一项所述的方法,其特征在于,所述可移动平台包括无人飞行器。
  20. 一种可移动平台的控制设备,其特征在于,包括:通讯接口、定位接收机、处理器;
    所述通讯接口,用于接收RTK数据;
    所述定位接收机,用于接收卫星信号;
    所述处理器用于:
    当在第一时刻接收到的RTK数据无效时,将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务。
  21. 根据权利要求20所述的控制设备,其特征在于,所述处理器还用于:
    确定在第一时刻接收到的RTK数据是否有效。
  22. 根据权利要求21所述的控制设备,其特征在于,所述处理器确定在第一时刻接收到的RTK数据是否有效时,具体用于:
    获取通讯接口在第一时刻接收到的RTK数据;
    获取定位接收机在第一时刻接收到的卫星信号;
    根据所述RTK数据和所述卫星信号确定可移动平台的第一定位信息;
    根据所述卫星信号确定可移动平台的第二定位信息;
    根据所述第一定位信息和所述第二定位信息确定在第一时刻接收到的RTK数据是否有效。
  23. 根据权利要求22所述的控制设备,其特征在于,所述处理器根据所述第一定位信息和所述第二定位信息确定在第一时刻接收到的RTK数据是否有效时,具体用于:
    确定所述第一定位信息与所述第二定位信息之间的第一定位误差;
    根据所述第一定位误差确定在第一时刻接收到的RTK数据是否有效。
  24. 根据权利要求23所述的控制设备,其特征在于,所述处理器根据所述第一定位误差确定在第一时刻接收到的RTK数据是否有效时,具体用于:
    当所述第一定位误差大于或等于预设的定位误差阈值时,确定在第一时刻接收到的RTK数据无效。
  25. 根据权利要求22-24任一项所述的控制设备,其特征在于,所述处理器还用于:确定第一切换补偿值;
    所述处理器将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号控制可移动平台执行所述导航任务时,具体用于:
    将根据所述RTK数据和所述卫星信号控制可移动平台执行导航任务切换为根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务。
  26. 根据权利要求25所述的控制设备,其特征在于,所述处理器确定第一切换补偿值时,具体用于:
    获取通讯接口在第一时刻前的历史时刻接收到的RTK数据;
    获取定位接收机在第一时刻前的历史时刻接收到的卫星信号;
    根据所述历史时刻的RTK数据和所述历史时刻的卫星信号确定可移动平台的第三定位信息;
    根据所述历史时刻的卫星信号确定可移动平台的第四定位信息;
    将所述第三定位信息和所述第四定位信息之间的第二定位误差确定为所述第一切换补偿值。
  27. 根据权利要求25或26所述的控制设备,其特征在于,所述处理器还用于:
    当在第二时刻接收到的RTK数据变为有效时,将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述RTK数据和所述卫星信号控制可移动平台执行所述导航任务。
  28. 根据权利要求27所述的控制设备,其特征在于,所述处理器还用于:
    确定在第二时刻接收到的RTK数据是否变为有效。
  29. 根据权利要求28所述的控制设备,其特征在于,所述处理器确定在第二时刻接收到的RTK数据是否变为有效时,具体用于:
    获取通讯接口在第二时刻接收到的RTK数据;
    获取定位接收机在第二时刻接收到的卫星信号;
    根据所述RTK数据和所述卫星信号确定可移动平台的第五定位信息;
    根据所述卫星信号确定可移动平台的第六定位信息;
    根据所述第五定位信息和所述第六定位信息确定在第二时刻接收到的RTK数据是否变为有效。
  30. 根据权利要求29所述的控制设备,其特征在于,所述处理器根据所述第五定位信息和所述第六定位信息确定在第二时刻接收到的RTK数据是否变为有效时,具体用于:
    确定所述第五定位信息与所述第六定位信息之间的第三定位误差;
    根据所述第三定位误差确定在第二时刻接收到的RTK数据是否变为有效。
  31. 根据权利要求30所述的控制设备,其特征在于,所述处理器根据所述第三定位误差确定在第二时刻接收到的RTK数据是否变为有效时,具体用于:
    当所述第三定位误差小于或等于预设的定位误差阈值时,确定在第二时刻接收到的RTK数据变为有效。
  32. 根据权利要求29-31任一项所述的控制设备,其特征在于,所述处理器还用于:确定第二切换补偿值;
    所述处理器将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述RTK数据和所述卫星信号控制可移动平台执行所述导航任务时,具体用于:
    将根据所述卫星信号和所述第一切换补偿值控制可移动平台执行所述导航任务切换为根据所述卫星信号、所述RTK数据、所述第二切换补偿值控制可移动平台执行所述导航任务。
  33. 根据权利要求32所述的控制设备,其特征在于,所述处理器确定第二切换补偿值时,具体用于:
    当第三定位误差小于或等于预设的定位误差阈值时,根据第五定位信息、第六定位信息和第一切换补偿值确定所述第二切换补偿值。
  34. 根据权利要求32或33所述的控制设备,其特征在于,所述第二切换补偿值是随时间递减的。
  35. 根据权利要求22-34任一项所述的控制设备,其特征在于,所述导航任务为基于参考点的导航任务;
    所述处理器还用于:
    在执行所述导航任务前,根据通讯接口接收到的RTK数据和定位接收机接收到的卫星信号确定第一参考点;
    根据定位接收机接收到的卫星信号确定第二参考点;
    当在第一时刻接收到的RTK数据无效时,确定参考点切换补偿值;
    根据所述参考点切换补偿值和第二参考点确定第三参考点;
    将导航任务的参考点从第一参考点切换为第三参考点。
  36. 根据权利要求35所述的控制设备,其特征在于,所述处理器确定参考点切换补偿值时,具体用于:
    根据第一切换补偿值确定参考点切换补偿值。
  37. 根据权利要求35或36所述的控制设备,其特征在于,所述参考点至少包括返航点、目标终点、环绕飞行的目标点中的一种。
  38. 根据权利要求20-37任一项所述的控制设备,其特征在于,所述可移动平台包括无人飞行器。
  39. 一种可移动平台,其特征在于,包括:
    机身;
    动力系统,安装在所述机身,用于提供运行动力;
    以及如权利要求20-38任一项所述的控制设备。
  40. 根据权利要求39所述的可移动平台,其特征在于,所述可移动平台包括无人飞行器。
PCT/CN2017/094761 2017-07-27 2017-07-27 可移动平台的控制方法、设备及可移动平台 WO2019019118A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/094761 WO2019019118A1 (zh) 2017-07-27 2017-07-27 可移动平台的控制方法、设备及可移动平台
CN201780016748.2A CN108885465A (zh) 2017-07-27 2017-07-27 可移动平台的控制方法、设备及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/094761 WO2019019118A1 (zh) 2017-07-27 2017-07-27 可移动平台的控制方法、设备及可移动平台

Publications (1)

Publication Number Publication Date
WO2019019118A1 true WO2019019118A1 (zh) 2019-01-31

Family

ID=64325892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/094761 WO2019019118A1 (zh) 2017-07-27 2017-07-27 可移动平台的控制方法、设备及可移动平台

Country Status (2)

Country Link
CN (1) CN108885465A (zh)
WO (1) WO2019019118A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077546A (zh) * 2019-12-26 2020-04-28 广州比逊电子科技有限公司 应用于无人机的定位跳点处理方法以及接收机设备
US11675091B2 (en) 2020-08-20 2023-06-13 Qualcomm Incorporated RTK GNSS positioning without base stations
CN116471639A (zh) * 2023-06-19 2023-07-21 四川中普盈通科技有限公司 基于路径规划的移动平台多网融合网络接入方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266584B1 (en) * 1998-03-31 2001-07-24 Space Systems/Loral, Inc. Robust autonomous GPS time reference for space application
CN103221839A (zh) * 2010-02-14 2013-07-24 天宝导航有限公司 使用区域增强消息的gnss信号处理
CN103620444A (zh) * 2011-03-22 2014-03-05 天宝导航有限公司 使用用于重新收敛的电离层桥接的gnss信号处理
WO2017004047A1 (en) * 2015-06-29 2017-01-05 Deere & Company Satellite navigation receiver and method for switching between real-time kinematic mode and relative positioning mode
WO2017004033A1 (en) * 2015-06-29 2017-01-05 Deere & Company Satellite navigation receiver and method for switching between real-time kinematic mode and precise positioning mode

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119741B2 (en) * 2004-01-13 2006-10-10 Navcom Technology, Inc. Method for combined use of a local RTK system and a regional, wide-area, or global carrier-phase positioning system
US7511661B2 (en) * 2004-01-13 2009-03-31 Navcom Technology, Inc. Method for combined use of a local positioning system, a local RTK system, and a regional, wide-area, or global carrier-phase positioning system
CN106342230B (zh) * 2010-12-01 2012-05-02 中国人民解放军兰州军区测绘信息中心 一种适合高原高寒地区的gps动态精确定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6266584B1 (en) * 1998-03-31 2001-07-24 Space Systems/Loral, Inc. Robust autonomous GPS time reference for space application
CN103221839A (zh) * 2010-02-14 2013-07-24 天宝导航有限公司 使用区域增强消息的gnss信号处理
CN103620444A (zh) * 2011-03-22 2014-03-05 天宝导航有限公司 使用用于重新收敛的电离层桥接的gnss信号处理
WO2017004047A1 (en) * 2015-06-29 2017-01-05 Deere & Company Satellite navigation receiver and method for switching between real-time kinematic mode and relative positioning mode
WO2017004033A1 (en) * 2015-06-29 2017-01-05 Deere & Company Satellite navigation receiver and method for switching between real-time kinematic mode and precise positioning mode

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111077546A (zh) * 2019-12-26 2020-04-28 广州比逊电子科技有限公司 应用于无人机的定位跳点处理方法以及接收机设备
US11675091B2 (en) 2020-08-20 2023-06-13 Qualcomm Incorporated RTK GNSS positioning without base stations
CN116471639A (zh) * 2023-06-19 2023-07-21 四川中普盈通科技有限公司 基于路径规划的移动平台多网融合网络接入方法及装置
CN116471639B (zh) * 2023-06-19 2023-08-18 四川中普盈通科技有限公司 基于路径规划的移动平台多网融合网络接入方法及装置

Also Published As

Publication number Publication date
CN108885465A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
EP3566021B1 (en) Systems and methods for using a global positioning system velocity in visual-inertial odometry
WO2022174756A1 (zh) 一种车辆定位的方法、相关装置、设备以及存储介质
US20180106906A1 (en) Positioning processing system, method, computer program, positioning processing device, and user terminal
WO2018128669A1 (en) Systems and methods for using a sliding window of global positioning epochs in visual-inertial odometry
US10978799B2 (en) Directional antenna tracking method and communication device
CN109597109B (zh) 一种定位方法、定位装置及定位系统
US20200245217A1 (en) Control method, unmanned aerial vehicle, server and computer readable storage medium
CN104180803A (zh) 一种应用于无人机的非相似双余度组合导航装置
US10642284B1 (en) Location determination using ground structures
CN111034286B (zh) 用于报告定位数据的方法
KR20170034503A (ko) 무인항공기 제어 시스템 및 방법
JP2020510943A (ja) 可動物体を制御する方法及びシステム
WO2021070464A1 (ja) 移動体、移動体制御方法、移動体制御プログラム、管制装置、管制制御方法、管制制御プログラム、及び移動体システム
WO2022000222A1 (zh) 信息处理方法、无人机、服务器及存储介质
WO2019019118A1 (zh) 可移动平台的控制方法、设备及可移动平台
CN112180401A (zh) 移动对象的位置确定
Isaacs et al. GPS-optimal micro air vehicle navigation in degraded environments
CN111295567A (zh) 航向的确定方法、设备、存储介质和可移动平台
CN112415540A (zh) 多源定位数据的无人机自主飞行系统
US11204248B2 (en) Navigating using electromagnetic signals
CN112556695B (zh) 室内定位与三维建模方法、系统、电子设备及存储介质
CN117930295A (zh) 一种信息检测方法、装置、电子设备和存储介质
CN102610917B (zh) 一种高精度数字引导的天线控制方法
CN111025360A (zh) 一种无人机控制方法、装置、系统、设备及介质
WO2014088725A1 (en) Multi-mode wireless position association

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919583

Country of ref document: EP

Kind code of ref document: A1