WO2019078065A1 - Surface treatment device - Google Patents

Surface treatment device Download PDF

Info

Publication number
WO2019078065A1
WO2019078065A1 PCT/JP2018/037758 JP2018037758W WO2019078065A1 WO 2019078065 A1 WO2019078065 A1 WO 2019078065A1 JP 2018037758 W JP2018037758 W JP 2018037758W WO 2019078065 A1 WO2019078065 A1 WO 2019078065A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
treatment
processing
divided
work
Prior art date
Application number
PCT/JP2018/037758
Other languages
French (fr)
Japanese (ja)
Inventor
勝己 石井
重幸 渡邉
Original Assignee
アルメックスPe株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルメックスPe株式会社 filed Critical アルメックスPe株式会社
Priority to JP2019549225A priority Critical patent/JP6875758B2/en
Priority to CN201880067900.4A priority patent/CN111247274A/en
Priority to KR1020207013366A priority patent/KR20200073243A/en
Publication of WO2019078065A1 publication Critical patent/WO2019078065A1/en
Priority to PH12020550789A priority patent/PH12020550789A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/02Tanks; Installations therefor
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/06Suspending or supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating

Definitions

  • the present invention relates to a surface treatment apparatus such as a plating apparatus, and more particularly to a treatment liquid circulation system for adjusting a treatment liquid collected from a treatment tank and returning it to the treatment tank.
  • Patent Document 1 discloses a plating apparatus provided with an impurity removing means consisting of a pump and a filter outside the plating tank.
  • the plating solution is discharged from the bottom of the plating tank, and a clean plating solution without slime is circulated from the bottom of the plating tank back to the inside of the plating tank by the means for removing impurities. Further, since plating components such as copper oxide are consumed by plating on a work, copper oxide is conventionally supplied from a part of a long plating tank.
  • Patent Document 1 when the clean plating solution discharged from the bottom of the plating tank and from which the slime is removed by the impurity removing means is returned from the bottom of the plating tank and circulated in the plating tank, the plating solution cleans in the plating tank. Not evenly distributed. Further, conventionally, since consumed copper oxide has been supplied from a part of a long plating tank, there is a problem that the concentration of the plating solution in the processing tank varies.
  • An object of at least one aspect of the present invention is to provide a surface treatment apparatus capable of substantially equalizing the concentration of fresh treatment liquid in a treatment tank.
  • One aspect of the present invention is A treatment tank in which a plurality of nozzle tubes are disposed to eject the treatment liquid to a plurality of workpieces immersed in the treatment liquid; Multiple treatment liquid circulation devices, Have Each of the plurality of processing liquid circulation devices is divided into a plurality of portions in the longitudinal direction of the processing tank, and each is connected to each one of a plurality of divided regions including at least one of the plurality of nozzle tubes,
  • the present invention relates to a surface treatment apparatus for adjusting a treatment liquid collected from each one of the divided areas and returning the solution to the at least one nozzle pipe provided in each one of the plurality of divided areas.
  • each of the plurality of treatment liquid circulation devices adjusts the treatment liquid collected from each one of the plurality of divided regions obtained by dividing the treatment tank in the longitudinal direction, to obtain the plurality of divided regions.
  • fresh processing liquid is jetted from the at least one nozzle pipe toward the work, so that the fresh processing liquid is dispersed in each divided area, and even in each divided area.
  • the concentration of the processing solution is almost even.
  • the divided area of the processing tank is not limited to the physically divided one, as long as the processing liquid is collected at least for each divided area.
  • each of the plurality of processing liquid circulation devices is for resupplying the processing liquid recovered by the circulation pump and the circulation pump from one of the plurality of divided regions.
  • a control tank configured to adjust the processing solution, and the processing liquid for resupply from the control tank can be returned and supplied to the at least one nozzle pipe by the circulation pump.
  • the treatment liquid collected by the circulation pump can be collectively adjusted in the adjustment tank, and the treatment liquid for resupply from the adjustment tank can be returned to the at least one nozzle pipe by the circulation pump.
  • the adjusting tank can carry out at least one of charging of a component to be consumed and temperature adjustment to the recovered treatment liquid.
  • the components to be consumed are, for example, plating components and additives in the processing solution when the surface treatment is plating.
  • the plating component is, for example, copper oxide in the case of copper plating.
  • the additive is, for example, a brightening agent, a smoothing agent, etc. in the case of plating.
  • the temperature adjustment is to adjust the temperature of the treatment liquid to the optimum temperature inherent to the surface treatment. By any of these adjustments, the recovered treatment liquid is adjusted to a fresh re-supplying treatment liquid.
  • the concentration of plating components, additives, etc. in the recovered processing solution, or the temperature of the processing solution may be monitored by a sensor, and the concentration or temperature may be adjusted when the value is out of the proper value.
  • the treatment liquid in the treatment tank is discharged from the bottom side of the treatment tank and collected, and each of the plurality of treatment liquid circulation devices is supplied from the adjustment tank And a filter for filtering the resupplying treatment liquid.
  • Impurities such as heavy waste having a high specific gravity mixed in the treatment liquid in the treatment tank are collected at the bottom of the treatment tank. These impurities can be recovered together with the processing solution discharged from the bottom side of the processing tank and can be removed by a filter.
  • the processing solution may further include an overflow tank adjacent to the processing tank, and the processing liquid in the processing tank may be discharged and recovered through the overflow tank.
  • Impurities having a low specific gravity mixed in the treatment liquid in the treatment tank float on the upper portion of the treatment liquid in the treatment tank. These impurities are discharged and recovered through the overflow tank together with the processing solution overflowed from the processing tank, and can be similarly removed by a filter.
  • the surface treatment apparatus is formed by connecting a plurality of processing units in the longitudinal direction, and each of the plurality of processing units has the treatment liquid
  • Each of the plurality of processing liquid circulation devices may be connected to the divided processing tank of each of the plurality of processing units.
  • the treatment liquid circulation devices can be attached to each treatment unit.
  • two or more processing liquid circulation devices may be attached to each processing unit.
  • FIG. 1 It is a schematic sectional drawing of the plating process part in the plating apparatus of the intermittent conveyance system which concerns on embodiment of this invention.
  • FIG. 1 It is a schematic plan view of one processing unit of the plating apparatus shown in FIG. It is a figure which shows the positional relationship of the workpiece
  • 6 (A) and 6 (B) are a front view and a cross-sectional view of a cathode rail.
  • FIG. 1 is a cross-sectional view of a plating apparatus (surface treatment apparatus in a broad sense) according to the present embodiment.
  • the plating apparatus 1 is configured by connecting one or more processing units 3-1 to 3-n (n is a natural number) to a plating processing unit for plating a workpiece 2 such as a circuit board.
  • the plurality of processing units 3-1 to 3-n may have substantially the same structure.
  • the workpiece 2 may be transported continuously, or the workpiece 2 may be transported intermittently.
  • M is an integer of 2 or more
  • FIG. 1 shows a workpiece 2 of the maximum size, and the plating apparatus 1 has versatility to be able to process the workpiece 2 below the maximum size.
  • the intermittent conveyance type plating apparatus 1 will be described as an example.
  • the workpiece 2 is sequentially intermittently transported in the A direction from the current stop position to the next stop position by an intermittent transport device such as a pusher.
  • an intermittent transport device such as a pusher.
  • the loading unit 4 may be connected to the upstream side of the processing unit 3-1 at the most upstream position.
  • the loading unit 4 may load the workpiece 2 by the downward movement in the B direction.
  • An unloading unit 5 may be connected to the downstream side of the most downstream processing unit 3-n for lifting the workpiece 2 horizontally moved from the processing unit 3-n in the C direction and unloading it.
  • the workpiece 2 in the unloading unit 5 Before the workpiece 2 in the processing unit 3-n is intermittently transported, the workpiece 2 in the unloading unit 5 is unloaded upward. However, the loading unit 4 and / or the unloading unit 5 may be omitted. In this case, the work 2 is lowered to the most upstream stop position of the processing unit 3-1, and the work 2 at the most downstream stop position of the processing unit 3-n is lifted and carried out.
  • FIG. 2 is a plan view of the processing unit 3-1 having the same configuration as the processing units 3-2 to 3-n.
  • the processing unit 3-1 includes a divided processing tank 6 in which a plating solution (processing solution in a broad sense) is stored.
  • the workpiece 2 is immersed in the plating solution in the division processing tank 6.
  • the divided processing tank 6 is a substantially box-like member opened at the upper side, and openings 6A and 6B are provided in the upstream and downstream partitions respectively, and between the adjacent units (processing unit, loading unit or unloading unit) The horizontal movement of the work 2 is allowed at.
  • At least one anode 20 is provided on at least one side of the front surface and the back surface of the plurality of, for example, four stop positions in the processing unit 3-1.
  • an anode 20A opposed to the front surface of each one work 2 at each stop position and an anode 20B opposed to the back surface of the work 2 are provided.
  • Each of the anodes 20 (20A, 20B) can include a plurality of split anodes that are in electrical communication with one another. In this embodiment, it is divided into an upstream divided anode 20A1 (20B1) and a downstream divided anode 20A2 (20B2).
  • the anode 20 may include divided anodes divided into three or more, but can be regarded as one anode because they are electrically connected to each other.
  • FIG. 3 is a front view showing the positional relationship between the anodes 20A1 and 20A2 (20B1 and 20B2) disposed in the processing unit 3-1 and the work 2.
  • the work 2 is held by the transfer jig 30.
  • each of the anodes 20 (20A, 20B) is disposed at a position facing the workpiece 2 at four stop positions. The point is, as shown in FIG. 2, it is sufficient to form a uniform electric field between the work 2 set to the cathode and the anode 20.
  • the contour of the anode shown in FIGS. 2 and 3 is rectangular regardless of the shape of the anode 20, but the contour in plan view may be circular.
  • the anode may be an insoluble anode or a soluble anode.
  • a shielding plate 23 which divides one processing unit 3-1 into four cells 11-1 to 11-4.
  • anodes 20 (20A1, 20A2, 20B1, and 20B2) are disposed on both sides of the work 2 in a plan view.
  • the shielding plate 23 is provided to block the influence of the electric field between the adjacent cells (the electric field between the anode and the cathode shown by the arrow in FIG. 2).
  • the shielding plate 23 is formed with an opening 23A through which the workpiece 2 passes.
  • FIG. 4 shows an example of the conveying jig 30.
  • the transfer jig 30 includes a horizontal arm 300, a vertical arm 310, a workpiece holder 320, a guided portion 330, a power receiving portion 340, and a pushed piece 350.
  • the horizontal arm unit 300 extends in a direction B orthogonal to the intermittent conveyance direction A.
  • the vertical arm unit 310 is suspended by the horizontal arm unit 300 and held.
  • the workpiece holding unit 320 is fixed to the vertical arm unit 310.
  • the workpiece holding unit 320 includes an upper frame 321 and a lower frame 322 supported by the upper frame 321, for example, to be able to move up and down.
  • the upper frame 321 is provided with a plurality of clampers 323 for clamping the upper portion of the work 2.
  • the lower frame 322 is provided with a plurality of clampers 324 for clamping the lower part of the work 2. A downward tension is applied to the work 2 by the lower clamper 324.
  • the lower frame 322 and the clamper 324 may be omitted.
  • the guided portion 330 is disposed along the processing units 3-2 to 3-n, and is guided, for example, to a guide rail (not shown) divided into each of the processing units 3-2 to 3-n.
  • the tool 30 is linearly guided.
  • the guided portion 330 can include a roller 331 in rolling contact with the top surface of the guide rail, and a roller 332 in rolling contact with both side surfaces of the guide rail (only rollers in rolling contact with one side surface in FIG. 4).
  • the power-supplied portion 340 contacts the cathode rail described in FIGS. 5 and 6, and sets the work 2 as a cathode via the horizontal arm portion 300, the vertical arm portion 310, and the work holding portion 320 of the transfer jig 30. Do.
  • the power-supplied portion 340 includes two contacts 342 and 343 supported on the upstream side and the downstream side of the support arm 341 extending along the intermittent transport direction A.
  • the contacts 342 and 343 are supported by the support arm 341 via a parallel link mechanism, and are spring biased so as to be pressed against the cathode rail.
  • the two contacts 342 and 343 are electrically connected to at least one of the clampers 323 and 324 to set the work 2 as a cathode.
  • the pushed piece 350 is fixed to, for example, the vertical arm unit 310, and is disposed with the pushed surface vertical at a position directly above the workpiece holding unit 320.
  • the pushed piece 350 is pushed from the direction of illustration C by an intermittent conveyance device described later to transmit the intermittent conveyance force to the conveyance jig 30.
  • the engaged part 360 used at the time of continuous conveyance is provided in the conveyance jig 30 shown in FIG. 4, and the conveyance jig 30 can be used for both intermittent conveyance and continuous conveyance.
  • each processing unit 3-1 to 3-n has at least one cathode rail.
  • a plurality of cathode rails 40 may be arranged in parallel in parallel with the transport direction A.
  • the plurality of cathode rails 40 may be connected to the same rectifier, or may be connected to different rectifiers to control the current value independently for each feeding site.
  • one cathode rail 40 is provided.
  • One cathode rail 40 is preferably divided into a plurality of divided cathode rails 40-1 to 40-n (two divided cathode rails 40-1 and 40 in FIG. 5) divided into processing units 3-1 to 3-n.
  • each of the divided cathode rails 40-1 to 40-n opens the gap (non-conductive portion) 42 on the insulating rail 41, and the work 2 is stopped.
  • a total of four conductive parts 43 are provided for each cell.
  • Each of the four conductive portions 43 holds and stops the work 2 at the four stop positions of each of the processing units 3-1 to 3-n. Electrically conducted with the two contacts 342, 343).
  • FIG. 5 shows the liquid level L of the plating solution contained in each of the processing units 3-1 to 3-n, and the work 2 is immersed in the plating solution.
  • FIG. 5 shows the liquid level L of the plating solution contained in each of the processing units 3-1 to 3-n, and the work 2 is immersed in the plating solution.
  • dividing walls 44 and 44 are provided at both ends in the width direction of the cathode rail 40, and a non-oil-based conductive fluid (for example, water) 45 is held on the conductive portion 43.
  • a non-oil-based conductive fluid for example, water
  • the electrical contact between the power-supplied portion 340 (the two contacts 342 and 343) and the conductive portion 43 can be secured more reliably via the conductive fluid 45.
  • the conductivity of water is much lower than the conductivity of the conductive portion 43 which is a metal, the insulation between the adjacent conductive portions 43 is maintained.
  • the bolts 46 for fixing the conductive portion 43 on the insulating rail 41 can be disposed on both sides of the traveling path of the power-supplied portion 340. As a result, it is not necessary to provide the counterbore of the bolt in the conductive portion 34, and the factor of resistance can be eliminated.
  • Each of the processing units 3-1 to 3-n has a total of four rectifiers 50 (one rectifier 50 is shown in FIG. 5), one for each cell in which the work 2 is stopped.
  • One positive terminal 51 of each of the four rectifiers 50 is connected to the anode 20 (20A1, 20A2, 20B1, 20B2) disposed in each cell.
  • One negative terminal 52 of each of the four rectifiers 50 is connected to the conductive portion 43 corresponding to one cell of the divided cathode rails 40-1 to 40-n.
  • the current flowing to the four works 2 is a rectifier 50 provided one for each cell Are independently controlled by each of the Moreover, since the cathodes are insulated between the cells and the anodes are also insulated, the work 2 can be individually controlled to be supplied with electric power by the respective rectifiers 50 by insulatingly separating each work 2. In addition, by separating the electric field between the cells by the shield plate 23, the individual power feeding for each work 2 is secured while eliminating the influence between the cells. Thereby, the plating quality of the work 2 can be improved.
  • the stop of the present embodiment is stopped.
  • the work (cathode) 2 can be made to face the anode 20 directly.
  • the positional relationship between the cathode and the anode becomes constant, and the work is subjected to the same plating condition, so it is expected that the plating quality is improved.
  • the fluctuation of the contact resistance is eliminated, and precise current control becomes possible.
  • the work 2 may be intermittently transported without necessarily performing the completely individual power feeding as described above. That is, one or both of the cathode and the anode may be common (common cathode and / or common anode) in the four cells 11-1 to 11-4 of the processing units 3-1 to 3-n.
  • At least one nozzle tube 60 may be further provided between the front and back) and the anode 20. Since the nozzle tube 60 intercepts the electric field formed between the work (cathode) 2 and the anode 20, it is preferable that the number thereof is small even when a plurality of nozzle tubes 60 are provided.
  • the nozzle pipe 60 has a plurality of jet outlets 60A for jetting the plating solution as shown in FIG. In the jet nozzle 60 shown in FIG.
  • the pitch P in the vertical direction is smaller than the pitch (for example, 7.5 mm) used in the conventional continuous transfer type, and is not less than the outer diameter of the jet nozzle 60A and 5 mm or less Can. This is to increase the amount of plating solution supplied per unit time. In addition, in order to uniformly supply the plating solution to small size chips and dense patterns, the pitch P should be small.
  • the nozzle pipes 60 on the front and back sides of the workpiece 2 are disposed opposite to each other with the workpiece 2 interposed therebetween. The opposing arrangement prevents the work 2 from being deformed by the fluid pressure, and the non-opposing arrangement makes it easier to supply the plating solution to the through holes of the work 2.
  • the nozzle pipe is provided even in the continuous transfer method, the number thereof is as large as a dozen or so in one processing unit.
  • a large number of nozzle pipes are fixed in the continuous conveyance method of the work, but in the present embodiment adopting the intermittent conveyance method, in the four cells 11-1 to 11-4 of each processing unit 3-1 to 3-n.
  • the horizontal scanning movement of at least one nozzle pipe 60 is performed, for example, in the arrow A1 direction and the A2 direction (both parallel to the intermittent conveyance direction A) in FIG.
  • the plating solution can be ejected uniformly to the entire surface of the work 2.
  • the moving speed of the nozzle tube 60 can be made faster than the moving speed (for example, 0.8 m / min) of the work 2 in the continuous transfer method.
  • the amount of plating solution supplied per unit time can be increased.
  • the work speed is increased in the continuous transfer type, the entire length of the processing tank is increased and the size of the apparatus is increased. However, the size of the apparatus is not increased in the intermittent transfer as in this embodiment.
  • the reciprocating movement mechanism of the nozzle tube 60 is not shown, a known reciprocating linear movement mechanism (for example, a pinion-rack mechanism driven by a reversible motor, a piston-crank mechanism, etc.) can be adopted.
  • This reciprocating movement mechanism can move the two nozzle pipes 60 so as to scan at least once by circulating at least once a length range corresponding to at least the horizontal width of the work 2 stopped at each cell. This improves the in-plane uniformity of the workpiece 2 to be processed.
  • the initial position of the nozzle tube 60 be cyclically scanned at least once to return to the initial position. This is because the shadow of the nozzle tube 60 is substantially uniformed in the work surface.
  • the nozzle tube 60 may continue the reciprocating scanning movement throughout the operation of the apparatus, or may stop the reciprocating scanning movement during the intermittent conveyance of the workpiece 2.
  • At least one, for example, two nozzle pipes 60 can be scanned and moved with respect to the work 2 in correspondence with the stop position of the work 2 with respect to the work 2 intermittently stopped.
  • an area in which the electric field between the anode and the cathode is blocked as a shadow of the nozzle pipe 60 located between the work 2 and the anode 20 in plan view moves with the movement of the nozzle pipe 60. Therefore, the area where the electric field is hindered by the nozzle tube 60 is not fixed, and the in-plane uniformity of the workpiece 2 to be processed is improved.
  • the scanning movement direction of the nozzle tube 60 is not limited to the horizontal direction.
  • the nozzle tube 60 may be arranged horizontally and scanning movement may be performed in the vertical direction, and the scanning movement direction may be any direction such as horizontal or vertical.
  • the nozzle pipe 60 can entrain and eject the plating solution in the vicinity of the spout 60A in the divided processing tank by a known structure. Therefore, the plating solution rich in metal ions in the vicinity of the anode 20 can be jetted toward the work 2 to improve the throughput.
  • the scanning movement of the nozzle tube 60 can be widely applied to the surface treatment apparatus of the intermittent conveyance method, and the structure as in the embodiment described above, that is, the connection structure of a plurality of processing units, the cathode division structure, the anode division It is not limited to the structure etc.
  • the present invention is not necessarily applied to the intermittent conveyance type surface treatment apparatus, at least one nozzle pipe is fixedly arranged in the continuous conveyance type surface treatment apparatus.
  • FIG. 9 schematically shows the treatment liquid circulation device 100 connected to each of the processing units 3-1 to 3-n shown in FIG.
  • the treatment liquid circulation system 100 is connected to the divided treatment tank 6 of the treatment unit 3-1.
  • a plurality of processing liquid circulation devices 100 may be connected to the division processing tank 6, and for example, even if one processing liquid circulation device 100 is connected to each of the four cells 11-1 to 11-4 shown in FIG. good.
  • one processing liquid circulation device 100 may be connected to each of the plurality of divided processing tanks 6.
  • the division regions to which the treatment liquid circulation apparatus 100 is connected are not limited to those physically divided as in the processing units 3-1 to 3-n and the cells 11-1 to 11-4.
  • the treatment liquid circulation system 100 is provided on both sides of the work 2 in each of the cells 11-1 to 11-4 of the division treatment tank 6 by adjusting the plating solution collected from the division treatment tank Each two sets of eight sets of nozzle tubes 60 are returned and supplied.
  • the treatment liquid circulation system 100 has a control tank 110.
  • the adjustment tank 110 is in communication with the bottom of the divided treatment tank 6 via, for example, a normally open valve 111.
  • the overflow tanks 7A and 7B are provided, for example, on both sides in the width direction of the divided processing tank 6, the adjustment tank 110 is also communicated with the bottoms of the overflow tanks 7A and 7B.
  • the adjustment tank 110 can have a copper oxide input unit 112, an additive input unit 113, and a temperature control unit 114. Copper oxide and additives are added to supplement the components consumed by copper plating. Temperature adjustment is performed to adjust the temperature of the treatment solution to the optimum temperature specific to the surface treatment.
  • two return paths 120A and 120B are connected on the downstream side of the adjustment tank 110.
  • the return path 120 A is connected to a total of four sets of nozzle pipes 60 provided on the front side of the work 2 in the cells 11-1 to 11-4 of the divided processing tank 6.
  • the return path 120 B is connected to a total of four sets of nozzle pipes 60 provided on the back side of the work 2 in each of the cells 11-1 to 11-4 of the divided processing tank 6.
  • a circulation pump 121, a filter 122 and a flow meter 123 are provided in each of the two return paths 120A and 120B.
  • each of the plurality of processing solution circulation devices 100 adjusts the plating solution collected from each one of the divided processing tanks 6 obtained by dividing the processing tank in the longitudinal direction, A total of eight sets of nozzle pipes 60 provided in each one can be returned and supplied as a resupply processing liquid. Therefore, the concentration of the fresh plating solution after adjustment is substantially equal among the plurality of divided processing tanks 6. Moreover, in each divided processing tank 6, fresh plating solution is spouted toward the work 2 from a total of eight sets of nozzle pipes 60 which are moved and scanned. Therefore, the fresh plating solution is dispersed in each divided processing tank 6, and the concentration of the plating solution becomes almost even in each divided processing tank 6. Further, if the processing liquid for resupply is supplied from the upper side of the nozzle pipe 60, air can be removed.
  • the adjustment tank 110 can perform at least one of the consumption of the consumed components such as an oxidation cylinder and / or an additive, and temperature control on the recovered plating solution. With any of these adjustments, the recovered plating is adjusted to a fresh resupplying treatment solution.
  • Impurities with heavy specific gravity metal-based, eg, copper oxide copper powder contained in the plating solution collected from the bottom of the divided processing tank 6 having the inclined surface 6C, and contained in the plating solution collected from the overflow tanks 7A and 7B
  • Impurities with a low specific gravity for example, resin system
  • the filter 122 can be removed by the filter 122.
  • the contamination of the re-supplied plating solution is prevented, and clogging of the nozzle tube 60 can also be prevented.
  • the filter 122 when the line and space of the wiring formed on the work 2 are reduced, even a small amount of dust causes a short failure.
  • Such dust is removed by the filter 122 and can be removed from the resupplied plating solution.
  • the refuse with heavy specific gravity is prevented from being left in the treatment tank while convecting by being collected from the bottom of the treatment tank through the normally open nozzle 111.
  • SYMBOLS 1 Surface treatment apparatus 2 workpiece

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Spray Control Apparatus (AREA)

Abstract

A surface treatment device (1) having: treatment tanks (3–1 – 3–n) that have arranged therein a plurality of nozzle tubes (60) that spray treatment fluid on to a plurality of workpieces (2) to be immersed in treatment fluid; and a plurality of treatment fluid circulation devices (100). Each of the plurality of treatment fluid circulation devices: is connected to a respective one of a plurality of divided regions (6), which divide the treatment tanks in the longitudinal direction thereof and each include at least one of the plurality of nozzle tubes; and adjusts the treatment fluid recovered from each of the divided regions (6) and returns and supplies the same to at least one nozzle tube provided in each of the divided regions (6).

Description

表面処理装置Surface treatment equipment
 本発明は、メッキ装置等の表面処理装置に関し、特に、処理槽から回収された処理液を調整して処理槽に戻す処理液の循環システムに関する。 The present invention relates to a surface treatment apparatus such as a plating apparatus, and more particularly to a treatment liquid circulation system for adjusting a treatment liquid collected from a treatment tank and returning it to the treatment tank.
 メッキ装置は、処理槽内にメッキ液を収容している。特許文献1は、メッキ槽外に、ポンプとフィルターとから成る不純物除去手段を設けたメッキ装置を開示している。メッキ液はメッキ槽の底部から排出され、不純物除去手段によりスライムのない清浄なメッキ液を、メッキ槽の底部よりメッキ槽内に戻し循環している。また、ワークにメッキされることで酸化銅等のメッキ成分が消耗されることから、従来、長いメッキ槽の一部から酸化銅を供給していた。 The plating apparatus contains a plating solution in a processing tank. Patent Document 1 discloses a plating apparatus provided with an impurity removing means consisting of a pump and a filter outside the plating tank. The plating solution is discharged from the bottom of the plating tank, and a clean plating solution without slime is circulated from the bottom of the plating tank back to the inside of the plating tank by the means for removing impurities. Further, since plating components such as copper oxide are consumed by plating on a work, copper oxide is conventionally supplied from a part of a long plating tank.
特開2003-013291号公報Japanese Patent Application Publication No. 2003-013291
 特許文献1では、メッキ槽の底部から排出されて不純物除去手段によりスライムが除去された清浄なメッキ液をメッキ槽の底部よりメッキ槽内に戻し循環すると、メッキ槽内にて清浄なメッキ液が均等に分配されない。また、従来、消耗される酸化銅は長いメッキ槽の一部から供給していたことから、処理槽内のメッキ液の濃度がばらつくという課題がある。 In Patent Document 1, when the clean plating solution discharged from the bottom of the plating tank and from which the slime is removed by the impurity removing means is returned from the bottom of the plating tank and circulated in the plating tank, the plating solution cleans in the plating tank. Not evenly distributed. Further, conventionally, since consumed copper oxide has been supplied from a part of a long plating tank, there is a problem that the concentration of the plating solution in the processing tank varies.
 本発明の少なくとも一つの態様は、処理槽内でフレッシュな処理液の濃度をほぼ均等にすることができる表面処理装置を提供することを目的とする。 An object of at least one aspect of the present invention is to provide a surface treatment apparatus capable of substantially equalizing the concentration of fresh treatment liquid in a treatment tank.
  (1)本発明の一態様は、
 処理液に浸漬される複数のワークに前記処理液を噴出させる複数のノズル管が配置された処理槽と、
 複数の処理液循環装置と、
を有し、
 前記複数の処理液循環装置の各々は、前記処理槽の長手方向で複数に分割され、各々が前記複数のノズル管の少なくとも1本を含む複数の分割領域の各一つとそれぞれ接続され、前記複数の分割領域の各一つから回収された処理液を調整して、前記複数の分割領域の各一つに設けられた前記少なくとも1本のノズル管に戻し供給する表面処理装置に関する。
(1) One aspect of the present invention is
A treatment tank in which a plurality of nozzle tubes are disposed to eject the treatment liquid to a plurality of workpieces immersed in the treatment liquid;
Multiple treatment liquid circulation devices,
Have
Each of the plurality of processing liquid circulation devices is divided into a plurality of portions in the longitudinal direction of the processing tank, and each is connected to each one of a plurality of divided regions including at least one of the plurality of nozzle tubes, The present invention relates to a surface treatment apparatus for adjusting a treatment liquid collected from each one of the divided areas and returning the solution to the at least one nozzle pipe provided in each one of the plurality of divided areas.
 本発明の一態様によれば、複数の処理液循環装置の各々が、処理槽を長手方向で分割した複数の分割領域の各一つから回収された処理液を調整して、複数の分割領域の各一つに設けられた少なくとも1本のノズル管に戻し供給することができる。よって、調整後のフレッシュな処理液の濃度は複数の分割領域間でほぼ均等となる。しかも、処理槽の各分割領域内では少なくとも1本のノズル管からフレッシュな処理液がワークに向けて噴出されるので、各分割領域内にフレッシュな処理液が分散されて、各分割領域内でも処理液の濃度がほぼ均等となる。なお、処理槽の分割領域とは、物理的に分割されたものに限らず、少なくとも分割領域毎に処理液が回収される構造を備えていれば良い。 According to one aspect of the present invention, each of the plurality of treatment liquid circulation devices adjusts the treatment liquid collected from each one of the plurality of divided regions obtained by dividing the treatment tank in the longitudinal direction, to obtain the plurality of divided regions. Can be fed back to at least one nozzle tube provided in each one of Therefore, the concentration of the fresh processing solution after adjustment is substantially equal among the plurality of divided regions. Moreover, in each divided area of the processing tank, fresh processing liquid is jetted from the at least one nozzle pipe toward the work, so that the fresh processing liquid is dispersed in each divided area, and even in each divided area. The concentration of the processing solution is almost even. The divided area of the processing tank is not limited to the physically divided one, as long as the processing liquid is collected at least for each divided area.
 (2)本発明の一態様(1)では、前記複数の処理液循環装置の各々は、循環ポンプと、前記複数の分割領域の一つから前記循環ポンプにより回収される処理液を再供給用処理液に調整する調整槽と、を含み、前記調整槽からの前記再供給用処理液を前記循環ポンプにより前記少なくとも1本のノズル管に戻し供給することができる。こうすると、循環ポンプにより回収された処理液は、調整槽において一括して調整され調整槽からの再供給用処理液を、循環ポンプにより少なくとも1本のノズル管に戻し供給することができる。 (2) In one aspect (1) of the present invention, each of the plurality of processing liquid circulation devices is for resupplying the processing liquid recovered by the circulation pump and the circulation pump from one of the plurality of divided regions. And a control tank configured to adjust the processing solution, and the processing liquid for resupply from the control tank can be returned and supplied to the at least one nozzle pipe by the circulation pump. In this case, the treatment liquid collected by the circulation pump can be collectively adjusted in the adjustment tank, and the treatment liquid for resupply from the adjustment tank can be returned to the at least one nozzle pipe by the circulation pump.
 (3)本発明の一態様(2)では、前記調整槽は、回収された処理液に対して、消費される成分の投入と、温度調整と、の少なくとも一つを実施することができる。消費される成分とは、表面処理が例えばメッキの場合には、処理液中のメッキ成分や添加剤などである。メッキ成分とは、例えば銅メッキの場合には酸化銅である。添加剤とは、例えばメッキの場合には光沢剤、平滑剤などである。温度調整は、表面処理に固有の最適温度に処理液を温度調整することである。それらの何れかの調整により、回収された処理液はフレッシュな再供給用処理液に調整される。例えば、回収された処理液中のメッキ成分、添加剤等の濃度、または処理液の温度をセンサーでモニターし、適正値を外れた場合に濃度又は温度を調整するようにしても良い。 (3) In one aspect (2) of the present invention, the adjusting tank can carry out at least one of charging of a component to be consumed and temperature adjustment to the recovered treatment liquid. The components to be consumed are, for example, plating components and additives in the processing solution when the surface treatment is plating. The plating component is, for example, copper oxide in the case of copper plating. The additive is, for example, a brightening agent, a smoothing agent, etc. in the case of plating. The temperature adjustment is to adjust the temperature of the treatment liquid to the optimum temperature inherent to the surface treatment. By any of these adjustments, the recovered treatment liquid is adjusted to a fresh re-supplying treatment liquid. For example, the concentration of plating components, additives, etc. in the recovered processing solution, or the temperature of the processing solution may be monitored by a sensor, and the concentration or temperature may be adjusted when the value is out of the proper value.
 (4)本発明の一態様(2)では、前記処理槽内の処理液は、前記処理槽の底部側から排出されて回収され、前記複数の処理液循環装置の各々は、前記調整槽からの前記再供給用処理液を濾過するフィルターをさらに有することができる。処理槽内の処理液中に混入した比重の重いごみ等の不純物は処理槽の底部に溜まる。これらの不純物は処理槽の底部側から排出された処理液と共に回収され、フィルターにより除去することができる。 (4) In one aspect (2) of the present invention, the treatment liquid in the treatment tank is discharged from the bottom side of the treatment tank and collected, and each of the plurality of treatment liquid circulation devices is supplied from the adjustment tank And a filter for filtering the resupplying treatment liquid. Impurities such as heavy waste having a high specific gravity mixed in the treatment liquid in the treatment tank are collected at the bottom of the treatment tank. These impurities can be recovered together with the processing solution discharged from the bottom side of the processing tank and can be removed by a filter.
 (5)本発明の一態様(4)では、前記処理槽に隣接するオーバーフロー槽をさらに有し、前記処理槽内の処理液は、前記オーバーフロー槽を介して排出されて回収されても良い。処理槽内の処理液中に混入した比重の軽い不純物は処理槽内の処理液の上部に浮遊する。これらの不純物は処理槽からオーバーフローされた処理液と共にオーバーフロー槽を介して排出されて回収され、同様にフィルターにより除去することができる。 (5) In one aspect (4) of the present invention, the processing solution may further include an overflow tank adjacent to the processing tank, and the processing liquid in the processing tank may be discharged and recovered through the overflow tank. Impurities having a low specific gravity mixed in the treatment liquid in the treatment tank float on the upper portion of the treatment liquid in the treatment tank. These impurities are discharged and recovered through the overflow tank together with the processing solution overflowed from the processing tank, and can be similarly removed by a filter.
 (6)本発明の一態様(1)~(5)では、前記表面処理装置は複数の処理ユニットが前記長手方向で連結されて形成され、前記複数の処理ユニットの各々は、前記処理液が収容される分割処理槽を含み、前記複数の処理液循環装置の各々は、前記複数の処理ユニットの各々の前記分割処理槽とそれぞれ接続されても良い。このように、表面処理装置が複数の処理ユニットを連結して構成する場合には、各処理ユニットに処理液循環装置を付設することができる。ただし、各処理ユニットに2以上の処理液循環装置を付設しても良い。 (6) In one aspect (1) to (5) of the present invention, the surface treatment apparatus is formed by connecting a plurality of processing units in the longitudinal direction, and each of the plurality of processing units has the treatment liquid Each of the plurality of processing liquid circulation devices may be connected to the divided processing tank of each of the plurality of processing units. As described above, in the case where the surface treatment apparatus is configured by connecting a plurality of treatment units, the treatment liquid circulation devices can be attached to each treatment unit. However, two or more processing liquid circulation devices may be attached to each processing unit.
本発明の実施形態に係る間欠搬送方式のメッキ装置におけるメッキ処理部の概略断面図である。It is a schematic sectional drawing of the plating process part in the plating apparatus of the intermittent conveyance system which concerns on embodiment of this invention. 図1に示すメッキ装置の一つの処理ユニットの概略平面図である。It is a schematic plan view of one processing unit of the plating apparatus shown in FIG. 一つの処理ユニット内に停止されるワークと陽極との位置関係を示す図である。It is a figure which shows the positional relationship of the workpiece | work stopped within one processing unit, and an anode. ワークを搬送する搬送治具の斜視図である。It is a perspective view of a conveyance jig which conveys a work. 陽極、陰極レール上の導電部及び整流器の接続を模式的に示す図である。It is a figure which shows typically the connection of the electroconductive part on an anode, a cathode rail, and a rectifier. 図6(A)(B)は陰極レールの正面図及び断面図である。6 (A) and 6 (B) are a front view and a cross-sectional view of a cathode rail. セル内で往復水平走査移動されるノズル管を示す平面である。It is a plane which shows a nozzle pipe reciprocated horizontally scanning movement in a cell. ノズル管の噴出口の配列ピッチを示す図である。It is a figure which shows the arrangement pitch of the jet nozzle of a nozzle pipe | tube. 分割処理槽に接続される処理液循環装置を模式的に示す図である。It is a figure which shows typically the process liquid circulation apparatus connected to a division | segmentation process tank.
 以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. Note that the present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as the solution means of the present invention. Not necessarily.
 1.複数の処理ユニット
 図1は本実施形態に係るメッキ装置(広義には表面処理装置)の断面図である。図1において、このメッキ装置1は、回路基板等のワーク2をメッキするメッキ処理部が1以上の処理ユニット3-1~3-n(nは自然数)を連結して構成される。複数の処理ユニット3-1~3-nは実質的に同一の構造を有することができる。複数の処理ユニット3-1~3-nの各々では、ワーク2を連続搬送しても良いし、ワーク2を間欠搬送しても良い。間欠搬送式のメッキ装置1とした場合、複数の処理ユニット3-1~3-nの各々では、少なくとも一つ、図1ではM(Mは2以上の整数)個例えばM=4個のワーク2が間欠停止可能である。図1は最大サイズのワーク2を示し、メッキ装置1はその最大サイズ以下のワーク2を処理することができる汎用性を有する。以下では、間欠搬送式のメッキ装置1を例に挙げて説明する。
1. Plural Processing Units FIG. 1 is a cross-sectional view of a plating apparatus (surface treatment apparatus in a broad sense) according to the present embodiment. In FIG. 1, the plating apparatus 1 is configured by connecting one or more processing units 3-1 to 3-n (n is a natural number) to a plating processing unit for plating a workpiece 2 such as a circuit board. The plurality of processing units 3-1 to 3-n may have substantially the same structure. In each of the plurality of processing units 3-1 to 3-n, the workpiece 2 may be transported continuously, or the workpiece 2 may be transported intermittently. In the case of the intermittent conveyance type plating apparatus 1, at least one of the plurality of processing units 3-1 to 3-n, M (M is an integer of 2 or more) in FIG. 2 can be intermittently stopped. FIG. 1 shows a workpiece 2 of the maximum size, and the plating apparatus 1 has versatility to be able to process the workpiece 2 below the maximum size. Hereinafter, the intermittent conveyance type plating apparatus 1 will be described as an example.
 ワーク2は、プッシャー等の間欠搬送装置により、現在の停止位置から次の停止位置に向けて、A方向に順次間欠搬送される。本実施形態では、一つのワーク2は各処理ユニット内にて4か所に停止される。最上流の処理ユニット3-1の上流側には、B方向への下降移動によりワーク2が搬入される搬入ユニット4が連結されても良い。処理ユニット3-1内のワーク2が間欠搬送される時に、搬入ユニット4内のワーク2も間欠搬送されて処理ユニット3-1に移動される。最下流の処理ユニット3-nの下流側には、処理ユニット3-nから水平移動されるワーク2をC方向に上昇させて搬出する搬出ユニット5が連結されても良い。処理ユニット3-n内のワーク2が間欠搬送される前に、搬出ユニット5内のワーク2は上方に搬出される。ただし、搬入ユニット4及び/又は搬出ユニット5は省略しても良い。この場合、処理ユニット3-1の最上流停止位置にワーク2が下降され、処理ユニット3-nの最下流停止位置のワーク2が上昇して搬出される。 The workpiece 2 is sequentially intermittently transported in the A direction from the current stop position to the next stop position by an intermittent transport device such as a pusher. In the present embodiment, one work 2 is stopped at four places in each processing unit. The loading unit 4 may be connected to the upstream side of the processing unit 3-1 at the most upstream position. The loading unit 4 may load the workpiece 2 by the downward movement in the B direction. When the workpiece 2 in the processing unit 3-1 is intermittently transported, the workpiece 2 in the loading unit 4 is also intermittently transported and moved to the processing unit 3-1. An unloading unit 5 may be connected to the downstream side of the most downstream processing unit 3-n for lifting the workpiece 2 horizontally moved from the processing unit 3-n in the C direction and unloading it. Before the workpiece 2 in the processing unit 3-n is intermittently transported, the workpiece 2 in the unloading unit 5 is unloaded upward. However, the loading unit 4 and / or the unloading unit 5 may be omitted. In this case, the work 2 is lowered to the most upstream stop position of the processing unit 3-1, and the work 2 at the most downstream stop position of the processing unit 3-n is lifted and carried out.
 図2は、処理ユニット3-2~3-nと共通の構成を有する処理ユニット3-1の平面図である。処理ユニット3-1は、メッキ液(広義には処理液)が収容される分割処理槽6を有する。ワーク2は分割処理槽6内のメッキ液に浸漬される。分割処理槽6は上方が開口された略箱体であり、上流側及び下流側の隔壁にはそれぞれ開口6A,6Bが設けられ、隣り合うユニット(処理ユニット、搬入ユニットまたは搬出ユニット)との間でワーク2の水平移動が許容される。 FIG. 2 is a plan view of the processing unit 3-1 having the same configuration as the processing units 3-2 to 3-n. The processing unit 3-1 includes a divided processing tank 6 in which a plating solution (processing solution in a broad sense) is stored. The workpiece 2 is immersed in the plating solution in the division processing tank 6. The divided processing tank 6 is a substantially box-like member opened at the upper side, and openings 6A and 6B are provided in the upstream and downstream partitions respectively, and between the adjacent units (processing unit, loading unit or unloading unit) The horizontal movement of the work 2 is allowed at.
 本実施形態では、処理ユニット3-1内の複数例えば4つの停止位置にあるワーク2の表面及び裏面の少なくとも一方側に、少なくとも一つの陽極20が設けられる。本実施形態では、各停止位置にある各一つのワーク2の表面と対向する陽極20Aと、ワーク2の裏面と対向する陽極20Bが設けられる。陽極20(20A,20B)の各々は、互いに導通された複数の分割陽極を含むことができる。本実施形態では上流側の分割陽極20A1(20B1)と下流側の分割陽極20A2(20B2)に分割されている。陽極20は、3以上に分割された分割陽極を含んでいても良いが、互いに導通されることから一つの陽極とみなすことができる。 In the present embodiment, at least one anode 20 is provided on at least one side of the front surface and the back surface of the plurality of, for example, four stop positions in the processing unit 3-1. In the present embodiment, an anode 20A opposed to the front surface of each one work 2 at each stop position and an anode 20B opposed to the back surface of the work 2 are provided. Each of the anodes 20 (20A, 20B) can include a plurality of split anodes that are in electrical communication with one another. In this embodiment, it is divided into an upstream divided anode 20A1 (20B1) and a downstream divided anode 20A2 (20B2). The anode 20 may include divided anodes divided into three or more, but can be regarded as one anode because they are electrically connected to each other.
 図3は、処理ユニット3-1に配置される陽極20A1,20A2(20B1,20B2)とワーク2との位置関係を示す正面図である。図3に示すように、ワーク2は搬送治具30に保持される。図2及び図3に示すように、陽極20(20A,20B)の各々は、4つの停止位置にあるワーク2と正対する位置に配置される。要は、図2に示すように、陰極に設定されるワーク2と陽極20との間で均一な電界を形成できればよい。陽極20の形状は問わず、図2及び図3に示す陽極は輪郭が矩形であるが、平面視での輪郭を円形としても良い。陽極は、不溶性陽極であって可溶性陽極であっても良い。 FIG. 3 is a front view showing the positional relationship between the anodes 20A1 and 20A2 (20B1 and 20B2) disposed in the processing unit 3-1 and the work 2. As shown in FIG. 3, the work 2 is held by the transfer jig 30. As shown in FIGS. 2 and 3, each of the anodes 20 (20A, 20B) is disposed at a position facing the workpiece 2 at four stop positions. The point is, as shown in FIG. 2, it is sufficient to form a uniform electric field between the work 2 set to the cathode and the anode 20. The contour of the anode shown in FIGS. 2 and 3 is rectangular regardless of the shape of the anode 20, but the contour in plan view may be circular. The anode may be an insoluble anode or a soluble anode.
 本実施形態では、一つの処理ユニット3-1を4つのセル11-1~11-4に区画する遮蔽板23を有することができる。各セル11-1~11-4内に、平面視でワーク2の両側に陽極20(20A1,20A2,20B1,20B2)が配置される。遮蔽板23は、隣り合うセル間での電界(図2に矢印で示す陽極-陰極間の電界)の影響を遮断するために設けられる。遮蔽板23には、ワーク2が通過する開口23Aが形成される。 In the present embodiment, it is possible to have a shielding plate 23 which divides one processing unit 3-1 into four cells 11-1 to 11-4. In each of the cells 11-1 to 11-4, anodes 20 (20A1, 20A2, 20B1, and 20B2) are disposed on both sides of the work 2 in a plan view. The shielding plate 23 is provided to block the influence of the electric field between the adjacent cells (the electric field between the anode and the cathode shown by the arrow in FIG. 2). The shielding plate 23 is formed with an opening 23A through which the workpiece 2 passes.
 2.搬送治具
 図4は、搬送治具30の一例を示している。この搬送治具30は、水平アーム部300と、垂直アーム部310と、ワーク保持部320と、被案内部330と、被給電部340と、被押動片350とを有する。水平アーム部300は、間欠搬送方向Aと直交する方向Bに沿って延びる。垂直アーム部310は水平アーム部300に垂下して保持される。ワーク保持部320は垂直アーム部310に固定される。ワーク保持部320は、上部フレーム321と、上部フレーム321に例えば昇降可能に支持される下部フレーム322とを含む。上部フレーム321には、ワーク2の上部をクランプする複数のクランパー323が設けられる。下部フレーム322には、ワーク2の下部をクランプする複数のクランパー324が設けられる。ワーク2には下部のクランパー324により下向きのテンションが付与される。ただし、ワーク2が厚い場合や、ワーク2の下部から給電しない場合には、下部フレーム322及びクランパー324を省略しても良い。
2. Conveying Jig FIG. 4 shows an example of the conveying jig 30. The transfer jig 30 includes a horizontal arm 300, a vertical arm 310, a workpiece holder 320, a guided portion 330, a power receiving portion 340, and a pushed piece 350. The horizontal arm unit 300 extends in a direction B orthogonal to the intermittent conveyance direction A. The vertical arm unit 310 is suspended by the horizontal arm unit 300 and held. The workpiece holding unit 320 is fixed to the vertical arm unit 310. The workpiece holding unit 320 includes an upper frame 321 and a lower frame 322 supported by the upper frame 321, for example, to be able to move up and down. The upper frame 321 is provided with a plurality of clampers 323 for clamping the upper portion of the work 2. The lower frame 322 is provided with a plurality of clampers 324 for clamping the lower part of the work 2. A downward tension is applied to the work 2 by the lower clamper 324. However, when the work 2 is thick or when power is not supplied from the lower part of the work 2, the lower frame 322 and the clamper 324 may be omitted.
 被案内部330は、処理ユニット3-2~3-nに沿って配置され、例えば処理ユニット3-2~3-n毎に分割された案内レール(図示せず)に案内されて、搬送治具30を直線案内するものである。被案内部330は、案内レールの天面と転接するローラー331と、案内レールの両側面と転接するローラー332(図4では一方の側面に転接するローラーのみ図示)とを含むことができる。 The guided portion 330 is disposed along the processing units 3-2 to 3-n, and is guided, for example, to a guide rail (not shown) divided into each of the processing units 3-2 to 3-n. The tool 30 is linearly guided. The guided portion 330 can include a roller 331 in rolling contact with the top surface of the guide rail, and a roller 332 in rolling contact with both side surfaces of the guide rail (only rollers in rolling contact with one side surface in FIG. 4).
 被給電部340は、図5及び図6にて説明する陰極レールと接触して、搬送治具30の水平アーム部300、垂直アーム部310、ワーク保持部320を介してワーク2を陰極に設定する。被給電部340は、間欠搬送方向Aに沿って延びる支持アーム341の上流側と下流側とに支持される2つの接触子342,343を含む。接触子342,343は、支持アーム341に平行リンク機構を介して支持され、陰極レールに圧接されるようにバネで付勢される。2つの接触子342,343は、クランパー323,324の少なくとも一方と電気的に接続されることで、ワーク2が陰極に設定される。 The power-supplied portion 340 contacts the cathode rail described in FIGS. 5 and 6, and sets the work 2 as a cathode via the horizontal arm portion 300, the vertical arm portion 310, and the work holding portion 320 of the transfer jig 30. Do. The power-supplied portion 340 includes two contacts 342 and 343 supported on the upstream side and the downstream side of the support arm 341 extending along the intermittent transport direction A. The contacts 342 and 343 are supported by the support arm 341 via a parallel link mechanism, and are spring biased so as to be pressed against the cathode rail. The two contacts 342 and 343 are electrically connected to at least one of the clampers 323 and 324 to set the work 2 as a cathode.
 被押動片350は、例えば垂直アーム部310に固定され、ワーク保持部320の真上の位置にて被押動面を垂直にして配置される。被押動片350は、後述する間欠搬送装置により図示C方向から押動されて、搬送治具30に間欠搬送力を伝達させるものである。なお、図4に示す搬送治具30には、連続搬送時に使用される被係合部360が設けられており、搬送治具30は間欠搬送にも連続搬送にも兼用できる。 The pushed piece 350 is fixed to, for example, the vertical arm unit 310, and is disposed with the pushed surface vertical at a position directly above the workpiece holding unit 320. The pushed piece 350 is pushed from the direction of illustration C by an intermittent conveyance device described later to transmit the intermittent conveyance force to the conveyance jig 30. In addition, the engaged part 360 used at the time of continuous conveyance is provided in the conveyance jig 30 shown in FIG. 4, and the conveyance jig 30 can be used for both intermittent conveyance and continuous conveyance.
 3.陰極レール及び整流器
 図5に示すように各処理ユニット3-1~3-n(図5は2つの処理ユニットのみ図示)は、少なくとも1本の陰極レール40を有する。陰極レール40は、搬送方向Aと平行に複数並列に配置しても良い。この場合、複数の陰極レール40は同じ整流器に接続されても良いし、異なる整流器に接続されて給電部位毎に電流値を独立して制御するようにしても良い。本実施形態では1本の陰極レール40が設けられる。1本の陰極レール40は、好ましくは処理ユニット3-1~3-n毎に分割された複数の分割陰極レール40-1~40-n(図5は2つの分割陰極レール40-1,40-2のみを示す)を有し、搬送方向Aで連続するように連結される。分割陰極レール40-1~40-nの各々は、図5及び図6(A)に示すように、絶縁レール41上にて間隔(非導電部)42をあけて、ワーク2が停止される各セル毎に一つずつ計4つの導電部43を有する。4つの導電部43の各々は、各処理ユニット3-1~3-nの4箇所の停止位置にてワーク2を保持して停止された図4に示す搬送治具30の被給電部340(2つの接触子342,343)と電気的に導通される。なお、図5では各処理ユニット3-1~3-nに収容されるメッキ液の液面Lが示され、ワーク2はメッキ液中に浸漬される。なお、図6(B)に示すように、陰極レール40の幅方向の両端には隔壁44,44が設けられ、導電部43上に非油性の導電性流体(例えば水)45を保持することができる。こうすると、被給電部340(2つの接触子342,343)と導電部43との電気的接触を、導電性流体45を介してより確実に担保することができる。ただし、水の導電性は金属である導電部43の導電性よりもはるかに低いので、隣り合う導電部43,43間の絶縁性は維持される。また、図6(B)に示すように、導電部43を絶縁レール41上に固定するボルト46は、被給電部340の走行路を挟んだ両側に配置することができる。これにより、導電部34にボルトの座ぐり穴を設ける必要がなくなり、抵抗となる要因を排除できる。
3. Cathode Rail and Rectifier As shown in FIG. 5, each processing unit 3-1 to 3-n (FIG. 5 shows only two processing units) has at least one cathode rail. A plurality of cathode rails 40 may be arranged in parallel in parallel with the transport direction A. In this case, the plurality of cathode rails 40 may be connected to the same rectifier, or may be connected to different rectifiers to control the current value independently for each feeding site. In the present embodiment, one cathode rail 40 is provided. One cathode rail 40 is preferably divided into a plurality of divided cathode rails 40-1 to 40-n (two divided cathode rails 40-1 and 40 in FIG. 5) divided into processing units 3-1 to 3-n. (Only shows -2), and is connected continuously in the transport direction A. As shown in FIGS. 5 and 6A, each of the divided cathode rails 40-1 to 40-n opens the gap (non-conductive portion) 42 on the insulating rail 41, and the work 2 is stopped. A total of four conductive parts 43 are provided for each cell. Each of the four conductive portions 43 holds and stops the work 2 at the four stop positions of each of the processing units 3-1 to 3-n. Electrically conducted with the two contacts 342, 343). Note that FIG. 5 shows the liquid level L of the plating solution contained in each of the processing units 3-1 to 3-n, and the work 2 is immersed in the plating solution. As shown in FIG. 6B, dividing walls 44 and 44 are provided at both ends in the width direction of the cathode rail 40, and a non-oil-based conductive fluid (for example, water) 45 is held on the conductive portion 43. Can. In this case, the electrical contact between the power-supplied portion 340 (the two contacts 342 and 343) and the conductive portion 43 can be secured more reliably via the conductive fluid 45. However, since the conductivity of water is much lower than the conductivity of the conductive portion 43 which is a metal, the insulation between the adjacent conductive portions 43 is maintained. Also, as shown in FIG. 6B, the bolts 46 for fixing the conductive portion 43 on the insulating rail 41 can be disposed on both sides of the traveling path of the power-supplied portion 340. As a result, it is not necessary to provide the counterbore of the bolt in the conductive portion 34, and the factor of resistance can be eliminated.
 各処理ユニット3-1~3-nは、ワーク2が停止される各セル毎に一つずつ計4つの整流器50(図5では一つの整流器50のみを示す)を有する。4つの整流器50の各一つの正端子51は各セルに配置された陽極20(20A1,20A2,20B1,20B2)と接続される。4つの整流器50の各一つの負端子52は分割陰極レール40-1~40-nの各一つのセルに対応する導電部43と接続される。 Each of the processing units 3-1 to 3-n has a total of four rectifiers 50 (one rectifier 50 is shown in FIG. 5), one for each cell in which the work 2 is stopped. One positive terminal 51 of each of the four rectifiers 50 is connected to the anode 20 (20A1, 20A2, 20B1, 20B2) disposed in each cell. One negative terminal 52 of each of the four rectifiers 50 is connected to the conductive portion 43 corresponding to one cell of the divided cathode rails 40-1 to 40-n.
 4.ワークの停止時の電流制御
 各処理ユニット3-1~3-nの4箇所の停止位置(セル)にて、4つのワーク2に流れる電流は、各セル毎に一つずつ設けられた整流器50の各々により独立して制御される。しかも、セル間では陰極同士が絶縁され、陽極同士も絶縁されるので、各一つのワーク2毎に絶縁分離させて、各整流器50によりワーク2を個別的に給電制御することができる。加えて、セル間では遮蔽板23により電界を分離することで、セル間での影響を排除して、ワーク2毎の個別給電が担保される。それにより、ワーク2のメッキ品質を向上させることができる。
4. Current control at the time of stop of the work At four stop positions (cells) of each processing unit 3-1 to 3-n, the current flowing to the four works 2 is a rectifier 50 provided one for each cell Are independently controlled by each of the Moreover, since the cathodes are insulated between the cells and the anodes are also insulated, the work 2 can be individually controlled to be supplied with electric power by the respective rectifiers 50 by insulatingly separating each work 2. In addition, by separating the electric field between the cells by the shield plate 23, the individual power feeding for each work 2 is secured while eliminating the influence between the cells. Thereby, the plating quality of the work 2 can be improved.
 本実施形態の間欠搬送方式を従来の連続搬送方式と対比すると、連続搬送されるワーク(陰極)は固定された陽極との位置関係が常時変化するのに対して、本実施形態の停止されたワーク(陰極)2は陽極20と正対させることができる。このように、ワーク2の停止中は陰極と陽極との位置関係が一定となり、各ワークは同一メッキ条件となるので、メッキ品質が向上すると期待される。特にワーク2が停止していれば接触抵抗の変動はなくなるので、緻密な電流制御が可能となる。また、連続搬送に用いられる長い陰極レール途中には固定ボルト用の座ぐり穴等があり、陰極レールの抵抗値が場所毎に異なり均一抵抗とはならない。そのため、ワークの連続搬送中の位置によってワークに流れる電流が異なるが、間欠搬送ではそのような不具合を解消できる。さらに、本実施形態は、連続搬送のようにワークの連続搬送速度よりメッキ品質が悪影響を受けることもない。 When the intermittent transfer method of the present embodiment is compared with the conventional continuous transfer method, while the positional relationship between the work (cathode) transferred continuously and the fixed anode constantly changes, the stop of the present embodiment is stopped. The work (cathode) 2 can be made to face the anode 20 directly. As described above, while the work 2 is stopped, the positional relationship between the cathode and the anode becomes constant, and the work is subjected to the same plating condition, so it is expected that the plating quality is improved. In particular, when the work 2 is stopped, the fluctuation of the contact resistance is eliminated, and precise current control becomes possible. In addition, there is a counterbore or the like for a fixing bolt in the middle of a long cathode rail used for continuous transportation, and the resistance value of the cathode rail varies from place to place and does not become uniform resistance. Therefore, although the electric current which flows into a workpiece | work changes with positions during continuous conveyance of a workpiece | work, such a malfunction can be eliminated in intermittent conveyance. Furthermore, in the present embodiment, unlike the continuous transfer, the plating quality is not adversely affected by the continuous transfer speed of the work.
 ただし、上述のような完全個別給電を必ずしも実施せずにワーク2を間欠搬送しても良い。つまり、各処理ユニット3-1~3-nの4つのセル11-1~11-4にて、陰極及び陽極の一方または双方を共通(共通陰極及び/または共通陽極)にしても良い。 However, the work 2 may be intermittently transported without necessarily performing the completely individual power feeding as described above. That is, one or both of the cathode and the anode may be common (common cathode and / or common anode) in the four cells 11-1 to 11-4 of the processing units 3-1 to 3-n.
 5.ノズル管の移動走査
 各処理ユニット3-1~3-nの4つのセル11-1~11-4にて、図8に示すように、平面視で、停止位置にあるワーク2の各面(表面及び裏面)と陽極20との間に少なくとも1本のノズル管60をさらに設けることができる。ノズル管60は、ワーク(陰極)2と陽極20との間に形成される電界を遮るので、複数のノズル管60を設ける場合でもその本数は少ないことが好ましい。ノズル管60は、図9に示すようにメッキ液を噴出する複数の噴出口60Aを有する。図9に示すノズル管60の噴出口60Aは垂直方向ピッチPは従来の連続搬送式に用いられるピッチ(例えば7.5mm)よりも小さく、噴出口60Aの外径以上でかつ5mm以下とすることができる。単位時間当たりのメッキ液供給量を多くするためである。加えて、小さいサイズのチップや密なパターンに均等にメッキ液を供給するためにも、ピッチPは小さい方が良い。なお、図9ではワーク2の表裏面側のノズル管60はワーク2を挟んで対向配置されているが、非対向位置に設けても良い。対向配置させればワーク2が液圧で変形することを解消でき、非対向配置させるとワーク2の貫通孔にメッキ液を供給し易くなる。なお、連続搬送方式でもノズル管が設けられるが、その本数は一処理ユニットに十数本と多い。
5. Movement scan of the nozzle tube In each of the four cells 11-1 to 11-4 of each processing unit 3-1 to 3-n, as shown in FIG. At least one nozzle tube 60 may be further provided between the front and back) and the anode 20. Since the nozzle tube 60 intercepts the electric field formed between the work (cathode) 2 and the anode 20, it is preferable that the number thereof is small even when a plurality of nozzle tubes 60 are provided. The nozzle pipe 60 has a plurality of jet outlets 60A for jetting the plating solution as shown in FIG. In the jet nozzle 60 shown in FIG. 9, the pitch P in the vertical direction is smaller than the pitch (for example, 7.5 mm) used in the conventional continuous transfer type, and is not less than the outer diameter of the jet nozzle 60A and 5 mm or less Can. This is to increase the amount of plating solution supplied per unit time. In addition, in order to uniformly supply the plating solution to small size chips and dense patterns, the pitch P should be small. In FIG. 9, the nozzle pipes 60 on the front and back sides of the workpiece 2 are disposed opposite to each other with the workpiece 2 interposed therebetween. The opposing arrangement prevents the work 2 from being deformed by the fluid pressure, and the non-opposing arrangement makes it easier to supply the plating solution to the through holes of the work 2. Although the nozzle pipe is provided even in the continuous transfer method, the number thereof is as large as a dozen or so in one processing unit.
 ワークの連続搬送方式では多数のノズル管が固定されていたが、間欠搬送方式を採用する本実施形態では、各処理ユニット3-1~3-nの4つのセル11-1~11-4にて、少なくとも1本のノズル管60を、例えば図8の矢印A1方向及びA2方向(共に間欠搬送方向Aと平行である)に水平走査移動させている。それにより、図9に示すように、ワーク2の全面に対して均一にメッキ液を噴出させることができる。また、ノズル管60の移動速度は、連続搬送方式でのワーク2の移動速度(例えば0.8m/min)よりも速くすることができる。こうすると、単位時間当たりのメッキ液供給量を多くすることができる。なお、連続搬送式でワーク速度を速くすると処理槽の全長が長くなって装置が大型化するが、本実施形態のような間欠搬送では装置は大型化しない。 A large number of nozzle pipes are fixed in the continuous conveyance method of the work, but in the present embodiment adopting the intermittent conveyance method, in the four cells 11-1 to 11-4 of each processing unit 3-1 to 3-n. The horizontal scanning movement of at least one nozzle pipe 60 is performed, for example, in the arrow A1 direction and the A2 direction (both parallel to the intermittent conveyance direction A) in FIG. Thereby, as shown in FIG. 9, the plating solution can be ejected uniformly to the entire surface of the work 2. In addition, the moving speed of the nozzle tube 60 can be made faster than the moving speed (for example, 0.8 m / min) of the work 2 in the continuous transfer method. Thus, the amount of plating solution supplied per unit time can be increased. When the work speed is increased in the continuous transfer type, the entire length of the processing tank is increased and the size of the apparatus is increased. However, the size of the apparatus is not increased in the intermittent transfer as in this embodiment.
 ノズル管60の往復移動機構は図示を省略するが、公知の往復直線運動させる機構(例えば可逆モータで駆動されるピニオン-ラック機構、ピストン-クランク機構等)を採用することができる。この往復移動機構は、各セルで停止されているワーク2の少なくとも水平幅と対応する長さ範囲を少なくとも一回循環して走査するように、2本のノズル管60を移動させることができる。こうすると、処理されるワーク2の面内均一性が向上する。特に、ノズル管60の初期位置から少なくとも一回循環走査させて初期位置に復帰させることが好ましい。ノズル管60の影がワーク面内でほぼ均一化されるからである。なお、ノズル管60は装置の稼動中に亘って往復走査移動を連続させても良いし、ワーク2の間欠搬送中は往復走査移動を停止しても良い。 Although the reciprocating movement mechanism of the nozzle tube 60 is not shown, a known reciprocating linear movement mechanism (for example, a pinion-rack mechanism driven by a reversible motor, a piston-crank mechanism, etc.) can be adopted. This reciprocating movement mechanism can move the two nozzle pipes 60 so as to scan at least once by circulating at least once a length range corresponding to at least the horizontal width of the work 2 stopped at each cell. This improves the in-plane uniformity of the workpiece 2 to be processed. In particular, it is preferable that the initial position of the nozzle tube 60 be cyclically scanned at least once to return to the initial position. This is because the shadow of the nozzle tube 60 is substantially uniformed in the work surface. The nozzle tube 60 may continue the reciprocating scanning movement throughout the operation of the apparatus, or may stop the reciprocating scanning movement during the intermittent conveyance of the workpiece 2.
 本実施形態によれば、間欠停止されるワーク2に対して、ワーク2の停止位置と対応して少なくとも一つ例えば2本のノズル管60をワーク2に対して走査移動させることができる。それにより、平面視でワーク2と陽極20との間に位置するノズル管60の影となって陽極-陰極間の電界が妨げられる領域が、ノズル管60の移動に伴って移動する。このため、ノズル管60によって電界が妨げられる領域が固定されず、処理されるワーク2の面内均一性が向上する。なお、ノズル管60の走査移動方向は水平方向に限らない。例えばノズル管60を水平に配置して垂直方向に走査移動してもよく、走査移動方向は水平、垂直等のいずれの方向であっても良い。 According to the present embodiment, at least one, for example, two nozzle pipes 60 can be scanned and moved with respect to the work 2 in correspondence with the stop position of the work 2 with respect to the work 2 intermittently stopped. As a result, an area in which the electric field between the anode and the cathode is blocked as a shadow of the nozzle pipe 60 located between the work 2 and the anode 20 in plan view moves with the movement of the nozzle pipe 60. Therefore, the area where the electric field is hindered by the nozzle tube 60 is not fixed, and the in-plane uniformity of the workpiece 2 to be processed is improved. The scanning movement direction of the nozzle tube 60 is not limited to the horizontal direction. For example, the nozzle tube 60 may be arranged horizontally and scanning movement may be performed in the vertical direction, and the scanning movement direction may be any direction such as horizontal or vertical.
 ノズル管60は公知の構造により分割処理槽内の噴出口60A付近のメッキ液を巻き込んで噴出させることができる。よって、陽極20付近の金属イオンが豊富なメッキ液をワーク2に向けて噴出でき、スループットが向上する。 The nozzle pipe 60 can entrain and eject the plating solution in the vicinity of the spout 60A in the divided processing tank by a known structure. Therefore, the plating solution rich in metal ions in the vicinity of the anode 20 can be jetted toward the work 2 to improve the throughput.
 なお、ノズル管60の走査移動は、間欠搬送方式の表面処理装置に広く適用することができ、必ずしも上述した実施形態のような構造、つまり複数の処理ユニットの連結構造、陰極分割構造、陽極分割構造等に限定されるものではない。また、本発明は必ずしも間欠搬送式の表面処理装置に適用されるものではないので、連続搬送式の表面処理装置では少なくとも1本のノズル管は固定配置される。 In addition, the scanning movement of the nozzle tube 60 can be widely applied to the surface treatment apparatus of the intermittent conveyance method, and the structure as in the embodiment described above, that is, the connection structure of a plurality of processing units, the cathode division structure, the anode division It is not limited to the structure etc. Further, since the present invention is not necessarily applied to the intermittent conveyance type surface treatment apparatus, at least one nozzle pipe is fixedly arranged in the continuous conveyance type surface treatment apparatus.
 6.処理液循環装置
 図9は、図1に示す各処理ユニット3-1~3-nの各々に接続される処理液循環装置100を模式的に示す。図9では、処理液循環装置100は処理ユニット3-1の分割処理槽6に連結されている。ただし、分割処理槽6に複数の処理液循環装置100が連結されてもよく、例えば図3に示す4つのセル11-1~11-4毎に一つの処理液循環装置100が連結されても良い。あるいは、複数の分割処理槽6毎に一つの処理液循環装置100を連結しても良い。ただし、処理液循環装置100が連結される分割領域とは、処理ユニット3-1~3-nやセル11-1~11-4のように物理的に分割されたものに限らない。
6. Treatment Liquid Circulation Device FIG. 9 schematically shows the treatment liquid circulation device 100 connected to each of the processing units 3-1 to 3-n shown in FIG. In FIG. 9, the treatment liquid circulation system 100 is connected to the divided treatment tank 6 of the treatment unit 3-1. However, a plurality of processing liquid circulation devices 100 may be connected to the division processing tank 6, and for example, even if one processing liquid circulation device 100 is connected to each of the four cells 11-1 to 11-4 shown in FIG. good. Alternatively, one processing liquid circulation device 100 may be connected to each of the plurality of divided processing tanks 6. However, the division regions to which the treatment liquid circulation apparatus 100 is connected are not limited to those physically divided as in the processing units 3-1 to 3-n and the cells 11-1 to 11-4.
 図9において、処理液循環装置100は、分割処理槽6から回収されたメッキ液を調整して、分割処理槽6の各セル11-1~11-4にてワーク2の両側に設けられた各2組計8組のノズル管60に戻し供給する。処理液循環装置100は、調整槽110を有する。調整槽110は、例えば常開のバルブ111を介して、分割処理槽6の底部と連通されている。図9に示すように、分割処理槽6の幅方向の例えば両側にオーバーフロー槽7A,7Bを有する場合には、調整槽110はオーバーフロー槽7A,7Bの底部とも連通される。 In FIG. 9, the treatment liquid circulation system 100 is provided on both sides of the work 2 in each of the cells 11-1 to 11-4 of the division treatment tank 6 by adjusting the plating solution collected from the division treatment tank Each two sets of eight sets of nozzle tubes 60 are returned and supplied. The treatment liquid circulation system 100 has a control tank 110. The adjustment tank 110 is in communication with the bottom of the divided treatment tank 6 via, for example, a normally open valve 111. As shown in FIG. 9, when the overflow tanks 7A and 7B are provided, for example, on both sides in the width direction of the divided processing tank 6, the adjustment tank 110 is also communicated with the bottoms of the overflow tanks 7A and 7B.
 調整槽110は、酸化銅投入部112、添加剤投入部113および温調部114を有することができる。酸化銅及び添加剤は、銅メッキにより消費される成分を補うために投入される。温調は、表面処理に固有の最適温度に処理液を温度調整するために実施される。調整槽110の下流側に、2本の戻し経路120A,120Bが接続される。戻し経路120Aは、分割処理槽6の各セル11-1~11-4にてワーク2の表側に設けられた各1組計4組のノズル管60に接続される。戻し経路120Bは、分割処理槽6の各セル11-1~11-4にてワーク2の裏側に設けられた各1組計4組のノズル管60に接続される。2本の戻し経路120A,120Bの各々には、循環ポンプ121、フィルター122及びフローメーター123が設けられる。 The adjustment tank 110 can have a copper oxide input unit 112, an additive input unit 113, and a temperature control unit 114. Copper oxide and additives are added to supplement the components consumed by copper plating. Temperature adjustment is performed to adjust the temperature of the treatment solution to the optimum temperature specific to the surface treatment. On the downstream side of the adjustment tank 110, two return paths 120A and 120B are connected. The return path 120 A is connected to a total of four sets of nozzle pipes 60 provided on the front side of the work 2 in the cells 11-1 to 11-4 of the divided processing tank 6. The return path 120 B is connected to a total of four sets of nozzle pipes 60 provided on the back side of the work 2 in each of the cells 11-1 to 11-4 of the divided processing tank 6. A circulation pump 121, a filter 122 and a flow meter 123 are provided in each of the two return paths 120A and 120B.
 本実施形態によれば、複数の処理液循環装置100の各々が、処理槽を長手方向で分割した分割処理槽6の各一つから回収されたメッキ液を調整して、分割処理槽6の各一つに設けられた計8組のノズル管60に再供給用処理液として戻し供給することができる。よって、調整後のフレッシュなメッキ液の濃度は複数の分割処理槽6間でほぼ均等となる。しかも、各分割処理槽6内では、移動走査される計8組のノズル管60からフレッシュなメッキ液がワーク2に向けて噴出される。よって、各分割処理槽6内にフレッシュなメッキ液が分散されて、各分割処理槽6内でもメッキ液の濃度がほぼ均等となる。また、ノズル管60の上部側から再供給用処理液を供給すれば、エア抜きを行うことができる。 According to the present embodiment, each of the plurality of processing solution circulation devices 100 adjusts the plating solution collected from each one of the divided processing tanks 6 obtained by dividing the processing tank in the longitudinal direction, A total of eight sets of nozzle pipes 60 provided in each one can be returned and supplied as a resupply processing liquid. Therefore, the concentration of the fresh plating solution after adjustment is substantially equal among the plurality of divided processing tanks 6. Moreover, in each divided processing tank 6, fresh plating solution is spouted toward the work 2 from a total of eight sets of nozzle pipes 60 which are moved and scanned. Therefore, the fresh plating solution is dispersed in each divided processing tank 6, and the concentration of the plating solution becomes almost even in each divided processing tank 6. Further, if the processing liquid for resupply is supplied from the upper side of the nozzle pipe 60, air can be removed.
 調整槽110は、回収されたメッキ液に対して、消費される成分例えば酸化胴及び/又は添加剤の投入と、温度調整と、の少なくとも一つを実施することができる。それらの何れかの調整により、回収されたメッキはフレッシュな再供給用処理液に調整される。 The adjustment tank 110 can perform at least one of the consumption of the consumed components such as an oxidation cylinder and / or an additive, and temperature control on the recovered plating solution. With any of these adjustments, the recovered plating is adjusted to a fresh resupplying treatment solution.
 分割処理槽6の傾斜面6Cを有する底部から回収されるメッキ液に含まれる比重の重い不純物(金属系例えば酸化銅の銅粉)や、オーバーフロー槽7A,7Bから回収されるメッキ液に含まれる比重の軽い不純物(例えば樹脂系)は、フィルター122により除去することができる。それにより、再供給されるメッキ液の汚染が防止され、ノズル管60の目詰まりも防止できる。特に、ワーク2に形成された配線のライン&スペースが小さくなると、僅かなゴミでもショート不良となる。このようなゴミは、フィルター122により除去されるので、再供給されるメッキ液中から排除することができる。なお、比重の重いゴミは、処理槽の底部から常開ノズル111を介して回収されることにより、対流しながら処理槽に残存されることが防止される。 Impurities with heavy specific gravity (metal-based, eg, copper oxide copper powder) contained in the plating solution collected from the bottom of the divided processing tank 6 having the inclined surface 6C, and contained in the plating solution collected from the overflow tanks 7A and 7B Impurities with a low specific gravity (for example, resin system) can be removed by the filter 122. Thereby, the contamination of the re-supplied plating solution is prevented, and clogging of the nozzle tube 60 can also be prevented. In particular, when the line and space of the wiring formed on the work 2 are reduced, even a small amount of dust causes a short failure. Such dust is removed by the filter 122 and can be removed from the resupplied plating solution. In addition, the refuse with heavy specific gravity is prevented from being left in the treatment tank while convecting by being collected from the bottom of the treatment tank through the normally open nozzle 111.
 なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本発明の範囲に含まれる。 It should be understood by those skilled in the art that although the present embodiment has been described in detail as described above, many modifications can be made without departing substantially from the novel matters and effects of the present invention. Accordingly, all such modifications are intended to be included within the scope of the present invention. For example, in the specification or the drawings, the terms described together with the broader or synonymous different terms at least once can be replaced with the different terms anywhere in the specification or the drawings. Further, all combinations of the present embodiment and the modifications are also included in the scope of the present invention.
 1 表面処理装置、2 ワーク、3-1~3-n 処理ユニット、6 分割処理槽、7A,7B オーバーフロー槽、20(20A1,20A2,20B1,20B2) 陽極、30 搬送治具、40,40-1,40-2 陰極レール(分割陰極レール)、41 絶縁レール、42 間隔(非導電部)、43 導電部、50 整流器、51 正端子、52 負端子、60 ノズル管、60A 噴出口、100 処理液循環装置、110 調整槽、112 酸化胴投入部、113 添加剤投入部、114 温調部、120A,120B 第1,第2戻し経路、121 循環ポンプ、122 フィルター DESCRIPTION OF SYMBOLS 1 Surface treatment apparatus, 2 workpiece | work, 3-1 to 3-n processing unit, 6 division | segmentation processing tank, 7A, 7B overflow tank, 20 (20A1, 20A2, 20B1, 20B2) anode, 30 conveyance jigs, 40, 40- 1, 40-2 Cathode Rail (Division Cathode Rail), 41 Insulating Rails, 42 Spacing (Non-Conductive Part), 43 Conductor, 50 Rectifiers, 51 Positive Terminal, 52 Negative Terminal, 60 Nozzle Tube, 60 A Spout, 100 Treatment Liquid circulation device, 110 adjustment tank, 112 oxidation cylinder input part, 113 additive input part, 114 temperature adjustment part, 120A, 120B first and second return paths, 121 circulation pump, 122 filter

Claims (6)

  1.  処理液に浸漬される複数のワークに前記処理液を噴出させる複数のノズル管が配置された処理槽と、
     複数の処理液循環装置と、
    を有し、
     前記複数の処理液循環装置の各々は、前記処理槽の長手方向で複数に分割され、各々が前記複数のノズル管の少なくとも1本を含む複数の分割領域の各一つとそれぞれ接続され、前記複数の分割領域の各一つから回収された処理液を調整して、前記複数の分割領域の各一つに設けられた前記少なくとも1本のノズル管に戻し供給することを特徴とする表面処理装置。
    A treatment tank in which a plurality of nozzle tubes are disposed to eject the treatment liquid to a plurality of workpieces immersed in the treatment liquid;
    Multiple treatment liquid circulation devices,
    Have
    Each of the plurality of processing liquid circulation devices is divided into a plurality of portions in the longitudinal direction of the processing tank, and each is connected to each one of a plurality of divided regions including at least one of the plurality of nozzle tubes, A surface treatment apparatus characterized in that a treatment liquid collected from each one of the divided regions is adjusted and returned to the at least one nozzle pipe provided in each one of the plurality of divided regions. .
  2.  請求項1において、
     前記複数の処理液循環装置の各々は、
     循環ポンプと、
     前記複数の分割領域の一つから前記循環ポンプにより回収される処理液を再供給用処理液に調整する調整槽と、
    を含み、
     前記調整槽からの前記再供給用処理液が前記循環ポンプにより前記少なくとも1本のノズル管に戻し供給されることを特徴とする表面処理装置。
    In claim 1,
    Each of the plurality of processing liquid circulation devices is
    A circulation pump,
    An adjusting tank configured to adjust the processing liquid recovered by the circulating pump from one of the plurality of divided regions into a processing liquid for resupply;
    Including
    A surface treatment apparatus characterized in that the treatment liquid for resupply from the adjustment tank is supplied back to the at least one nozzle pipe by the circulation pump.
  3.  請求項2において、
     前記調整槽は、回収された処理液に対して、消費される成分の投入と、温度調整と、の少なくとも一つを実施することを特徴とする表面処理装置。
    In claim 2,
    A surface treatment apparatus characterized in that the adjustment tank implements at least one of charging of a component to be consumed and temperature adjustment to the recovered treatment liquid.
  4.  請求項2または3において、
     前記処理槽内の処理液は、前記処理槽の底部側から排出されて回収され、
     前記複数の処理液循環装置の各々は、前記調整槽からの前記再供給用処理液を濾過するフィルターをさらに有することを特徴とする表面処理装置。
    In claim 2 or 3,
    The treatment liquid in the treatment tank is discharged from the bottom side of the treatment tank and collected.
    A surface treatment apparatus characterized in that each of the plurality of treatment liquid circulation devices further includes a filter for filtering the treatment liquid for resupply from the adjustment tank.
  5.  請求項4において、
     前記処理槽に隣接するオーバーフロー槽をさらに有し、
     前記処理槽内の処理液は、前記オーバーフロー槽を介して排出されて回収されることを特徴とする表面処理装置。
    In claim 4,
    Further comprising an overflow tank adjacent to the processing tank,
    A surface treatment apparatus characterized in that the treatment liquid in the treatment tank is discharged and recovered through the overflow tank.
  6.  請求項1乃至5のいずれか一項において、
     前記表面処理装置は複数の処理ユニットが前記長手方向で連結されて形成され、
     前記複数の処理ユニットの各々は、前記処理液が収容される分割処理槽を含み、
     前記複数の処理液循環装置の各々は、前記複数の処理ユニットの各々の前記分割処理槽とそれぞれ接続されることを特徴とする表面処理装置。
    In any one of claims 1 to 5,
    The surface treatment apparatus is formed by connecting a plurality of treatment units in the longitudinal direction,
    Each of the plurality of processing units includes a divided processing tank in which the processing liquid is stored,
    A surface treatment apparatus characterized in that each of the plurality of treatment liquid circulation devices is connected to the divided treatment tank of each of the plurality of treatment units.
PCT/JP2018/037758 2017-10-20 2018-10-10 Surface treatment device WO2019078065A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019549225A JP6875758B2 (en) 2017-10-20 2018-10-10 Surface treatment equipment
CN201880067900.4A CN111247274A (en) 2017-10-20 2018-10-10 Surface treatment device
KR1020207013366A KR20200073243A (en) 2017-10-20 2018-10-10 Surface treatment device
PH12020550789A PH12020550789A1 (en) 2017-10-20 2020-04-15 Surface treatment apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017203868 2017-10-20
JP2017-203868 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019078065A1 true WO2019078065A1 (en) 2019-04-25

Family

ID=66173938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037758 WO2019078065A1 (en) 2017-10-20 2018-10-10 Surface treatment device

Country Status (6)

Country Link
JP (1) JP6875758B2 (en)
KR (1) KR20200073243A (en)
CN (1) CN111247274A (en)
PH (1) PH12020550789A1 (en)
TW (1) TWI677599B (en)
WO (1) WO2019078065A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339794A (en) * 1992-04-09 1993-12-21 Kawasaki Steel Corp Method for circulating plating solution in electroplating
JP2003013291A (en) * 2001-06-29 2003-01-15 Almex Inc Plating apparatus
JP2012046782A (en) * 2010-08-25 2012-03-08 Almex Pe Inc Surface treatment apparatus
JP2013011011A (en) * 2011-05-30 2013-01-17 Ebara Corp Plating apparatus
JP2014237865A (en) * 2013-06-06 2014-12-18 株式会社荏原製作所 Electrolytic copper plating apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1229154A4 (en) * 2000-03-17 2006-12-13 Ebara Corp Method and apparatus for electroplating
JP2002212786A (en) * 2001-01-17 2002-07-31 Ebara Corp Substrate processor
JP3989864B2 (en) * 2003-03-20 2007-10-10 木田精工株式会社 Plating equipment and plating line for plating line
JP5650899B2 (en) * 2009-09-08 2015-01-07 上村工業株式会社 Electroplating equipment
JP5795514B2 (en) * 2011-09-29 2015-10-14 アルメックスPe株式会社 Continuous plating equipment
KR101472637B1 (en) * 2012-12-27 2014-12-15 삼성전기주식회사 Electro Plating Cover Plate and Electro Plating Device having it
CN104862767B (en) * 2015-05-29 2017-05-10 东莞市开美电路板设备有限公司 Copper plating tank
CN106637331A (en) * 2015-10-28 2017-05-10 东莞市希锐自动化科技股份有限公司 Flexible PCB electroplating copper cylinder with board feeding device and jet flow mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339794A (en) * 1992-04-09 1993-12-21 Kawasaki Steel Corp Method for circulating plating solution in electroplating
JP2003013291A (en) * 2001-06-29 2003-01-15 Almex Inc Plating apparatus
JP2012046782A (en) * 2010-08-25 2012-03-08 Almex Pe Inc Surface treatment apparatus
JP2013011011A (en) * 2011-05-30 2013-01-17 Ebara Corp Plating apparatus
JP2014237865A (en) * 2013-06-06 2014-12-18 株式会社荏原製作所 Electrolytic copper plating apparatus

Also Published As

Publication number Publication date
JP6875758B2 (en) 2021-05-26
PH12020550789A1 (en) 2021-04-12
TWI677599B (en) 2019-11-21
CN111247274A (en) 2020-06-05
KR20200073243A (en) 2020-06-23
JPWO2019078065A1 (en) 2020-08-06
TW201923165A (en) 2019-06-16

Similar Documents

Publication Publication Date Title
US6153064A (en) Apparatus for in line plating
JP6820626B2 (en) Work holding jig
KR101475396B1 (en) Serial plating system
US20200149180A1 (en) Workpiece Holding Jig and Electroplating Apparatus
KR20130004125A (en) Surface treatment apparatus and jig for holding work
US9745665B2 (en) Method and apparatus for electrolytically depositing a deposition metal on a workpiece
JP6737527B2 (en) Surface treatment equipment
CA2850865A1 (en) System for processing battery plates and arrangement thereof in the provided battery housing
EP1438446B1 (en) System and method for electrolytic plating
WO2019078065A1 (en) Surface treatment device
WO2019059058A1 (en) Electrolytic treatment assembly and surface treatment apparatus using same
US20240141534A1 (en) Distribution system for a process fluid for chemical and/or electrolytic surface treatment of a substrate
TWM575811U (en) An electroplating machine
MXPA04009447A (en) Conveyorized plating line and method for electrolytically metal plating a workpiece.
CN116018430A (en) Surface treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549225

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207013366

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18868154

Country of ref document: EP

Kind code of ref document: A1