WO2019078003A1 - Microbial fuel cell, liquid processing system, and liquid processing structure - Google Patents

Microbial fuel cell, liquid processing system, and liquid processing structure Download PDF

Info

Publication number
WO2019078003A1
WO2019078003A1 PCT/JP2018/036988 JP2018036988W WO2019078003A1 WO 2019078003 A1 WO2019078003 A1 WO 2019078003A1 JP 2018036988 W JP2018036988 W JP 2018036988W WO 2019078003 A1 WO2019078003 A1 WO 2019078003A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
fuel cell
negative electrode
microbial fuel
liquid processing
Prior art date
Application number
PCT/JP2018/036988
Other languages
French (fr)
Japanese (ja)
Inventor
直毅 吉川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019078003A1 publication Critical patent/WO2019078003A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to microbial fuel cells, liquid handling systems, and liquid handling structures.
  • the present invention relates to a microbial fuel cell capable of purifying wastewater and producing electrical energy, and a liquid treatment system using the microbial fuel cell.
  • the invention further relates to liquid processing structures for use in microbial fuel cells and liquid processing systems.
  • a microbial fuel cell is an apparatus which oxidizes and decomposes the organic matter while converting the chemical energy of the organic matter contained in the wastewater into electric energy by the catalytic action (metabolic reaction, biochemical conversion) of the microorganism. That is, the microbial fuel cell produces electric energy directly from the organic matter by the action of the microorganism. Therefore, the microbial fuel cell can be expected to improve the energy recovery efficiency as compared with the conventional energy recovery system using the conversion step from organic matter to biogas. Moreover, the microbial fuel cell can be used not only for power generation but also as an incidental facility for waste water treatment, organic waste treatment, organic waste treatment, and the like.
  • the microbial fuel cell has a negative electrode carrying a microorganism, and a positive electrode in contact with a gas phase containing oxygen and an electrolytic solution (waste water). And while supplying the electrolyte solution containing an organic substance etc. to a negative electrode, the gas containing oxygen is supplied to a positive electrode.
  • the negative electrode and the positive electrode form a closed circuit by being connected to each other through a load circuit.
  • hydrogen ions and electrons are generated from the electrolytic solution by the catalytic action of microorganisms. Then, the generated hydrogen ions move to the positive electrode, and the electrons move to the positive electrode through the load circuit.
  • the hydrogen ions and electrons transferred from the negative electrode combine with oxygen at the positive electrode to be consumed as water. At that time, the electrical energy flowing to the closed circuit is recovered.
  • a closed hollow cassette conventionally having a negative electrode for supporting an anaerobic microorganism by immersing it in an organic substrate, an outer shell formed at least in part by an ion permeable diaphragm, and an inlet / outlet; And are disclosed (see, for example, Patent Document 1).
  • the microbial fuel cell further comprises a positive electrode which is enclosed with the electrolyte in a hollow cassette or is attached to the inside of the diaphragm of the cassette and inserted into the organic substrate. Then, it is also disclosed that oxygen is supplied into the cassette via the inlet / outlet and electricity is taken out via a circuit that electrically connects the negative electrode and the positive electrode.
  • anaerobic microorganisms may be supported on the negative electrode by a biofilm.
  • the conventional microbial fuel cell is driven for a long time, there is a problem that the power generation efficiency of the microbial fuel cell is deteriorated because the biofilm on the negative electrode is enlarged.
  • the present invention has been made in view of the problems of the prior art. And the objective of this invention is providing the liquid processing system using the microbial fuel cell which can suppress the fall of the electric power generation efficiency by the foreign material adhering to the negative electrode, and the said microbial fuel cell. It is also an object of the present invention to provide liquid processing structures for use in microbial fuel cells and liquid processing systems.
  • a microbial fuel cell concerning the first mode of the present invention is provided with a liquid processing unit provided with an electrode assembly which has an anode carrying an anaerobic microorganism, and an anode.
  • the microbial fuel cell further includes an aeration unit for aerating the liquid processing unit to remove foreign matter attached to the negative electrode.
  • a liquid treatment system comprises the microbial fuel cell described above.
  • a liquid processing structure fixes an electrode assembly having an electrode assembly having a negative electrode carrying an anaerobic microorganism and a positive electrode, and forms the gas phase in contact with the positive electrode. And a spacer member.
  • the liquid treatment structure further comprises a diffuser for aerating the liquid treatment unit.
  • FIG. 1 is a perspective view schematically showing an example of a microbial fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 4 is an exploded perspective view showing a liquid processing unit in the microbial fuel cell.
  • FIG. 5 is a cross-sectional view schematically showing another example of the microbial fuel cell according to the embodiment of the present invention.
  • FIG. 6 is a perspective view schematically showing an example of the liquid treatment structure according to the embodiment of the present invention.
  • the microbial fuel cell 100 which concerns on this embodiment is equipped with the liquid processing unit 1 which carry
  • the microbial fuel cell 100 is provided with a treatment tank 70 which holds the liquid to be treated 60 containing an organic substance inside and the liquid treatment unit 1 is immersed in the liquid to be treated 60.
  • the liquid processing unit 1 includes an electrode assembly 40 including a positive electrode 10, a negative electrode 20, and an ion transfer layer 30, as shown in FIGS.
  • the negative electrode 20 is disposed in contact with one surface 30 a of the ion transfer layer 30, and the positive electrode 10 is disposed in contact with the surface 30 b opposite to the surface 30 a of the ion transfer layer 30. It is done.
  • the gas diffusion layer 12 of the positive electrode 10 is in contact with the ion transfer layer 30, and the water repellent layer 11 is exposed to the gas phase 2 side.
  • the electrode assembly 40 is laminated
  • the spacer member 50 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper portion is open. That is, the spacer member 50 is a frame member in which the bottom surfaces of the two first columnar members 51 are connected by the second columnar member 52. Further, as shown in FIG. 2, the side surface 53 of the spacer member 50 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10.
  • the liquid processing unit 1 formed by laminating two sets of electrode assemblies 40 and the spacer member 50 is formed inside the processing tank 70 so that the gas phase 2 communicated with the atmosphere is formed. Be placed.
  • a liquid to be treated 60 which is a waste water, is held inside the treatment tank 70, and the gas diffusion layer 12, the negative electrode 20 and the ion transfer layer 30 of the positive electrode 10 are immersed in the liquid to be treated 60.
  • the positive electrode 10 is provided with a water repellent layer 11 having water repellency. Therefore, the liquid to be treated 60 held inside the treatment tank 70 and the inside of the spacer member 50 are separated, and the internal space formed by the electrode assembly 40 and the spacer member 50 is the gas phase 2.
  • the gas phase 2 is opened to the outside air, or air is supplied to the gas phase 2 from the outside by, for example, a pump. Further, as shown in FIG. 2, the positive electrode 10 and the negative electrode 20 are each electrically connected to the external circuit 80.
  • the positive electrode 10 As shown in FIG. 2, the positive electrode 10 according to the present embodiment is a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked so as to be in contact with the water repellent layer 11.
  • a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked so as to be in contact with the water repellent layer 11.
  • the water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability.
  • the water repellent layer 11 is configured to allow the movement of oxygen from the gas phase 2 to the liquid phase while satisfactorily separating the gas phase 2 and the liquid phase in the electrochemical system in the liquid treatment unit 1. That is, while the water repellent layer 11 allows oxygen in the gas phase 2 to permeate and move to the gas diffusion layer 12, the liquid 60 can be inhibited from moving to the gas phase 2 side.
  • “separation” means to physically shut off.
  • the water repellent layer 11 is in contact with the gas phase 2 containing oxygen and diffuses the oxygen in the gas phase 2.
  • the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly in the configuration shown in FIG. Therefore, it is preferable that the water repellent layer 11 be a porous body so that the oxygen can be diffused.
  • the water repellent layer 11 has water repellency, it is possible to prevent the pores of the porous body from being blocked by condensation or the like and the decrease in the diffusion of oxygen being suppressed.
  • oxygen can be efficiently circulated from the surface of the water repellent layer 11 in contact with the gas phase 2 to the surface facing the gas diffusion layer 12. It becomes possible.
  • the water repellent layer 11 is preferably formed in a sheet shape. Further, the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and oxygen in the gas phase 2 can be diffused.
  • the material constituting the water repellent layer 11 is made of, for example, polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethylcellulose, poly-4-methylpentene-1, butyl rubber and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials easily form a porous body and also have high water repellency, it is possible to suppress clogging of pores and improve gas diffusivity.
  • the water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
  • a waterproof moisture permeable sheet As the water repellent layer 11, for example, a waterproof moisture permeable sheet can be used.
  • a waterproof moisture-permeable sheet for example, Cellpore (registered trademark) manufactured by Sekisui Chemical Co., Ltd. and Breslon (registered trademark) manufactured by Nitoms Corporation can be used.
  • the water repellent layer 11 may be subjected to a water repellent treatment using a water repellent, if necessary, in order to enhance the water repellency.
  • a water repellent agent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve the water repellency.
  • the gas diffusion layer 12 in the positive electrode 10 preferably comprises a porous conductive material and a catalyst supported on the conductive material.
  • the gas diffusion layer 12 may be made of a porous and conductive catalyst.
  • the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen can permeate from the surface facing the water repellent layer 11 to the surface on the opposite side.
  • the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh shape. With such a mesh shape, it is possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
  • the water repellent layer 11 is preferably joined to the gas diffusion layer 12 via an adhesive.
  • the adhesive is preferably provided at least in part between the water repellent layer 11 and the gas diffusion layer 12 from the viewpoint of securing the adhesiveness between the water repellent layer 11 and the gas diffusion layer 12.
  • the adhesive is the water repellent layer 11 and the gas diffusion layer More preferably, it is provided on the entire surface between 12 and 12.
  • the adhesive is preferably one having oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber and silicone. Resin can be used.
  • the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail.
  • the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
  • the conductive material in the gas diffusion layer 12 can be made of, for example, one or more materials selected from the group consisting of carbon-based materials, conductive polymers, semiconductors, and metals.
  • the carbon-based substance refers to a substance having carbon as a component.
  • Examples of carbon-based materials include, for example, graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, carbon powder such as furnace black and denka black, graphite felt, carbon wool, carbon woven fabric, etc.
  • Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, carbon-based material obtained by compression molding of carbon particles can be mentioned.
  • fine structure materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters can also be mentioned.
  • the conductive polymer is a generic term for polymer compounds having conductivity.
  • the conductive polymer for example, a single monomer or a polymer of two or more monomers having aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene or derivatives thereof as a constitutional unit It can be mentioned.
  • examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, polyacetylene and the like.
  • a metal conductive material a stainless steel mesh is mentioned, for example.
  • the conductive material is preferably a carbon-based material.
  • the shape of the conductive material is preferably a powder shape or a fiber shape.
  • the conductive material may be supported by a support.
  • the support refers to a member which itself is rigid and can give the gas diffusion electrode a certain shape.
  • the support may be an insulator or a conductor.
  • examples of the support include glass, plastic, synthetic rubber, ceramics, paper treated with water or water resistance, water repellent or water repellent, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, etc.
  • Examples of the support having a porous structure include porous ceramic, porous plastic, sponge and the like.
  • the support is a conductor
  • examples of the support include carbon paper, carbon fibers, carbon-based materials such as carbon rods, metals, conductive polymers, and the like.
  • the catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) or zirconium carbonitride (ZrCNO), tungsten Alternatively, a carbide-based catalyst using molybdenum, activated carbon or the like can be used.
  • a platinum-based catalyst a carbon-based catalyst using iron or cobalt
  • a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) or zirconium carbonitride (ZrCNO)
  • tungsten tungsten
  • a carbide-based catalyst using molybdenum, activated carbon or the like can be used.
  • the catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms.
  • the metal atom is not particularly limited, but titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium It is preferable that it is an atom of at least one metal selected from the group consisting of platinum and gold. In this case, the carbon-based material exhibits excellent performance as a catalyst for particularly promoting the oxygen reduction reaction.
  • the amount of metal atoms contained in the carbon-based material may be appropriately set so that the carbon-based material has excellent catalytic performance.
  • the carbon-based material is preferably further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur and phosphorus.
  • the amount of nonmetal atoms doped in the carbon-based material may also be appropriately set so that the carbon-based material has excellent catalytic performance.
  • the carbon-based material is based on a carbon source material such as graphite and amorphous carbon, and the carbon source material is doped with metal atoms and one or more nonmetal atoms selected from nitrogen, boron, sulfur and phosphorus It is obtained by
  • the combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected.
  • the nonmetal atom contains nitrogen and the metal atom contains iron.
  • the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetal atom may be only nitrogen or the metal atom may be only iron.
  • the nonmetal atom may contain nitrogen, and the metal atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetal atom may be only nitrogen.
  • the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
  • the shape of the carbon-based material is not particularly limited.
  • the carbon-based material may have a particulate shape or may have a sheet-like shape.
  • the dimensions of the carbon-based material having a sheet-like shape are not particularly limited, and, for example, the carbon-based material may have minute dimensions.
  • the carbonaceous material having a sheet-like shape may be porous. It is preferable that the porous carbon-based material having a sheet-like shape has, for example, a woven-like shape, a non-woven-like shape or the like. Such a carbon-based material can constitute the gas diffusion layer 12 even without the conductive material.
  • the carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, a mixture containing, for example, a nonmetal compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. Then, the mixture is heated at a temperature of 800 ° C. or more and 1000 ° C. or less for 45 seconds or more and less than 600 seconds. Thereby, a carbon-based material configured as a catalyst can be obtained.
  • a nonmetal compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. Then, the mixture is heated at a temperature of 800 ° C. or more and 1000 ° C. or less for 45 seconds or more and less than 600 seconds. Thereby, a carbon-based material configured as a catalyst can be obtained.
  • the carbon source material for example, graphite or amorphous carbon can be used.
  • the metal compound is not particularly limited as long as it is a compound containing a metal atom which can coordinately bond with a nonmetal atom doped in the carbon source material.
  • metal compounds include inorganic metal salts such as metal chlorides, nitrates, sulfates, bromides, iodides and fluorides, organic metal salts such as acetates, hydrates of inorganic metal salts, and organic metal salts It is possible to use at least one selected from the group consisting of hydrates of For example, when graphite is doped with iron, the metal compound preferably contains iron (III) chloride.
  • the metal compound when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride.
  • the metal compound when manganese is doped to the carbon source material, the metal compound preferably contains manganese acetate.
  • the amount of the metal compound used is preferably determined so that, for example, the ratio of metal atoms in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and this ratio is further preferably 5 to 20% by mass More preferably, it is determined to be within the range.
  • the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus as described above.
  • nonmetal compounds include pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, and benzyl disulfide.
  • At least one compound selected from the group consisting of The amount of the nonmetallic compound used is appropriately set according to the doping amount of the nonmetallic atom to the carbon source material.
  • the amount of the nonmetallic compound used is preferably determined such that the molar ratio of the metal atom in the metallic compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be in the range of 1: 1.5 to 1: 1.8.
  • the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, the catalyst can be prevented from being desorbed from the conductive material and the oxygen reduction characteristics can be prevented from being degraded.
  • the binder for example, it is preferable to use at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM). It is also preferable to use NAFION (registered trademark) as a binder.
  • the negative electrode 20 has a function of supporting the below-described microorganism and generating hydrogen ions and electrons from at least one of the organic substance and the nitrogen-containing compound in the liquid 60 by catalytic action of the microorganism. . Therefore, the negative electrode 20 is not particularly limited as long as it has a configuration that produces such a function.
  • the negative electrode 20 has a structure in which microorganisms are supported on a conductive sheet having conductivity.
  • the conductive sheet preferably includes at least one selected from the group consisting of a porous conductive sheet, a woven conductive sheet and a non-woven conductive sheet.
  • the conductor sheet may be a laminate in which a plurality of sheets are laminated.
  • the conductor sheet of the negative electrode 20 has a space (void) continuous in the stacking direction X of the positive electrode 10, the ion transfer layer 30 and the negative electrode 20, that is, the thickness direction. Is preferred.
  • the conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductive sheet of the negative electrode 20, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, carbon paper, and carbon felt is used. be able to.
  • a graphite sheet may be used as the conductive sheet of the negative electrode 20.
  • the negative electrode 20 contains graphite, and the graphene layers in the graphite be arranged along the plane in the direction YZ perpendicular to the stacking direction X of the positive electrode 10, the ion transfer layer 30, and the negative electrode 20.
  • the conductivity in the direction YZ perpendicular to the stacking direction X is improved more than the conductivity in the stacking direction X. Therefore, the electrons generated by the local cell reaction of the negative electrode 20 can be easily conducted to the external circuit 80, and the efficiency of the cell reaction can be further improved.
  • the shape of the negative electrode 20 is not particularly limited, it is preferable that the smoothness of the surface, which is an exposed portion, be high, as in a sheet shape. Thereby, when the gas is aerated from the aeration unit 90, the foreign matter can be effectively removed from the surface of the negative electrode 20.
  • the microorganism carried on the negative electrode 20 is not particularly limited as long as it is a microorganism that decomposes the organic substance or the nitrogen-containing compound in the liquid to be treated 60 to generate hydrogen ions and electrons.
  • a microorganism for example, an aerobic microorganism that requires oxygen for growth or an anaerobic microorganism that does not require oxygen for growth can be used, but it is preferable to use an anaerobic microorganism.
  • Anaerobic microorganisms do not require air for oxidatively decomposing organic substances in the liquid 60 to be treated. Therefore, the power required to feed the air can be significantly reduced. In addition, since the free energy obtained by microorganisms is small, it is possible to reduce the amount of sludge generated.
  • anaerobic microorganism When the microorganism carried on the negative electrode 20 is an anaerobic microorganism, it is preferable to keep the periphery of the negative electrode 20 in an anaerobic atmosphere in order to enhance the activity of the anaerobic microorganism. Moreover, it is preferable that the anaerobic microorganisms hold
  • examples of anaerobic microorganisms include, for example, bacteria belonging to the genus Geobacter, bacteria belonging to the genus Shewanella, bacteria belonging to the genus Aeromonas, bacteria belonging to the genus Geothrix, and bacteria belonging to the genus Saccharomyces.
  • a microorganism may be held on the negative electrode 20 by overlapping and fixing a biofilm containing the microorganism on the negative electrode 20.
  • a biofilm containing microorganisms may be fixed to the surface 20b opposite to the surface 20a in contact with the ion transfer layer 30 in the negative electrode 20 and in direct contact with the liquid 60 to be treated .
  • Biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population.
  • EPS extracellular polymeric substance
  • the microorganism may be held by the negative electrode 20 without using the biofilm.
  • the microorganism may be held not only on the surface of the negative electrode 20 but also on the inside.
  • an electron transfer mediator molecule may be modified in the negative electrode 20.
  • the liquid to be treated 60 in the treatment tank 70 may contain an electron transfer mediator molecule. Thereby, the electron transfer from the microorganism to the negative electrode 20 can be promoted, and more efficient liquid processing can be realized.
  • the mediator molecule acts as a final electron acceptor for metabolism and transfers the received electron to the negative electrode 20.
  • the electron transfer mediator molecules are not particularly limited.
  • the electron transfer mediator molecule for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methyl viologen can be used.
  • the electrode assembly 40 is provided between the positive electrode 10 and the negative electrode 20, and further includes an ion transfer layer 30 having proton permeability. Then, as shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 via the ion transfer layer 30.
  • the ion transfer layer 30 has electrical insulation, and further has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side.
  • an ion exchange membrane using an ion exchange resin can be used.
  • the ion exchange resin for example, NAFION (registered trademark) manufactured by DuPont Co., Ltd., and Flemion (registered trademark) and Seremion (registered trademark) manufactured by Asahi Glass Co., Ltd. can be used.
  • the ion transfer layer 30 may be a sheet having a space (air gap) for hydrogen ions to move from the negative electrode 20 to the positive electrode 10. Therefore, it is preferable that the ion transfer layer 30 includes at least one selected from the group consisting of a porous sheet, a woven sheet and a non-woven sheet. Further, the ion transfer layer 30 may be at least one selected from the group consisting of a glass fiber membrane, a synthetic fiber membrane, and a plastic non-woven fabric, and may be a laminate obtained by laminating a plurality of these. Such a porous sheet has a large number of pores inside, so that hydrogen ions can be easily moved. The pore diameter of the ion transfer layer 30 is not particularly limited as long as hydrogen ions can move from the negative electrode 20 to the positive electrode 10.
  • the ion transfer layer 30 has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side. Therefore, for example, hydrogen ions can move from the negative electrode 20 to the positive electrode 10 if the negative electrode 20 and the positive electrode 10 are close to each other without being in contact with each other. Therefore, in the microbial fuel cell 100, the ion transfer layer 30 is not an essential component. However, by providing the ion transfer layer 30, it is possible to efficiently transfer hydrogen ions from the negative electrode 20 to the positive electrode 10. Therefore, it is preferable to provide the ion transfer layer 30 from the viewpoint of output improvement. A space may be provided between the positive electrode 10 and the ion transfer layer 30, and a space may be provided between the negative electrode 20 and the ion transfer layer 30.
  • the liquid processing unit 1 is provided with an external circuit 80 electrically connected to the negative electrode 20 and the positive electrode 10 as shown in FIG. However, in the liquid processing unit 1, the negative electrode 20 and the positive electrode 10 may be electrically connected directly by using a conductive member without the external circuit 80. Further, in the liquid processing unit 1, the entire upper part of the spacer member 50 is open, but it may be partially open if air (oxygen) can be introduced into the inside, or it may be closed. It may be
  • the microbial fuel cell 100 includes a substantially rectangular processing tank 70 that holds the liquid to be treated 60 containing an organic substance therein.
  • An inlet 71 for supplying the liquid to be treated 60 to the treatment tank 70 is provided on the front wall 73 of the treatment tank 70.
  • the rear wall 74 of the processing tank 70 is provided with an outlet 72 for discharging the processed liquid 60 from the processing tank 70.
  • the liquid to be treated 60 is continuously supplied to the inside of the treatment tank 70 through the inlet 71. Further, as shown in FIGS. 1 and 2, the liquid processing unit 1 is disposed inside the processing tank 70 so as to be immersed in the liquid 60 to be treated. Therefore, the liquid to be treated 60 supplied from the inflow port 71 of the processing tank 70 flows in contact with the liquid processing unit 1 and then is discharged from the outflow port 72.
  • the aeration unit 90 is provided in order to remove foreign substances such as enlarged biofilms and enhance power generation efficiency.
  • the aeration unit 90 can aerate the liquid processing unit 1 to remove foreign matter attached to the negative electrode 20.
  • the aeration unit 90 preferably includes an aeration member 91 having a hole for aeration of gas, and a gas supply member 92 for supplying a gas to the hole.
  • the aeration member 91 is a member having a large number of holes through which gas can flow.
  • the diffuser member 91 is not particularly limited, for example, a porous ceramic diffuser plate obtained by bonding coarse ceramic particles with a binder or the like, or a diffuser plate made of a synthetic resin can be used.
  • a membrane diffuser can also be used as the diffuser member 91.
  • the gas supply member 92 is a hollow member that holds the diffuser 91 and supplies gas to the holes of the diffuser 91. Then, the gas supplied from the gas supply member 92 passes through the hole of the aeration member 91 to be a bubble, and is diffused into the liquid 60 to be treated.
  • a pipe 93 for supplying gas from the outside of the processing tank 70 be connected to the aeration unit 90.
  • a hollow pipe 93 be connected to the lower surface of the gas supply member 92.
  • the pipe 93 penetrates the rear wall 74 of the processing tank 70 and extends to the outside of the processing tank 70.
  • the end of the pipe 93 is connected to a compressor 94 for pressure-feeding the gas.
  • the aeration unit 90 is preferably provided on the lower side of the liquid processing unit 1 in the vertical direction Y. As a result, air bubbles generated from the aeration unit 90 rise along the lower surface of the liquid processing unit 1 and the surface 20 b of the negative electrode 20 and reach the water surface 61 of the liquid 60 to be treated. At this time, since the air bubbles contact the surface 20 b of the negative electrode 20, foreign matter on the negative electrode 20 can be removed.
  • the number of aeration parts 90 is not particularly limited.
  • one aeration unit 90 may be provided on the lower side of one liquid processing unit 1.
  • a plurality of aeration units 90 may be provided on the lower side of one liquid processing unit 1.
  • the aeration unit 90 may be provided on the lower side of the two negative electrodes 20 provided in the liquid processing unit 1.
  • one air diffuser 90 may be provided for a plurality of liquid processing units 1.
  • the gas diffused from the aeration unit 90 to the liquid to be treated 60 is not particularly limited.
  • air can be used as the gas.
  • the gas to be diffused be a gas not containing oxygen, for example, it is preferable to use nitrogen.
  • the operation of the microbial fuel cell 100 of the present embodiment will be described.
  • the electrode assembly 40 including the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 is immersed in the liquid 60, the gas diffusion layer 12, the negative electrode 20, and the ion transfer layer 30 of the positive electrode 10 are immersed in the liquid 60, At least a part of the water repellent layer 11 is exposed to the gas phase 2.
  • a liquid to be treated 60 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20, and air is supplied to the positive electrode 10. At this time, air is continuously supplied through the opening provided at the top of the spacer member 50.
  • oxygen permeates the water repellent layer 11 and diffuses into the gas diffusion layer 12.
  • hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 60 by the catalytic action of microorganisms.
  • the generated hydrogen ions permeate the ion transfer layer 30, move to the positive electrode 10 side, and reach the gas diffusion layer 12 in the positive electrode 10.
  • the generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move to the gas diffusion layer 12 of the positive electrode 10 from the external circuit 80.
  • the hydrogen ions and electrons are combined with oxygen by the action of the catalyst in the gas diffusion layer 12 and consumed as water.
  • the external circuit 80 recovers the electrical energy flowing to the closed circuit.
  • the liquid processing unit 1 can decompose at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 60 by the action of the microorganism on the negative electrode 20.
  • the compressor 94 is operated to feed gas to the pipe 93.
  • the pumped gas passes through the inside of the pipe 93 and reaches the gas supply member 92 of the aeration unit 90.
  • the gas supplied to the gas supply member 92 passes through the holes of the aeration member 91 to form air bubbles and diffuses into the liquid 60 to be treated.
  • the air bubbles diffused from the air diffusion member 91 to the liquid to be treated 60 float along the lower surface of the liquid treatment unit 1 and the surface 20 b of the negative electrode 20 and reach the water surface 61 of the liquid to be treated 60.
  • the negative electrode 20 can be vibrated.
  • the swirling flow is generated in the vicinity of the surface 20 b of the negative electrode 20 due to the rise of the air bubble.
  • the vibration of the negative electrode 20 and the swirling flow generated in the vicinity of the surface 20 b of the negative electrode 20 make it possible to peel off and remove foreign substances on the surface of the negative electrode 20, that is, the enlarged biofilm.
  • the timing at which the aeration unit 90 aerates is not particularly limited, and can be performed when the foreign matter on the surface of the negative electrode 20 needs to be removed.
  • the microbial fuel cell 100 preferably further includes a control unit 110 that controls the timing of removing foreign matter attached to the negative electrode 20 by the aeration unit 90.
  • the control unit 110 may be interlocked with the liquid processing unit 1. As described above, when the microbial fuel cell 100 is in operation, electrons generated at the negative electrode 20 move to the positive electrode 10 through the external circuit 80. Therefore, in the liquid processing unit 1, electrical energy can be obtained at the time of processing the liquid to be treated 60. Therefore, the control unit 110 may sense that the power generation efficiency of the liquid processing unit 1 is decreasing, and the control unit 110 may operate the compressor 94 based on the result. For example, when the control unit 110 senses that the voltage in the external circuit 80 has fallen below a predetermined value, the control unit 110 may operate the compressor 94 and cause the aeration unit 90 to aerate.
  • the microbial fuel cell 100 includes the liquid processing unit 1 including the electrode assembly 40 having the negative electrode 20 carrying the anaerobic microorganism and the positive electrode 10.
  • the microbial fuel cell 100 further includes an aeration unit 90 for aerating the liquid processing unit 1 and removing foreign matter attached to the negative electrode 20.
  • the microbial fuel cell 100 further includes a treatment tank that holds the liquid to be treated 60 inside, and the liquid treatment unit 1 and the aeration unit 90 are immersed in the liquid to be treated 60. Then, the foreign matter attached to the negative electrode 20 is removed by the air bubbles released from the aeration unit 90 into the liquid to be treated 60. Therefore, even when the microbial fuel cell 100 is driven for a long period of time, foreign matter attached to the negative electrode 20, for example, an enlarged biofilm can be removed, so that the power generation efficiency can be maintained high.
  • the configuration of the aeration unit 90 is not limited to the configuration including the above-described aeration member 91 and the gas supply member 92, and any configuration that can aerate the liquid 60 to be treated can be applied. .
  • a porous tube made of metal or synthetic resin, or a disk diffuser may be used as the aeration unit 90.
  • the aeration unit 90 is connected to the pipe 93 for supplying gas from the outside of the processing tank 70.
  • the method of arranging the pipe 93 is not particularly limited, but may be arranged in contact with the bottom wall 77 of the processing tank 70, for example.
  • the pipe 93 is disposed on the bottom wall 77 through the rear wall 74.
  • the present invention is not limited to such an embodiment.
  • the pipe 93 may be penetrated from the lower surface of the bottom wall 77 and directly connected to the aeration unit 90.
  • the pipe 93 may be disposed along the bottom wall 77 and the rear wall 74 and may be directly connected to the aeration unit 90. That is, the pipe 93 may be disposed along the wall of the processing tank 70 without penetrating the wall of the processing tank 70.
  • the liquid processing unit 1 includes a spacer member 50 for fixing the electrode assembly 40 and forming the gas phase 2 in contact with the positive electrode 10.
  • the spacer member 50 is not an essential component. That is, if the positive electrode 10 is in contact with the gas phase 2 and the negative electrode 20 is immersed in the liquid 60 to be treated, the electric substance is obtained while decomposing the organic substance and / or the nitrogen-containing compound in the liquid 60 to be treated. Can.
  • the positive electrode 10 is floated on the water surface 61 and the negative electrode 20 is sunk in the liquid 60, a part of the positive electrode 10 can be in contact with the gas phase 2 and the negative electrode 20 can be in contact with the liquid 60 .
  • the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 are formed in a rectangular shape.
  • these shapes are not particularly limited, and can be arbitrarily changed according to the size of the microbial fuel cell 100, and the desired power generation performance and purification performance. Also, the area of each layer can be arbitrarily changed as long as the desired function can be exhibited.
  • the liquid treatment structure 200 according to the present embodiment includes the liquid treatment unit 1 and the aeration unit 90 for aerating the liquid treatment unit 1.
  • the liquid processing structure 200 includes the liquid processing unit 1 and the aeration unit 90, and the liquid processing unit 1 and the aeration unit 90 are integrally formed. That is, the liquid processing unit 1 and the aeration unit 90 are unitized. Therefore, by inserting the liquid processing structure 200 into the inside of the processing tank 70, the liquid processing unit 1 and the aeration unit 90 can be installed at predetermined positions inside the processing tank, so that the microbial fuel cell can be achieved by a simple construction. Can be manufactured.
  • the liquid treatment structure 200 includes an outer frame 220 as a fixing member 210 in addition to the liquid treatment unit 1 and the aeration unit 90.
  • the outer frame 220 is formed in a substantially rectangular shape by a pillar material. Specifically, the outer frame 220 is formed by connecting the substantially rectangular upper frame 221 and the lower frame 222 by four erected columns 223. Furthermore, the lower frame 222 is formed in a lattice shape by the lattice material 224.
  • a plurality of liquid processing units 1 are inserted into the inside of the outer frame 220, and the liquid processing unit 1 is fixed to the outer frame 220 via a connection member.
  • the spacer member 50 of the liquid processing unit 1 is fixed to the upper frame 221 of the outer frame 220 via the bracket 225.
  • the liquid processing unit 1 is fixed to the outer frame 220 so that the upper portion of the spacer member 50 is open, as shown in FIG.
  • the aeration part 90 is installed in the cross
  • the liquid treatment structure 200 may be provided with a pipe 93 connected to the aeration unit 90.
  • the pipe 93 may be provided along the grid member 224 of the lower frame 222.
  • the liquid treatment structure 200 may be provided with at least one of the compressor 94 and the control unit 110.
  • the pipe 93 since the pipe 93 may be installed in the processing tank 70, the pipe 93 is not an essential component of the liquid processing structure 200.
  • the compressor 94 and the control unit 110 may be installed outside the treatment tank 70 or the treatment tank 70, the compressor 94 and the control unit 110 are not essential components of the liquid treatment structure 200.
  • the liquid processing structure 200 fixes the electrode assembly 40 having the negative electrode 20 carrying the anaerobic microorganism and the positive electrode 10, and the electrode assembly 40, and the gas phase 2 in contact with the positive electrode 10
  • the liquid processing unit 1 is provided with the spacer member 50 to be formed.
  • the liquid treatment structure 200 further includes an aeration unit 90 for aerating the liquid treatment unit 1.
  • the liquid processing unit 1 and the aeration unit 90 are integrally formed by the fixing member 210. For this reason, by inserting the liquid processing structure 200 into the inside of the processing tank 70, the liquid processing unit 1 and the aeration unit 90 can be installed, so that the microbial fuel cell can be obtained by a simple method.
  • the fixing member 210 is formed using a pillar material, this embodiment is not limited to such an aspect.
  • the fixing member 210 may use a plate material.
  • the shape of the fixing member 210 is not limited to a substantially rectangular shape, and any shape can be used as long as the liquid processing unit 1 and the aeration unit 90 can be fixed.
  • the liquid processing system of the present embodiment includes the above-described microbial fuel cell.
  • the microbial fuel cell 100 of the present embodiment supplies the negative electrode 20 with the liquid to be treated 60 containing at least one of the organic substance and the nitrogen-containing compound. Then, carbon dioxide and nitrogen are generated from the organic substance and / or the nitrogen-containing compound in the liquid to be treated 60 together with hydrogen ions and electrons by the metabolism of the microorganism supported on the negative electrode 20.
  • Negative electrode 20 (anode): C 6 H 12 O 6 + 6H 2 O ⁇ 6CO 2 + 24H + + 24e ⁇ ⁇ Positive electrode 10 (cathode): 6O 2 + 24H + + 24e - ⁇ 12H 2 O
  • Negative electrode 20 (anode): 4 NH 3 ⁇ 2 N 2 + 12 H + + 12 e ⁇ ⁇ Positive electrode 10 (cathode): 3O 2 + 12H + + 12e - ⁇ 6H 2 O
  • the organic fuel and the nitrogen-containing compound in the liquid to be treated 60 are in contact with the negative electrode 20 and oxidized and decomposed by using the microbial fuel cell 100. Can be purified. Further, as described above, the treatment liquid 70 is provided with the inflow port 71 for supplying the liquid to be treated 60 and the outflow port 72 for discharging the liquid to be treated 60 after treatment. Are supplied continuously. Therefore, it is possible to treat the liquid to be treated 60 efficiently by bringing the liquid to be treated 60 into contact with the negative electrode 20 continuously.
  • the liquid treatment system can be widely applied to the treatment of a liquid containing an organic substance, for example, wastewater generated from factories of various industries, and organic wastewater such as sewage. It can also be used to improve the environment of water areas.
  • an organic substance for example, wastewater generated from factories of various industries, and organic wastewater such as sewage. It can also be used to improve the environment of water areas.
  • a silicone resin which is an adhesive agent is applied to a water repellent layer made of polyolefin and then a graphite foil which is a gas diffusion layer is joined to produce a laminated sheet consisting of water repellent layer / silicone adhesive / gas diffusion layer did.
  • a water repellent layer Cellpore (registered trademark) manufactured by Sekisui Chemical Co., Ltd. was used.
  • the silicone resin one-component RTV rubber KE-3475-T manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • the graphite foil used was manufactured by Hitachi Chemical Co., Ltd.
  • a gas diffusion electrode was produced by press-forming a catalyst layer formed by mixing an oxygen reduction catalyst and PTFE (manufactured by Aldrich) on the surface of the graphite foil opposite to the water repellent layer.
  • the oxygen reduction catalyst was press-molded so that a basis weight might be 6 mg / cm ⁇ 2 >.
  • the oxygen reduction catalyst was prepared as follows. First, a mixed solution was prepared by placing 3 g of carbon black, a 0.1 M aqueous solution of iron (III) chloride, and an ethanol solution of 0.15 M pentaethylenehexamine in a container. As carbon black, ketjen black ECP600 JD manufactured by Lion Specialty Chemicals Co., Ltd. was used. The amount of use of the 0.1 M aqueous solution of iron (III) chloride was adjusted so that the ratio of iron atoms to carbon black was 10% by mass. The total volume was adjusted to 9 mL by further adding ethanol to this mixture. Then, the mixture was ultrasonically dispersed and then dried at a temperature of 60 ° C. in a drier. This yielded a sample containing carbon black, iron (III) chloride, and pentaethylenehexamine.
  • the sample was then packed into one end of a quartz tube, which was then purged with argon in the quartz tube.
  • the quartz tube was put into a furnace at 900 ° C. and pulled out in 45 seconds.
  • the temperature rising rate of the sample at the start of heating was adjusted to 300 ° C./s by inserting the quartz tube into the furnace over 3 seconds.
  • the sample was cooled by flowing argon gas through the quartz tube.
  • an oxygen reduction catalyst was obtained.
  • liquid treatment is carried out by laminating the obtained positive electrode comprising a gas diffusion electrode, an ion transfer layer, and a negative electrode comprising a carbon material (graphite foil) on a U-shaped spacer member. I got a unit.
  • a treatment vessel having an inlet and an outlet and having a volume of 300 cc was prepared, and an aeration unit having a large number of holes was provided on the bottom of the treatment vessel. Furthermore, one end of the pipe was connected to the aeration part. The other end of the pipe was connected to an air pump provided outside the treatment tank. And as shown in FIG. 1, the liquid processing unit was installed in the inside of the processing tank provided with the aeration part.
  • the treatment liquid was filled in the treatment tank so as to be in contact with the positive electrode, the negative electrode, and the ion transfer layer.
  • a liquid to be treated a model waste liquid having a total organic carbon (TOC) of 500 mg / L was used.
  • TOC total organic carbon
  • sodium hydrogencarbonate was added as a buffer to a concentration of 20 mM.
  • soil microorganisms were planted on the negative electrode as a source of anaerobic microorganisms that generate electricity.
  • the liquid to be treated was supplied to the treatment tank so that the hydraulic retention time was 24 hours. Furthermore, the liquid to be treated was adjusted to have a water temperature of 30 ° C. And the microbial fuel cell of this example was obtained by connecting a positive electrode and a negative electrode to a load circuit.
  • the air pump was operated to pump air to the aeration unit, and aeration processing was performed for several tens of seconds. As a result, peeling of the biofilm on the negative electrode surface was confirmed. Also, output per electrode area before aeration treatment was the 50 mW / m 2, output per electrode area after aeration was confirmed to be doubled to 95mW / m 2.
  • the power generation efficiency of the microbial fuel cell is greatly improved by aeration of the liquid processing unit using the aeration unit and removal of foreign matter (biofilm) adhering to the negative electrode.
  • a microbial fuel cell capable of suppressing a decrease in power generation efficiency due to foreign matter attached to a negative electrode, a liquid processing system using the microbial fuel cell, and a microbial fuel cell and a liquid processing system
  • a liquid handling structure can be provided.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Microbiology (AREA)
  • Fuel Cell (AREA)
  • Biochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

A microbial fuel cell (100) has a liquid processing unit (1), which is provided with an electrode joined body (40) having a positive electrode (10) and a negative electrode (20) that supports anaerobic microbes. The microbial fuel cell (100) further has an aeration unit (90) that aerates the liquid processing unit (1) and removes foreign matter that has adhered to the negative electrode (20). The foreign matter that has adhered to the negative electrode (20) is removed due to air bubbles that are discharged from the aeration unit (90) into a liquid (60) to be processed. A liquid processing system comprises this microbial fuel cell (100).

Description

微生物燃料電池、液体処理システム、及び液体処理構造体Microbial fuel cell, liquid processing system, and liquid processing structure
 本発明は、微生物燃料電池、液体処理システム、及び液体処理構造体に関する。詳細には本発明は、廃水を浄化し、かつ、電気エネルギーを生成することが可能な微生物燃料電池、及び当該微生物燃料電池を用いた液体処理システムに関する。本発明は、さらに、微生物燃料電池及び液体処理システムに用いられる液体処理構造体に関する。 The present invention relates to microbial fuel cells, liquid handling systems, and liquid handling structures. In particular, the present invention relates to a microbial fuel cell capable of purifying wastewater and producing electrical energy, and a liquid treatment system using the microbial fuel cell. The invention further relates to liquid processing structures for use in microbial fuel cells and liquid processing systems.
 微生物燃料電池は、廃水中に含まれる有機物の化学エネルギーを微生物の触媒作用(代謝反応、生物化学的変換)によって電気エネルギーに変換しつつ、その有機物を酸化分解する装置である。つまり、微生物燃料電池は、微生物の働きによって有機物から直接的に電気エネルギーを生産する。そのため、微生物燃料電池は、有機物からバイオガスへの変換ステップを利用する従来のエネルギー回収システムに比べて、エネルギー回収効率の向上が期待できる。また、微生物燃料電池は、発電のみならず、廃水処理、有機性廃棄物処理、有機性廃棄物処理の付帯設備等としても利用できる。 A microbial fuel cell is an apparatus which oxidizes and decomposes the organic matter while converting the chemical energy of the organic matter contained in the wastewater into electric energy by the catalytic action (metabolic reaction, biochemical conversion) of the microorganism. That is, the microbial fuel cell produces electric energy directly from the organic matter by the action of the microorganism. Therefore, the microbial fuel cell can be expected to improve the energy recovery efficiency as compared with the conventional energy recovery system using the conversion step from organic matter to biogas. Moreover, the microbial fuel cell can be used not only for power generation but also as an incidental facility for waste water treatment, organic waste treatment, organic waste treatment, and the like.
 微生物燃料電池は、微生物を担持する負極と、酸素を含む気相及び電解液(廃水)に接触する正極とを有する。そして、有機性物質などを含有する電解液を負極に供給するとともに、酸素を含んだ気体を正極に供給する。負極及び正極は、負荷回路を介して相互に接続することにより閉回路を形成する。負極では、微生物の触媒作用により電解液から水素イオン及び電子を生成する。そして、生成した水素イオンは正極へ移動し、電子は負荷回路を介して正極へ移動する。負極から移動した水素イオン及び電子は正極において酸素と結合し、水となって消費される。その際に、閉回路に流れる電気エネルギーを回収する。 The microbial fuel cell has a negative electrode carrying a microorganism, and a positive electrode in contact with a gas phase containing oxygen and an electrolytic solution (waste water). And while supplying the electrolyte solution containing an organic substance etc. to a negative electrode, the gas containing oxygen is supplied to a positive electrode. The negative electrode and the positive electrode form a closed circuit by being connected to each other through a load circuit. At the negative electrode, hydrogen ions and electrons are generated from the electrolytic solution by the catalytic action of microorganisms. Then, the generated hydrogen ions move to the positive electrode, and the electrons move to the positive electrode through the load circuit. The hydrogen ions and electrons transferred from the negative electrode combine with oxygen at the positive electrode to be consumed as water. At that time, the electrical energy flowing to the closed circuit is recovered.
 このような微生物燃料電池として、従来、有機性基質に浸漬して嫌気性微生物を担持させる負極と、少なくとも一部分がイオン透過性隔膜で形成された外殻と入出孔とを有する密閉型中空カセットと、を備えるものが開示されている(例えば、特許文献1参照)。当該微生物燃料電池は、さらに、中空カセット内に電解液と共に封入し、又は、当該カセットの隔膜の内側に結合して有機性基質中に差し込む正極を備えている。そして、入出孔経由でカセット内に酸素を供給し、さらに負極及び正極を電気的に接続する回路経由で電気を取り出すことも開示されている。 As such a microbial fuel cell, a closed hollow cassette conventionally having a negative electrode for supporting an anaerobic microorganism by immersing it in an organic substrate, an outer shell formed at least in part by an ion permeable diaphragm, and an inlet / outlet; And are disclosed (see, for example, Patent Document 1). The microbial fuel cell further comprises a positive electrode which is enclosed with the electrolyte in a hollow cassette or is attached to the inside of the diaphragm of the cassette and inserted into the organic substrate. Then, it is also disclosed that oxygen is supplied into the cassette via the inlet / outlet and electricity is taken out via a circuit that electrically connects the negative electrode and the positive electrode.
特開2009-93861号公報JP, 2009-93861, A
 微生物燃料電池において、嫌気性微生物は、バイオフィルムにより負極に担持されている場合がある。しかしながら、従来の微生物燃料電池を長期間駆動させた場合、負極上のバイオフィルムが肥大化するため、微生物燃料電池の発電効率が悪化するという問題があった。 In microbial fuel cells, anaerobic microorganisms may be supported on the negative electrode by a biofilm. However, when the conventional microbial fuel cell is driven for a long time, there is a problem that the power generation efficiency of the microbial fuel cell is deteriorated because the biofilm on the negative electrode is enlarged.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、負極に付着した異物による発電効率の低下を抑制することが可能な微生物燃料電池、及び当該微生物燃料電池を用いた液体処理システムを提供することにある。また、本発明の目的は、微生物燃料電池及び液体処理システムに用いられる液体処理構造体を提供することにある。 The present invention has been made in view of the problems of the prior art. And the objective of this invention is providing the liquid processing system using the microbial fuel cell which can suppress the fall of the electric power generation efficiency by the foreign material adhering to the negative electrode, and the said microbial fuel cell. It is also an object of the present invention to provide liquid processing structures for use in microbial fuel cells and liquid processing systems.
 上記課題を解決するために、本発明の第一の態様に係る微生物燃料電池は、嫌気性微生物を担持する負極と正極とを有する電極接合体を備える液体処理ユニットを備える。微生物燃料電池は、さらに、液体処理ユニットに対して散気し、負極に付着した異物を除去する散気部を備える。 In order to solve the above-mentioned subject, a microbial fuel cell concerning the first mode of the present invention is provided with a liquid processing unit provided with an electrode assembly which has an anode carrying an anaerobic microorganism, and an anode. The microbial fuel cell further includes an aeration unit for aerating the liquid processing unit to remove foreign matter attached to the negative electrode.
 本発明の第二の態様に係る液体処理システムは、上述の微生物燃料電池を備える。 A liquid treatment system according to a second aspect of the present invention comprises the microbial fuel cell described above.
 本発明の第三の態様に係る液体処理構造体は、嫌気性微生物を担持する負極と正極とを有する電極接合体と、電極接合体を固定し、かつ、正極と接触する気相を形成するスペーサ部材と、を備える液体処理ユニットを備える。液体処理構造体は、さらに、液体処理ユニットに対して散気する散気部を備える。 A liquid processing structure according to a third aspect of the present invention fixes an electrode assembly having an electrode assembly having a negative electrode carrying an anaerobic microorganism and a positive electrode, and forms the gas phase in contact with the positive electrode. And a spacer member. The liquid treatment structure further comprises a diffuser for aerating the liquid treatment unit.
図1は、本発明の実施形態に係る微生物燃料電池の一例を概略的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of a microbial fuel cell according to an embodiment of the present invention. 図2は、図1中のA-A線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、図2中のB-B線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 図4は、微生物燃料電池における液体処理ユニットを示す分解斜視図である。FIG. 4 is an exploded perspective view showing a liquid processing unit in the microbial fuel cell. 図5は、本発明の実施形態に係る微生物燃料電池の他の例を概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing another example of the microbial fuel cell according to the embodiment of the present invention. 図6は、本発明の実施形態に係る液体処理構造体の一例を概略的に示す斜視図である。FIG. 6 is a perspective view schematically showing an example of the liquid treatment structure according to the embodiment of the present invention.
 以下、本実施形態に係る微生物燃料電池、液体処理システム、及び液体処理構造体について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the microbial fuel cell, the liquid treatment system, and the liquid treatment structure according to the present embodiment will be described in detail. The dimensional ratios in the drawings are exaggerated for the convenience of description, and may differ from the actual ratios.
[微生物燃料電池]
 本実施形態に係る微生物燃料電池100は、図1に示すように、正極10と、微生物を担持し、正極10と電気的に接続された負極20とを有する液体処理ユニット1を備えている。また、微生物燃料電池100は、有機性物質を含む被処理液60を内部に保持し、さらに液体処理ユニット1が被処理液60に浸漬するように配置される処理槽70を備えている。
[Microbial fuel cell]
The microbial fuel cell 100 which concerns on this embodiment is equipped with the liquid processing unit 1 which carry | supports microorganisms and the negative electrode 20 electrically connected with the positive electrode 10, as shown in FIG. In addition, the microbial fuel cell 100 is provided with a treatment tank 70 which holds the liquid to be treated 60 containing an organic substance inside and the liquid treatment unit 1 is immersed in the liquid to be treated 60.
 〔液体処理ユニット〕
 液体処理ユニット1は、図1~図3に示すように、正極10、負極20及びイオン移動層30からなる電極接合体40を備えている。液体処理ユニット1では、イオン移動層30の一方の面30aに負極20が接触するように配置されており、イオン移動層30の面30aと反対側の面30bに正極10が接触するように配置されている。そして、正極10のガス拡散層12がイオン移動層30と接触し、撥水層11が気相2側に露出している。
Liquid treatment unit
The liquid processing unit 1 includes an electrode assembly 40 including a positive electrode 10, a negative electrode 20, and an ion transfer layer 30, as shown in FIGS. In the liquid processing unit 1, the negative electrode 20 is disposed in contact with one surface 30 a of the ion transfer layer 30, and the positive electrode 10 is disposed in contact with the surface 30 b opposite to the surface 30 a of the ion transfer layer 30. It is done. The gas diffusion layer 12 of the positive electrode 10 is in contact with the ion transfer layer 30, and the water repellent layer 11 is exposed to the gas phase 2 side.
 そして、図4に示すように、電極接合体40は、スペーサ部材50に積層して固定されている。スペーサ部材50は、正極10における面10aの外周部に沿うU字状の枠部材であり、上部が開口している。つまり、スペーサ部材50は、2本の第一柱状部材51の底面を第二柱状部材52で連結した枠部材である。そして、図2に示すように、スペーサ部材50の側面53は、正極10の面10aの外周部と接合されている。 And as shown in FIG. 4, the electrode assembly 40 is laminated | stacked and fixed to the spacer member 50. As shown in FIG. The spacer member 50 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper portion is open. That is, the spacer member 50 is a frame member in which the bottom surfaces of the two first columnar members 51 are connected by the second columnar member 52. Further, as shown in FIG. 2, the side surface 53 of the spacer member 50 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10.
 図2に示すように、二組の電極接合体40とスペーサ部材50とを積層してなる液体処理ユニット1は、大気と連通した気相2が形成されるように、処理槽70の内部に配置される。処理槽70の内部には廃水である被処理液60が保持されており、正極10のガス拡散層12、負極20及びイオン移動層30は被処理液60に浸漬されている。 As shown in FIG. 2, the liquid processing unit 1 formed by laminating two sets of electrode assemblies 40 and the spacer member 50 is formed inside the processing tank 70 so that the gas phase 2 communicated with the atmosphere is formed. Be placed. A liquid to be treated 60, which is a waste water, is held inside the treatment tank 70, and the gas diffusion layer 12, the negative electrode 20 and the ion transfer layer 30 of the positive electrode 10 are immersed in the liquid to be treated 60.
 後述するように、正極10は撥水性を有する撥水層11を備えている。そのため、処理槽70の内部に保持された被処理液60とスペーサ部材50の内部とは隔てられ、電極接合体40及びスペーサ部材50により形成された内部空間は気相2となっている。そして、微生物燃料電池100では、この気相2が外気に開放されるか、あるいは気相2へ例えばポンプによって外部から空気が供給されるように構成されている。また、図2に示すように、正極10及び負極20は、それぞれ外部回路80と電気的に接続されている。 As described later, the positive electrode 10 is provided with a water repellent layer 11 having water repellency. Therefore, the liquid to be treated 60 held inside the treatment tank 70 and the inside of the spacer member 50 are separated, and the internal space formed by the electrode assembly 40 and the spacer member 50 is the gas phase 2. In the microbial fuel cell 100, the gas phase 2 is opened to the outside air, or air is supplied to the gas phase 2 from the outside by, for example, a pump. Further, as shown in FIG. 2, the positive electrode 10 and the negative electrode 20 are each electrically connected to the external circuit 80.
 (正極)
 本実施形態に係る正極10は、図2に示すように、撥水層11と、撥水層11に接触するように重ねられているガス拡散層12とを備えるガス拡散電極からなる。このような薄板状のガス拡散電極を用いることにより、気相2中の酸素を正極10中の触媒に容易に供給することが可能になる。
(Positive electrode)
As shown in FIG. 2, the positive electrode 10 according to the present embodiment is a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked so as to be in contact with the water repellent layer 11. By using such a thin plate-like gas diffusion electrode, it is possible to easily supply the oxygen in the gas phase 2 to the catalyst in the positive electrode 10.
  <撥水層>
 正極10における撥水層11は、撥水性と酸素透過性とを併せ持つ層である。撥水層11は、液体処理ユニット1における電気化学系中の気相2と液相とを良好に分離しながら、気相2から液相へ向かう酸素の移動を許容するように構成される。つまり、撥水層11は、気相2中の酸素を透過してガス拡散層12へ移動させつつも、被処理液60が気相2側に移動することを抑制できる。なお、ここでいう「分離」とは、物理的に遮断することをいう。
<Water-repellent layer>
The water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability. The water repellent layer 11 is configured to allow the movement of oxygen from the gas phase 2 to the liquid phase while satisfactorily separating the gas phase 2 and the liquid phase in the electrochemical system in the liquid treatment unit 1. That is, while the water repellent layer 11 allows oxygen in the gas phase 2 to permeate and move to the gas diffusion layer 12, the liquid 60 can be inhibited from moving to the gas phase 2 side. Here, “separation” means to physically shut off.
 撥水層11は、酸素を含む気相2と接触しており、気相2中の酸素を拡散している。そして、撥水層11は、図2に示す構成では、ガス拡散層12に対し酸素を略均一に供給している。そのため、撥水層11は、当該酸素を拡散できるように多孔質体であることが好ましい。なお、撥水層11は撥水性を有するため、結露等により多孔質体の細孔が閉塞し、酸素の拡散性が低下することを抑制できる。また、撥水層11の内部に被処理液60が染み込み難いため、撥水層11における気相2と接触する面からガス拡散層12と対向する面にかけて、酸素を効率的に流通させることが可能となる。 The water repellent layer 11 is in contact with the gas phase 2 containing oxygen and diffuses the oxygen in the gas phase 2. The water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly in the configuration shown in FIG. Therefore, it is preferable that the water repellent layer 11 be a porous body so that the oxygen can be diffused. In addition, since the water repellent layer 11 has water repellency, it is possible to prevent the pores of the porous body from being blocked by condensation or the like and the decrease in the diffusion of oxygen being suppressed. Further, since the liquid 60 to be treated is difficult to permeate into the water repellent layer 11, oxygen can be efficiently circulated from the surface of the water repellent layer 11 in contact with the gas phase 2 to the surface facing the gas diffusion layer 12. It becomes possible.
 撥水層11は、シート状に形成されていることが好ましい。また、撥水層11を構成する材料は、撥水性を有し、気相2中の酸素を拡散できれば特に限定されない。撥水層11を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチルセルロース、ポリ-4-メチルペンテン-1、ブチルゴム及びポリジメチルシロキサン(PDMS)からなる群より選ばれる少なくとも一つを使用することができる。これらの材料は多孔質体を形成しやすく、さらに撥水性も高いため、細孔の閉塞を抑制してガス拡散性を向上させることができる。なお、撥水層11は、撥水層11及びガス拡散層12の積層方向Xに複数の貫通孔を有することが好ましい。 The water repellent layer 11 is preferably formed in a sheet shape. Further, the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and oxygen in the gas phase 2 can be diffused. The material constituting the water repellent layer 11 is made of, for example, polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethylcellulose, poly-4-methylpentene-1, butyl rubber and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials easily form a porous body and also have high water repellency, it is possible to suppress clogging of pores and improve gas diffusivity. The water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
 撥水層11としては、例えば防水透湿シートを使用することができる。防水透湿シートとしては、例えば、積水化学工業株式会社製のセルポア(登録商標)、及び株式会社ニトムズ製のブレスロン(登録商標)を用いることができる。 As the water repellent layer 11, for example, a waterproof moisture permeable sheet can be used. As the waterproof moisture-permeable sheet, for example, Cellpore (registered trademark) manufactured by Sekisui Chemical Co., Ltd. and Breslon (registered trademark) manufactured by Nitoms Corporation can be used.
 撥水層11は、撥水性を高めるために、必要に応じて撥水剤を用いて撥水処理を施してもよい。具体的には、撥水層11を構成する多孔質体にポリテトラフルオロエチレン等の撥水剤を付着させ、撥水性を向上させてもよい。 The water repellent layer 11 may be subjected to a water repellent treatment using a water repellent, if necessary, in order to enhance the water repellency. Specifically, a water repellent agent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve the water repellency.
  <ガス拡散層>
 正極10におけるガス拡散層12は、多孔質な導電性材料と、導電性材料に担持されている触媒とを備えることが好ましい。なお、ガス拡散層12が、多孔質かつ導電性を有する触媒から構成されてもよい。正極10にこのようなガス拡散層12を備えることで、後述する局部電池反応により生成した電子を触媒と外部回路80との間で導通させることが可能となる。つまり、後述するように、ガス拡散層12には触媒が担持されており、さらに触媒は酸素還元触媒である。そして、電子が外部回路80からガス拡散層12を通じて触媒に移動することにより、触媒によって、酸素、水素イオン及び電子による酸素還元反応を進行させることが可能となる。
<Gas diffusion layer>
The gas diffusion layer 12 in the positive electrode 10 preferably comprises a porous conductive material and a catalyst supported on the conductive material. The gas diffusion layer 12 may be made of a porous and conductive catalyst. By providing such a gas diffusion layer 12 on the positive electrode 10, it becomes possible to conduct electrons generated by a local cell reaction described later between the catalyst and the external circuit 80. That is, as described later, a catalyst is supported on the gas diffusion layer 12, and the catalyst is an oxygen reduction catalyst. Then, the electrons move from the external circuit 80 to the catalyst through the gas diffusion layer 12 so that the catalyst can promote the oxygen reduction reaction by oxygen, hydrogen ions and electrons.
 正極10では、安定的な性能を確保するために、酸素が撥水層11及びガス拡散層12を効率よく透過し、触媒に供給されることが好ましい。そのため、ガス拡散層12は、撥水層11と対向する面から反対側の面にかけて、酸素が透過する細孔を多数有する多孔質体であることが好ましい。また、ガス拡散層12の形状は、三次元のメッシュ状であることが特に好ましい。このようなメッシュ状であることにより、ガス拡散層12に対し、高い酸素透過性及び導電性を付与することが可能となる。 In the positive electrode 10, in order to ensure stable performance, it is preferable that oxygen permeates the water repellent layer 11 and the gas diffusion layer 12 efficiently and is supplied to the catalyst. Therefore, the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen can permeate from the surface facing the water repellent layer 11 to the surface on the opposite side. Further, the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh shape. With such a mesh shape, it is possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
 正極10において、ガス拡散層12に効率的に酸素を供給するために、撥水層11は、接着剤を介してガス拡散層12と接合していることが好ましい。これにより、ガス拡散層12に対し、拡散した酸素が直接供給され、酸素還元反応を効率的に行うことができる。接着剤は、撥水層11とガス拡散層12との間の接着性を確保する観点から、撥水層11とガス拡散層12との間の少なくとも一部に設けられていることが好ましい。ただ、撥水層11とガス拡散層12との間の接着性を高め、長期間に亘り安定的に酸素をガス拡散層12に供給する観点から、接着剤は撥水層11とガス拡散層12との間の全面に設けられていることがより好ましい。 In the positive electrode 10, in order to supply oxygen to the gas diffusion layer 12 efficiently, the water repellent layer 11 is preferably joined to the gas diffusion layer 12 via an adhesive. Thus, the diffused oxygen is directly supplied to the gas diffusion layer 12, and the oxygen reduction reaction can be efficiently performed. The adhesive is preferably provided at least in part between the water repellent layer 11 and the gas diffusion layer 12 from the viewpoint of securing the adhesiveness between the water repellent layer 11 and the gas diffusion layer 12. However, from the viewpoint of enhancing adhesion between the water repellent layer 11 and the gas diffusion layer 12 and supplying oxygen to the gas diffusion layer 12 stably over a long period, the adhesive is the water repellent layer 11 and the gas diffusion layer More preferably, it is provided on the entire surface between 12 and 12.
 接着剤としては酸素透過性を有するものが好ましく、ポリメチルメタクリレート、メタクリル酸-スチレン共重合体、スチレン-ブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム及びシリコーンからなる群より選ばれる少なくとも一つを含む樹脂を用いることができる。 The adhesive is preferably one having oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber and silicone. Resin can be used.
 ここで、本実施形態における正極10のガス拡散層12について、さらに詳しく説明する。上述のように、ガス拡散層12は、多孔質な導電性材料と、当該導電性材料に担持されている触媒とを備えるような構成とすることができる。 Here, the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail. As described above, the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
 ガス拡散層12における導電性材料は、例えば炭素系物質、導電性ポリマー、半導体及び金属からなる群より選ばれる一種以上の材料から構成することができる。ここで、炭素系物質とは、炭素を構成成分とする物質をいう。炭素系物質の例としては、例えば、グラファイト、活性炭、カーボンブラック、バルカン(登録商標)XC-72R、アセチレンブラック、ファーネスブラック、デンカブラックなどのカーボンパウダー、グラファイトフェルト、カーボンウール、カーボン織布などのカーボンファイバー、カーボンプレート、カーボンペーパー、カーボンディスク、カーボンクロス、カーボンホイル、炭素粒子を圧縮成形した炭素系材料が挙げられる。また、炭素系物質の例として、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスターのような微細構造物質も挙げられる。 The conductive material in the gas diffusion layer 12 can be made of, for example, one or more materials selected from the group consisting of carbon-based materials, conductive polymers, semiconductors, and metals. Here, the carbon-based substance refers to a substance having carbon as a component. Examples of carbon-based materials include, for example, graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, carbon powder such as furnace black and denka black, graphite felt, carbon wool, carbon woven fabric, etc. Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, carbon-based material obtained by compression molding of carbon particles can be mentioned. In addition, as an example of the carbon-based material, fine structure materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters can also be mentioned.
 導電性ポリマーとは、導電性を有する高分子化合物の総称である。導電性ポリマーとしては、例えば、アニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマー又は二種以上のモノマーの重合体が挙げられる。具体的には、導電性ポリマーとして、例えば、ポリアニリン、ポリアミノフェノール、ポリジアミノフェノール、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン等が挙げられる。金属製の導電性材料としては、例えば、ステンレスメッシュが挙げられる。入手の容易性、コスト、耐食性、耐久性等を考慮した場合、導電性材料は炭素系物質であることが好ましい。 The conductive polymer is a generic term for polymer compounds having conductivity. As the conductive polymer, for example, a single monomer or a polymer of two or more monomers having aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene or derivatives thereof as a constitutional unit It can be mentioned. Specifically, examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, polyacetylene and the like. As a metal conductive material, a stainless steel mesh is mentioned, for example. In consideration of availability, cost, corrosion resistance, durability and the like, the conductive material is preferably a carbon-based material.
 また、導電性材料の形状は、粉末形状又は繊維形状であることが好ましい。また、導電性材料は、支持体に支持されていてもよい。支持体とは、それ自身が剛性を有し、ガス拡散電極に一定の形状を付与することのできる部材をいう。支持体は絶縁体であっても導電体であってもよい。支持体が絶縁体である場合、支持体としては、例えばガラス、プラスチック、合成ゴム、セラミックス、耐水又は撥水処理した紙、木片などの植物片、骨片、貝殻などの動物片等が挙げられる。多孔質構造の支持体としては、例えば多孔質セラミック、多孔質プラスチック、スポンジ等が挙げられる。支持体が導電体である場合、支持体としては、例えばカーボンペーパー、カーボンファイバー、炭素棒などの炭素系物質、金属、導電性ポリマー等が挙げられる。 In addition, the shape of the conductive material is preferably a powder shape or a fiber shape. In addition, the conductive material may be supported by a support. The support refers to a member which itself is rigid and can give the gas diffusion electrode a certain shape. The support may be an insulator or a conductor. When the support is an insulator, examples of the support include glass, plastic, synthetic rubber, ceramics, paper treated with water or water resistance, water repellent or water repellent, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, etc. . Examples of the support having a porous structure include porous ceramic, porous plastic, sponge and the like. When the support is a conductor, examples of the support include carbon paper, carbon fibers, carbon-based materials such as carbon rods, metals, conductive polymers, and the like.
 ガス拡散層12における触媒は、白金系触媒、鉄又はコバルトを用いた炭素系触媒、部分酸化したタンタル炭窒化物(TaCNO)及びジルコニウム炭窒化物(ZrCNO)等の遷移金属酸化物系触媒、タングステン又はモリブデンを用いた炭化物系触媒、活性炭等を用いることができる。 The catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) or zirconium carbonitride (ZrCNO), tungsten Alternatively, a carbide-based catalyst using molybdenum, activated carbon or the like can be used.
 ガス拡散層12における触媒は、金属原子がドープされている炭素系材料であることが好ましい。金属原子としては特に限定されないが、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金及び金からなる群より選ばれる少なくとも一種の金属の原子であることが好ましい。この場合、炭素系材料が、特に酸素還元反応を促進させるための触媒として優れた性能を発揮する。炭素系材料が含有する金属原子の量は、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 The catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms. The metal atom is not particularly limited, but titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium It is preferable that it is an atom of at least one metal selected from the group consisting of platinum and gold. In this case, the carbon-based material exhibits excellent performance as a catalyst for particularly promoting the oxygen reduction reaction. The amount of metal atoms contained in the carbon-based material may be appropriately set so that the carbon-based material has excellent catalytic performance.
 炭素系材料には、更に窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子がドープされていることが好ましい。炭素系材料にドープされている非金属原子の量も、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 The carbon-based material is preferably further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur and phosphorus. The amount of nonmetal atoms doped in the carbon-based material may also be appropriately set so that the carbon-based material has excellent catalytic performance.
 炭素系材料は、例えばグラファイト及び無定形炭素等の炭素源原料をベースとし、この炭素源原料に金属原子と、窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子とをドープすることで得られる。 The carbon-based material is based on a carbon source material such as graphite and amorphous carbon, and the carbon source material is doped with metal atoms and one or more nonmetal atoms selected from nitrogen, boron, sulfur and phosphorus It is obtained by
 炭素系材料にドープされている金属原子と非金属原子との組み合わせは、適宜選択される。特に、非金属原子が窒素を含み、金属原子が鉄を含むことが好ましい。この場合、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよく、金属原子が鉄のみであってもよい。 The combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected. In particular, it is preferable that the nonmetal atom contains nitrogen and the metal atom contains iron. In this case, the carbon-based material can have particularly excellent catalytic activity. The nonmetal atom may be only nitrogen or the metal atom may be only iron.
 非金属原子が窒素を含み、金属原子がコバルトとマンガンとのうち少なくとも一方を含んでもよい。この場合も、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよい。また、金属原子がコバルトのみ、マンガンのみ、あるいはコバルト及びマンガンのみであってもよい。 The nonmetal atom may contain nitrogen, and the metal atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have particularly excellent catalytic activity. The nonmetal atom may be only nitrogen. In addition, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
 炭素系材料の形状は特に制限されない。例えば、炭素系材料は、粒子状の形状を有してもよく、またシート状の形状を有してもよい。シート状の形状を有する炭素系材料の寸法は特に制限されず、例えばこの炭素系材料が微小な寸法であってもよい。シート状の形状を有する炭素系材料は、多孔質であってもよい。シート状の形状を有し、かつ、多孔質な炭素系材料は、例えば織布状、不織布状等の形状を有することが好ましい。このような炭素系材料は、導電性材料が無くても、ガス拡散層12を構成することができる。 The shape of the carbon-based material is not particularly limited. For example, the carbon-based material may have a particulate shape or may have a sheet-like shape. The dimensions of the carbon-based material having a sheet-like shape are not particularly limited, and, for example, the carbon-based material may have minute dimensions. The carbonaceous material having a sheet-like shape may be porous. It is preferable that the porous carbon-based material having a sheet-like shape has, for example, a woven-like shape, a non-woven-like shape or the like. Such a carbon-based material can constitute the gas diffusion layer 12 even without the conductive material.
 ガス拡散層12における触媒として構成される炭素系材料は、次のように調製することができる。まず、例えば窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属を含む非金属化合物と、金属化合物と、炭素源原料とを含有する混合物を準備する。そして、この混合物を、800℃以上1000℃以下の温度で、45秒以上600秒未満加熱する。これにより、触媒として構成される炭素系材料を得ることができる。 The carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, a mixture containing, for example, a nonmetal compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. Then, the mixture is heated at a temperature of 800 ° C. or more and 1000 ° C. or less for 45 seconds or more and less than 600 seconds. Thereby, a carbon-based material configured as a catalyst can be obtained.
 ここで、炭素源原料としては、上述の通り、例えばグラファイト又は無定形炭素を使用することができる。さらに、金属化合物としては、炭素源原料にドープされる非金属原子と配位結合し得る金属原子を含む化合物であれば、特に制限されない。金属化合物は、例えば金属の塩化物、硝酸塩、硫酸塩、臭化物、ヨウ化物、フッ化物などのような無機金属塩、酢酸塩などの有機金属塩、無機金属塩の水和物、及び有機金属塩の水和物からなる群より選ばれる少なくとも一種を使用することができる。例えばグラファイトに鉄がドープされる場合には、金属化合物は塩化鉄(III)を含有することが好ましい。また、グラファイトにコバルトがドープされる場合には、金属化合物は塩化コバルトを含有することが好ましい。また、炭素源原料にマンガンがドープされる場合には、金属化合物は酢酸マンガンを含有することが好ましい。金属化合物の使用量は、例えば炭素源原料に対する金属化合物中の金属原子の割合が5~30質量%の範囲内となるように決定されることが好ましく、更にこの割合が5~20質量%の範囲内となるように決定されることがより好ましい。 Here, as the carbon source material, as described above, for example, graphite or amorphous carbon can be used. Further, the metal compound is not particularly limited as long as it is a compound containing a metal atom which can coordinately bond with a nonmetal atom doped in the carbon source material. Examples of metal compounds include inorganic metal salts such as metal chlorides, nitrates, sulfates, bromides, iodides and fluorides, organic metal salts such as acetates, hydrates of inorganic metal salts, and organic metal salts It is possible to use at least one selected from the group consisting of hydrates of For example, when graphite is doped with iron, the metal compound preferably contains iron (III) chloride. In addition, when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride. When manganese is doped to the carbon source material, the metal compound preferably contains manganese acetate. The amount of the metal compound used is preferably determined so that, for example, the ratio of metal atoms in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and this ratio is further preferably 5 to 20% by mass More preferably, it is determined to be within the range.
 非金属化合物は、上記の通り、窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属の化合物であることが好ましい。非金属化合物としては、例えば、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、オクチルボロン酸、1,2-ビス(ジエチルホスフィノエタン)、亜リン酸トリフェニル、ベンジルジサルフィドからなる群より選ばれる少なくとも一種の化合物を使用することができる。非金属化合物の使用量は、炭素源原料への非金属原子のドープ量に応じて適宜設定される。非金属化合物の使用量は、金属化合物中の金属原子と、非金属化合物中の非金属原子とのモル比が、1:1~1:2の範囲内となるように決定されることが好ましく、1:1.5~1:1.8の範囲内となるように決定されることがより好ましい。 The nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus as described above. Examples of nonmetal compounds include pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, and benzyl disulfide. At least one compound selected from the group consisting of The amount of the nonmetallic compound used is appropriately set according to the doping amount of the nonmetallic atom to the carbon source material. The amount of the nonmetallic compound used is preferably determined such that the molar ratio of the metal atom in the metallic compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be in the range of 1: 1.5 to 1: 1.8.
 ガス拡散層12において、触媒は結着剤を用いて導電性材料に結着していてもよい。つまり、触媒は結着剤を用いて導電性材料の表面及び細孔内部に担持されていてもよい。これにより、触媒が導電性材料から脱離し、酸素還元特性が低下することを抑制できる。結着剤としては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、及びエチレン-プロピレン-ジエン共重合体(EPDM)からなる群より選ばれる少なくとも一つを用いることが好ましい。また、結着剤としては、NAFION(登録商標)を用いることも好ましい。 In the gas diffusion layer 12, the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, the catalyst can be prevented from being desorbed from the conductive material and the oxygen reduction characteristics can be prevented from being degraded. As the binder, for example, it is preferable to use at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM). It is also preferable to use NAFION (registered trademark) as a binder.
 (負極)
 本実施形態に係る負極20は、後述する微生物を担持し、さらに微生物の触媒作用により、被処理液60中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する機能を有する。そのため、負極20は、このような機能を生じさせる構成ならば特に限定されない。
(Negative electrode)
The negative electrode 20 according to the present embodiment has a function of supporting the below-described microorganism and generating hydrogen ions and electrons from at least one of the organic substance and the nitrogen-containing compound in the liquid 60 by catalytic action of the microorganism. . Therefore, the negative electrode 20 is not particularly limited as long as it has a configuration that produces such a function.
 負極20は、導電性を有する導電体シートに微生物を担持した構造を有する。導電体シートは、多孔質の導電体シート、織布状の導電体シート及び不織布状の導電体シートからなる群より選ばれる少なくとも一つを備えることが好ましい。また、導電体シートは複数のシートを積層した積層体でもよい。負極20の導電体シートとして、このような複数の細孔を有するシートを用いることにより、後述する局部電池反応で生成した水素イオンがイオン移動層30の方向へ移動しやすくなり、酸素還元反応の速度を高めることが可能となる。また、イオン透過性を向上させる観点から、負極20の導電体シートは、正極10、イオン移動層30及び負極20の積層方向X、つまり厚さ方向に連続した空間(空隙)を有していることが好ましい。 The negative electrode 20 has a structure in which microorganisms are supported on a conductive sheet having conductivity. The conductive sheet preferably includes at least one selected from the group consisting of a porous conductive sheet, a woven conductive sheet and a non-woven conductive sheet. The conductor sheet may be a laminate in which a plurality of sheets are laminated. By using a sheet having such a plurality of pores as the conductive sheet of the negative electrode 20, hydrogen ions generated by the later-described local cell reaction easily move in the direction of the ion transfer layer 30, and the oxygen reduction reaction It is possible to increase the speed. Further, from the viewpoint of improving ion permeability, the conductor sheet of the negative electrode 20 has a space (void) continuous in the stacking direction X of the positive electrode 10, the ion transfer layer 30 and the negative electrode 20, that is, the thickness direction. Is preferred.
 当該導電体シートは、厚さ方向に複数の貫通孔を有する金属板であってもよい。そのため、負極20の導電体シートを構成する材料としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンなどの導電性金属、並びにカーボンペーパー、カーボンフェルトからなる群より選ばれる少なくとも一つを用いることができる。 The conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductive sheet of the negative electrode 20, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, carbon paper, and carbon felt is used. be able to.
 負極20の導電体シートとして、黒鉛シートを用いてもよい。また、負極20は黒鉛を含有し、さらに黒鉛におけるグラフェン層は、正極10、イオン移動層30及び負極20の積層方向Xに垂直な方向YZの面に沿って配列していることが好ましい。グラフェン層がこのように配列していることにより、積層方向Xの導電性よりも、積層方向Xに垂直な方向YZの導電性が向上する。そのため、負極20の局部電池反応により生成した電子を外部回路80へ導通させやすくなり、電池反応の効率をより向上させることが可能となる。 A graphite sheet may be used as the conductive sheet of the negative electrode 20. In addition, it is preferable that the negative electrode 20 contains graphite, and the graphene layers in the graphite be arranged along the plane in the direction YZ perpendicular to the stacking direction X of the positive electrode 10, the ion transfer layer 30, and the negative electrode 20. By arranging the graphene layers in this manner, the conductivity in the direction YZ perpendicular to the stacking direction X is improved more than the conductivity in the stacking direction X. Therefore, the electrons generated by the local cell reaction of the negative electrode 20 can be easily conducted to the external circuit 80, and the efficiency of the cell reaction can be further improved.
 負極20の形状は特に限定されないが、シート形状のように、露出部である表面の平滑性が高い方が好ましい。これにより、散気部90から気体を散気した際に、負極20の表面から効果的に異物を除去することが可能となる。 Although the shape of the negative electrode 20 is not particularly limited, it is preferable that the smoothness of the surface, which is an exposed portion, be high, as in a sheet shape. Thereby, when the gas is aerated from the aeration unit 90, the foreign matter can be effectively removed from the surface of the negative electrode 20.
 負極20に担持される微生物としては、被処理液60中の有機性物質又は窒素含有化合物を分解して、水素イオン及び電子を生成する微生物であれば特に限定されない。このような微生物としては、例えば、増殖に酸素を必要とする好気性微生物、又は増殖に酸素を必要としない嫌気性微生物を使用することができるが、嫌気性微生物を使用することが好ましい。嫌気性微生物は、被処理液60中の有機性物質を酸化分解するための空気を必要としない。そのため、空気を送り込むために必要な電力を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量を減少させることが可能となる。 The microorganism carried on the negative electrode 20 is not particularly limited as long as it is a microorganism that decomposes the organic substance or the nitrogen-containing compound in the liquid to be treated 60 to generate hydrogen ions and electrons. As such a microorganism, for example, an aerobic microorganism that requires oxygen for growth or an anaerobic microorganism that does not require oxygen for growth can be used, but it is preferable to use an anaerobic microorganism. Anaerobic microorganisms do not require air for oxidatively decomposing organic substances in the liquid 60 to be treated. Therefore, the power required to feed the air can be significantly reduced. In addition, since the free energy obtained by microorganisms is small, it is possible to reduce the amount of sludge generated.
 負極20に担持される微生物が嫌気性微生物である場合には、嫌気性微生物の活動を高めるため、負極20の周囲を嫌気性雰囲気に保つことが好ましい。また、負極20に保持される嫌気性微生物は、例えば細胞外電子伝達機構を有する電気生産細菌であることが好ましい。具体的には、嫌気性微生物として、例えばGeobacter属細菌、Shewanella属細菌、Aeromonas属細菌、Geothrix属細菌、Saccharomyces属細菌が挙げられる。 When the microorganism carried on the negative electrode 20 is an anaerobic microorganism, it is preferable to keep the periphery of the negative electrode 20 in an anaerobic atmosphere in order to enhance the activity of the anaerobic microorganism. Moreover, it is preferable that the anaerobic microorganisms hold | maintained at the negative electrode 20 are electric production bacteria which have an extracellular electron transfer mechanism, for example. Specifically, examples of anaerobic microorganisms include, for example, bacteria belonging to the genus Geobacter, bacteria belonging to the genus Shewanella, bacteria belonging to the genus Aeromonas, bacteria belonging to the genus Geothrix, and bacteria belonging to the genus Saccharomyces.
 負極20に、微生物を含むバイオフィルムが重ねられて固定されることで、負極20に微生物が保持されていてもよい。具体的には、負極20におけるイオン移動層30に接触する面20aと反対の面であり、被処理液60と直接接触する面20bに対して、微生物を含むバイオフィルムが固定されていてもよい。なお、バイオフィルムとは、一般に、微生物集団と、微生物集団が生産する菌体外重合体物質(extracellular polymeric substance、EPS)とを含む三次元構造体のことをいう。ただ、微生物は、バイオフィルムによらずに負極20に保持されていてもよい。また、微生物は、負極20の表面だけでなく、内部に保持されていてもよい。 A microorganism may be held on the negative electrode 20 by overlapping and fixing a biofilm containing the microorganism on the negative electrode 20. Specifically, a biofilm containing microorganisms may be fixed to the surface 20b opposite to the surface 20a in contact with the ion transfer layer 30 in the negative electrode 20 and in direct contact with the liquid 60 to be treated . Biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population. However, the microorganism may be held by the negative electrode 20 without using the biofilm. The microorganism may be held not only on the surface of the negative electrode 20 but also on the inside.
 負極20には、例えば、電子伝達メディエーター分子が修飾されていてもよい。あるいは、処理槽70内の被処理液60は、電子伝達メディエーター分子を含んでいてもよい。これにより、微生物から負極20への電子移動を促進し、より効率的な液体処理を実現できる。 For example, an electron transfer mediator molecule may be modified in the negative electrode 20. Alternatively, the liquid to be treated 60 in the treatment tank 70 may contain an electron transfer mediator molecule. Thereby, the electron transfer from the microorganism to the negative electrode 20 can be promoted, and more efficient liquid processing can be realized.
 具体的には、微生物による代謝機構では、細胞内又は最終電子受容体との間で電子の授受が行われる。被処理液60中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を負極20へと受け渡す。この結果、被処理液60における有機性物質などの酸化分解速度を高めることが可能になる。このような電子伝達メディエーター分子は、特に限定されない。電子伝達メディエーター分子としては、例えばニュートラルレッド、アントラキノン-2,6-ジスルホン酸(AQDS)、チオニン、フェリシアン化カリウム、及びメチルビオローゲンからなる群より選ばれる少なくとも一つを用いることができる。 Specifically, in the mechanism of metabolism by microorganisms, electrons are exchanged within cells or with the final electron acceptor. When a mediator molecule is introduced into the liquid 60 to be treated, the mediator molecule acts as a final electron acceptor for metabolism and transfers the received electron to the negative electrode 20. As a result, it is possible to increase the rate of oxidative decomposition of the organic substance or the like in the liquid 60 to be treated. Such electron transfer mediator molecules are not particularly limited. As the electron transfer mediator molecule, for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methyl viologen can be used.
 (イオン移動層)
 液体処理ユニット1において、電極接合体40は、正極10と負極20との間に設けられ、プロトン透過性を有するイオン移動層30をさらに備える。そして、図1及び図2に示すように、負極20は、イオン移動層30を介して正極10と隔てられている。イオン移動層30は電気絶縁性を有し、さらに負極20で生成した水素イオンを透過し、正極10側へ移動させる機能を有している。
(Ion transfer layer)
In the liquid processing unit 1, the electrode assembly 40 is provided between the positive electrode 10 and the negative electrode 20, and further includes an ion transfer layer 30 having proton permeability. Then, as shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 via the ion transfer layer 30. The ion transfer layer 30 has electrical insulation, and further has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side.
 イオン移動層30としては、例えばイオン交換樹脂を用いたイオン交換膜を使用することができる。イオン交換樹脂としては、例えばデュポン株式会社製のNAFION(登録商標)、並びに旭硝子株式会社製のフレミオン(登録商標)及びセレミオン(登録商標)を用いることができる。 As the ion transfer layer 30, for example, an ion exchange membrane using an ion exchange resin can be used. As the ion exchange resin, for example, NAFION (registered trademark) manufactured by DuPont Co., Ltd., and Flemion (registered trademark) and Seremion (registered trademark) manufactured by Asahi Glass Co., Ltd. can be used.
 また、イオン移動層30として、水素イオンが透過することが可能な細孔を有する多孔質膜を使用してもよい。つまり、イオン移動層30は、負極20から正極10へ水素イオンが移動するための空間(空隙)を有するシートであってもよい。そのため、イオン移動層30は、多孔質のシート、織布状のシート及び不織布状のシートからなる群より選ばれる少なくとも一つを備えることが好ましい。また、イオン移動層30は、ガラス繊維膜、合成繊維膜、及びプラスチック不織布からなる群より選ばれる少なくとも一つを用いることができ、これらを複数積層してなる積層体でもよい。このような多孔質のシートは、内部に多数の細孔を有しているため、水素イオンが容易に移動することが可能となる。なお、イオン移動層30の細孔径は、負極20から正極10に水素イオンが移動できれば特に限定されない。 Alternatively, as the ion transfer layer 30, a porous membrane having pores through which hydrogen ions can pass may be used. That is, the ion transfer layer 30 may be a sheet having a space (air gap) for hydrogen ions to move from the negative electrode 20 to the positive electrode 10. Therefore, it is preferable that the ion transfer layer 30 includes at least one selected from the group consisting of a porous sheet, a woven sheet and a non-woven sheet. Further, the ion transfer layer 30 may be at least one selected from the group consisting of a glass fiber membrane, a synthetic fiber membrane, and a plastic non-woven fabric, and may be a laminate obtained by laminating a plurality of these. Such a porous sheet has a large number of pores inside, so that hydrogen ions can be easily moved. The pore diameter of the ion transfer layer 30 is not particularly limited as long as hydrogen ions can move from the negative electrode 20 to the positive electrode 10.
 上述のように、イオン移動層30は、負極20で生成した水素イオンを透過し、正極10側へ移動させる機能を有する。そのため、例えば、負極20と正極10とが接触しない状態で近接していれば、水素イオンが負極20から正極10へ移動することができる。したがって、微生物燃料電池100において、イオン移動層30は必須の構成要素ではない。ただ、イオン移動層30を設けることにより、負極20から正極10へ水素イオンを効率的に移動させることが可能となるため、出力向上の観点からイオン移動層30を設けることが好ましい。なお、正極10とイオン移動層30との間に間隔が設けられていてもよく、また負極20とイオン移動層30との間も間隔が設けられていてもよい。 As described above, the ion transfer layer 30 has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side. Therefore, for example, hydrogen ions can move from the negative electrode 20 to the positive electrode 10 if the negative electrode 20 and the positive electrode 10 are close to each other without being in contact with each other. Therefore, in the microbial fuel cell 100, the ion transfer layer 30 is not an essential component. However, by providing the ion transfer layer 30, it is possible to efficiently transfer hydrogen ions from the negative electrode 20 to the positive electrode 10. Therefore, it is preferable to provide the ion transfer layer 30 from the viewpoint of output improvement. A space may be provided between the positive electrode 10 and the ion transfer layer 30, and a space may be provided between the negative electrode 20 and the ion transfer layer 30.
 液体処理ユニット1では、図2に示すように、負極20及び正極10に電気的に接続する外部回路80を備えている。ただ、液体処理ユニット1では、外部回路80を介さず、導電部材を用いて、負極20及び正極10が電気的に直接接続されていてもよい。また、液体処理ユニット1において、スペーサ部材50は、上部の全体が開口しているが、内部に空気(酸素)を導入することが可能ならば部分的に開口していてもよく、また閉口していてもよい。 The liquid processing unit 1 is provided with an external circuit 80 electrically connected to the negative electrode 20 and the positive electrode 10 as shown in FIG. However, in the liquid processing unit 1, the negative electrode 20 and the positive electrode 10 may be electrically connected directly by using a conductive member without the external circuit 80. Further, in the liquid processing unit 1, the entire upper part of the spacer member 50 is open, but it may be partially open if air (oxygen) can be introduced into the inside, or it may be closed. It may be
 〔処理槽〕
 微生物燃料電池100は、有機性物質を含む被処理液60を内部に保持する、略直方体状の処理槽70を備える。処理槽70の前壁73には、被処理液60を処理槽70に供給するための流入口71が設けられている。また、処理槽70の後壁74には、処理後の被処理液60を処理槽70から排出するための流出口72が設けられている。
[Treatment tank]
The microbial fuel cell 100 includes a substantially rectangular processing tank 70 that holds the liquid to be treated 60 containing an organic substance therein. An inlet 71 for supplying the liquid to be treated 60 to the treatment tank 70 is provided on the front wall 73 of the treatment tank 70. Further, the rear wall 74 of the processing tank 70 is provided with an outlet 72 for discharging the processed liquid 60 from the processing tank 70.
 被処理液60は、流入口71を通じて処理槽70の内部に連続的に供給される。また、図1及び図2に示すように、液体処理ユニット1は、被処理液60に浸漬するように処理槽70の内部に配置されている。そのため、処理槽70の流入口71から供給された被処理液60は、液体処理ユニット1に接触しながら流れ、その後、流出口72から排出される。 The liquid to be treated 60 is continuously supplied to the inside of the treatment tank 70 through the inlet 71. Further, as shown in FIGS. 1 and 2, the liquid processing unit 1 is disposed inside the processing tank 70 so as to be immersed in the liquid 60 to be treated. Therefore, the liquid to be treated 60 supplied from the inflow port 71 of the processing tank 70 flows in contact with the liquid processing unit 1 and then is discharged from the outflow port 72.
 〔散気部〕
 上述のように、微生物燃料電池を長期間駆動させた場合、負極上のバイオフィルムが肥大化するため、微生物燃料電池の発電効率が低下する現象が生じる場合がある。バイオフィルムにより微生物燃料電池の発電効率が低下する原因は十分に解明されていないが、嫌気性微生物以外の他の微生物により形成されたバイオフィルムによって発電が阻害される可能性がある。
[Aeration part]
As described above, when the microbial fuel cell is driven for a long time, the biofilm on the negative electrode is enlarged, which may cause a phenomenon in which the power generation efficiency of the microbial fuel cell is reduced. Although the cause of the decrease in the power generation efficiency of the microbial fuel cell by the biofilm has not been fully elucidated, the power generation may be inhibited by the biofilm formed by other microorganisms other than the anaerobic microorganism.
 本実施形態では、肥大化したバイオフィルムなどの異物を除去して、発電効率を高めるために、散気部90を備えている。散気部90は、液体処理ユニット1に散気し、負極20に付着した異物を除去することができる。散気部90は、気体を散気するための孔部を有する散気部材91と、孔部に気体を供給する気体供給部材92とを備えることが好ましい。 In the present embodiment, the aeration unit 90 is provided in order to remove foreign substances such as enlarged biofilms and enhance power generation efficiency. The aeration unit 90 can aerate the liquid processing unit 1 to remove foreign matter attached to the negative electrode 20. The aeration unit 90 preferably includes an aeration member 91 having a hole for aeration of gas, and a gas supply member 92 for supplying a gas to the hole.
 散気部材91は、気体を流通させることが可能な孔部を多数有する部材である。散気部材91は特に限定されないが、例えば粗大なセラミックス粒子をバインダ等で接合した多孔質セラミックス散気板、又は合成樹脂製の散気板を用いることができる。また、散気部材91としては、メンブレンディフューザーも用いることができる。 The aeration member 91 is a member having a large number of holes through which gas can flow. Although the diffuser member 91 is not particularly limited, for example, a porous ceramic diffuser plate obtained by bonding coarse ceramic particles with a binder or the like, or a diffuser plate made of a synthetic resin can be used. In addition, a membrane diffuser can also be used as the diffuser member 91.
 気体供給部材92は散気部材91を保持し、さらに散気部材91の孔部に気体を供給する中空部材である。そして、気体供給部材92から供給された気体は、散気部材91の孔部を通過して気泡となり、被処理液60中に拡散する。 The gas supply member 92 is a hollow member that holds the diffuser 91 and supplies gas to the holes of the diffuser 91. Then, the gas supplied from the gas supply member 92 passes through the hole of the aeration member 91 to be a bubble, and is diffused into the liquid 60 to be treated.
 散気部90には、処理槽70の外部から気体を供給するための配管93が接続されていることが好ましい。具体的には、気体供給部材92の下面に、中空の配管93が接続されていることが好ましい。配管93は、処理槽70の後壁74を貫通し、処理槽70の外部に延出している。そして、配管93の端部には、気体を圧送するための圧縮機94が接続されている。 It is preferable that a pipe 93 for supplying gas from the outside of the processing tank 70 be connected to the aeration unit 90. Specifically, it is preferable that a hollow pipe 93 be connected to the lower surface of the gas supply member 92. The pipe 93 penetrates the rear wall 74 of the processing tank 70 and extends to the outside of the processing tank 70. The end of the pipe 93 is connected to a compressor 94 for pressure-feeding the gas.
 図2及び図3に示すように、散気部90は、鉛直方向Yにおいて、液体処理ユニット1の下部側に設けられていることが好ましい。これにより、散気部90から発生した気泡が液体処理ユニット1の下面及び負極20の面20bに沿って浮上し、被処理液60の水面61に到達する。この際、気泡は、負極20の面20bに接触するため、負極20上の異物を除去することができる。 As shown in FIGS. 2 and 3, the aeration unit 90 is preferably provided on the lower side of the liquid processing unit 1 in the vertical direction Y. As a result, air bubbles generated from the aeration unit 90 rise along the lower surface of the liquid processing unit 1 and the surface 20 b of the negative electrode 20 and reach the water surface 61 of the liquid 60 to be treated. At this time, since the air bubbles contact the surface 20 b of the negative electrode 20, foreign matter on the negative electrode 20 can be removed.
 微生物燃料電池100において、散気部90の数は特に限定されない。例えば、図2に示すように、一つの液体処理ユニット1の下部側に一つの散気部90を設けるような構成であってもよい。また、図5に示すように、一つの液体処理ユニット1の下部側に複数の散気部90を設けるような構成であってもよい。具体的には、液体処理ユニット1に設けられた二つの負極20の下部側に、それぞれ散気部90を設けるような構成であってもよい。さらに、図6に示すように、複数の液体処理ユニット1に対して一つの散気部90を設けるような構成であってもよい。 In the microbial fuel cell 100, the number of aeration parts 90 is not particularly limited. For example, as shown in FIG. 2, one aeration unit 90 may be provided on the lower side of one liquid processing unit 1. Further, as shown in FIG. 5, a plurality of aeration units 90 may be provided on the lower side of one liquid processing unit 1. Specifically, the aeration unit 90 may be provided on the lower side of the two negative electrodes 20 provided in the liquid processing unit 1. Furthermore, as shown in FIG. 6, one air diffuser 90 may be provided for a plurality of liquid processing units 1.
 散気部90から被処理液60に散気する気体は特に限定されない。例えば、気体としては空気を用いることができる。ただ、上述のように、嫌気性微生物の活動を高めるためには、負極20の周囲を嫌気性雰囲気に保つことが好ましい。そのため、散気する気体は酸素を含まないガスであることが好ましく、例えば窒素を用いることが好ましい。 The gas diffused from the aeration unit 90 to the liquid to be treated 60 is not particularly limited. For example, air can be used as the gas. However, as described above, in order to enhance the activity of the anaerobic microorganism, it is preferable to keep the periphery of the negative electrode 20 in an anaerobic atmosphere. Therefore, it is preferable that the gas to be diffused be a gas not containing oxygen, for example, it is preferable to use nitrogen.
 次に、本実施形態の微生物燃料電池100の作用について説明する。正極10、負極20及びイオン移動層30からなる電極接合体40が被処理液60に浸漬した場合、正極10のガス拡散層12、負極20及びイオン移動層30が被処理液60に浸漬し、撥水層11の少なくとも一部が気相2に露出する。 Next, the operation of the microbial fuel cell 100 of the present embodiment will be described. When the electrode assembly 40 including the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 is immersed in the liquid 60, the gas diffusion layer 12, the negative electrode 20, and the ion transfer layer 30 of the positive electrode 10 are immersed in the liquid 60, At least a part of the water repellent layer 11 is exposed to the gas phase 2.
 微生物燃料電池100の動作時には、負極20に、有機性物質及び窒素含有化合物の少なくとも一方を含有する被処理液60を供給し、正極10に空気を供給する。この際、空気は、スペーサ部材50の上部に設けられた開口部を通じて連続的に供給される。 At the time of operation of the microbial fuel cell 100, a liquid to be treated 60 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20, and air is supplied to the positive electrode 10. At this time, air is continuously supplied through the opening provided at the top of the spacer member 50.
 そして、正極10では、撥水層11を透過してガス拡散層12に酸素が拡散する。負極20では、微生物の触媒作用により、被処理液60中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、イオン移動層30を透過して正極10側へ移動し、正極10中のガス拡散層12に到達する。また、生成した電子は負極20の導電体シートを通じて外部回路80へ移動し、さらに外部回路80から正極10のガス拡散層12に移動する。そして、水素イオン及び電子は、ガス拡散層12中の触媒の作用により酸素と結合し、水となって消費される。このとき、外部回路80によって、閉回路に流れる電気エネルギーを回収する。このように、液体処理ユニット1は、負極20における微生物の作用により、被処理液60中の有機性物質及び窒素含有化合物の少なくとも一方を分解することができる。 Then, in the positive electrode 10, oxygen permeates the water repellent layer 11 and diffuses into the gas diffusion layer 12. In the negative electrode 20, hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 60 by the catalytic action of microorganisms. The generated hydrogen ions permeate the ion transfer layer 30, move to the positive electrode 10 side, and reach the gas diffusion layer 12 in the positive electrode 10. The generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move to the gas diffusion layer 12 of the positive electrode 10 from the external circuit 80. The hydrogen ions and electrons are combined with oxygen by the action of the catalyst in the gas diffusion layer 12 and consumed as water. At this time, the external circuit 80 recovers the electrical energy flowing to the closed circuit. Thus, the liquid processing unit 1 can decompose at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 60 by the action of the microorganism on the negative electrode 20.
 ここで、微生物燃料電池100を長期間駆動させ、負極20上のバイオフィルムが肥大化した場合には、散気部90から被処理液60に気泡を放出する。具体的には、圧縮機94を作動させて配管93に気体を圧送する。圧送された気体は、配管93の内部を通過して、散気部90の気体供給部材92に到達する。気体供給部材92に供給された気体は、散気部材91の孔部を通過して気泡となり、被処理液60に拡散する。 Here, when the microbial fuel cell 100 is driven for a long time and the biofilm on the negative electrode 20 is enlarged, air bubbles are released from the aeration unit 90 to the liquid 60 to be treated. Specifically, the compressor 94 is operated to feed gas to the pipe 93. The pumped gas passes through the inside of the pipe 93 and reaches the gas supply member 92 of the aeration unit 90. The gas supplied to the gas supply member 92 passes through the holes of the aeration member 91 to form air bubbles and diffuses into the liquid 60 to be treated.
 散気部材91から被処理液60に拡散した気泡は、液体処理ユニット1の下面及び負極20の面20bに沿って浮上し、被処理液60の水面61に到達する。この際、気泡は、負極20の面20bに接触するため、負極20を振動させることができる。また、気泡の上昇により、負極20の面20bの近傍に旋回流が生じる。この負極20の振動と、負極20の面20bの近傍に生じる旋回流とにより、負極20の表面の異物、つまり肥大化したバイオフィルムを剥離して除去することが可能となる。 The air bubbles diffused from the air diffusion member 91 to the liquid to be treated 60 float along the lower surface of the liquid treatment unit 1 and the surface 20 b of the negative electrode 20 and reach the water surface 61 of the liquid to be treated 60. At this time, since the air bubbles contact the surface 20 b of the negative electrode 20, the negative electrode 20 can be vibrated. Moreover, the swirling flow is generated in the vicinity of the surface 20 b of the negative electrode 20 due to the rise of the air bubble. The vibration of the negative electrode 20 and the swirling flow generated in the vicinity of the surface 20 b of the negative electrode 20 make it possible to peel off and remove foreign substances on the surface of the negative electrode 20, that is, the enlarged biofilm.
 散気部90が散気するタイミングは特に限定されず、負極20の表面の異物を除去する必要が生じた際に行うことができる。ただ、微生物燃料電池100は、図2に示すように、散気部90により負極20に付着した異物を除去するタイミングを制御する制御部110をさらに備えることが好ましい。 The timing at which the aeration unit 90 aerates is not particularly limited, and can be performed when the foreign matter on the surface of the negative electrode 20 needs to be removed. However, as shown in FIG. 2, the microbial fuel cell 100 preferably further includes a control unit 110 that controls the timing of removing foreign matter attached to the negative electrode 20 by the aeration unit 90.
 微生物燃料電池100において、制御部110は、液体処理ユニット1と連動していてもよい。上述のように、微生物燃料電池100の動作時には負極20で生成した電子は、外部回路80を通じて正極10へ移動する。そのため、液体処理ユニット1では、被処理液60の処理時に電気エネルギーを獲得することができる。したがって、液体処理ユニット1の発電効率が低下していることを制御部110が感知し、その結果に基づき、制御部110が圧縮機94を作動させてもよい。例えば、制御部110が、外部回路80における電圧が所定値を下回ったことを感知した場合、制御部110が圧縮機94を作動させ、散気部90により散気させてもよい。 In the microbial fuel cell 100, the control unit 110 may be interlocked with the liquid processing unit 1. As described above, when the microbial fuel cell 100 is in operation, electrons generated at the negative electrode 20 move to the positive electrode 10 through the external circuit 80. Therefore, in the liquid processing unit 1, electrical energy can be obtained at the time of processing the liquid to be treated 60. Therefore, the control unit 110 may sense that the power generation efficiency of the liquid processing unit 1 is decreasing, and the control unit 110 may operate the compressor 94 based on the result. For example, when the control unit 110 senses that the voltage in the external circuit 80 has fallen below a predetermined value, the control unit 110 may operate the compressor 94 and cause the aeration unit 90 to aerate.
 このように、微生物燃料電池100は、嫌気性微生物を担持する負極20と正極10とを有する電極接合体40を備える液体処理ユニット1を備える。微生物燃料電池100は、さらに、液体処理ユニット1に対して散気し、負極20に付着した異物を除去する散気部90を備える。また、微生物燃料電池100は、被処理液60を内部に保持する処理槽をさらに備え、液体処理ユニット1及び散気部90は、被処理液60に浸漬している。そして、散気部90から被処理液60に放出された気泡により、負極20に付着した異物を除去している。そのため、微生物燃料電池100を長期間駆動させた場合でも、負極20に付着した異物、例えば肥大化したバイオフィルムを除去することができるため、発電効率を高い状態に維持することができる。 Thus, the microbial fuel cell 100 includes the liquid processing unit 1 including the electrode assembly 40 having the negative electrode 20 carrying the anaerobic microorganism and the positive electrode 10. The microbial fuel cell 100 further includes an aeration unit 90 for aerating the liquid processing unit 1 and removing foreign matter attached to the negative electrode 20. In addition, the microbial fuel cell 100 further includes a treatment tank that holds the liquid to be treated 60 inside, and the liquid treatment unit 1 and the aeration unit 90 are immersed in the liquid to be treated 60. Then, the foreign matter attached to the negative electrode 20 is removed by the air bubbles released from the aeration unit 90 into the liquid to be treated 60. Therefore, even when the microbial fuel cell 100 is driven for a long period of time, foreign matter attached to the negative electrode 20, for example, an enlarged biofilm can be removed, so that the power generation efficiency can be maintained high.
 なお、散気部90の構成は、上述の散気部材91と気体供給部材92とを備える構成に限定されず、被処理液60に散気することが可能なあらゆる構成を適用することができる。具体的には、粗大な気泡を発生させる場合には、散気部90として、金属製や合成樹脂製の多孔管、又はディスクディフューザーを用いてもよい。 In addition, the configuration of the aeration unit 90 is not limited to the configuration including the above-described aeration member 91 and the gas supply member 92, and any configuration that can aerate the liquid 60 to be treated can be applied. . Specifically, when generating coarse air bubbles, a porous tube made of metal or synthetic resin, or a disk diffuser may be used as the aeration unit 90.
 上述のように、散気部90には、処理槽70の外部から気体を供給するための配管93が接続されている。配管93の配設方法は特に限定されないが、例えば処理槽70の底壁77に接触して配設してもよい。また、図1及び図2において、配管93は、後壁74を貫通して底壁77に配設されている。ただ、このような態様に限定されず、例えば、配管93を底壁77の下面から貫通させて、散気部90に直接接続してもよい。また、配管93を、底壁77及び後壁74に沿って配置し、散気部90に直接接続してもよい。つまり、配管93は、処理槽70の壁部を貫通せず、処理槽70の壁沿いに配置してもよい。 As described above, the aeration unit 90 is connected to the pipe 93 for supplying gas from the outside of the processing tank 70. The method of arranging the pipe 93 is not particularly limited, but may be arranged in contact with the bottom wall 77 of the processing tank 70, for example. Further, in FIG. 1 and FIG. 2, the pipe 93 is disposed on the bottom wall 77 through the rear wall 74. However, the present invention is not limited to such an embodiment. For example, the pipe 93 may be penetrated from the lower surface of the bottom wall 77 and directly connected to the aeration unit 90. Also, the pipe 93 may be disposed along the bottom wall 77 and the rear wall 74 and may be directly connected to the aeration unit 90. That is, the pipe 93 may be disposed along the wall of the processing tank 70 without penetrating the wall of the processing tank 70.
 微生物燃料電池100において、液体処理ユニット1は、電極接合体40を固定し、かつ、正極10と接触する気相2を形成するスペーサ部材50を備えている。ただ、本実施形態の微生物燃料電池において、スペーサ部材50は必須の構成要素でない。つまり、正極10が気相2と接触し、負極20が被処理液60に浸漬していれば、被処理液60中の有機性物質及び/又は窒素含有化合物を分解しつつ電気エネルギーを得ることができる。例えば、正極10を水面61に浮かべ、負極20を被処理液60に沈ませることによっても、正極10の一部が気相2と接触し、負極20が被処理液60と接触することができる。 In the microbial fuel cell 100, the liquid processing unit 1 includes a spacer member 50 for fixing the electrode assembly 40 and forming the gas phase 2 in contact with the positive electrode 10. However, in the microbial fuel cell of the present embodiment, the spacer member 50 is not an essential component. That is, if the positive electrode 10 is in contact with the gas phase 2 and the negative electrode 20 is immersed in the liquid 60 to be treated, the electric substance is obtained while decomposing the organic substance and / or the nitrogen-containing compound in the liquid 60 to be treated. Can. For example, even when the positive electrode 10 is floated on the water surface 61 and the negative electrode 20 is sunk in the liquid 60, a part of the positive electrode 10 can be in contact with the gas phase 2 and the negative electrode 20 can be in contact with the liquid 60 .
 図面において、正極10、負極20及びイオン移動層30は、矩形状に形成されている。しかし、これらの形状は特に限定されず、微生物燃料電池100の大きさ、及び所望の発電性能や浄化性能により任意に変更することができる。また、各層の面積も所望の機能が発揮できるならば、それぞれ任意に変更することができる。 In the drawings, the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 are formed in a rectangular shape. However, these shapes are not particularly limited, and can be arbitrarily changed according to the size of the microbial fuel cell 100, and the desired power generation performance and purification performance. Also, the area of each layer can be arbitrarily changed as long as the desired function can be exhibited.
[液体処理構造体]
 次に、本実施形態に係る液体処理構造体について説明する。本実施形態の液体処理構造体200は、図6に示すように、液体処理ユニット1と、液体処理ユニット1に対して散気する散気部90とを備えている。
[Liquid Handling Structure]
Next, the liquid processing structure according to the present embodiment will be described. As shown in FIG. 6, the liquid treatment structure 200 according to the present embodiment includes the liquid treatment unit 1 and the aeration unit 90 for aerating the liquid treatment unit 1.
 図1に示す微生物燃料電池100では、液体処理ユニット1と散気部90が別部材として形成されているため、処理槽70の内部に各々設置する必要がある。これに対して、液体処理構造体200は、液体処理ユニット1と散気部90とを備え、液体処理ユニット1及び散気部90が一体的に形成されている。つまり、液体処理ユニット1及び散気部90がユニット化されている。そのため、液体処理構造体200を処理槽70の内部に挿入することにより、液体処理ユニット1と散気部90を処理槽内部の所定位置に設置することができるため、簡易な施工により微生物燃料電池を製造することができる。 In the microbial fuel cell 100 shown in FIG. 1, since the liquid processing unit 1 and the aeration unit 90 are formed as separate members, they need to be installed inside the processing tank 70, respectively. On the other hand, the liquid processing structure 200 includes the liquid processing unit 1 and the aeration unit 90, and the liquid processing unit 1 and the aeration unit 90 are integrally formed. That is, the liquid processing unit 1 and the aeration unit 90 are unitized. Therefore, by inserting the liquid processing structure 200 into the inside of the processing tank 70, the liquid processing unit 1 and the aeration unit 90 can be installed at predetermined positions inside the processing tank, so that the microbial fuel cell can be achieved by a simple construction. Can be manufactured.
 図6に示すように、液体処理構造体200は、液体処理ユニット1及び散気部90に加えて、固定部材210としての外枠220を備えている。外枠220は柱材により略直方体状に形成されている。具体的には、略長方形状の上枠221及び下枠222が、立設した四本の支柱223により接続されることにより、外枠220が形成されている。さらに、下枠222は、格子材224により格子状に形成されている。 As shown in FIG. 6, the liquid treatment structure 200 includes an outer frame 220 as a fixing member 210 in addition to the liquid treatment unit 1 and the aeration unit 90. The outer frame 220 is formed in a substantially rectangular shape by a pillar material. Specifically, the outer frame 220 is formed by connecting the substantially rectangular upper frame 221 and the lower frame 222 by four erected columns 223. Furthermore, the lower frame 222 is formed in a lattice shape by the lattice material 224.
 外枠220の内部には、複数の液体処理ユニット1が挿入されており、液体処理ユニット1は接続部材を介して外枠220に固定されている。具体的には、液体処理ユニット1のスペーサ部材50が、外枠220の上枠221にブラケット225を介して固定されている。なお、液体処理ユニット1は、図1に示すように、スペーサ部材50の上部が開口するように外枠220に固定されている。そして、下枠222における格子材224の交差部には、散気部90が設置されている。 A plurality of liquid processing units 1 are inserted into the inside of the outer frame 220, and the liquid processing unit 1 is fixed to the outer frame 220 via a connection member. Specifically, the spacer member 50 of the liquid processing unit 1 is fixed to the upper frame 221 of the outer frame 220 via the bracket 225. The liquid processing unit 1 is fixed to the outer frame 220 so that the upper portion of the spacer member 50 is open, as shown in FIG. And the aeration part 90 is installed in the cross | intersection part of the grating | lattice material 224 in the lower frame 222. As shown in FIG.
 なお、液体処理構造体200には、散気部90に接続する配管93を設けてもよい。具体的には、下枠222の格子材224に沿って、配管93を設けてもよい。また、液体処理構造体200には、散気部90に接続する配管93に加えて圧縮機94及び制御部110の少なくとも一方を設けてもよい。ただ、配管93は、処理槽70に設置してもよいことから、配管93は液体処理構造体200に必須の構成要素ではない。また、圧縮機94及び制御部110は、処理槽70又は処理槽70の外部に設置してもよいことから、圧縮機94及び制御部110は液体処理構造体200に必須の構成要素ではない。 The liquid treatment structure 200 may be provided with a pipe 93 connected to the aeration unit 90. Specifically, the pipe 93 may be provided along the grid member 224 of the lower frame 222. In addition to the pipe 93 connected to the aeration unit 90, the liquid treatment structure 200 may be provided with at least one of the compressor 94 and the control unit 110. However, since the pipe 93 may be installed in the processing tank 70, the pipe 93 is not an essential component of the liquid processing structure 200. Further, since the compressor 94 and the control unit 110 may be installed outside the treatment tank 70 or the treatment tank 70, the compressor 94 and the control unit 110 are not essential components of the liquid treatment structure 200.
 このように、液体処理構造体200は、嫌気性微生物を担持する負極20と正極10とを有する電極接合体40と、電極接合体40を固定し、かつ、正極10と接触する気相2を形成するスペーサ部材50とを備える液体処理ユニット1を備える。液体処理構造体200は、さらに、液体処理ユニット1に対して散気する散気部90を備える。そして、液体処理構造体200において、液体処理ユニット1と散気部90は、固定部材210により一体的に形成されている。このため、液体処理構造体200を処理槽70の内部に挿入することにより、液体処理ユニット1と散気部90を設置することができるため、簡易な方法により微生物燃料電池を得ることができる。 Thus, the liquid processing structure 200 fixes the electrode assembly 40 having the negative electrode 20 carrying the anaerobic microorganism and the positive electrode 10, and the electrode assembly 40, and the gas phase 2 in contact with the positive electrode 10 The liquid processing unit 1 is provided with the spacer member 50 to be formed. The liquid treatment structure 200 further includes an aeration unit 90 for aerating the liquid treatment unit 1. In the liquid processing structure 200, the liquid processing unit 1 and the aeration unit 90 are integrally formed by the fixing member 210. For this reason, by inserting the liquid processing structure 200 into the inside of the processing tank 70, the liquid processing unit 1 and the aeration unit 90 can be installed, so that the microbial fuel cell can be obtained by a simple method.
 なお、図6に示す液体処理構造体200において、固定部材210は柱材を用いて形成されているが、本実施形態はこのような態様に限定されない。例えば、固定部材210は板材を用いてもよい。また、固定部材210の形状は略直方体状に限定されず、液体処理ユニット1及び散気部90を固定できれば、如何なる形状にすることも可能である。 In addition, in the liquid treatment structure 200 shown in FIG. 6, although the fixing member 210 is formed using a pillar material, this embodiment is not limited to such an aspect. For example, the fixing member 210 may use a plate material. Further, the shape of the fixing member 210 is not limited to a substantially rectangular shape, and any shape can be used as long as the liquid processing unit 1 and the aeration unit 90 can be fixed.
[液体処理システム]
 次に、本実施形態に係る液体処理システムについて説明する。本実施形態の液体処理システムは、上述の微生物燃料電池を備える。
Liquid Handling System
Next, the liquid processing system according to the present embodiment will be described. The liquid processing system of the present embodiment includes the above-described microbial fuel cell.
 上述のように、本実施形態の微生物燃料電池100は、有機物及び窒素含有化合物の少なくとも一方を含有する被処理液60を負極20に供給している。そして、負極20に担持された微生物の代謝により、被処理液60中の有機物及び/又は窒素含有化合物から水素イオン及び電子と共に、二酸化炭素や窒素を生成している。 As described above, the microbial fuel cell 100 of the present embodiment supplies the negative electrode 20 with the liquid to be treated 60 containing at least one of the organic substance and the nitrogen-containing compound. Then, carbon dioxide and nitrogen are generated from the organic substance and / or the nitrogen-containing compound in the liquid to be treated 60 together with hydrogen ions and electrons by the metabolism of the microorganism supported on the negative electrode 20.
 具体的には、例えば被処理液60が有機物としてグルコースを含有する場合、以下の局部電池反応により、二酸化炭素、水素イオン及び電子を生成している。
・負極20(アノード):C12+6HO→6CO+24H+24e
・正極10(カソード):6O+24H+24e→12H
 また、被処理液60が窒素含有化合物としてアンモニアを含有する場合、以下の局部電池反応により、窒素、水素イオン及び電子を生成している。
・負極20(アノード):4NH→2N+12H+12e
・正極10(カソード):3O+12H+12e→6H
Specifically, for example, when the liquid 60 to be treated contains glucose as an organic substance, carbon dioxide, hydrogen ions and electrons are generated by the following local cell reaction.
Negative electrode 20 (anode): C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 24H + + 24e
· Positive electrode 10 (cathode): 6O 2 + 24H + + 24e - → 12H 2 O
When the liquid 60 to be treated contains ammonia as a nitrogen-containing compound, nitrogen, hydrogen ions and electrons are generated by the following local cell reaction.
Negative electrode 20 (anode): 4 NH 3 → 2 N 2 + 12 H + + 12 e
· Positive electrode 10 (cathode): 3O 2 + 12H + + 12e - → 6H 2 O
 このように、本実施形態の液体処理システムは、微生物燃料電池100を用いることにより、被処理液60中の有機物及び窒素含有化合物が負極20に接触して酸化分解されるため、被処理液60を浄化することができる。また、上述のように、処理槽70に、被処理液60を供給するための流入口71と、処理後の被処理液60を排出するための流出口72を設けることにより、被処理液60を連続的に供給している。そのため、負極20に被処理液60を連続的に接触させ、被処理液60を効率的に処理することが可能となる。 As described above, in the liquid processing system according to the present embodiment, the organic fuel and the nitrogen-containing compound in the liquid to be treated 60 are in contact with the negative electrode 20 and oxidized and decomposed by using the microbial fuel cell 100. Can be purified. Further, as described above, the treatment liquid 70 is provided with the inflow port 71 for supplying the liquid to be treated 60 and the outflow port 72 for discharging the liquid to be treated 60 after treatment. Are supplied continuously. Therefore, it is possible to treat the liquid to be treated 60 efficiently by bringing the liquid to be treated 60 into contact with the negative electrode 20 continuously.
 そして、液体処理システムは、有機性物質を含む液体、例えば各種産業の工場などから発生する廃水や、下水などの有機性廃水の処理に広く適用できる。また、水域の環境改善などにも利用できる。 The liquid treatment system can be widely applied to the treatment of a liquid containing an organic substance, for example, wastewater generated from factories of various industries, and organic wastewater such as sewage. It can also be used to improve the environment of water areas.
 以下、本実施形態を実施例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples, but the present embodiment is not limited to these examples.
 まず、ポリオレフィン製撥水層に、接着剤であるシリコーン樹脂を塗布した後、ガス拡散層であるグラファイトホイルを接合することにより、撥水層/シリコーン接着剤/ガス拡散層からなる積層シートを作製した。なお、撥水層は、積水化学工業株式会社製セルポア(登録商標)を使用した。シリコーン樹脂は、信越化学工業株式会社製の一液型RTVゴムKE-3475-Tを使用した。グラファイトホイルは、日立化成工業株式会社製のものを使用した。 First, a silicone resin which is an adhesive agent is applied to a water repellent layer made of polyolefin and then a graphite foil which is a gas diffusion layer is joined to produce a laminated sheet consisting of water repellent layer / silicone adhesive / gas diffusion layer did. As the water repellent layer, Cellpore (registered trademark) manufactured by Sekisui Chemical Co., Ltd. was used. As the silicone resin, one-component RTV rubber KE-3475-T manufactured by Shin-Etsu Chemical Co., Ltd. was used. The graphite foil used was manufactured by Hitachi Chemical Co., Ltd.
 次に、グラファイトホイルにおける撥水層とは反対側の面に、酸素還元触媒とPTFE(Aldrich社製)とを混合してなる触媒層をプレス成形することにより、ガス拡散電極を作製した。なお、酸素還元触媒は、目付け量が6mg/cmとなるようにプレス成形した。 Next, a gas diffusion electrode was produced by press-forming a catalyst layer formed by mixing an oxygen reduction catalyst and PTFE (manufactured by Aldrich) on the surface of the graphite foil opposite to the water repellent layer. In addition, the oxygen reduction catalyst was press-molded so that a basis weight might be 6 mg / cm < 2 >.
 なお、酸素還元触媒は、次のように調製した。まず、容器内に、3gのカーボンブラック、0.1Mの塩化鉄(III)水溶液、及び0.15Mのペンタエチレンヘキサミンのエタノール溶液を入れることで、混合液を調製した。なお、カーボンブラックとしては、ライオン・スペシャリティ・ケミカルズ株式会社製ケッチェンブラックECP600JDを使用した。0.1M塩化鉄(III)水溶液の使用量は、カーボンブラックに対する鉄原子の割合が10質量%になるように調整した。この混合液に更にエタノールを加えることで、全量を9mLに調整した。そして、この混合液を超音波分散してから乾燥機で60℃の温度で乾燥させた。これにより、カーボンブラック、塩化鉄(III)、及びペンタエチレンヘキサミンを含有するサンプルを得た。 The oxygen reduction catalyst was prepared as follows. First, a mixed solution was prepared by placing 3 g of carbon black, a 0.1 M aqueous solution of iron (III) chloride, and an ethanol solution of 0.15 M pentaethylenehexamine in a container. As carbon black, ketjen black ECP600 JD manufactured by Lion Specialty Chemicals Co., Ltd. was used. The amount of use of the 0.1 M aqueous solution of iron (III) chloride was adjusted so that the ratio of iron atoms to carbon black was 10% by mass. The total volume was adjusted to 9 mL by further adding ethanol to this mixture. Then, the mixture was ultrasonically dispersed and then dried at a temperature of 60 ° C. in a drier. This yielded a sample containing carbon black, iron (III) chloride, and pentaethylenehexamine.
 そして、このサンプルを、石英管の一端部内に詰め入れ、続いてこの石英管内をアルゴンで置換した。この石英管を900℃の炉に入れてから45秒で引き抜いた。石英管を炉に挿入する際には、石英管を炉に3秒間かけて挿入することで、加熱開始時のサンプルの昇温速度を300℃/sに調整した。続いて、石英管内にアルゴンガスを流通させることでサンプルを冷却させた。このようにして酸素還元触媒を得た。 The sample was then packed into one end of a quartz tube, which was then purged with argon in the quartz tube. The quartz tube was put into a furnace at 900 ° C. and pulled out in 45 seconds. When inserting the quartz tube into the furnace, the temperature rising rate of the sample at the start of heating was adjusted to 300 ° C./s by inserting the quartz tube into the furnace over 3 seconds. Subsequently, the sample was cooled by flowing argon gas through the quartz tube. Thus, an oxygen reduction catalyst was obtained.
 次に、図1に示すように、得られたガス拡散電極からなる正極、イオン移動層、及び炭素材料(グラファイトホイル)からなる負極を、U字状のスペーサ部材に積層することにより、液体処理ユニットを得た。 Next, as shown in FIG. 1, liquid treatment is carried out by laminating the obtained positive electrode comprising a gas diffusion electrode, an ion transfer layer, and a negative electrode comprising a carbon material (graphite foil) on a U-shaped spacer member. I got a unit.
 流入口及び流出口を備え、容量が300ccの処理槽を用意し、当該処理槽の底面に多数の孔部を有する散気部を設置した。さらに、当該散気部には、配管の一方の端部を接続した。配管の他方の端部は、処理槽の外部に設けたエアーポンプを接続した。そして、図1に示すように、液体処理ユニットを、散気部を備えた処理槽の内部に設置した。 A treatment vessel having an inlet and an outlet and having a volume of 300 cc was prepared, and an aeration unit having a large number of holes was provided on the bottom of the treatment vessel. Furthermore, one end of the pipe was connected to the aeration part. The other end of the pipe was connected to an air pump provided outside the treatment tank. And as shown in FIG. 1, the liquid processing unit was installed in the inside of the processing tank provided with the aeration part.
 次に、正極、負極及びイオン移動層に接するように、被処理液を処理槽内に満たした。被処理液は、全有機体炭素(TOC)が500mg/Lであるモデル廃液を使用した。さらに、被処理液のプロトン供給性を安定させるために、バッファとして、炭酸水素ナトリウムを濃度が20mMとなるように添加した。さらに、発電を行う嫌気性微生物源として、負極に土壌微生物を植種した。 Next, the treatment liquid was filled in the treatment tank so as to be in contact with the positive electrode, the negative electrode, and the ion transfer layer. As a liquid to be treated, a model waste liquid having a total organic carbon (TOC) of 500 mg / L was used. Furthermore, in order to stabilize the proton supply property of the liquid to be treated, sodium hydrogencarbonate was added as a buffer to a concentration of 20 mM. Furthermore, soil microorganisms were planted on the negative electrode as a source of anaerobic microorganisms that generate electricity.
 そして、水理学的滞留時間が24時間となるように、被処理液を処理槽に供給した。さらに、被処理液は、水温が30℃となるように調整した。そして、正極と負極を負荷回路に接続することにより、本例の微生物燃料電池を得た。 Then, the liquid to be treated was supplied to the treatment tank so that the hydraulic retention time was 24 hours. Furthermore, the liquid to be treated was adjusted to have a water temperature of 30 ° C. And the microbial fuel cell of this example was obtained by connecting a positive electrode and a negative electrode to a load circuit.
 得られた微生物燃料電池を2ヶ月以上運転した結果、負極の表面には、肥大化したバイオフィルムが目視により確認された。そのため、エアーポンプを作動させて空気を散気部に圧送し、数十秒間の曝気処理を施した。その結果、負極表面のバイオフィルムの剥離が確認された。また、曝気処理前の電極面積あたりの出力は50mW/mであったが、曝気処理後の電極面積あたりの出力は95mW/mへと倍増することが確認された。 As a result of operating the obtained microbial fuel cell for 2 months or more, the enlarged biofilm was visually confirmed on the surface of the negative electrode. Therefore, the air pump was operated to pump air to the aeration unit, and aeration processing was performed for several tens of seconds. As a result, peeling of the biofilm on the negative electrode surface was confirmed. Also, output per electrode area before aeration treatment was the 50 mW / m 2, output per electrode area after aeration was confirmed to be doubled to 95mW / m 2.
 この結果より、散気部を用いて液体処理ユニットに散気し、負極に付着した異物(バイオフィルム)を除去することにより、微生物燃料電池の発電効率が大きく向上することが分かる。 From this result, it is understood that the power generation efficiency of the microbial fuel cell is greatly improved by aeration of the liquid processing unit using the aeration unit and removal of foreign matter (biofilm) adhering to the negative electrode.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。 As mentioned above, although this embodiment was described, this embodiment is not limited to these, A various deformation | transformation is possible within the range of the summary of this embodiment.
 特願2017-202596号(出願日:2017年10月19日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2017-202596 (filing date: October 19, 2017) are incorporated herein by reference.
 本開示によれば、負極に付着した異物による発電効率の低下を抑制することが可能な微生物燃料電池、当該微生物燃料電池を用いた液体処理システム、並びに、微生物燃料電池及び液体処理システムに用いられる液体処理構造体を提供することができる。 According to the present disclosure, a microbial fuel cell capable of suppressing a decrease in power generation efficiency due to foreign matter attached to a negative electrode, a liquid processing system using the microbial fuel cell, and a microbial fuel cell and a liquid processing system A liquid handling structure can be provided.
 1 液体処理ユニット
 2 気相
 10 正極
 20 負極
 30 イオン移動層
 40 電極接合体
 50 スペーサ部材
 60 被処理液
 70 処理槽
 90 散気部
 100 微生物燃料電池
 110 制御部
 200 液体処理構造体
Reference Signs List 1 liquid processing unit 2 gas phase 10 positive electrode 20 negative electrode 30 ion transfer layer 40 electrode assembly 50 spacer member 60 liquid to be treated 70 treatment tank 90 aeration unit 100 microbial fuel cell 110 control unit 200 liquid treatment structure

Claims (11)

  1.  嫌気性微生物を担持する負極と正極とを有する電極接合体を備える液体処理ユニットと、
     前記液体処理ユニットに対して散気し、前記負極に付着した異物を除去する散気部と、
     を備える、微生物燃料電池。
    A liquid processing unit comprising an electrode assembly having a negative electrode carrying an anaerobic microorganism and a positive electrode;
    An aeration unit for aerating the liquid processing unit and removing foreign matter adhering to the negative electrode;
    , A microbial fuel cell.
  2.  前記液体処理ユニットは、前記電極接合体を固定し、かつ、前記正極と接触する気相を形成するスペーサ部材をさらに備える、請求項1に記載の微生物燃料電池。 The microbial fuel cell according to claim 1, wherein the liquid processing unit further comprises a spacer member that fixes the electrode assembly and forms a gas phase in contact with the positive electrode.
  3.  前記散気部は、鉛直方向において、前記液体処理ユニットの下部側に設けられている、
    請求項1又は2に記載の微生物燃料電池。
    The aeration unit is provided on the lower side of the liquid processing unit in the vertical direction.
    The microbial fuel cell of Claim 1 or 2.
  4.  前記液体処理ユニット及び前記散気部は一体的に形成されている、請求項1乃至3のいずれか一項に記載の微生物燃料電池。 The microbial fuel cell according to any one of claims 1 to 3, wherein the liquid processing unit and the aeration part are integrally formed.
  5.  前記散気部は、気体を散気するための孔部を有する散気部材と、前記孔部に前記気体を供給する気体供給部材と、を備える、請求項1乃至4のいずれか一項に記載の微生物燃料電池。 The said aeration part is provided with the aeration member which has a hole for aeration of gas, and the gas supply member which supplies the said gas to the said hole. Microbial fuel cell as described.
  6.  前記散気部により前記負極に付着した異物を除去するタイミングを制御する制御部をさらに備える、請求項1乃至5のいずれか一項に記載の微生物燃料電池。 The microbial fuel cell as described in any one of the Claims 1 thru | or 5 further equipped with the control part which controls the timing which removes the foreign material adhering to the said negative electrode by the said aeration part.
  7.  前記液体処理ユニット及び前記散気部は、被処理液に浸漬しており
     前記散気部から前記被処理液に放出された気泡により、前記負極に付着した異物を除去する、請求項1乃至6のいずれか一項に記載の微生物燃料電池。
    The liquid processing unit and the aeration unit are immersed in the liquid to be treated, and the foreign matter attached to the negative electrode is removed by the air bubbles released from the aeration unit to the liquid to be treated. A microbial fuel cell according to any one of the preceding claims.
  8.  前記電極接合体は、前記正極と負極との間に設けられ、プロトン透過性を有するイオン移動層をさらに備える、請求項1乃至7のいずれか一項に記載の微生物燃料電池。 The microbial fuel cell according to any one of claims 1 to 7, wherein the electrode assembly is provided between the positive electrode and the negative electrode, and further comprising an ion transfer layer having proton permeability.
  9.  被処理液を内部に保持する処理槽をさらに備え、
     前記液体処理ユニット及び前記散気部は、前記被処理液に浸漬している、請求項1乃至8のいずれか一項に記載の微生物燃料電池。
    It further comprises a treatment tank for holding the liquid to be treated inside;
    The microbial fuel cell according to any one of claims 1 to 8, wherein the liquid processing unit and the aeration unit are immersed in the liquid to be treated.
  10.  請求項1乃至9のいずれか一項に記載の微生物燃料電池を備える、液体処理システム。 A liquid treatment system comprising the microbial fuel cell according to any one of the preceding claims.
  11.  嫌気性微生物を担持する負極と正極とを有する電極接合体と、前記電極接合体を固定し、かつ、前記正極と接触する気相を形成するスペーサ部材と、を備える液体処理ユニットと、
     前記液体処理ユニットに対して散気する散気部と、
     を備える、液体処理構造体。
    A liquid processing unit comprising: an electrode assembly having a negative electrode carrying an anaerobic microorganism and a positive electrode; and a spacer member for fixing the electrode assembly and forming a gas phase in contact with the positive electrode.
    An aeration unit for aerating the liquid processing unit;
    A liquid handling structure comprising:
PCT/JP2018/036988 2017-10-19 2018-10-03 Microbial fuel cell, liquid processing system, and liquid processing structure WO2019078003A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017202596 2017-10-19
JP2017-202596 2017-10-19

Publications (1)

Publication Number Publication Date
WO2019078003A1 true WO2019078003A1 (en) 2019-04-25

Family

ID=66172959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036988 WO2019078003A1 (en) 2017-10-19 2018-10-03 Microbial fuel cell, liquid processing system, and liquid processing structure

Country Status (1)

Country Link
WO (1) WO2019078003A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323999Y2 (en) * 1982-11-17 1988-07-01
JPH03147269A (en) * 1989-11-02 1991-06-24 Honda Motor Co Ltd Reserve type microorganism battery
JPH09117789A (en) * 1995-10-24 1997-05-06 Ebara Corp Biological treatment of sludge and device therefor
JP2000133327A (en) * 1998-10-29 2000-05-12 Canon Inc Power generating method and device using micro-organism
JP2005535095A (en) * 2002-08-06 2005-11-17 ソントル ナショナル ド ラ ルシェルシュ ションティフィーク Fuel cell using biofilm as catalyst for air electrode reaction and / or fuel electrode reaction
WO2016063455A1 (en) * 2014-10-20 2016-04-28 パナソニック株式会社 Electrode, fuel cell and water treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6323999Y2 (en) * 1982-11-17 1988-07-01
JPH03147269A (en) * 1989-11-02 1991-06-24 Honda Motor Co Ltd Reserve type microorganism battery
JPH09117789A (en) * 1995-10-24 1997-05-06 Ebara Corp Biological treatment of sludge and device therefor
JP2000133327A (en) * 1998-10-29 2000-05-12 Canon Inc Power generating method and device using micro-organism
JP2005535095A (en) * 2002-08-06 2005-11-17 ソントル ナショナル ド ラ ルシェルシュ ションティフィーク Fuel cell using biofilm as catalyst for air electrode reaction and / or fuel electrode reaction
WO2016063455A1 (en) * 2014-10-20 2016-04-28 パナソニック株式会社 Electrode, fuel cell and water treatment device

Similar Documents

Publication Publication Date Title
JP6364529B2 (en) Electrode manufacturing method and electrode
JP6438115B2 (en) Microbial fuel cell system
WO2017119419A1 (en) Gas diffusion electrode for microbial fuel cells and microbial fuel cell in which same is used
US20200317543A1 (en) Purification unit and purification device
JP6387186B2 (en) Electrode composite, and microbial fuel cell and water treatment apparatus using the same
JP6643642B2 (en) Purification unit and purification device
WO2016114139A1 (en) Microbial fuel cell system
WO2017175260A1 (en) Electrode, fuel cell and water treatment device
WO2019078003A1 (en) Microbial fuel cell, liquid processing system, and liquid processing structure
WO2019069851A1 (en) Electrode assembly, and microbial fuel cell and water treatment device using same
JP2020087804A (en) Microbial fuel cell and liquid processing unit
WO2017199475A1 (en) Liquid processing unit and liquid processing device
JP2019076833A (en) Liquid treatment system
JP2020099851A (en) Liquid treatment system
WO2017195406A1 (en) Microbial fuel cell and liquid treatment unit using same
JP2017152296A (en) Microbial fuel cell
WO2019078002A1 (en) Liquid processing system
WO2018203455A1 (en) Liquid treatment system
JP2017228411A (en) Electrode composite and fuel cell
JP2020082006A (en) Liquid treatment system
WO2019064889A1 (en) Liquid treatment system
JP2020099853A (en) Liquid treatment system
JP2020099854A (en) Liquid treatment system
JP2020099850A (en) Liquid treatment system
JP2019061837A (en) Electrode composite body and electrode composite body group using the same, microbial fuel cell, and water treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP