WO2017195406A1 - Microbial fuel cell and liquid treatment unit using same - Google Patents

Microbial fuel cell and liquid treatment unit using same Download PDF

Info

Publication number
WO2017195406A1
WO2017195406A1 PCT/JP2017/003378 JP2017003378W WO2017195406A1 WO 2017195406 A1 WO2017195406 A1 WO 2017195406A1 JP 2017003378 W JP2017003378 W JP 2017003378W WO 2017195406 A1 WO2017195406 A1 WO 2017195406A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
fuel cell
microbial fuel
carbon
Prior art date
Application number
PCT/JP2017/003378
Other languages
French (fr)
Japanese (ja)
Inventor
直毅 吉川
雄也 鈴木
亮 釜井
矢口 充雄
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017195406A1 publication Critical patent/WO2017195406A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a microbial fuel cell and a liquid processing unit using the same. More particularly, the present invention relates to a microbial fuel cell capable of purifying waste water and generating electric energy, and a liquid processing unit using the microbial fuel cell.
  • a microbial fuel cell is a battery that oxidizes and decomposes an organic substance while converting the chemical energy of the organic substance contained in domestic wastewater or factory wastewater into electrical energy.
  • the microbial fuel cell is characterized by little generation of sludge and low energy consumption.
  • the power generated by microorganisms is very small and the output current density is low, further improvement is necessary.
  • a battery having a pair of electrodes positive electrode, negative electrode
  • a diaphragm a reaction tank containing an electrolyte solution
  • an external circuit electrically connected to the pair of electrodes is disclosed (for example, see Patent Document 1).
  • a conductive substance having a hole having a predetermined average hole diameter is provided in an electrode substrate constituting the electrode or at least a part of the surface thereof.
  • Geobacter sulfurreducens which is an anaerobic microorganism, is used as a power generation microorganism.
  • the microbial fuel cell of Patent Document 1 has a positive electrode disposed on one surface of the diaphragm and a negative electrode disposed on the other surface of the diaphragm, oxygen supplied to the positive electrode permeates the diaphragm and becomes a negative electrode. To reach. As a result, there is a problem that the vicinity of the negative electrode becomes aerobic due to the influence of oxygen reaching the negative electrode, and the anaerobic power generation microorganisms do not act effectively.
  • the present invention has been made in view of such problems of the conventional technology. And the objective of this invention provides the microbial fuel cell which can suppress the influence of oxygen in the negative electrode vicinity, and can perform the electric power generation by an anaerobic microorganism efficiently, and the liquid processing unit using the said microbial fuel cell. There is.
  • a microbial fuel cell includes an electrolyte, a positive electrode composed of a gas diffusion electrode immersed in the electrolyte and exposed at least partially in the gas phase, A negative electrode which is immersed in the liquid and holds anaerobic microorganisms. And in the flow path of electrolyte solution, a negative electrode is provided in the upstream at the time of electrolyte solution flow, and a positive electrode is provided in the downstream rather than a negative electrode.
  • a liquid processing unit includes the above-described microbial fuel cell.
  • FIG. 1 is a perspective view showing an example of a microbial fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is an exploded perspective view showing a positive electrode, a cassette base material, and a plate member in the microbial fuel cell.
  • FIG. 4 is a cross-sectional view showing another example of the microbial fuel cell according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing another example of the microbial fuel cell according to the embodiment of the present invention.
  • a microbial fuel cell 100 includes a fuel cell unit 1 as shown in FIGS. 1 and 2.
  • the fuel cell unit 1 includes a positive electrode 10 and a negative electrode 20.
  • the positive electrode 10 is laminated on the cassette base material 30.
  • the cassette base material 30 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper portion is open. That is, the cassette base material 30 is a frame member in which the bottom surfaces of the two first columnar members 31 are connected by the second columnar members 32.
  • the side surface 33 of the cassette base material 30 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10, and the side surface 34 opposite to the side surface 33 is the outer periphery of the surface 40 a of the plate member 40. It is joined to the part.
  • the fuel cell unit 1 including the positive electrode 10, the negative electrode 20, the cassette base material 30, and the plate member 40 is disposed inside the waste water tank 60 so that a gas phase 50 communicating with the atmosphere is formed. Is done.
  • An electrolytic solution 70 that is a liquid to be treated is held inside the waste water tank 60, and the positive electrode 10 and the negative electrode 20 are immersed in the electrolytic solution 70.
  • the positive electrode 10 includes a water-repellent water-repellent layer 11, and the plate member 40 is made of a flat plate material that does not transmit the electrolytic solution 70.
  • the side surface 33 of the cassette base material 30 is joined to the outer peripheral portion of the water repellent layer 11, and the side surface 34 is joined to the outer peripheral portion of the plate member 40. Therefore, the electrolytic solution 70 held in the waste water tank 60 is separated from the inside of the cassette base material 30, and the internal space formed by the positive electrode 10, the cassette base material 30 and the plate member 40 becomes a gas phase 50. Yes.
  • the microbial fuel cell 100 is configured such that the gas phase 50 is opened to the outside air, or air is supplied to the gas phase 50 from the outside by, for example, a pump.
  • the positive electrode 10 and the negative electrode 20 are electrically connected to an external circuit 80, respectively.
  • the positive electrode 10 has a function of causing hydrogen ions and electrons generated by the negative electrode 20 to react with oxygen in the gas phase 50. For this reason, the positive electrode 10 of the present embodiment is not particularly limited as long as it has such a function.
  • the positive electrode 10 includes a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water repellent layer 11.
  • a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water repellent layer 11.
  • the water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability.
  • the water repellent layer 11 is configured to allow oxygen to move from the gas phase to the liquid phase while favorably separating the gas phase and the liquid phase in the electrochemical system in the fuel cell unit 1. That is, the water-repellent layer 11 can suppress the movement of the electrolytic solution 70 toward the gas phase 50 while allowing oxygen in the gas phase 50 to pass through and moving to the gas diffusion layer 12.
  • “separation” here means physical interruption
  • the water repellent layer 11 is in contact with the gas phase 50 containing oxygen, and diffuses oxygen in the gas phase 50.
  • the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly. Therefore, the water repellent layer 11 is preferably a porous body so that the oxygen can be diffused.
  • the water repellent layer 11 since the water repellent layer 11 has water repellency, it can suppress that the pores of a porous body are obstruct
  • the electrolyte solution 70 hardly penetrates into the water-repellent layer 11, oxygen can be efficiently circulated from the surface in contact with the gas phase 50 to the surface facing the gas diffusion layer 12 in the water-repellent layer 11. It becomes.
  • the water repellent layer 11 is preferably formed in a sheet shape from a woven fabric or a non-woven fabric.
  • the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and can diffuse oxygen in the gas phase 50.
  • Examples of the material constituting the water repellent layer 11 include polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethyl cellulose, poly-4-methylpentene-1, butyl rubber, silicone, and polydimethylsiloxane (PDMS). At least one selected from the group consisting of: Since these materials are easy to form a porous body and also have high water repellency, they can suppress clogging of pores and improve gas diffusibility.
  • the water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
  • the water repellent layer 11 may be subjected to a water repellent treatment using a water repellent as necessary in order to enhance water repellency.
  • a water repellent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve water repellency.
  • the gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material.
  • the gas diffusion layer 12 may be composed of a porous and conductive catalyst.
  • the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen passes from the surface facing the water repellent layer 11 to the opposite surface.
  • the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh. Such a mesh shape makes it possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
  • the water repellent layer 11 is preferably bonded to the gas diffusion layer 12 via an adhesive in order to efficiently supply oxygen to the gas diffusion layer 12.
  • the adhesive is preferably provided on at least a part between the water-repellent layer 11 and the gas diffusion layer 12 from the viewpoint of ensuring the adhesion between the water-repellent layer 11 and the gas diffusion layer 12.
  • the adhesive is used as the water repellent layer 11 and the gas diffusion layer. It is more preferable that it is provided on the entire surface between the two.
  • the adhesive preferably has oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, and silicone. Resin can be used.
  • the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail.
  • the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
  • the conductive material in the gas diffusion layer 12 can be composed of, for example, one or more materials selected from the group consisting of carbon-based substances, conductive polymers, semiconductors, and metals.
  • the carbon-based material means a material containing carbon as a constituent component.
  • Examples of carbon-based materials include, for example, carbon powder such as graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, furnace black, Denka black, graphite felt, carbon wool, carbon woven cloth, etc.
  • Examples thereof include carbon fibers, carbon plates, carbon paper, carbon disks, carbon cloth, graphite sheets, and carbon-based materials obtained by compression molding carbon particles.
  • Examples of the carbon-based material also include fine-structured materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters.
  • Conductive polymer is a general term for conductive polymer compounds.
  • the conductive polymer for example, a single monomer or a polymer of two or more monomers having aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a derivative thereof as a structural unit.
  • examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, and polyacetylene.
  • the metal conductive material include stainless steel mesh and foam metal. In consideration of availability, cost, corrosion resistance, durability, and the like, the conductive material is preferably a carbon-based substance.
  • the shape of the conductive material is preferably a powder shape or a fiber shape. Further, the conductive material may be supported by a support.
  • the support means a member that itself has rigidity and can give a certain shape to the gas diffusion electrode.
  • the support may be an insulator or a conductor.
  • examples of the support include glass, plastic, synthetic rubber, ceramics, water-resistant or water-repellent treated paper, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, and the like.
  • Examples of the porous structure support include porous ceramics, porous plastics, and sponges.
  • the support When the support is a conductor, examples of the support include carbon materials such as carbon paper, carbon fiber, and carbon rod, metals, conductive polymers, and the like.
  • the support When the support is a conductor, the support can also function as a current collector by disposing a conductive material carrying a carbon-based material on the surface of the support.
  • the catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) and zirconium carbonitride (ZrCNO), tungsten
  • a carbide catalyst using activated molybdenum, activated carbon, or the like can be used.
  • the catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms.
  • metal atoms Titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium
  • the carbon-based material exhibits excellent performance as a catalyst for promoting the oxygen reduction reaction. What is necessary is just to set suitably the quantity of the metal atom which carbonaceous material contains so that carbonaceous material may have the outstanding catalyst performance.
  • the carbon-based material is further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur, and phosphorus. What is necessary is just to set suitably the quantity of the nonmetallic atom doped by the carbonaceous material so that carbonaceous material may have the outstanding catalyst performance.
  • the carbon-based material is based on a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
  • a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
  • the combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected.
  • the nonmetallic atom contains nitrogen and the metallic atom contains iron.
  • the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetallic atom may be only nitrogen, and the metallic atom may be only iron.
  • the nonmetallic atom may contain nitrogen, and the metallic atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have a particularly excellent catalytic activity.
  • the nonmetallic atom may be only nitrogen. Further, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
  • the shape of the carbon-based material is not particularly limited.
  • the carbon-based material may have a particulate shape or may have a sheet shape.
  • the dimension of the carbon-based material having a sheet-like shape is not particularly limited.
  • the carbon-based material may have a minute dimension.
  • the carbon-based material having a sheet shape may be porous. It is preferable that the porous carbon-based material having a sheet shape has a shape such as a woven fabric shape or a nonwoven fabric shape. Such a carbon-based material can constitute the gas diffusion layer 12 even without a conductive material.
  • the carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, for example, a mixture containing a nonmetallic compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. And this mixture is heated at the temperature of 800 degreeC or more and 1000 degrees C or less for 45 second or more and less than 600 second. Thereby, the carbonaceous material comprised as a catalyst can be obtained.
  • the carbon source material for example, graphite or amorphous carbon can be used as described above.
  • the metal compound is not particularly limited as long as it is a compound containing a metal atom capable of coordinating with a nonmetal atom doped in the carbon source material.
  • Metal compounds include, for example, metal chlorides, nitrates, sulfates, bromides, iodides, fluorides, etc., inorganic metal salts, organic metal salts such as acetates, inorganic metal salt hydrates, and organic metal salts At least one selected from the group consisting of hydrates can be used.
  • the metal compound preferably contains iron (III) chloride.
  • the metal compound when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride.
  • the metal compound when the carbon source material is doped with manganese, the metal compound preferably contains manganese acetate.
  • the amount of the metal compound used is preferably determined so that, for example, the ratio of the metal atom in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and further this ratio is 5 to 20% by mass. More preferably, it is determined to be within the range.
  • the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus.
  • Non-metallic compounds include, for example, pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, ethylenediamine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, benzyldisal
  • At least one compound selected from the group consisting of fido can be used.
  • the amount of the nonmetallic compound used is appropriately set according to the amount of the nonmetallic atom doped into the carbon source material.
  • the amount of the nonmetallic compound used is preferably determined so that the molar ratio of the metal atom in the metal compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be within the range of 1: 1.5 to 1: 1.8.
  • a mixture containing a nonmetallic compound, a metal compound, and a carbon source material when preparing a carbon-based material configured as a catalyst is obtained, for example, as follows. First, a carbon source material, a metal compound, and a nonmetal compound are mixed, and if necessary, a solvent such as ethanol is added to adjust the total amount. These are further dispersed by an ultrasonic dispersion method. Subsequently, after heating them at an appropriate temperature (for example, 60 ° C.), the mixture is dried to remove the solvent. Thereby, the mixture containing a nonmetallic compound, a metal compound, and a carbon source raw material is obtained.
  • the obtained mixture is heated, for example, under a reducing atmosphere or an inert gas atmosphere.
  • a non-metallic atom is doped to a carbon source raw material, and also a metallic atom is doped by the coordinate bond of a non-metallic atom and a metallic atom.
  • the heating temperature is preferably in the range of 800 ° C. to 1000 ° C.
  • the heating time is preferably in the range of 45 seconds to less than 600 seconds. Since the heating time is short, the carbon-based material is efficiently produced, and the catalytic activity of the carbon-based material is further increased.
  • the temperature rising rate of the mixture at the start of heating is preferably 50 ° C./s or more. Such rapid heating further improves the catalytic activity of the carbonaceous material.
  • the carbon-based material may be further acid cleaned.
  • the carbon-based material may be dispersed in pure water with a homogenizer for 30 minutes, and then the carbon-based material may be placed in 2M sulfuric acid and stirred at 80 ° C. for 3 hours. In this case, elution of the metal component from the carbon-based material can be suppressed.
  • the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, it can suppress that a catalyst detaches
  • the binder for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM) is preferably used.
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • NAFION registered trademark
  • the negative electrode 20 in the present embodiment carries a microbe described later and further has a function of generating hydrogen ions and electrons from at least one of an organic substance and a nitrogen-containing compound in the electrolytic solution 70 by the catalytic action of the microbe.
  • the negative electrode 20 of the present embodiment is not particularly limited as long as it has such a function.
  • the negative electrode 20 of the present embodiment has a structure in which microorganisms are supported on a conductive sheet having conductivity.
  • the conductor sheet it is possible to use at least one selected from the group consisting of a porous conductor sheet, a woven conductor sheet, and a nonwoven conductor sheet.
  • the conductor sheet may be a laminate in which a plurality of sheets are laminated.
  • hydrogen ions generated in the local battery reaction described later easily move toward the positive electrode 10, and the rate of the oxygen reduction reaction is increased. It becomes possible to raise.
  • the conductor sheet of the negative electrode 20 preferably has a space (void) continuous in the stacking direction X, that is, in the thickness direction.
  • the conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductor sheet of the negative electrode 20, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, carbon paper, and carbon felt is used. be able to.
  • a graphite sheet may be used as the conductor sheet of the negative electrode 20.
  • the negative electrode 20 preferably contains graphite, and the graphene layers in the graphite are preferably arranged along a plane in the direction YZ perpendicular to the stacking direction X.
  • the conductivity in the direction YZ perpendicular to the stacking direction X is improved as compared with the conductivity in the stacking direction X. Therefore, the electrons generated by the local battery reaction of the negative electrode 20 can be easily conducted to the external circuit 80, and the efficiency of the battery reaction can be further improved.
  • the above graphite sheet can be obtained as follows. First, natural graphite is chemically treated with an acid to form an insert between the graphite graphene layers. Next, this is rapidly heated at a high temperature to obtain expanded graphite in which the graphene interlayer is pushed and expanded by the gas pressure due to the thermal decomposition of the intercalated insert. Then, the expanded graphite is pressurized and roll-rolled to obtain a graphite sheet.
  • the graphite sheet obtained in this way is used as the conductor sheet of the negative electrode 20, the graphene layers in the graphite are arranged along the direction YZ perpendicular to the stacking direction X. Therefore, the conductivity between the negative electrode 20 and the external circuit 80 can be increased, and the efficiency of the battery reaction can be further improved.
  • the microorganism supported on the negative electrode 20 is not particularly limited as long as it is a microorganism that decomposes an organic substance in the electrolyte solution 70 or a compound containing nitrogen.
  • a microorganism that decomposes an organic substance in the electrolyte solution 70 or a compound containing nitrogen is used.
  • an anaerobic microorganism that does not require oxygen for growth is used.
  • Anaerobic microorganisms do not require air for oxidizing and decomposing organic substances in the electrolyte solution 70. Therefore, the electric power required for sending air can be significantly reduced.
  • the free energy which microbes acquire is small, it becomes possible to reduce the amount of sludge generation.
  • the microorganism held in the negative electrode 20 is preferably an anaerobic microorganism, for example, an electricity producing bacterium having an extracellular electron transfer mechanism.
  • anaerobic microorganism examples include Geobacter genus bacteria, Shewanella genus bacteria, Aeromonas genus bacteria, Geothrix genus bacteria, and Saccharomyces genus bacteria.
  • Anaerobic microorganisms may be held on the negative electrode 20 by superimposing and fixing a biofilm containing anaerobic microorganisms on the negative electrode 20.
  • a biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population.
  • EPS extracellular polymeric substance
  • the anaerobic microorganisms may be held on the negative electrode 20 without depending on the biofilm.
  • the anaerobic microorganisms may be held not only on the surface of the negative electrode 20 but also inside.
  • the microbial fuel cell 100 includes an external circuit 80 that is electrically connected to the positive electrode 10 and the negative electrode 20 as shown in FIG.
  • the external circuit 80 preferably includes a current control unit that controls a current value flowing between the negative electrode 20 and the positive electrode 10.
  • a resistor can be used as the current control unit.
  • the positive electrode 10 and the negative electrode 20 are disposed so as to be stacked along the stacking direction X in the waste water tank 60. However, the positive electrode 10 and the negative electrode 20 are not in direct contact with each other and have a predetermined interval.
  • the waste water tank 60 is provided with a waste water inlet 61 for supplying the electrolytic solution 70 to the waste water tank 60 and a waste water outlet 62 for discharging the treated electrolytic solution 70 from the waste water tank 60. Yes.
  • the electrolytic solution 70 is continuously supplied through the wastewater inlet 61 and the wastewater outlet 62.
  • the negative electrode 20 is provided on the upstream side when the electrolyte 70 flows from the wastewater inlet 61 to the wastewater outlet 62. Is also provided downstream. That is, in the microbial fuel cell 100, the electrolytic solution 70 is supplied from the wastewater inlet 61 of the wastewater tank 60 and flows while contacting the surface of the negative electrode 20, and then flows while contacting the positive electrode 10 and then from the wastewater outlet 62. Discharged.
  • the electrolytic solution 70 that has flowed in the vicinity of the positive electrode 10 comes into contact with oxygen, and oxygen is dissolved. If the positive electrode 10 is provided on the upstream side of the electrolytic solution 70 and the negative electrode 20 is provided on the downstream side of the positive electrode 10 in the waste water tank 60, the electrolytic solution 70 in which oxygen is dissolved by the positive electrode 10 reaches the negative electrode 20. Therefore, the vicinity of the negative electrode 20 becomes aerobic. As a result, the action of the anaerobic microorganisms supported on the negative electrode 20 becomes insufficient, which may reduce the power generation efficiency.
  • the negative electrode 20 in the flow path of the electrolyte solution 70, the negative electrode 20 is provided on the upstream side when the electrolyte solution 70 flows, and the positive electrode 10 is provided on the downstream side of the negative electrode 20. . Therefore, the electrolytic solution 70 in which oxygen is dissolved is difficult to reach the negative electrode 20, and the vicinity of the negative electrode 20 becomes anaerobic. As a result, the anaerobic microorganisms carried on the negative electrode 20 act effectively, and the power generation efficiency can be improved.
  • the positive electrode 10 and the negative electrode 20 are not in direct contact with each other and are arranged with a predetermined interval. That is, a predetermined interval is provided so that the electrolytic solution 70 in which oxygen is dissolved by the positive electrode 10 does not reach the negative electrode 20.
  • the negative electrode 20 can be kept more anaerobically by separating the positive electrode 10 and the negative electrode 20 and moving the negative electrode 20 away from the positive electrode 10. Thereby, anaerobic power-generating bacteria can be fully utilized, and it is possible to efficiently generate electric energy while reducing the amount of generated sludge.
  • the shortest distance D between the positive electrode 10 and the negative electrode 20 is preferably 30 mm or more.
  • the shortest distance D between the positive electrode 10 and the negative electrode 20 is more preferably 50 mm or more.
  • the shortest distance D between the positive electrode 10 and the negative electrode 20 is particularly preferably 100 mm or more.
  • the operation of the microbial fuel cell 100 of this embodiment will be described.
  • the positive electrode 10 and the negative electrode 20 are immersed in the electrolytic solution 70
  • the gas diffusion layer 12 and the negative electrode 20 of the positive electrode 10 are immersed in the electrolytic solution 70, and at least a part of the surface 10 a of the water repellent layer 11 is exposed to the gas phase 50. To do.
  • an electrolyte solution 70 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20, and air or oxygen is supplied to the positive electrode 10. At this time, the air is continuously supplied through an opening provided in the upper part of the cassette base material 30.
  • the positive electrode 10 shown in FIG. 2 air diffuses through the water repellent layer 11 and the gas diffusion layer 12.
  • hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 70 by the catalytic action of microorganisms.
  • the generated hydrogen ions move to the positive electrode 10 side through the electrolytic solution 70.
  • the generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move from the external circuit 80 to the gas diffusion layer 12 of the positive electrode 10.
  • Hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the gas diffusion layer 12 and consumed as water.
  • the negative electrode 20 is installed upstream of the flow of the electrolyte solution 70, and the positive electrode 10 is installed downstream. This prevents the electrolytic solution 70 in which oxygen mixed from the positive electrode 10 is dissolved from reaching the negative electrode 20. Furthermore, by separating the negative electrode 20 far from the positive electrode 10, the vicinity of the negative electrode 20 can be made more anaerobic. Therefore, it is possible to obtain a microbial fuel cell 100 that can effectively use anaerobic power-generating bacteria and reduce the amount of generated sludge.
  • the negative electrode 20 may be modified with, for example, an electron transfer mediator molecule.
  • the electrolytic solution 70 in the waste water tank 60 may contain electron transfer mediator molecules. Thereby, the electron transfer from an anaerobic microorganism to the negative electrode 20 is accelerated
  • an electron transfer mediator molecule is not particularly limited.
  • the electron transfer mediator molecule for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methylviologen can be used.
  • the cassette base 30 is open at the entire top, but may be partially opened if air (oxygen) can be introduced into the interior, It may also be closed.
  • the positive electrode 10 and the negative electrode 20 can be electrically connected to an external circuit 80, respectively, and electric energy can be taken out.
  • the external circuit 80 may not be provided. That is, in the microbial fuel cell 100A, the positive electrode 10 and the negative electrode 20 may be short-circuited.
  • the positive electrode 10 and the negative electrode 20 are not in direct contact with each other and are arranged with a predetermined interval.
  • the negative electrode 20 is provided on the upstream side when the electrolytic solution 70 flows from the waste water inlet 61 to the waste water outlet 62, and the positive electrode 10 is provided on the downstream side of the negative electrode 20.
  • a conductive member 90 is provided between a surface 10 b of the positive electrode 10 facing the negative electrode 20 and a surface 20 a of the negative electrode 20 facing the positive electrode 10, and the positive electrode 10 and the negative electrode 20 are separated by the conductive member 90. Electrically connected. In this way, also by short-circuiting the positive electrode 10 and the negative electrode 20, electrons generated in the negative electrode 20 move to the positive electrode 10, and an oxygen reduction reaction can be caused in the positive electrode 10.
  • the conductive member 90 is not particularly limited as long as the positive electrode 10 and the negative electrode 20 can be electrically connected in the state of being immersed in the electrolytic solution 70.
  • a carbon material can be used.
  • the carbon material for example, at least one selected from the group consisting of graphite sheet, carbon paper, carbon cloth, and carbon felt can be used.
  • the microbial fuel cells 100 and 100A of the present embodiment include the electrolytic solution 70, the positive electrode 10 including the gas diffusion electrode that is immersed in the electrolytic solution 70 and at least a part of which is exposed to the gas phase 50, and the electrolytic solution 70. And a negative electrode 20 that retains anaerobic microorganisms.
  • the negative electrode 20 is provided on the upstream side when the electrolytic solution 70 flows, and the positive electrode 10 is provided on the downstream side of the negative electrode 20.
  • the anaerobic microorganisms carried on the negative electrode 20 act effectively, and power generation Efficiency can be improved. As a result, it is possible to obtain a microbial fuel cell that can efficiently generate electrical energy while reducing the amount of generated sludge.
  • the microbial fuel cell of the present embodiment is not limited to the above-described configuration, and for example, as shown in FIG. 5, a configuration in which the positive electrode 10 and the negative electrode 20 are arranged in separate wastewater tanks may be used.
  • the microbial fuel cell 100B includes a first waste water tank 60A and a second waste water tank 60B.
  • the first wastewater tank 60A is provided with a wastewater inlet 61 for supplying the electrolyte solution 70 to the first wastewater tank 60A, and the treated electrolyte solution 70 is supplied to the second wastewater tank 60B.
  • a waste water outlet 62 for discharging from the two waste water tanks 60B is provided.
  • a communication pipe 63 is provided between the first wastewater tank 60A and the second wastewater tank 60B so that the electrolytic solution 70 can flow.
  • the negative electrode 20 is disposed inside the first wastewater tank 60A, and the positive electrode 10 is disposed inside the second wastewater tank 60B. Further, the positive electrode 10 and the negative electrode 20 are electrically connected to the external circuit 80.
  • the two positive electrodes 10 face each other with a space therebetween, and further, a cassette base material 30 is provided between the positive electrodes 10 to hold them apart, so that a gas phase is formed inside. 50 is formed. That is, the side surface 33 and the side surface 34 of the cassette base material 30 are joined to the outer peripheral portion of the water repellent layer 11 in the positive electrode 10, thereby forming the gas phase 50 inside.
  • the gas phase 50 is not filled with the electrolyte solution 70 and is open to the outside air, so that the air can be supplied to the water repellent layer 11.
  • the electrolytic solution 70 is continuously supplied from the wastewater inlet 61 of the first wastewater tank 60A and contacts the surface of the negative electrode 20.
  • the negative electrode 20 hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 70 by an anaerobic microorganism.
  • the generated hydrogen ions move together with the electrolytic solution 70 to the second wastewater tank 60B through the communication pipe 63.
  • the generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move from the external circuit 80 to the gas diffusion layer 12 of the positive electrode 10.
  • Hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the gas diffusion layer 12 and consumed as water.
  • the electrolytic solution 70 purified by microorganisms is discharged to the outside through the waste water outlet 62.
  • the positive electrode 10 and the negative electrode 20 are arranged in separate wastewater tanks, the negative electrode 20 is installed upstream of the flow of the electrolytic solution 70, and the positive electrode 10 is installed downstream. is doing.
  • a lid portion for preventing oxygen in the atmosphere from being dissolved in the electrolytic solution 70 can be provided on the upper portion of the first waste water tank 60A.
  • the liquid processing unit of this embodiment includes the microbial fuel cell 100 described above.
  • the microbial fuel cell 100 of the present embodiment obtains electric energy by decomposing an organic compound with microorganisms. Therefore, using such a function, the microbial fuel cell 100 can be used as a liquid treatment unit for purifying waste water.
  • an electrolytic solution 70 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20 as a liquid to be treated. Then, carbon dioxide or nitrogen is generated together with hydrogen ions and electrons from at least one of the organic matter and the nitrogen-containing compound in the electrolytic solution 70 by metabolism of the microorganisms supported on the negative electrode 20.
  • Negative electrode 20 C 6 H 12 O 6 + 6H 2 O ⁇ 6CO 2 + 24H + + 24e ⁇ ⁇ Positive electrode 10: 6O 2 + 24H + + 24e ⁇ ⁇ 12H 2 O Moreover, when the electrolyte solution 70 contains ammonia as a nitrogen-containing compound, nitrogen, hydrogen ions, and electrons are generated by the following local battery reaction. Negative electrode 20: 4NH 3 ⁇ 2N 2 + 12H + + 12e ⁇ Positive electrode 10: 3O 2 + 12H + + 12e ⁇ ⁇ 6H 2 O
  • the organic matter and the nitrogen-containing compound in the electrolytic solution 70 come into contact with the negative electrode 20 and are oxidatively decomposed, so that the electrolytic solution 70 can be purified.
  • the electrolytic solution 70 is supplied to the wastewater tank 60, and further, the wastewater inlet 61 and the wastewater outlet 62 for discharging the treated electrolytic solution 70 from the wastewater tank 60 are provided. 70 can be continuously supplied to the wastewater tank 60. Therefore, the electrolytic solution 70 can be continuously brought into contact with the negative electrode 20 so that the electrolytic solution 70 can be processed efficiently.
  • the present embodiment is not limited to these, and various modifications are possible within the scope of the gist of the present embodiment.
  • the positive electrode 10 and the negative electrode 20 provided with the water repellent layer 11 and the gas diffusion layer 12 are formed in a rectangular shape.
  • these shapes are not particularly limited, and can be arbitrarily changed depending on the size of the microbial fuel cell, desired purification performance, and the like. Further, the area of each layer can be arbitrarily changed as long as a desired function can be exhibited.
  • the influence of the oxygen in the negative electrode vicinity can be suppressed, and the microbial fuel cell which can perform the electric power generation by an anaerobic microorganism efficiently, and the liquid processing unit using the said microbial fuel cell can be obtained.

Abstract

This microbial fuel cell (100) is provided with: an electrolyte solution (70); a positive electrode (10) which is immersed in the electrolyte solution and is composed of a gas diffusion electrode that is at least partially exposed to a gas phase (50); and a negative electrode (20) which is immersed in the electrolyte solution and holds anaerobic microorganisms. With respect to a flow path of the electrolyte solution, the negative electrode is disposed in the electrolyte flow upstream, and the positive electrode is disposed in the downstream of the negative electrode. A liquid treatment unit according to the present invention is provided with the above-described microbial fuel cell.

Description

微生物燃料電池及びそれを用いた液体処理ユニットMicrobial fuel cell and liquid processing unit using the same
 本発明は、微生物燃料電池及びそれを用いた液体処理ユニットに関する。詳細には本発明は、廃水を浄化し、かつ、電気エネルギーを生成することが可能な微生物燃料電池、及び当該微生物燃料電池を用いた液体処理ユニットに関する。 The present invention relates to a microbial fuel cell and a liquid processing unit using the same. More particularly, the present invention relates to a microbial fuel cell capable of purifying waste water and generating electric energy, and a liquid processing unit using the microbial fuel cell.
 近年、持続可能なエネルギーとして、バイオマスを利用して発電をする微生物燃料電池が注目されている。微生物燃料電池は、生活廃水や工場廃水に含まれる有機性物質の化学エネルギーを電気エネルギーに変換しつつ、その有機性物質を酸化分解して処理する電池である。そして、微生物燃料電池は、汚泥の発生が少なく、さらにエネルギー消費が少ない特徴を有する。ただ、微生物が発する電力が非常に小さく、出力される電流密度が低いため、更なる改良が必要である。 In recent years, microbial fuel cells that generate electricity using biomass have attracted attention as sustainable energy. A microbial fuel cell is a battery that oxidizes and decomposes an organic substance while converting the chemical energy of the organic substance contained in domestic wastewater or factory wastewater into electrical energy. The microbial fuel cell is characterized by little generation of sludge and low energy consumption. However, since the power generated by microorganisms is very small and the output current density is low, further improvement is necessary.
 このような微生物燃料電池として、一対の電極(正極、負極)、隔膜、及び電解質液を収容した反応槽、並びに一対の電極と電気的に接続された外部回路を備えるものが開示されている(例えば、特許文献1参照)。そして、電極を構成する電極基板の内部又はその表面の少なくとも一部に、所定の平均孔径である孔を有する導電性物質を備えることが開示されている。また、発電微生物として、嫌気性微生物であるGeobacter sulfurreducensを使用することも開示されている。 As such a microbial fuel cell, a battery having a pair of electrodes (positive electrode, negative electrode), a diaphragm, a reaction tank containing an electrolyte solution, and an external circuit electrically connected to the pair of electrodes is disclosed ( For example, see Patent Document 1). In addition, it is disclosed that a conductive substance having a hole having a predetermined average hole diameter is provided in an electrode substrate constituting the electrode or at least a part of the surface thereof. It is also disclosed that Geobacter sulfurreducens, which is an anaerobic microorganism, is used as a power generation microorganism.
特開2015-82396号公報JP2015-82396A
 しかしながら、特許文献1の微生物燃料電池は、隔膜の一方の面に正極を配置し、隔膜の他方の面に負極を配置しているため、正極に供給された酸素が隔膜を透過して負極に到達する。その結果、負極に到達した酸素の影響で負極近傍が好気的となり、嫌気性である発電微生物が効果的に作用しないという問題があった。 However, since the microbial fuel cell of Patent Document 1 has a positive electrode disposed on one surface of the diaphragm and a negative electrode disposed on the other surface of the diaphragm, oxygen supplied to the positive electrode permeates the diaphragm and becomes a negative electrode. To reach. As a result, there is a problem that the vicinity of the negative electrode becomes aerobic due to the influence of oxygen reaching the negative electrode, and the anaerobic power generation microorganisms do not act effectively.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、負極近傍における酸素の影響を抑制し、嫌気性微生物による発電を効率的に行うことが可能な微生物燃料電池、及び当該微生物燃料電池を用いた液体処理ユニットを提供することにある。 The present invention has been made in view of such problems of the conventional technology. And the objective of this invention provides the microbial fuel cell which can suppress the influence of oxygen in the negative electrode vicinity, and can perform the electric power generation by an anaerobic microorganism efficiently, and the liquid processing unit using the said microbial fuel cell. There is.
 上記課題を解決するために、本発明の第一の態様に係る微生物燃料電池は、電解液と、電解液に浸され、少なくとも一部が気相に露出するガス拡散電極からなる正極と、電解液に浸され、嫌気性微生物を保持する負極とを備える。そして、電解液の流路において、負極は電解液が流れる際の上流側に設けられ、正極は負極よりも下流側に設けられる。 In order to solve the above-described problems, a microbial fuel cell according to the first aspect of the present invention includes an electrolyte, a positive electrode composed of a gas diffusion electrode immersed in the electrolyte and exposed at least partially in the gas phase, A negative electrode which is immersed in the liquid and holds anaerobic microorganisms. And in the flow path of electrolyte solution, a negative electrode is provided in the upstream at the time of electrolyte solution flow, and a positive electrode is provided in the downstream rather than a negative electrode.
 本発明の第二の態様に係る液体処理ユニットは、上述の微生物燃料電池を備える。 A liquid processing unit according to the second aspect of the present invention includes the above-described microbial fuel cell.
図1は、本発明の実施形態に係る微生物燃料電池の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a microbial fuel cell according to an embodiment of the present invention. 図2は、図1中のA-A線に沿った断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 図3は、上記微生物燃料電池における正極、カセット基材及び板部材を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a positive electrode, a cassette base material, and a plate member in the microbial fuel cell. 図4は、本発明の実施形態に係る微生物燃料電池の他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the microbial fuel cell according to the embodiment of the present invention. 図5は、本発明の実施形態に係る微生物燃料電池の他の例を示す断面図である。FIG. 5 is a cross-sectional view showing another example of the microbial fuel cell according to the embodiment of the present invention.
 以下、本実施形態に係る微生物燃料電池及び液体処理ユニットについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the microbial fuel cell and the liquid processing unit according to this embodiment will be described in detail. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
[微生物燃料電池]
 本実施形態に係る微生物燃料電池100は、図1及び図2に示すように、燃料電池ユニット1を備えている。そして、燃料電池ユニット1は、正極10及び負極20を備えている。
[Microbial fuel cell]
A microbial fuel cell 100 according to this embodiment includes a fuel cell unit 1 as shown in FIGS. 1 and 2. The fuel cell unit 1 includes a positive electrode 10 and a negative electrode 20.
 図3に示すように、正極10は、カセット基材30に積層されている。カセット基材30は、正極10における面10aの外周部に沿うU字状の枠部材であり、上部が開口している。つまり、カセット基材30は、2本の第一柱状部材31の底面を第二柱状部材32で連結した枠部材である。そして、図2に示すように、カセット基材30の側面33は、正極10の面10aの外周部と接合されており、側面33の反対側の側面34は、板部材40の面40aの外周部と接合されている。 As shown in FIG. 3, the positive electrode 10 is laminated on the cassette base material 30. The cassette base material 30 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper portion is open. That is, the cassette base material 30 is a frame member in which the bottom surfaces of the two first columnar members 31 are connected by the second columnar members 32. As shown in FIG. 2, the side surface 33 of the cassette base material 30 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10, and the side surface 34 opposite to the side surface 33 is the outer periphery of the surface 40 a of the plate member 40. It is joined to the part.
 図2に示すように、正極10、負極20、カセット基材30及び板部材40からなる燃料電池ユニット1は、大気と連通した気相50が形成されるように、廃水槽60の内部に配置される。廃水槽60の内部には被処理液である電解液70が保持されており、正極10及び負極20は電解液70に浸漬されている。 As shown in FIG. 2, the fuel cell unit 1 including the positive electrode 10, the negative electrode 20, the cassette base material 30, and the plate member 40 is disposed inside the waste water tank 60 so that a gas phase 50 communicating with the atmosphere is formed. Is done. An electrolytic solution 70 that is a liquid to be treated is held inside the waste water tank 60, and the positive electrode 10 and the negative electrode 20 are immersed in the electrolytic solution 70.
 後述するように、正極10は撥水性を有する撥水層11を備えており、板部材40は電解液70を透過しない平板状の板材からなる。そして、カセット基材30の側面33は撥水層11の外周部と接合されており、側面34は板部材40の外周部と接合されている。そのため、廃水槽60の内部に保持された電解液70とカセット基材30の内部とは隔てられ、正極10、カセット基材30及び板部材40により形成された内部空間は気相50となっている。そして、微生物燃料電池100では、この気相50が外気に開放されるか、あるいはこの気相50へ例えばポンプによって外部から空気が供給されるように構成されている。また、図2に示すように、正極10及び負極20は、それぞれ外部回路80と電気的に接続されている。 As will be described later, the positive electrode 10 includes a water-repellent water-repellent layer 11, and the plate member 40 is made of a flat plate material that does not transmit the electrolytic solution 70. The side surface 33 of the cassette base material 30 is joined to the outer peripheral portion of the water repellent layer 11, and the side surface 34 is joined to the outer peripheral portion of the plate member 40. Therefore, the electrolytic solution 70 held in the waste water tank 60 is separated from the inside of the cassette base material 30, and the internal space formed by the positive electrode 10, the cassette base material 30 and the plate member 40 becomes a gas phase 50. Yes. The microbial fuel cell 100 is configured such that the gas phase 50 is opened to the outside air, or air is supplied to the gas phase 50 from the outside by, for example, a pump. As shown in FIG. 2, the positive electrode 10 and the negative electrode 20 are electrically connected to an external circuit 80, respectively.
 (正極)
 本実施形態に係る正極10は、負極20により生成した水素イオン及び電子と、気相50中の酸素とを反応させる機能を有する。そのため、本実施形態の正極10は、このような機能を生じさせる構成ならば特に限定されない。
(Positive electrode)
The positive electrode 10 according to this embodiment has a function of causing hydrogen ions and electrons generated by the negative electrode 20 to react with oxygen in the gas phase 50. For this reason, the positive electrode 10 of the present embodiment is not particularly limited as long as it has such a function.
 本実施形態に係る正極10は、図2に示すように、撥水層11と、撥水層11に接触するように重ねられているガス拡散層12とを備えるガス拡散電極からなる。このような薄板状のガス拡散電極を用いることにより、気相50中の酸素を正極10中の触媒に容易に供給することが可能になる。 As shown in FIG. 2, the positive electrode 10 according to the present embodiment includes a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water repellent layer 11. By using such a thin plate-like gas diffusion electrode, oxygen in the gas phase 50 can be easily supplied to the catalyst in the positive electrode 10.
 正極10における撥水層11は、撥水性と酸素透過性とを併せ持つ層である。撥水層11は、燃料電池ユニット1における電気化学系中の気相と液相とを良好に分離しながら、気相から液相へ向かう酸素の移動を許容するように構成される。つまり、撥水層11は、気相50中の酸素を透過し、ガス拡散層12へ移動させつつも、電解液70が気相50側に移動することを抑制できる。なお、ここでいう「分離」とは、物理的に遮断することをいう。 The water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability. The water repellent layer 11 is configured to allow oxygen to move from the gas phase to the liquid phase while favorably separating the gas phase and the liquid phase in the electrochemical system in the fuel cell unit 1. That is, the water-repellent layer 11 can suppress the movement of the electrolytic solution 70 toward the gas phase 50 while allowing oxygen in the gas phase 50 to pass through and moving to the gas diffusion layer 12. In addition, "separation" here means physical interruption | blocking.
 撥水層11は、酸素を含む気相50と接触しており、気相50中の酸素を拡散している。そして、図1及び2に示す構成では、撥水層11は、ガス拡散層12に対し酸素を略均一に供給している。そのため、撥水層11は、当該酸素を拡散できるように多孔質体であることが好ましい。なお、撥水層11は撥水性を有するため、結露等により多孔質体の細孔が閉塞し、酸素の拡散性が低下することを抑制できる。また、撥水層11の内部に電解液70が染み込み難いため、撥水層11における気相50と接触する面からガス拡散層12と対向する面にかけて、酸素を効率的に流通させることが可能となる。 The water repellent layer 11 is in contact with the gas phase 50 containing oxygen, and diffuses oxygen in the gas phase 50. In the configuration shown in FIGS. 1 and 2, the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly. Therefore, the water repellent layer 11 is preferably a porous body so that the oxygen can be diffused. In addition, since the water repellent layer 11 has water repellency, it can suppress that the pores of a porous body are obstruct | occluded by dew condensation etc. and oxygen diffusibility falls. In addition, since the electrolyte solution 70 hardly penetrates into the water-repellent layer 11, oxygen can be efficiently circulated from the surface in contact with the gas phase 50 to the surface facing the gas diffusion layer 12 in the water-repellent layer 11. It becomes.
 撥水層11は、織布又は不織布によりシート状に形成されていることが好ましい。また、撥水層11を構成する材料は、撥水性を有し、気相50中の酸素を拡散できれば特に限定されない。撥水層11を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチルセルロース、ポリ-4-メチルペンテン-1、ブチルゴム、シリコーン、及びポリジメチルシロキサン(PDMS)からなる群より選ばれる少なくとも一つを使用することができる。これらの材料は多孔質体を形成しやすく、さらに撥水性も高いため、細孔の閉塞を抑制してガス拡散性を向上させることができる。なお、撥水層11は、撥水層11及びガス拡散層12の積層方向Xに複数の貫通孔を有することが好ましい。 The water repellent layer 11 is preferably formed in a sheet shape from a woven fabric or a non-woven fabric. The material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and can diffuse oxygen in the gas phase 50. Examples of the material constituting the water repellent layer 11 include polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethyl cellulose, poly-4-methylpentene-1, butyl rubber, silicone, and polydimethylsiloxane (PDMS). At least one selected from the group consisting of: Since these materials are easy to form a porous body and also have high water repellency, they can suppress clogging of pores and improve gas diffusibility. The water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
 撥水層11は撥水性を高めるために、必要に応じて撥水剤を用いて撥水処理を施してもよい。具体的には、撥水層11を構成する多孔質体にポリテトラフルオロエチレン等の撥水剤を付着させ、撥水性を向上させてもよい。 The water repellent layer 11 may be subjected to a water repellent treatment using a water repellent as necessary in order to enhance water repellency. Specifically, a water repellent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve water repellency.
 正極10におけるガス拡散層12は、多孔質な導電性材料と、この導電性材料に担持されている触媒とを備えることが好ましい。なお、ガス拡散層12は、多孔質かつ導電性を有する触媒から構成されてもよい。正極10にこのようなガス拡散層12を備えることで、後述する局部電池反応により生成した電子を触媒と外部回路80との間で導通させることが可能となる。つまり、後述するように、ガス拡散層12には触媒が担持されており、さらに触媒は酸素還元触媒である。そして、電子が外部回路80からガス拡散層12を通じて触媒に移動することにより、触媒によって、酸素、水素イオン及び電子による酸素還元反応を進行させることが可能となる。 The gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material. The gas diffusion layer 12 may be composed of a porous and conductive catalyst. By providing the positive electrode 10 with such a gas diffusion layer 12, electrons generated by a local battery reaction described later can be conducted between the catalyst and the external circuit 80. That is, as will be described later, a catalyst is supported on the gas diffusion layer 12, and the catalyst is an oxygen reduction catalyst. Then, the electrons move from the external circuit 80 to the catalyst through the gas diffusion layer 12, whereby the oxygen reduction reaction by oxygen, hydrogen ions, and electrons can be advanced by the catalyst.
 正極10では、安定的な性能を確保するために、酸素が撥水層11及びガス拡散層12を効率よく透過し、触媒に供給されることが好ましい。そのため、ガス拡散層12は、撥水層11と対向する面から反対側の面にかけて、酸素が透過する細孔を多数有する多孔質体であることが好ましい。また、ガス拡散層12の形状は、三次元のメッシュ状であることが特に好ましい。このようなメッシュ状であることにより、ガス拡散層12に対し、高い酸素透過性及び導電性を付与することが可能となる。 In the positive electrode 10, in order to ensure stable performance, it is preferable that oxygen permeate the water-repellent layer 11 and the gas diffusion layer 12 efficiently and be supplied to the catalyst. Therefore, the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen passes from the surface facing the water repellent layer 11 to the opposite surface. The shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh. Such a mesh shape makes it possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
 正極10において、ガス拡散層12に効率的に酸素を供給するために、撥水層11は、接着剤を介してガス拡散層12と接合していることが好ましい。これにより、ガス拡散層12に対し、拡散した酸素が直接供給され、酸素還元反応を効率的に行うことができる。接着剤は、撥水層11とガス拡散層12との間の接着性を確保する観点から、撥水層11とガス拡散層12との間の少なくとも一部に設けられていることが好ましい。ただ、撥水層11とガス拡散層12との間の接着性を高め、長期間に亘り安定的に酸素をガス拡散層12に供給する観点から、接着剤は撥水層11とガス拡散層12との間の全面に設けられていることがより好ましい。 In the positive electrode 10, the water repellent layer 11 is preferably bonded to the gas diffusion layer 12 via an adhesive in order to efficiently supply oxygen to the gas diffusion layer 12. Thereby, the diffused oxygen is directly supplied to the gas diffusion layer 12, and the oxygen reduction reaction can be performed efficiently. The adhesive is preferably provided on at least a part between the water-repellent layer 11 and the gas diffusion layer 12 from the viewpoint of ensuring the adhesion between the water-repellent layer 11 and the gas diffusion layer 12. However, from the viewpoint of improving the adhesion between the water repellent layer 11 and the gas diffusion layer 12 and supplying oxygen to the gas diffusion layer 12 stably over a long period of time, the adhesive is used as the water repellent layer 11 and the gas diffusion layer. It is more preferable that it is provided on the entire surface between the two.
 接着剤としては酸素透過性を有するものが好ましく、ポリメチルメタクリレート、メタクリル酸-スチレン共重合体、スチレン-ブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム及びシリコーンからなる群より選ばれる少なくとも一つを含む樹脂を用いることができる。 The adhesive preferably has oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, and silicone. Resin can be used.
 ここで、本実施形態における正極10のガス拡散層12について、さらに詳しく説明する。上述のように、ガス拡散層12は、多孔質な導電性材料と、当該導電性材料に担持されている触媒とを備えるような構成とすることができる。 Here, the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail. As described above, the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
 ガス拡散層12における導電性材料は、例えば炭素系物質、導電性ポリマー、半導体及び金属からなる群より選ばれる一種以上の材料から構成することができる。ここで、炭素系物質とは、炭素を構成成分とする物質をいう。炭素系物質の例としては、例えば、グラファイト、活性炭、カーボンブラック、バルカン(登録商標)XC-72R、アセチレンブラック、ファーネスブラック、デンカブラックなどのカーボンパウダー、グラファイトフェルト、カーボンウール、カーボン織布などのカーボンファイバー、カーボンプレート、カーボンペーパー、カーボンディスク、カーボンクロス、黒鉛シート、炭素粒子を圧縮成形した炭素系材料が挙げられる。また、炭素系物質の例として、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスターのような微細構造物質も挙げられる。 The conductive material in the gas diffusion layer 12 can be composed of, for example, one or more materials selected from the group consisting of carbon-based substances, conductive polymers, semiconductors, and metals. Here, the carbon-based material means a material containing carbon as a constituent component. Examples of carbon-based materials include, for example, carbon powder such as graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, furnace black, Denka black, graphite felt, carbon wool, carbon woven cloth, etc. Examples thereof include carbon fibers, carbon plates, carbon paper, carbon disks, carbon cloth, graphite sheets, and carbon-based materials obtained by compression molding carbon particles. Examples of the carbon-based material also include fine-structured materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters.
 導電性ポリマーとは、導電性を有する高分子化合物の総称である。導電性ポリマーとしては、例えば、アニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマー又は二種以上のモノマーの重合体が挙げられる。具体的には、導電性ポリマーとして、例えば、ポリアニリン、ポリアミノフェノール、ポリジアミノフェノール、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン等が挙げられる。金属製の導電性材料としては、例えば、ステンレスメッシュや発泡金属が挙げられる。入手の容易性、コスト、耐食性、耐久性等を考慮した場合、導電性材料は炭素系物質であることが好ましい。 Conductive polymer is a general term for conductive polymer compounds. As the conductive polymer, for example, a single monomer or a polymer of two or more monomers having aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a derivative thereof as a structural unit. Can be mentioned. Specifically, examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, and polyacetylene. Examples of the metal conductive material include stainless steel mesh and foam metal. In consideration of availability, cost, corrosion resistance, durability, and the like, the conductive material is preferably a carbon-based substance.
 導電性材料の形状は、粉末形状又は繊維形状であることが好ましい。また、導電性材料は、支持体に支持されていてもよい。支持体とは、それ自身が剛性を有し、ガス拡散電極に一定の形状を付与することのできる部材をいう。支持体は絶縁体であっても導電体であってもよい。支持体が絶縁体である場合、支持体としては、例えばガラス、プラスチック、合成ゴム、セラミックス、耐水又は撥水処理した紙、木片などの植物片、骨片、貝殻などの動物片等が挙げられる。多孔質構造の支持体としては、例えば多孔質セラミック、多孔質プラスチック、スポンジ等が挙げられる。支持体が導電体である場合、支持体としては、例えばカーボンペーパー、カーボンファイバー、炭素棒などの炭素系物質、金属、導電性ポリマー等が挙げられる。支持体が導電体の場合には、炭素系材料を担持した導電性材料が支持体の表面上に配置されることで、支持体が集電体としても機能し得る。 The shape of the conductive material is preferably a powder shape or a fiber shape. Further, the conductive material may be supported by a support. The support means a member that itself has rigidity and can give a certain shape to the gas diffusion electrode. The support may be an insulator or a conductor. When the support is an insulator, examples of the support include glass, plastic, synthetic rubber, ceramics, water-resistant or water-repellent treated paper, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, and the like. . Examples of the porous structure support include porous ceramics, porous plastics, and sponges. When the support is a conductor, examples of the support include carbon materials such as carbon paper, carbon fiber, and carbon rod, metals, conductive polymers, and the like. When the support is a conductor, the support can also function as a current collector by disposing a conductive material carrying a carbon-based material on the surface of the support.
 ガス拡散層12における触媒は、白金系触媒、鉄又はコバルトを用いた炭素系触媒、部分酸化したタンタル炭窒化物(TaCNO)及びジルコニウム炭窒化物(ZrCNO)等の遷移金属酸化物系触媒、タングステン又はモリブデンを用いた炭化物系触媒、活性炭等を用いることができる。 The catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) and zirconium carbonitride (ZrCNO), tungsten Alternatively, a carbide catalyst using activated molybdenum, activated carbon, or the like can be used.
 ガス拡散層12における触媒は、金属原子がドープされている炭素系材料であることが好ましい。金属原子としては特に限定されないが、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、及び金からなる群より選ばれる少なくとも一種の金属の原子であることが好ましい。この場合、炭素系材料が、特に酸素還元反応を促進させるための触媒として優れた性能を発揮する。炭素系材料が含有する金属原子の量は、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 The catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms. Although it does not specifically limit as a metal atom, Titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium It is preferably an atom of at least one metal selected from the group consisting of platinum, and gold. In this case, the carbon-based material exhibits excellent performance as a catalyst for promoting the oxygen reduction reaction. What is necessary is just to set suitably the quantity of the metal atom which carbonaceous material contains so that carbonaceous material may have the outstanding catalyst performance.
 炭素系材料には、更に窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子がドープされていることが好ましい。炭素系材料にドープされている非金属原子の量も、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 It is preferable that the carbon-based material is further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur, and phosphorus. What is necessary is just to set suitably the quantity of the nonmetallic atom doped by the carbonaceous material so that carbonaceous material may have the outstanding catalyst performance.
 炭素系材料は、例えばグラファイト及び無定形炭素等の炭素源原料をベースとし、この炭素源原料に金属原子と、窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子とをドープすることで得られる。 The carbon-based material is based on a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
 炭素系材料にドープされている金属原子と非金属原子との組み合わせは、適宜選択される。特に、非金属原子が窒素を含み、金属原子が鉄を含むことが好ましい。この場合、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよく、金属原子が鉄のみであってもよい。 The combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected. In particular, it is preferable that the nonmetallic atom contains nitrogen and the metallic atom contains iron. In this case, the carbon-based material can have particularly excellent catalytic activity. Note that the nonmetallic atom may be only nitrogen, and the metallic atom may be only iron.
 非金属原子が窒素を含み、金属原子がコバルトとマンガンとのうち少なくとも一方を含んでもよい。この場合も、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよい。また、金属原子がコバルトのみ、マンガンのみ、あるいはコバルト及びマンガンのみであってもよい。 The nonmetallic atom may contain nitrogen, and the metallic atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have a particularly excellent catalytic activity. The nonmetallic atom may be only nitrogen. Further, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
 炭素系材料の形状は特に制限されない。例えば、炭素系材料は、粒子状の形状を有してもよく、またシート状の形状を有してもよい。シート状の形状を有する炭素系材料の寸法は特に制限されず、例えばこの炭素系材料が微小な寸法であってもよい。シート状の形状を有する炭素系材料は、多孔質であってもよい。シート状の形状を有し、かつ、多孔質な炭素系材料は、例えば織布状、不織布状等の形状を有することが好ましい。このような炭素系材料は、導電性材料が無くても、ガス拡散層12を構成することができる。 The shape of the carbon-based material is not particularly limited. For example, the carbon-based material may have a particulate shape or may have a sheet shape. The dimension of the carbon-based material having a sheet-like shape is not particularly limited. For example, the carbon-based material may have a minute dimension. The carbon-based material having a sheet shape may be porous. It is preferable that the porous carbon-based material having a sheet shape has a shape such as a woven fabric shape or a nonwoven fabric shape. Such a carbon-based material can constitute the gas diffusion layer 12 even without a conductive material.
 ガス拡散層12における触媒として構成される炭素系材料は、次のように調製することができる。まず、例えば窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属を含む非金属化合物と、金属化合物と、炭素源原料とを含有する混合物を準備する。そして、この混合物を、800℃以上1000℃以下の温度で、45秒以上600秒未満加熱する。これにより、触媒として構成される炭素系材料を得ることができる。 The carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, for example, a mixture containing a nonmetallic compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. And this mixture is heated at the temperature of 800 degreeC or more and 1000 degrees C or less for 45 second or more and less than 600 second. Thereby, the carbonaceous material comprised as a catalyst can be obtained.
 ここで、炭素源原料としては、上述の通り、例えばグラファイト又は無定形炭素を使用することができる。さらに、金属化合物としては、炭素源原料にドープされる非金属原子と配位結合し得る金属原子を含む化合物であれば、特に制限されない。金属化合物は、例えば金属の塩化物、硝酸塩、硫酸塩、臭化物、ヨウ化物、フッ化物などのような無機金属塩、酢酸塩などの有機金属塩、無機金属塩の水和物、及び有機金属塩の水和物からなる群より選ばれる少なくとも一種を使用することができる。例えばグラファイトに鉄がドープされる場合には、金属化合物は塩化鉄(III)を含有することが好ましい。また、グラファイトにコバルトがドープされる場合には、金属化合物は塩化コバルトを含有することが好ましい。また、炭素源原料にマンガンがドープされる場合には、金属化合物は酢酸マンガンを含有することが好ましい。金属化合物の使用量は、例えば炭素源原料に対する金属化合物中の金属原子の割合が5~30質量%の範囲内となるように決定されることが好ましく、更にこの割合が5~20質量%の範囲内となるように決定されることがより好ましい。 Here, as the carbon source material, for example, graphite or amorphous carbon can be used as described above. Further, the metal compound is not particularly limited as long as it is a compound containing a metal atom capable of coordinating with a nonmetal atom doped in the carbon source material. Metal compounds include, for example, metal chlorides, nitrates, sulfates, bromides, iodides, fluorides, etc., inorganic metal salts, organic metal salts such as acetates, inorganic metal salt hydrates, and organic metal salts At least one selected from the group consisting of hydrates can be used. For example, when graphite is doped with iron, the metal compound preferably contains iron (III) chloride. Moreover, when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride. When the carbon source material is doped with manganese, the metal compound preferably contains manganese acetate. The amount of the metal compound used is preferably determined so that, for example, the ratio of the metal atom in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and further this ratio is 5 to 20% by mass. More preferably, it is determined to be within the range.
 非金属化合物は、上記の通り、窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属の化合物であることが好ましい。非金属化合物としては、例えば、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、エチレンジアミン、オクチルボロン酸、1,2-ビス(ジエチルホスフィノエタン)、亜リン酸トリフェニル、ベンジルジサルフィドからなる群より選ばれる少なくとも一種の化合物を使用することができる。非金属化合物の使用量は、炭素源原料への非金属原子のドープ量に応じて適宜設定される。非金属化合物の使用量は、金属化合物中の金属原子と、非金属化合物中の非金属原子とのモル比が、1:1~1:2の範囲内となるように決定されることが好ましく、1:1.5~1:1.8の範囲内となるように決定されることがより好ましい。 As described above, the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus. Non-metallic compounds include, for example, pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, ethylenediamine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, benzyldisal At least one compound selected from the group consisting of fido can be used. The amount of the nonmetallic compound used is appropriately set according to the amount of the nonmetallic atom doped into the carbon source material. The amount of the nonmetallic compound used is preferably determined so that the molar ratio of the metal atom in the metal compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be within the range of 1: 1.5 to 1: 1.8.
 触媒として構成される炭素系材料を調製する際の、非金属化合物と金属化合物と炭素源原料とを含有する混合物は、例えば次のようにして得られる。まず炭素源原料と金属化合物と非金属化合物とを混合し、更に必要に応じてエタノール等の溶媒を加えて全量を調整する。これらを更に超音波分散法により分散させる。続いて、これらを適宜の温度(例えば60℃)で加熱した後に、混合物を乾燥して溶媒を除去する。これにより、非金属化合物と金属化合物と炭素源原料とを含有する混合物が得られる。 A mixture containing a nonmetallic compound, a metal compound, and a carbon source material when preparing a carbon-based material configured as a catalyst is obtained, for example, as follows. First, a carbon source material, a metal compound, and a nonmetal compound are mixed, and if necessary, a solvent such as ethanol is added to adjust the total amount. These are further dispersed by an ultrasonic dispersion method. Subsequently, after heating them at an appropriate temperature (for example, 60 ° C.), the mixture is dried to remove the solvent. Thereby, the mixture containing a nonmetallic compound, a metal compound, and a carbon source raw material is obtained.
 次に、得られた混合物を、例えば還元性雰囲気下又は不活性ガス雰囲気下で加熱する。これにより、炭素源原料に非金属原子がドープされ、さらに非金属原子と金属原子とが配位結合することで金属原子もドープされる。加熱温度は800℃以上1000℃以下の範囲内であることが好ましく、加熱時間は45秒以上600秒未満の範囲内であることが好ましい。加熱時間が短時間であるため、炭素系材料が効率よく製造され、しかも炭素系材料の触媒活性が更に高くなる。なお、加熱処理における、加熱開始時の混合物の昇温速度は、50℃/s以上であることが好ましい。このような急速加熱は、炭素系材料の触媒活性を更に向上する。 Next, the obtained mixture is heated, for example, under a reducing atmosphere or an inert gas atmosphere. Thereby, a non-metallic atom is doped to a carbon source raw material, and also a metallic atom is doped by the coordinate bond of a non-metallic atom and a metallic atom. The heating temperature is preferably in the range of 800 ° C. to 1000 ° C., and the heating time is preferably in the range of 45 seconds to less than 600 seconds. Since the heating time is short, the carbon-based material is efficiently produced, and the catalytic activity of the carbon-based material is further increased. In the heat treatment, the temperature rising rate of the mixture at the start of heating is preferably 50 ° C./s or more. Such rapid heating further improves the catalytic activity of the carbonaceous material.
 また、炭素系材料を、更に酸洗浄してもよい。例えば炭素系材料を、純水中、ホモジナイザーで30分間分散させ、その後この炭素系材料を2M硫酸中に入れて、80℃で3時間攪拌してもよい。この場合、炭素系材料からの金属成分の溶出が抑えられる。 In addition, the carbon-based material may be further acid cleaned. For example, the carbon-based material may be dispersed in pure water with a homogenizer for 30 minutes, and then the carbon-based material may be placed in 2M sulfuric acid and stirred at 80 ° C. for 3 hours. In this case, elution of the metal component from the carbon-based material can be suppressed.
 このような製造方法により、不活性金属化合物及び金属結晶の含有量が著しく低く、かつ、導電性の高い炭素系材料が得られる。 By such a production method, a carbon-based material having a significantly low content of inert metal compound and metal crystal and high conductivity can be obtained.
 ガス拡散層12において、触媒は結着剤を用いて導電性材料に結着していてもよい。つまり、触媒は結着剤を用いて導電性材料の表面及び細孔内部に担持されていてもよい。これにより、触媒が導電性材料から脱離し、酸素還元特性が低下することを抑制できる。結着剤としては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、及びエチレン-プロピレン-ジエン共重合体(EPDM)からなる群より選ばれる少なくとも一つを用いることが好ましい。また、結着剤としては、NAFION(登録商標)を用いることも好ましい。 In the gas diffusion layer 12, the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, it can suppress that a catalyst detaches | leaves from an electroconductive material and an oxygen reduction characteristic falls. As the binder, for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM) is preferably used. Moreover, it is also preferable to use NAFION (registered trademark) as a binder.
 (負極)
 本実施形態における負極20は、後述する微生物を担持し、さらに微生物の触媒作用により、電解液70中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する機能を有する。そのため、本実施形態の負極20は、このような機能を生じさせる構成ならば特に限定されない。
(Negative electrode)
The negative electrode 20 in the present embodiment carries a microbe described later and further has a function of generating hydrogen ions and electrons from at least one of an organic substance and a nitrogen-containing compound in the electrolytic solution 70 by the catalytic action of the microbe. For this reason, the negative electrode 20 of the present embodiment is not particularly limited as long as it has such a function.
 本実施形態の負極20は、導電性を有する導電体シートに微生物を担持した構造を有する。導電体シートとしては、多孔質の導電体シート、織布状の導電体シート及び不織布状の導電体シートからなる群より選ばれる少なくとも一つを使用することができる。また、導電体シートは複数のシートを積層した積層体でもよい。負極20の導電体シートとして、このような複数の細孔を有するシートを用いることにより、後述する局部電池反応で生成した水素イオンが正極10の方向へ移動しやすくなり、酸素還元反応の速度を高めることが可能となる。また、イオン透過性を向上させる観点から、負極20の導電体シートは、積層方向X、つまり厚さ方向に連続した空間(空隙)を有していることが好ましい。 The negative electrode 20 of the present embodiment has a structure in which microorganisms are supported on a conductive sheet having conductivity. As the conductor sheet, it is possible to use at least one selected from the group consisting of a porous conductor sheet, a woven conductor sheet, and a nonwoven conductor sheet. The conductor sheet may be a laminate in which a plurality of sheets are laminated. By using such a sheet having a plurality of pores as the conductor sheet of the negative electrode 20, hydrogen ions generated in the local battery reaction described later easily move toward the positive electrode 10, and the rate of the oxygen reduction reaction is increased. It becomes possible to raise. From the viewpoint of improving ion permeability, the conductor sheet of the negative electrode 20 preferably has a space (void) continuous in the stacking direction X, that is, in the thickness direction.
 当該導電体シートは、厚さ方向に複数の貫通孔を有する金属板であってもよい。そのため、負極20の導電体シートを構成する材料としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンなどの導電性金属、並びにカーボンペーパー、カーボンフェルトからなる群より選ばれる少なくとも一つを用いることができる。 The conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductor sheet of the negative electrode 20, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, carbon paper, and carbon felt is used. be able to.
 負極20の導電体シートとして、黒鉛シートを用いてもよい。また、負極20は黒鉛を含有し、さらに黒鉛におけるグラフェン層は、積層方向Xに垂直な方向YZの面に沿って配列していることが好ましい。グラフェン層がこのように配列していることにより、積層方向Xの導電性よりも、積層方向Xに垂直な方向YZの導電性が向上する。そのため、負極20の局部電池反応により生成した電子を外部回路80へ導通させやすくなり、電池反応の効率をより向上させることが可能となる。 A graphite sheet may be used as the conductor sheet of the negative electrode 20. The negative electrode 20 preferably contains graphite, and the graphene layers in the graphite are preferably arranged along a plane in the direction YZ perpendicular to the stacking direction X. By arranging the graphene layers in this way, the conductivity in the direction YZ perpendicular to the stacking direction X is improved as compared with the conductivity in the stacking direction X. Therefore, the electrons generated by the local battery reaction of the negative electrode 20 can be easily conducted to the external circuit 80, and the efficiency of the battery reaction can be further improved.
 なお、上述の黒鉛シートは、次のようにして得ることができる。まず、天然黒鉛を酸によって化学処理を施し、黒鉛のグラフェン層の層間へ挿入物を形成する。次に、これを高温で急速加熱することで、層間挿入物の熱分解によるガス圧でグラフェン層間が押し広がった膨張黒鉛が得られる。そして、この膨張黒鉛を加圧し、ロール圧延することにより、黒鉛シートが得られる。このようにして得られた黒鉛シートを負極20の導電体シートとして用いた場合、黒鉛におけるグラフェン層が積層方向Xに垂直な方向YZに沿って配列している。そのため、負極20と外部回路80との間の導電性を高め、電池反応の効率をより向上させることが可能となる。 The above graphite sheet can be obtained as follows. First, natural graphite is chemically treated with an acid to form an insert between the graphite graphene layers. Next, this is rapidly heated at a high temperature to obtain expanded graphite in which the graphene interlayer is pushed and expanded by the gas pressure due to the thermal decomposition of the intercalated insert. Then, the expanded graphite is pressurized and roll-rolled to obtain a graphite sheet. When the graphite sheet obtained in this way is used as the conductor sheet of the negative electrode 20, the graphene layers in the graphite are arranged along the direction YZ perpendicular to the stacking direction X. Therefore, the conductivity between the negative electrode 20 and the external circuit 80 can be increased, and the efficiency of the battery reaction can be further improved.
 負極20に担持される微生物としては、電解液70中の有機物、又は窒素を含む化合物を分解する微生物であれば特に限定されないが、例えば増殖に酸素を必要としない嫌気性微生物を使用することが好ましい。嫌気性微生物は、電解液70中の有機物を酸化分解するための空気を必要としない。そのため、空気を送り込むために必要な電力を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量を減少させることが可能となる。 The microorganism supported on the negative electrode 20 is not particularly limited as long as it is a microorganism that decomposes an organic substance in the electrolyte solution 70 or a compound containing nitrogen. For example, an anaerobic microorganism that does not require oxygen for growth is used. preferable. Anaerobic microorganisms do not require air for oxidizing and decomposing organic substances in the electrolyte solution 70. Therefore, the electric power required for sending air can be significantly reduced. Moreover, since the free energy which microbes acquire is small, it becomes possible to reduce the amount of sludge generation.
 負極20に保持される微生物は嫌気性微生物であることが好ましく、例えば細胞外電子伝達機構を有する電気生産細菌であることが好ましい。具体的には、嫌気性微生物として、例えばGeobacter属細菌、Shewanella属細菌、Aeromonas属細菌、Geothrix属細菌、Saccharomyces属細菌が挙げられる。 The microorganism held in the negative electrode 20 is preferably an anaerobic microorganism, for example, an electricity producing bacterium having an extracellular electron transfer mechanism. Specifically, examples of the anaerobic microorganism include Geobacter genus bacteria, Shewanella genus bacteria, Aeromonas genus bacteria, Geothrix genus bacteria, and Saccharomyces genus bacteria.
 負極20に、嫌気性微生物を含むバイオフィルムが重ねられて固定されることで、負極20に嫌気性微生物が保持されていてもよい。バイオフィルムとは、一般に、微生物集団と、微生物集団が生産する菌体外重合体物質(extracellular polymeric substance、EPS)とを含む三次元構造体のことをいう。ただ、嫌気性微生物は、バイオフィルムによらずに負極20に保持されていてもよい。また、嫌気性微生物は、負極20表面だけでなく、内部に保持されていてもよい。 Anaerobic microorganisms may be held on the negative electrode 20 by superimposing and fixing a biofilm containing anaerobic microorganisms on the negative electrode 20. A biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population. However, the anaerobic microorganisms may be held on the negative electrode 20 without depending on the biofilm. Moreover, the anaerobic microorganisms may be held not only on the surface of the negative electrode 20 but also inside.
 微生物燃料電池100では、図2に示すように、正極10及び負極20に電気的に接続する外部回路80を備えている。そして、外部回路80は、負極20と正極10との間を流れる電流値を制御する電流制御部を備えることが好ましい。なお、電流制御部としては、例えば抵抗器を用いることができる。 The microbial fuel cell 100 includes an external circuit 80 that is electrically connected to the positive electrode 10 and the negative electrode 20 as shown in FIG. The external circuit 80 preferably includes a current control unit that controls a current value flowing between the negative electrode 20 and the positive electrode 10. For example, a resistor can be used as the current control unit.
 (正極及び負極の配置)
 微生物燃料電池100では、図1に示すように、廃水槽60の内部において、正極10及び負極20は積層方向Xに沿って積層するように配置されている。ただ、正極10及び負極20は直接接触しておらず、所定の間隔を設けている。そして、廃水槽60には、電解液70を廃水槽60に供給するための廃水流入口61と、処理後の電解液70を廃水槽60から排出するための廃水流出口62とが設けられている。電解液70は、廃水流入口61及び廃水流出口62を通じて連続的に供給されている。
(Position of positive electrode and negative electrode)
In the microbial fuel cell 100, as shown in FIG. 1, the positive electrode 10 and the negative electrode 20 are disposed so as to be stacked along the stacking direction X in the waste water tank 60. However, the positive electrode 10 and the negative electrode 20 are not in direct contact with each other and have a predetermined interval. The waste water tank 60 is provided with a waste water inlet 61 for supplying the electrolytic solution 70 to the waste water tank 60 and a waste water outlet 62 for discharging the treated electrolytic solution 70 from the waste water tank 60. Yes. The electrolytic solution 70 is continuously supplied through the wastewater inlet 61 and the wastewater outlet 62.
 図1及び図2に示すように、廃水槽60において、負極20は、電解液70が廃水流入口61から廃水流出口62へと流れる際の上流側に設けられ、正極10は、負極20よりも下流側に設けられている。つまり、微生物燃料電池100では、電解液70が廃水槽60の廃水流入口61から供給され、負極20の表面に接触しながら流れ、その後、正極10に接触しながら流れた後に廃水流出口62から排出される。 As shown in FIG. 1 and FIG. 2, in the wastewater tank 60, the negative electrode 20 is provided on the upstream side when the electrolyte 70 flows from the wastewater inlet 61 to the wastewater outlet 62. Is also provided downstream. That is, in the microbial fuel cell 100, the electrolytic solution 70 is supplied from the wastewater inlet 61 of the wastewater tank 60 and flows while contacting the surface of the negative electrode 20, and then flows while contacting the positive electrode 10 and then from the wastewater outlet 62. Discharged.
 上述のように、正極10は少なくとも一部が気相50に露出しており、撥水層11はガス拡散層12に対し酸素を略均一に供給している。そのため、正極10の近傍に流れ着いた電解液70は酸素と接触し、酸素が溶存してしまう。もし、廃水槽60において、正極10が電解液70の上流側に設けられ、負極20が正極10よりも下流側に設けられた場合、正極10によって酸素が溶存した電解液70が負極20に到達するため、負極20の近傍は好気的となる。その結果、負極20に担持された嫌気性微生物の作用が不十分となるため、発電効率が低下する恐れがある。 As described above, at least a part of the positive electrode 10 is exposed to the gas phase 50, and the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly. Therefore, the electrolytic solution 70 that has flowed in the vicinity of the positive electrode 10 comes into contact with oxygen, and oxygen is dissolved. If the positive electrode 10 is provided on the upstream side of the electrolytic solution 70 and the negative electrode 20 is provided on the downstream side of the positive electrode 10 in the waste water tank 60, the electrolytic solution 70 in which oxygen is dissolved by the positive electrode 10 reaches the negative electrode 20. Therefore, the vicinity of the negative electrode 20 becomes aerobic. As a result, the action of the anaerobic microorganisms supported on the negative electrode 20 becomes insufficient, which may reduce the power generation efficiency.
 しかしながら、本実施形態の微生物燃料電池100では、電解液70の流路において、負極20は電解液70が流れる際の上流側に設けられ、正極10は負極20よりも下流側に設けられている。そのため、酸素が溶存した電解液70が負極20に到達し難くなり、負極20の近傍は嫌気的となる。その結果、負極20に担持された嫌気性微生物が効果的に作用し、発電効率を向上させることが可能となる。 However, in the microbial fuel cell 100 of the present embodiment, in the flow path of the electrolyte solution 70, the negative electrode 20 is provided on the upstream side when the electrolyte solution 70 flows, and the positive electrode 10 is provided on the downstream side of the negative electrode 20. . Therefore, the electrolytic solution 70 in which oxygen is dissolved is difficult to reach the negative electrode 20, and the vicinity of the negative electrode 20 becomes anaerobic. As a result, the anaerobic microorganisms carried on the negative electrode 20 act effectively, and the power generation efficiency can be improved.
 上述のように、正極10及び負極20は直接接触しておらず、所定の間隔を設けて配置されている。つまり、正極10によって酸素が溶存した電解液70が負極20へ到達しないように、所定の間隔を設けている。このように、正極10と負極20を分離して正極10から負極20を遠ざけることで、負極20をより嫌気的に保つことができる。これにより、嫌気性である発電菌を十分に活用でき、発生汚泥量を低減しつつも効率的に電気エネルギーを生成することが可能となる。 As described above, the positive electrode 10 and the negative electrode 20 are not in direct contact with each other and are arranged with a predetermined interval. That is, a predetermined interval is provided so that the electrolytic solution 70 in which oxygen is dissolved by the positive electrode 10 does not reach the negative electrode 20. Thus, the negative electrode 20 can be kept more anaerobically by separating the positive electrode 10 and the negative electrode 20 and moving the negative electrode 20 away from the positive electrode 10. Thereby, anaerobic power-generating bacteria can be fully utilized, and it is possible to efficiently generate electric energy while reducing the amount of generated sludge.
 負極近傍をより嫌気的にするために、図2に示すように、正極10と負極20との間の最短距離Dは30mm以上であることが好ましい。また、正極10と負極20との間の最短距離Dは、50mm以上であることがより好ましい。さらに、正極10と負極20との間の最短距離Dは、100mm以上であることが特に好ましい。正極10と負極20との間で最も近接している部分の距離が30mm以上であることにより、負極20を正極10から遠方に分離することができる。その結果、負極近傍をより嫌気的にすることができるため、嫌気性の発電菌を効果的に活用することが可能となる。 In order to make the vicinity of the negative electrode more anaerobic, as shown in FIG. 2, the shortest distance D between the positive electrode 10 and the negative electrode 20 is preferably 30 mm or more. The shortest distance D between the positive electrode 10 and the negative electrode 20 is more preferably 50 mm or more. Furthermore, the shortest distance D between the positive electrode 10 and the negative electrode 20 is particularly preferably 100 mm or more. When the distance of the closest part between the positive electrode 10 and the negative electrode 20 is 30 mm or more, the negative electrode 20 can be separated from the positive electrode 10 far away. As a result, since the vicinity of the negative electrode can be made more anaerobic, anaerobic power-generating bacteria can be effectively utilized.
 次に、本実施形態の微生物燃料電池100の作用について説明する。正極10及び負極20が電解液70に浸漬された場合、正極10のガス拡散層12及び負極20が電解液70に浸漬され、撥水層11における面10aの少なくとも一部が気相50に露出する。 Next, the operation of the microbial fuel cell 100 of this embodiment will be described. When the positive electrode 10 and the negative electrode 20 are immersed in the electrolytic solution 70, the gas diffusion layer 12 and the negative electrode 20 of the positive electrode 10 are immersed in the electrolytic solution 70, and at least a part of the surface 10 a of the water repellent layer 11 is exposed to the gas phase 50. To do.
 微生物燃料電池100の動作時には、負極20に、有機性物質及び窒素含有化合物の少なくとも一方を含有する電解液70を供給し、正極10に空気又は酸素を供給する。この際、空気は、カセット基材30の上部に設けられた開口部を通じて連続的に供給される。 During operation of the microbial fuel cell 100, an electrolyte solution 70 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20, and air or oxygen is supplied to the positive electrode 10. At this time, the air is continuously supplied through an opening provided in the upper part of the cassette base material 30.
 そして、図2に示す正極10では、撥水層11を透過してガス拡散層12により空気が拡散する。負極20では、微生物の触媒作用により、電解液70中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、電解液70を通じて正極10側へ移動する。また、生成した電子は負極20の導電体シートを通じて外部回路80へ移動し、さらに外部回路80から正極10のガス拡散層12に移動する。そして、水素イオン及び電子は、ガス拡散層12に担持された触媒の作用により酸素と結合し、水となって消費される。 In the positive electrode 10 shown in FIG. 2, air diffuses through the water repellent layer 11 and the gas diffusion layer 12. In the negative electrode 20, hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 70 by the catalytic action of microorganisms. The generated hydrogen ions move to the positive electrode 10 side through the electrolytic solution 70. Further, the generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move from the external circuit 80 to the gas diffusion layer 12 of the positive electrode 10. Hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the gas diffusion layer 12 and consumed as water.
 本実施形態の微生物燃料電池100では、負極20を電解液70のフローの上流に設置し、正極10を下流に設置している。これにより、正極10から混入する酸素が溶存した電解液70が負極20へ到達しないようにしている。さらに、負極20を正極10から遠方に分離することで、負極20の近傍をより嫌気的にすることが可能となる。そのため、嫌気性の発電菌を効果的に活用し、発生汚泥量を低減可能な微生物燃料電池100を得ることができる。 In the microbial fuel cell 100 of the present embodiment, the negative electrode 20 is installed upstream of the flow of the electrolyte solution 70, and the positive electrode 10 is installed downstream. This prevents the electrolytic solution 70 in which oxygen mixed from the positive electrode 10 is dissolved from reaching the negative electrode 20. Furthermore, by separating the negative electrode 20 far from the positive electrode 10, the vicinity of the negative electrode 20 can be made more anaerobic. Therefore, it is possible to obtain a microbial fuel cell 100 that can effectively use anaerobic power-generating bacteria and reduce the amount of generated sludge.
 本実施形態に係る負極20には、例えば、電子伝達メディエーター分子が修飾されていてもよい。あるいは、廃水槽60内の電解液70は、電子伝達メディエーター分子を含んでいてもよい。これにより、嫌気性微生物から負極20への電子移動を促進し、より効率的な液体処理を実現できる。 The negative electrode 20 according to this embodiment may be modified with, for example, an electron transfer mediator molecule. Alternatively, the electrolytic solution 70 in the waste water tank 60 may contain electron transfer mediator molecules. Thereby, the electron transfer from an anaerobic microorganism to the negative electrode 20 is accelerated | stimulated, and more efficient liquid processing is realizable.
 具体的には、嫌気性微生物による代謝機構では、細胞内又は最終電子受容体との間で電子の授受が行われる。電解液70中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を負極20へと受け渡す。この結果、電解液70における有機性物質などの酸化分解速度を高めることが可能になる。このような電子伝達メディエーター分子は、特に限定されない。電子伝達メディエーター分子としては、例えばニュートラルレッド、アントラキノン-2,6-ジスルホン酸(AQDS)、チオニン、フェリシアン化カリウム、及びメチルビオローゲンからなる群より選ばれる少なくとも一つを用いることができる。 Specifically, in the metabolic mechanism by anaerobic microorganisms, electrons are transferred between cells or with the final electron acceptor. When a mediator molecule is introduced into the electrolytic solution 70, the mediator molecule acts as a final electron acceptor of metabolism, and delivers received electrons to the negative electrode 20. As a result, it is possible to increase the rate of oxidative decomposition of the organic substance or the like in the electrolytic solution 70. Such an electron transfer mediator molecule is not particularly limited. As the electron transfer mediator molecule, for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methylviologen can be used.
 図3に示す燃料電池ユニット1において、カセット基材30は、上部の全体が開口しているが、内部に空気(酸素)を導入することが可能ならば部分的に開口していてもよく、また閉口していてもよい。 In the fuel cell unit 1 shown in FIG. 3, the cassette base 30 is open at the entire top, but may be partially opened if air (oxygen) can be introduced into the interior, It may also be closed.
 本実施形態の微生物燃料電池100では、図2に示すように、正極10及び負極20はそれぞれ外部回路80と電気的に接続し、電気エネルギーを取り出すことが可能となっている。しかしながら、電気エネルギーを取り出す必要がない場合には、外部回路80を設けなくてもよい。つまり、微生物燃料電池100Aにおいて、正極10と負極20とは短絡していてもよい。 In the microbial fuel cell 100 of this embodiment, as shown in FIG. 2, the positive electrode 10 and the negative electrode 20 can be electrically connected to an external circuit 80, respectively, and electric energy can be taken out. However, when there is no need to extract electric energy, the external circuit 80 may not be provided. That is, in the microbial fuel cell 100A, the positive electrode 10 and the negative electrode 20 may be short-circuited.
 具体的には、図4に示す微生物燃料電池100Aにおいて、正極10及び負極20は直接接触しておらず、所定の間隔を設けて配置されている。さらに、負極20は、電解液70が廃水流入口61から廃水流出口62へと流れる際の上流側に設けられ、正極10は、負極20よりも下流側に設けられている。そして、正極10における負極20と対向する面10bと負極20における正極10と対向する面20aとの間には、導電部材90が設けられており、導電部材90により、正極10と負極20とは電気的に接続されている。このように、正極10と負極20とを短絡させることによっても、負極20で生成した電子が正極10に移動し、正極10において酸素還元反応を生じさせることが可能となる。 Specifically, in the microbial fuel cell 100A shown in FIG. 4, the positive electrode 10 and the negative electrode 20 are not in direct contact with each other and are arranged with a predetermined interval. Further, the negative electrode 20 is provided on the upstream side when the electrolytic solution 70 flows from the waste water inlet 61 to the waste water outlet 62, and the positive electrode 10 is provided on the downstream side of the negative electrode 20. A conductive member 90 is provided between a surface 10 b of the positive electrode 10 facing the negative electrode 20 and a surface 20 a of the negative electrode 20 facing the positive electrode 10, and the positive electrode 10 and the negative electrode 20 are separated by the conductive member 90. Electrically connected. In this way, also by short-circuiting the positive electrode 10 and the negative electrode 20, electrons generated in the negative electrode 20 move to the positive electrode 10, and an oxygen reduction reaction can be caused in the positive electrode 10.
 導電部材90としては、電解液70に浸漬した状態で正極10と負極20とを電気的に接続できれば特に限定されないが、例えば炭素材料を用いることができる。そして、炭素材料としては、例えば黒鉛シート、カーボンペーパー、カーボンクロス及びカーボンフェルトからなる群より選ばれる少なくとも一つを用いることができる。 The conductive member 90 is not particularly limited as long as the positive electrode 10 and the negative electrode 20 can be electrically connected in the state of being immersed in the electrolytic solution 70. For example, a carbon material can be used. As the carbon material, for example, at least one selected from the group consisting of graphite sheet, carbon paper, carbon cloth, and carbon felt can be used.
 このように、本実施形態の微生物燃料電池100,100Aは、電解液70と、電解液70に浸され、少なくとも一部が気相50に露出するガス拡散電極からなる正極10と、電解液70に浸され、嫌気性微生物を保持する負極20とを備える。そして、電解液70の流路において、負極20は電解液70が流れる際の上流側に設けられ、正極10は負極20よりも下流側に設けられる。このような構成により、酸素が溶存した電解液70が負極20に到達し難くなり、負極20の近傍は嫌気的となるため、負極20に担持された嫌気性微生物が効果的に作用し、発電効率を向上させることができる。その結果、発生汚泥量を低減しつつも効率的に電気エネルギーを生成することが可能な微生物燃料電池を得ることが可能となる。 As described above, the microbial fuel cells 100 and 100A of the present embodiment include the electrolytic solution 70, the positive electrode 10 including the gas diffusion electrode that is immersed in the electrolytic solution 70 and at least a part of which is exposed to the gas phase 50, and the electrolytic solution 70. And a negative electrode 20 that retains anaerobic microorganisms. In the flow path of the electrolytic solution 70, the negative electrode 20 is provided on the upstream side when the electrolytic solution 70 flows, and the positive electrode 10 is provided on the downstream side of the negative electrode 20. With such a configuration, the electrolyte solution 70 in which oxygen is dissolved becomes difficult to reach the negative electrode 20 and the vicinity of the negative electrode 20 becomes anaerobic. Therefore, the anaerobic microorganisms carried on the negative electrode 20 act effectively, and power generation Efficiency can be improved. As a result, it is possible to obtain a microbial fuel cell that can efficiently generate electrical energy while reducing the amount of generated sludge.
 本実施形態の微生物燃料電池は上述の構成に限定されず、例えば図5に示すように、正極10と負極20とを別々の廃水槽に配置した構成であってもよい。具体的には、微生物燃料電池100Bは、第一廃水槽60Aと第二廃水槽60Bとを備えている。そして、第一廃水槽60Aには、電解液70を第一廃水槽60Aに供給するための廃水流入口61が設けられており、第二廃水槽60Bには、処理後の電解液70を第二廃水槽60Bから排出するための廃水流出口62が設けられている。第一廃水槽60Aと第二廃水槽60Bとの間には、電解液70が流通できるように、連通管63が設けられている。 The microbial fuel cell of the present embodiment is not limited to the above-described configuration, and for example, as shown in FIG. 5, a configuration in which the positive electrode 10 and the negative electrode 20 are arranged in separate wastewater tanks may be used. Specifically, the microbial fuel cell 100B includes a first waste water tank 60A and a second waste water tank 60B. The first wastewater tank 60A is provided with a wastewater inlet 61 for supplying the electrolyte solution 70 to the first wastewater tank 60A, and the treated electrolyte solution 70 is supplied to the second wastewater tank 60B. A waste water outlet 62 for discharging from the two waste water tanks 60B is provided. A communication pipe 63 is provided between the first wastewater tank 60A and the second wastewater tank 60B so that the electrolytic solution 70 can flow.
 負極20は第一廃水槽60Aの内部に配置され、正極10は第二廃水槽60Bの内部に配置されている。さらに、正極10及び負極20は、外部回路80と電気的に接続されている。そして、図5に示す構成では、2枚の正極10が間隔をあけて対向し、さらに正極10の間にこれらを離間して保持するためのカセット基材30を備えることで、内部に気相50を形成している。つまり、カセット基材30の側面33及び側面34は、正極10における撥水層11の外周部と接合されており、これにより内部に気相50を形成している。そして、気相50には電解液70が満たされておらず、外気に開放されているため、撥水層11に空気が供給できるように構成されている。 The negative electrode 20 is disposed inside the first wastewater tank 60A, and the positive electrode 10 is disposed inside the second wastewater tank 60B. Further, the positive electrode 10 and the negative electrode 20 are electrically connected to the external circuit 80. In the configuration shown in FIG. 5, the two positive electrodes 10 face each other with a space therebetween, and further, a cassette base material 30 is provided between the positive electrodes 10 to hold them apart, so that a gas phase is formed inside. 50 is formed. That is, the side surface 33 and the side surface 34 of the cassette base material 30 are joined to the outer peripheral portion of the water repellent layer 11 in the positive electrode 10, thereby forming the gas phase 50 inside. The gas phase 50 is not filled with the electrolyte solution 70 and is open to the outside air, so that the air can be supplied to the water repellent layer 11.
 上記構成の微生物燃料電池100Bでは、まず、第一廃水槽60Aの廃水流入口61から電解液70が連続的に供給され、負極20の表面に接触する。負極20では、嫌気性微生物により、電解液70中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、電解液70と共に、連通管63を通じて第二廃水槽60Bに移動する。また、生成した電子は負極20の導電体シートを通じて外部回路80へ移動し、さらに外部回路80から正極10のガス拡散層12に移動する。そして、水素イオン及び電子は、ガス拡散層12に担持された触媒の作用により酸素と結合し、水となって消費される。また、微生物により浄化された電解液70は、廃水流出口62を通じて外部に排出される。 In the microbial fuel cell 100B having the above-described configuration, first, the electrolytic solution 70 is continuously supplied from the wastewater inlet 61 of the first wastewater tank 60A and contacts the surface of the negative electrode 20. In the negative electrode 20, hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the electrolytic solution 70 by an anaerobic microorganism. The generated hydrogen ions move together with the electrolytic solution 70 to the second wastewater tank 60B through the communication pipe 63. Further, the generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move from the external circuit 80 to the gas diffusion layer 12 of the positive electrode 10. Hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the gas diffusion layer 12 and consumed as water. Further, the electrolytic solution 70 purified by microorganisms is discharged to the outside through the waste water outlet 62.
 このように、本実施形態の微生物燃料電池100Bでは、正極10と負極20とを別々の廃水槽に配置し、さらに負極20を電解液70のフローの上流に設置し、正極10を下流に設置している。これにより、例えば第一廃水槽60Aの上部に、大気中の酸素を電解液70に溶存させないための蓋部を設けることが可能となる。その結果、負極20の近傍をより嫌気性にすることができるため、嫌気性微生物をより活性化し、発電効率を更に高めることが可能となる。 Thus, in the microbial fuel cell 100B of this embodiment, the positive electrode 10 and the negative electrode 20 are arranged in separate wastewater tanks, the negative electrode 20 is installed upstream of the flow of the electrolytic solution 70, and the positive electrode 10 is installed downstream. is doing. Thereby, for example, a lid portion for preventing oxygen in the atmosphere from being dissolved in the electrolytic solution 70 can be provided on the upper portion of the first waste water tank 60A. As a result, since the vicinity of the negative electrode 20 can be made more anaerobic, it is possible to further activate the anaerobic microorganisms and further increase the power generation efficiency.
[液体処理ユニット]
 次に、本実施形態に係る液体処理ユニットについて説明する。本実施形態の液体処理ユニットは、上述の微生物燃料電池100を備えている。
[Liquid processing unit]
Next, the liquid processing unit according to this embodiment will be described. The liquid processing unit of this embodiment includes the microbial fuel cell 100 described above.
 上述のように、本実施形態の微生物燃料電池100は、有機化合物を微生物で分解することにより電気エネルギーを得ている。そのため、このような機能を利用し、微生物燃料電池100を、廃水を浄化するための液体処理ユニットとして使用することができる。 As described above, the microbial fuel cell 100 of the present embodiment obtains electric energy by decomposing an organic compound with microorganisms. Therefore, using such a function, the microbial fuel cell 100 can be used as a liquid treatment unit for purifying waste water.
 具体的には、微生物燃料電池100では、有機物及び窒素含有化合物の少なくとも一方を含有する、被処理液としての電解液70を負極20に供給している。そして、負極20に担持された微生物の代謝により、電解液70中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子と共に、二酸化炭素又は窒素を生成している。 Specifically, in the microbial fuel cell 100, an electrolytic solution 70 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20 as a liquid to be treated. Then, carbon dioxide or nitrogen is generated together with hydrogen ions and electrons from at least one of the organic matter and the nitrogen-containing compound in the electrolytic solution 70 by metabolism of the microorganisms supported on the negative electrode 20.
 例えば電解液70が有機物としてグルコースを含有する場合、以下の局部電池反応により、二酸化炭素、水素イオン及び電子を生成している。
・負極20:C12+6HO→6CO+24H+24e
・正極10:6O+24H+24e→12H
 また、電解液70が窒素含有化合物としてアンモニアを含有する場合、以下の局部電池反応により、窒素、水素イオン及び電子を生成している。
・負極20:4NH→2N+12H+12e
・正極10:3O+12H+12e→6H
For example, when the electrolytic solution 70 contains glucose as an organic substance, carbon dioxide, hydrogen ions, and electrons are generated by the following local battery reaction.
Negative electrode 20: C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 24H + + 24e
・ Positive electrode 10: 6O 2 + 24H + + 24e → 12H 2 O
Moreover, when the electrolyte solution 70 contains ammonia as a nitrogen-containing compound, nitrogen, hydrogen ions, and electrons are generated by the following local battery reaction.
Negative electrode 20: 4NH 3 → 2N 2 + 12H + + 12e
Positive electrode 10: 3O 2 + 12H + + 12e → 6H 2 O
 このように、液体処理ユニットとして微生物燃料電池100を用いることにより、電解液70中の有機物及び窒素含有化合物が負極20に接触して酸化分解されるため、電解液70を浄化することができる。また、上述のように、電解液70を廃水槽60に供給し、さらに処理後の電解液70を廃水槽60から排出するための廃水流入口61及び廃水流出口62を設けることで、電解液70を廃水槽60に連続的に供給することができる。そのため、負極20に電解液70を連続的に接触させ、電解液70を効率的に処理することが可能となる。 Thus, by using the microbial fuel cell 100 as the liquid processing unit, the organic matter and the nitrogen-containing compound in the electrolytic solution 70 come into contact with the negative electrode 20 and are oxidatively decomposed, so that the electrolytic solution 70 can be purified. In addition, as described above, the electrolytic solution 70 is supplied to the wastewater tank 60, and further, the wastewater inlet 61 and the wastewater outlet 62 for discharging the treated electrolytic solution 70 from the wastewater tank 60 are provided. 70 can be continuously supplied to the wastewater tank 60. Therefore, the electrolytic solution 70 can be continuously brought into contact with the negative electrode 20 so that the electrolytic solution 70 can be processed efficiently.
 以上、本実施形態の微生物燃料電池及び液体処理ユニットを説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。具体的には、図面において、撥水層11及びガス拡散層12を備えた正極10及び負極20は、矩形状に形成されている。しかし、これらの形状は特に限定されず、微生物燃料電池の大きさ、及び所望の浄化性能等により任意に変更することができる。また、各層の面積も所望の機能が発揮できるならば、それぞれ任意に変更することができる。 The microbial fuel cell and the liquid processing unit of the present embodiment have been described above. However, the present embodiment is not limited to these, and various modifications are possible within the scope of the gist of the present embodiment. Specifically, in the drawing, the positive electrode 10 and the negative electrode 20 provided with the water repellent layer 11 and the gas diffusion layer 12 are formed in a rectangular shape. However, these shapes are not particularly limited, and can be arbitrarily changed depending on the size of the microbial fuel cell, desired purification performance, and the like. Further, the area of each layer can be arbitrarily changed as long as a desired function can be exhibited.
 特願2016-096066号(出願日:2016年5月12日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2016-096066 (application date: May 12, 2016) are incorporated herein by reference.
 本発明によれば、負極近傍における酸素の影響を抑制し、嫌気性微生物による発電を効率的に行うことが可能な微生物燃料電池、及び当該微生物燃料電池を用いた液体処理ユニットを得ることができる。 ADVANTAGE OF THE INVENTION According to this invention, the influence of the oxygen in the negative electrode vicinity can be suppressed, and the microbial fuel cell which can perform the electric power generation by an anaerobic microorganism efficiently, and the liquid processing unit using the said microbial fuel cell can be obtained. .
 10 正極
 20 負極
 50 気相
 70 電解液
 100,100A,100B 微生物燃料電池
 D 最短距離
10 Positive electrode 20 Negative electrode 50 Gas phase 70 Electrolyte 100, 100A, 100B Microbial fuel cell D Shortest distance

Claims (6)

  1.  電解液と、
     前記電解液に浸され、少なくとも一部が気相に露出するガス拡散電極からなる正極と、
     前記電解液に浸され、嫌気性微生物を保持する負極と、
     を備え、
     前記電解液の流路において、前記負極は前記電解液が流れる際の上流側に設けられ、前記正極は前記負極よりも下流側に設けられる、微生物燃料電池。
    An electrolyte,
    A positive electrode comprising a gas diffusion electrode immersed in the electrolyte and at least partially exposed to the gas phase;
    A negative electrode immersed in the electrolyte and holding anaerobic microorganisms;
    With
    In the electrolytic solution flow path, the negative electrode is provided on the upstream side when the electrolytic solution flows, and the positive electrode is provided on the downstream side of the negative electrode.
  2.  前記正極と前記負極との間の最短距離は30mm以上である、請求項1に記載の微生物燃料電池。 The microbial fuel cell according to claim 1, wherein the shortest distance between the positive electrode and the negative electrode is 30 mm or more.
  3.  前記正極と前記負極との間の最短距離は50mm以上である、請求項1又は2に記載の微生物燃料電池。 The microbial fuel cell according to claim 1 or 2, wherein the shortest distance between the positive electrode and the negative electrode is 50 mm or more.
  4.  前記正極と前記負極との間の最短距離は100mm以上である、請求項1乃至3のいずれか一項に記載の微生物燃料電池。 The microbial fuel cell according to any one of claims 1 to 3, wherein a shortest distance between the positive electrode and the negative electrode is 100 mm or more.
  5.  前記正極と前記負極とは短絡している、請求項1乃至4のいずれか一項に記載の微生物燃料電池。 The microbial fuel cell according to any one of claims 1 to 4, wherein the positive electrode and the negative electrode are short-circuited.
  6.  請求項1乃至5のいずれか一項に記載の微生物燃料電池を備える液体処理ユニット。 A liquid processing unit comprising the microbial fuel cell according to any one of claims 1 to 5.
PCT/JP2017/003378 2016-05-12 2017-01-31 Microbial fuel cell and liquid treatment unit using same WO2017195406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-096066 2016-05-12
JP2016096066 2016-05-12

Publications (1)

Publication Number Publication Date
WO2017195406A1 true WO2017195406A1 (en) 2017-11-16

Family

ID=60266461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003378 WO2017195406A1 (en) 2016-05-12 2017-01-31 Microbial fuel cell and liquid treatment unit using same

Country Status (1)

Country Link
WO (1) WO2017195406A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073284A1 (en) * 2011-11-16 2013-05-23 国立大学法人豊橋技術科学大学 Microbial power generation device, electrode for microbial power generation device, and method for producing same
JP2015041471A (en) * 2013-08-21 2015-03-02 積水化学工業株式会社 Microbial fuel cell
JP2015082396A (en) * 2013-10-22 2015-04-27 旭化成株式会社 Electrode for microorganism fuel battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073284A1 (en) * 2011-11-16 2013-05-23 国立大学法人豊橋技術科学大学 Microbial power generation device, electrode for microbial power generation device, and method for producing same
JP2015041471A (en) * 2013-08-21 2015-03-02 積水化学工業株式会社 Microbial fuel cell
JP2015082396A (en) * 2013-10-22 2015-04-27 旭化成株式会社 Electrode for microorganism fuel battery

Similar Documents

Publication Publication Date Title
JP6368036B2 (en) Electrode structure and microbial fuel cell
JP6438115B2 (en) Microbial fuel cell system
JP6364529B2 (en) Electrode manufacturing method and electrode
WO2015122125A1 (en) Microbial fuel cell, microbial fuel cell system, and method for using microbial fuel cell
WO2017119419A1 (en) Gas diffusion electrode for microbial fuel cells and microbial fuel cell in which same is used
JP6902706B2 (en) Purification unit and purification device
JP6643642B2 (en) Purification unit and purification device
JP6438051B2 (en) Microbial fuel cell system
WO2018020807A1 (en) Microbial fuel cell
US20190296381A1 (en) Microbial fuel cell and waste liquid treatment system
WO2017199475A1 (en) Liquid processing unit and liquid processing device
WO2017175260A1 (en) Electrode, fuel cell and water treatment device
WO2017195406A1 (en) Microbial fuel cell and liquid treatment unit using same
JP2019076833A (en) Liquid treatment system
JP6703859B2 (en) Microbial fuel cell
JP2020087804A (en) Microbial fuel cell and liquid processing unit
WO2018203455A1 (en) Liquid treatment system
JP2017228411A (en) Electrode composite and fuel cell
JP2017148776A (en) Water treatment equipment
WO2019064889A1 (en) Liquid treatment system
WO2019078002A1 (en) Liquid processing system
JP2020099854A (en) Liquid treatment system
JP2020099850A (en) Liquid treatment system
JP2020099853A (en) Liquid treatment system
WO2019078003A1 (en) Microbial fuel cell, liquid processing system, and liquid processing structure

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795767

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP