WO2019077183A1 - Reactor para el tratamiento integral del agua - Google Patents

Reactor para el tratamiento integral del agua Download PDF

Info

Publication number
WO2019077183A1
WO2019077183A1 PCT/ES2018/070670 ES2018070670W WO2019077183A1 WO 2019077183 A1 WO2019077183 A1 WO 2019077183A1 ES 2018070670 W ES2018070670 W ES 2018070670W WO 2019077183 A1 WO2019077183 A1 WO 2019077183A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor according
reactor
water
volume
compound
Prior art date
Application number
PCT/ES2018/070670
Other languages
English (en)
French (fr)
Inventor
Gaspar Sanchez Cano
Guillermo Codina Ripoll
Jose Ramón PEREZ MALLOL
Original Assignee
I.D. Electroquimica, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I.D. Electroquimica, S.L. filed Critical I.D. Electroquimica, S.L.
Priority to AU2018351746A priority Critical patent/AU2018351746B2/en
Priority to ES18822413T priority patent/ES2895026T3/es
Priority to EP18822413.3A priority patent/EP3699147B1/en
Priority to US16/755,145 priority patent/US11136250B2/en
Publication of WO2019077183A1 publication Critical patent/WO2019077183A1/es

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/22Electrical actuation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • C02F1/325Irradiation devices or lamp constructions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/12Devices or arrangements for circulating water, i.e. devices for removal of polluted water, cleaning baths or for water treatment
    • E04H4/1281Devices for distributing chemical products in the water of swimming pools
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/42Nature of the water, waste water, sewage or sludge to be treated from bathing facilities, e.g. swimming pools
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads

Definitions

  • the present invention corresponds to the technical field of the integral treatments of swimming pool water, (oxidation of organic matter, disinfection and pH adjustment), both residential and public.
  • the water to be treated is subjected to a continuous electrical current by introducing electrodes (cathode, anode) into it.
  • the electrolysis process increases the pH of the water, which requires the controlled and continuous addition of a pH reducer (pH minus).
  • pH minus a pH reducer
  • small concentrations of chlorine and sodium hydroxide are generated in situ, which recombine to form hypochlorous acid, HCIO, which subsequently reduce the organic matter and the pathogens, transforming it back into salt.
  • This procedure has a number of advantages, such as saving water and energy, as it does not increase the residual cyanuric acid, a reduction of chloramines, (cathodic reduction), an oxidation of organic matter and also avoids having to add chlorine, either in solid or liquid form, because the own reaction of the electrolysis, produces in situ sufficient amounts of chlorine (1-2 ppm).
  • the quality of the water obtained is excellent, requires simple maintenance and guarantees a residual effect of disinfection (chlorine 1-2 ppm).
  • UV radiation which is based on the use of the effect of said radiation by the use of ultraviolet light emitters, such as low or medium pressure lamps isolated from the medium by means of quartz tubes, producing disinfection at determined doses of mJ / cm 2 , elimination of microorganisms (viruses, bacteria).
  • UV radiation has the capacity to eliminate chloramines present in pool water, which are limited by regulations (generally ⁇ 0,6mg / L) and are the cause of the "chlorine" suffocating odor. irritations in skin, mucous membranes, as well as respiratory tracts for bathers, companions and maintenance personnel. UV treatment does not have the capacity to oxidize organic matter, which makes it necessary to add some type of oxidant (in-situ electrolysis or exsitu chemical such as chlorine, bromine or peroxide), and therefore a continuous pH control.
  • oxidant in-situ electrolysis or exsitu chemical such as chlorine, bromine or peroxide
  • UV techniques electrolysis
  • electrolysis a synergistic association that involves a double treatment of disinfection (electrolysis + radiation) with a double capacity of elimination of by-products (elimination of chloramines in water / air, cathodic reduction and radiation) with capacity for elimination of organic matter (anodic oxidation plus free chlorine electrogenerated) and with residual effect (electrogenerated chlorine).
  • the treatment must be accompanied by a thorough control of the pH of the water, both to maximize the effectiveness of the treatment, and to minimize unwanted byproducts in water and air as well as to protect bathers from irritation and corrosion or calcareous deposition facilities.
  • ph-plus carbonates.NaOH
  • ph-minus inorganic acids in their gas, solid or liquid forms, such as, for example, C02-gas, NaHS04-sol, HCI-liq or sulfuric acid
  • liq carbonates.NaOH
  • ph-minus inorganic acids in their gas, solid or liquid forms, such as, for example, C02-gas, NaHS04-sol, HCI-liq or sulfuric acid
  • the international application with publication number WO2013053971 describes the procedure of water purification, without the contribution of salts, for the treatment of pool water, which comprises the simultaneous application of the techniques of electrolysis and ultraviolet radiation on the water to be treated, as well as as a reactor to carry out the procedure that has inside the electrodes and the ultraviolet lamp, as well as a pH minus injector at the entrance of the reactor.
  • This reactor does not have any element that improves the pH minus distribution.
  • the present invention has developed a simplified and modular reactor, where the purification process of swimming pool water can be carried out in an integral manner that can include, a simultaneous application of the techniques of: oxidation-disinfection, ultraviolet radiation and adjustment of pH about the water to be treated.
  • the invention describes a reactor for the integral treatment of water comprising:
  • a perimeter chamber that has two volumes separated by a perforated surface:
  • a compound that adjusts the pH comprising: an injector of the compound that adjusts the pH;
  • a second volume comprising a filler to promote the absorption of the compound that adjusts the pH
  • a water purification process is carried out comprising a first phase in which water enters the reactor through the inlet branch pipe reaching the first volume of the perimeter chamber where it is injected and distributed the compound that adjusts the pH.
  • the water circulates in the perimeter chamber towards a second volume that presents the filling, where the compound that adjusts the pH is adequately mixed.
  • the water After passing through the perimeter chamber, the water enters the central chamber (oxidation-disinfection and / or ultraviolet treatments) to find the outlet pipe of the reactor.
  • Figure 1A and 1B show each sectional view of the modular integrated reactor, where it indicates the circulation of the water to be treated from inlet to outlet of the reactor through the different chambers / parts of the reactor.
  • Figure 2 shows a sectional detail of the head of the integrated reactor where parts of it can be seen in detail.
  • Figure 3 shows the installation in by-pass with pressure control in the integrated reactor by pump at the inlet and regulating valve at the outlet.
  • the invention refers to a reactor for the integral treatment of water which comprises:
  • an inlet pipe (1) a perimeter chamber (2) that has two volumes separated by a perforated surface (3):
  • a compound that adjusts the pH comprising: an injector (11) of the compound that adjusts the pH;
  • a second volume volume (2.2) comprising a filler (4) to promote the absorption of the compound that adjusts the pH;
  • a reading of the pH and / or chlorine of the water to be treated can be carried out on the inlet branch pipe (1).
  • the inlet connection (1) comprises: a pH sensor. Also preferably, the inlet branch pipe (1) comprises a chlorine sensor.
  • a reading of the pH and / or chlorine and / or the flow of the water to be treated can be carried out on the outlet pipe (6).
  • the outlet connection (6) comprises: a pH sensor.
  • the outlet pipe (6) comprises a chlorine sensor.
  • the outlet pipe (6) comprises a flow switch (10).
  • the arrangement between the first volume (2.1) and the second volume (2.2) is such that the first volume (2.1) is located on the second volume (2.2) the mixture of the compound that adjusts the pH with the water is improved especially if this compound is gas.
  • the first volume (2.1) is located on the second volume (2.2) separated by the perforated surface (3).
  • the filling (4) is formed by a grouping of a repeating plastic body, in general with a spherical and / or cylindrical geometry with pores or voids that can be of greater water density or lower water density, ensuring in any In this case, the increase of the contact surfaces and improving the distribution in the reactor in its passage without preferential channels.
  • the central chamber (5) it comprises at least two electrodes (7) to perform electrolysis. More preferably, these electrodes (7) have the shape of a plate or unfolded mesh (mesh) with monopolar, bipolar or mixed electrical configuration. These apply an anode cathode voltage between 3 and 24 Vdc and a current density between 1 and 60 mA / cm 2 , with salt concentrations between 0.3 and 6 gr / l.
  • At least one ultraviolet light emitter is present inside the central chamber (5).
  • an ultraviolet lamp (8) is of low or medium pressure;
  • the ultraviolet lamp has a tubular shape and comprises an insulating element of the medium also of tubular shape, preferably formed by a quartz sheath. This lamp provides a dose of UV-C between 1 and 60 mJ / cm 2 .
  • the injector (1 1) of the compound that reduces the pH is a CO2 injector.
  • CO2 injector organochlorine byproducts are minimized in comparison with their alternatives, while minimizing the risks of handling as it is a reagent present in nature.
  • the working pressure can be be the natural one obtained in the bypass installation or it can be increased by an auxiliary pump to the inlet (13) and a pressure regulating valve to the outlet (14), in this case the absorption process of the CO2 gas is maximized.
  • the inlet pipe (1) and the outlet pipe (6) are joined in bypass with an auxiliary pump (13) at the inlet and a regulating valve (14) at the outlet.
  • the reactor can present in the central chamber (5) an oxidant-chemical disinfectant doser in replacement of the electrolysis electrodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Reactor simplificado y modular, donde se puede llevar a cabo el procedimiento de depuración de aguas de piscina de manera integral que puede comprender, una aplicación simultánea de las técnicas de: oxidación-desinfección, radiación ultravioleta y ajuste de pH sobre el agua a tratar.

Description

REACTOR PARA EL TRATAMIENTO INTEGRAL DEL AGUA
DESCRIPCIÓN Campo técnico de la invención
La presente invención corresponde al campo técnico de los tratamientos integrales del agua de piscinas, (oxidación de materia orgánica, desinfección y ajuste de pH), tanto de tipo residencial como pública.
Antecedentes de la invención
El concepto de tratamiento integral del agua contempla tres factores que tienen que ir enlazados y por tanto han de ser considerados en su conjunto: oxidación de materia orgánica, desinfección y ajuste de pH.
Con este objetivo, en la actualidad existe una serie de tratamientos del agua de piscinas basados en distintas técnicas, que están siendo ampliamente utilizados. De estos, los más extendidos e innovadores en los últimos años son los que utilizan para la desinfección la técnica de la electrólisis y la técnica de las radiaciones ultravioletas. En ambos, paralela y simultáneamente las técnicas tienen que venir acompañadas de un control exhaustivo del pH del agua.
Con la técnica de la electrólisis, el agua a tratar se somete a una corriente eléctrica continua mediante la introducción en la misma de unos electrodos (cátodo, ánodo).
En el fenómeno de electrólisis tienen lugar simultáneamente procesos de reducción catódica y de oxidación anódica que son aprovechados para la depuración (oxidación materia orgánica) y desinfección del agua de piscina (eliminación de microrganismos). Los procesos de electrólisis requieren de cierta conductividad en el agua. Según las necesidades se puede cubrir todo el rango de conductividad deseado, desde una conductividad natural creada por una concentración de CINa comprendida aproximadamente entre 0,5 g/L y 2 g/L hasta una conductividad propia del agua de mar con una concentración de sales aproximada de 36g/L, siendo la conductividad más estándar concentraciones de sales entre los 3g/L-6g/L (concentración estándar).
Por otro lado, el proceso de electrólisis aumenta el pH del agua por lo que requiere de la adición controlada y continuada de un reductor de pH (pH minus). Durante el proceso de electrólisis se genera in situ pequeñas concentraciones de cloro e hidróxido sódico, que se recombinan para formar ácido hipocloroso, HCIO, que posteriormente reducen la materia orgánica y los patógenos, transformándose de nuevo en sal.
Este procedimiento presenta una serie de ventajas, como son el ahorro de agua y energía, pues no incrementa el ácido cianúrico residual, una reducción de las cloraminas, (reducción catódica), una oxidación de la materia orgánica y además, se evita tener que añadir cloro, ya sea en forma sólida o líquida, pues la propia reacción de la electrólisis, produce in- situ unas cantidades de cloro suficientes (1-2 ppm). Además, la calidad del agua obtenida es excelente, precisa de un sencillo mantenimiento y garantiza un efecto residual de desinfección (cloro 1-2 ppm).
Por otra parte, la técnica de la radiación ultravioleta (UV), que se basa en la utilización del efecto de dicha radiación mediante el uso de emisores de luz ultravioletas, como lámparas de baja o media presión aisladas del medio mediante tubos de cuarzo, produciendo la desinfección a dosis determinadas de mJ/cm2, eliminación de microorganismos (virus, bacterias).
Esto lo consigue mediante un proceso físico de alteración del ADN de dichos microorganismos, impidiendo su reproducción, y todo ello sin aditivos de productos químicos ni variaciones en el olor o sabor del agua ni el pH de la misma.
Por otro lado, la radiación UV tiene capacidad para la eliminación de cloraminas presentes en el agua de la piscina, las cuales están limitadas por normativa (generalmente a <0,6mg/L) y son las causantes del olor sofocante a "cloro" e irritaciones en piel, mucosas, así como vías respiratorias tanto para bañistas, acompañantes y personal de mantenimiento. El tratamiento UV no tiene capacidad de oxidación de la materia orgánica, con lo cual resulta necesaria la adición de algún tipo de oxidante (electrólisis in-situ o químicos exsitu como cloro, bromo o peróxido), y por tanto un control continuado del pH.
Resulta la combinación de las técnicas UV, electrólisis; una asociación sinérgica que supone un doble tratamiento de desinfección (electrólisis + radiación) con una doble capacidad de eliminación de subproductos (eliminación de cloraminas en agua/aire, reducción catódica y radiación) con capacidad para eliminación de materia orgánica (oxidación anódica más cloro libre electrogenerado) y con efecto residual (cloro electrogenerado).
En cualquier caso, y con cualquier tipo de técnica o combinación de ésta, el tratamiento tiene que venir acompañado de un control exhaustivo del pH del agua, tanto para maximizar la eficacia del tratamiento, como para minimizar subproductos no deseados en agua y aire así como para proteger a bañistas de irritaciones y a las instalaciones de corrosiones o deposiciones calcáreas. Según las técnicas empleadas en el tratamiento se puede requerir ph-plus (carbonatos.NaOH) o ph- minus (ácidos inorgánicos en sus formas gas, solido, líquido como por ejemplo C02-gas, NaHS04-sol, HCI-liq o sulfúrico-liq).
Resulta de especial interés la combinación de la técnica electrólisis con radiación UV y la adición de CÜ2-gas. A las ventajas apuntadas en los párrafos anteriores se debe sumar la minimización de subproductos (organoclorados) obtenida con este pH minus en comparación con sus alternativas, a la vez que minimiza los riesgos de manipulación al tratarse de un reactivo "natural" presente en la naturaleza.
La solicitud internacional con número de publicación WO2013053971 , describe el procedimiento de depuración de aguas, sin aporte de sales, para el tratamiento de agua de piscinas, que comprende la aplicación simultánea de las técnicas de electrólisis y radiación ultravioleta sobre el agua a tratar, así como un reactor para llevar a cabo el procedimiento que presenta en su interior los electrodos y la lámpara ultravioleta, así como un inyector de un pH minus a la entrada del reactor. Este reactor no cuenta con ningún elemento que mejore la distribución del pH minus.
Por otro lado es también conocido de la solicitud internacional WO2015018761 la adición de CO2 en el agua de las piscinas para el control del pH donde se describe un sistema concreto para la introducción del mismo.
Por todo esto es de extrema relevancia desarrollar un reactor donde puedan llevarse a cabo de manera efectiva estos procedimientos y sus diferentes combinaciones.
Descripción de la invención
La presente invención ha desarrollado un reactor simplificado y modular, donde se puede llevar a cabo el procedimiento de depuración de aguas de piscina de manera integral que puede comprender, una aplicación simultánea de las técnicas de: oxidación-desinfección, radiación ultravioleta y ajuste de pH sobre el agua a tratar.
Por lo tanto la invención describe un reactor para el tratamiento integral del agua que comprende:
una tubuladura de entrada;
una cámara perimetral que presenta dos volúmenes separados por una superficie perforada:
o un primer volumen, para distribución e inyección de un compuesto que ajusta el pH, que comprende: un inyector del compuesto que ajusta el pH;
o un segundo volumen que comprende un relleno para favorecer la absorción del compuesto que ajusta el pH;
una cámara central en el interior de la cámara perimetral que se comunica por su parte inferior con la cámara perimetral a través de oficios que impiden el paso de las partes que forman el relleno;
una tubuladura de salida donde se recoge el agua una vez tratada. En el reactor de la invención se lleva a cabo un procedimiento de depuración de aguas que comprende una primera fase en la que el agua entra en el reactor a través de la tubuladura de entrada alcanzando el primer volumen de la cámara perimetral donde se inyecta y distribuye el compuesto que ajusta el pH.
Seguidamente el agua circula por la cámara perimetral hacia un segundo volumen que presenta el relleno donde se mezcla de manera adecuada el compuesto que ajusta el pH.
Tras el paso por la cámara perimetral el agua entra a la cámara central (tratamientos oxidación-desinfección y/o ultravioleta) para buscar la tubuladura de salida del reactor.
Breve descripción de los dibujos
Con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se aporta como parte integrante de dicha descripción, una serie de dibujos donde, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La Figura 1A y 1 B muestran sendas vistas de sección del reactor integrado modular, donde indica la circulación del agua a tratar desde entrada a salida del reactor pasando por las distintas cámaras/partes del reactor.
La Figura 2 muestra un detalle en sección de la cabeza del reactor integrado donde se aprecia en detalle las partes del mismo.
La Figura 3 muestra la instalación en by-pass con control de presión en el reactor integrado mediante bomba a la entrada y válvula de regulación a la salida.
Descripción detallada de un modo de realización preferente de la invención
Como se ha dicho la invención se refiere a un reactor para el tratamiento integral del agua que comprende:
una tubuladura de entrada (1); una cámara perimetral (2) que presenta dos volúmenes separados por una superficie perforada (3):
o un primer volumen (2.1), para distribución e inyección de un compuesto que ajusta el pH, que comprende: un inyector (11) del compuesto que ajusta el pH;
o un segundo volumen volumen (2.2) que comprende un relleno (4) para favorecer la absorción del compuesto que ajusta el pH;
una cámara central (5) en el interior de la cámara perimetral (2) que se comunica por su parte inferior con la cámara perimetral (2) a través de oficios (12) que impiden el paso de las partes que forman el relleno;
una tubuladura de salida (6) donde se recoge el agua una vez tratada.
En la tubuladura de entrada (1) se puede realizar una lectura del pH y/o de cloro del agua a tratar.
Por lo tanto de manera preferente la tubuladura de entrada (1) comprende: un sensor de pH. Igualmente de manera preferente la tubuladura de entrada (1) comprende un sensor de cloro.
En la tubuladura de salida (6) se puede realizar una lectura del pH y/o de cloro y/o del flujo del agua a tratar.
Por lo tanto de manera preferente la tubuladura de salida (6) comprende: un sensor de pH. Igualmente de manera preferente la tubuladura de salida (6) comprende un sensor de cloro. De manera preferente la tubuladura de salida (6) comprende un flujostato (10).
Si la disposición entre el primer volumen (2.1) y el segundo volumen (2.2) es tal que el primer volumen (2.1) se sitúa sobre el segundo volumen (2.2) la mezcla del compuesto que ajusta el pH con el agua se ve mejorada especialmente si este compuesto es gas.
Por lo tanto de manera preferente el primer volumen (2.1) se sitúa sobre el segundo volumen (2.2) separado por la superficie perforada (3). De manera preferente el relleno (4) está formado una agrupación de un cuerpo plástico que se repite, en general con geometría esférica y/o cilindrica con poros o huecos que puede ser de mayor densidad del agua o menor densidad del agua, asegurando en cualquier caso el aumento de las superficies de contacto y mejorando la distribución en el reactor a su paso sin canales preferenciales.
De manera preferente en el interior de la cámara central (5) comprende al menos dos electrodos (7) para realizar una electrólisis. Más preferentemente estos electrodos (7) presentan forma de placa o malla desplegada (mesh) con configuración eléctrica monopolar, bipolar o mixta. Estos aplican un voltaje cátodo ánodo entre 3 y 24 Vcc y una densidad de corriente entre 1 y 60 mA/ cm 2 , con concentraciones de sales entre los 0,3 y 6 gr/l.
De manera preferente en el interior de la cámara central (5) está presente al menos un emisor de luz ultravioleta. Preferentemente una lámpara ultravioleta (8). De manera más preferente la lámpara ultravioleta (8) es de baja o media presión; la lámpara de ultravioletas presenta forma tubular y comprenden un elemento aislante del medio también de forma tubular, formado preferentemente por una vaina de cuarzo. Dicha lámpara proporcionan una dosis de UV-C entre los 1 y 60 mJ/ cm 2 .
De manera aun más preferente en la cámara central (5) está presente al menos dos electrodos (7) y una lámpara ultravioleta (8), para producir simultáneamente tratamiento in-situ de oxidación-desinfección y radiación ultravioleta. De manera preferente el inyector (1 1) del compuesto que reduce el pH es un inyector de CO2. Con el CO2 se minimizan los subproductos organoclorados en comparación con sus alternativas, a la vez que minimiza los riesgos de manipulación al tratarse de un reactivo presente en la naturaleza. Es importante controlar la presión en el interior del reactor para el tratamiento integral del agua de la invención, donde se encuentra la cámara de absorción (2.2) y el relleno (4), según se indica en la figura 3. La presión de trabajo puede ser la natural obtenida en la instalación by-pass o bien se puede incrementar mediante una bomba auxiliar a la entrada (13) y una válvula de regulación de presión a la salida (14), en este caso se maximiza el proceso de absorción del CO2 gas.
Por lo tanto de manera preferente la tubuladura de entrada (1) y la tubuladura de salida (6) están unidas en by pass con una bomba auxiliar (13) a la entrada y una válvula de regulación (14) a la salida.
Por último, como alternativa al tratamiento de electrólisis para producir oxidación- desinfección el reactor puede presentar en la cámara central (5) un dosificador de oxidante-desinfectante químico en sustitución de los electrodos de electrólisis.

Claims

REIVINDICACIONES
1. Reactor para el tratamiento integral del agua caracterizado porque comprende: una tubuladura de entrada (1);
- una cámara perimetral (2) que presenta dos volúmenes separados por una superficie perforada (3):
o un primer volumen (2.1), para distribución e inyección de un compuesto que ajusta el pH, que comprende: un inyector (11) del compuesto que ajusta el pH;
o un segundo volumen (2.2) que comprende un relleno (4) para favorecer la absorción del compuesto que ajusta el pH; una cámara central (5) en el interior de la cámara perimetral (2) que se comunica por su parte inferior con la cámara perimetral (2) a través de oficios (12) que impiden el paso de las partes que forman el relleno;
- una tubuladura de salida (6) donde se recoge el agua una vez tratada.
2. Reactor según la reivindicación 1 caracterizado porque la tubuladura de entrada (1) comprende: un sensor de pH.
3. Reactor según cualquiera de las reivindicaciones 1 a 2 caracterizado porque la tubuladura de entrada (1) comprende: un sensor de cloro.
4. Reactor según cualquiera de las reivindicaciones 1 a 3 caracterizado porque la tubuladura de salida (6) comprende: un sensor de pH.
5. Reactor según cualquiera de las reivindicaciones 1 a 4 caracterizado porque la tubuladura de salida (6) comprende: un sensor de cloro.
6. Reactor según cualquiera de las reivindicaciones 1 a 5 caracterizado porque la tubuladura de salida (6) comprende: un flujostato (10).
7. Reactor según cualquiera de las reivindicaciones 1 a 6 caracterizado porque el primer volumen (2.1) se sitúa sobre el segundo volumen (2.2) separado por la superficie perforada (3).
8. Reactor según cualquiera de las reivindicaciones 1 a 7 caracterizado porque el interior de la cámara central (5) comprende al menos dos electrodos (7) para realizar la electrólisis.
9. Reactor según cualquiera de las reivindicaciones 1 a 8 caracterizado porque en el interior de la cámara central (5) comprende al menos un emisor de luz ultravioleta.
10. Reactor según la reivindicación 9 caracterizado porque el emisor de luz ultravioleta es una a lámpara ultravioleta (8).
1 1. Reactor según cualquiera de las reivindicaciones 1 a 10 donde el inyector del compuesto que ajusta el pH es un inyector (11) de CO2.
12. Reactor según cualquiera de las reivindicaciones 1 a 11 caracterizado porque la tubuladura de entrada (1) y la tubuladura de salida (6) están unidas en by pass con una bomba auxiliar (13) a la entrada y una válvula de regulación (14) a la salida para regular la presión en el interior del reactor.
13. Reactor según cualquiera de las reivindicaciones 1-7 y 9-13 caracterizado porque presenta un dosificador de un oxidante químico en la cámara central (5).
PCT/ES2018/070670 2017-10-16 2018-10-16 Reactor para el tratamiento integral del agua WO2019077183A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2018351746A AU2018351746B2 (en) 2017-10-16 2018-10-16 Reactor for integral water treatment
ES18822413T ES2895026T3 (es) 2017-10-16 2018-10-16 Reactor para tratamiento integral de aguas
EP18822413.3A EP3699147B1 (en) 2017-10-16 2018-10-16 Reactor for integral water treatment
US16/755,145 US11136250B2 (en) 2017-10-16 2018-10-16 Reactor for integral water treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201731220U ES1197058Y (es) 2017-10-16 2017-10-16 Reactor para el tratamiento integral del agua
ESU201731220 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019077183A1 true WO2019077183A1 (es) 2019-04-25

Family

ID=60236454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070670 WO2019077183A1 (es) 2017-10-16 2018-10-16 Reactor para el tratamiento integral del agua

Country Status (5)

Country Link
US (1) US11136250B2 (es)
EP (1) EP3699147B1 (es)
AU (1) AU2018351746B2 (es)
ES (2) ES1197058Y (es)
WO (1) WO2019077183A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042143A2 (en) * 1999-12-02 2001-06-14 Gemma Industrial Ecology, Ltd. Method and device for electrochemically disinfecting fluids
WO2013082294A1 (en) * 2011-12-02 2013-06-06 AquaMost, Inc. Apparatus and method for treating aqueous solutions and contaminants therein
EP2767513A1 (en) * 2011-10-14 2014-08-20 I.D. Electroquimica, S.L. Method for purifying water without the use of salts, and water-purification reactor
CH708088A2 (de) * 2013-05-23 2014-11-28 Peter A Müller Container für Schwimmbadtechnik.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090490B2 (en) * 2012-03-23 2015-07-28 Jet, Inc. System and method for wastewater disinfection
ES2434140B1 (es) 2013-08-07 2014-10-07 Metalast S.A.U. Sistema de suministro de dióxido de carbono para el tratamiento de agua

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001042143A2 (en) * 1999-12-02 2001-06-14 Gemma Industrial Ecology, Ltd. Method and device for electrochemically disinfecting fluids
EP2767513A1 (en) * 2011-10-14 2014-08-20 I.D. Electroquimica, S.L. Method for purifying water without the use of salts, and water-purification reactor
WO2013082294A1 (en) * 2011-12-02 2013-06-06 AquaMost, Inc. Apparatus and method for treating aqueous solutions and contaminants therein
CH708088A2 (de) * 2013-05-23 2014-11-28 Peter A Müller Container für Schwimmbadtechnik.

Also Published As

Publication number Publication date
EP3699147A1 (en) 2020-08-26
US20200299159A1 (en) 2020-09-24
AU2018351746A1 (en) 2020-05-21
EP3699147B1 (en) 2021-07-21
ES1197058Y (es) 2018-01-29
US11136250B2 (en) 2021-10-05
AU2018351746B2 (en) 2022-10-06
ES2895026T3 (es) 2022-02-17
ES1197058U (es) 2017-11-08

Similar Documents

Publication Publication Date Title
US11247922B2 (en) Water treatment systems and methods
ES2373601B1 (es) Procedimiento de depuración de agua sin aporte de sales y reactor de depuración de agua.
ES2635589T3 (es) Dispositivo para producir agua ultrapura con ósmosis inversa y ablandamiento
SG183405A1 (en) Ballast water treatment system using a highly efficient electrolysis device
ES2706982T3 (es) Procedimiento para la preparación y el uso de biocidas enriquecidos en radicales activos antes del uso
ES2895026T3 (es) Reactor para tratamiento integral de aguas
JP7139344B2 (ja) 電気穿孔法を使用する水殺菌用システム
US20130270193A1 (en) Method for water sanitisation
ES2426016B1 (es) Dispositivo para la producción de desinfectante y de agua desinfectada mediante activación electroquímica de soluciones acuosas
AU2016200355B2 (en) Water sanitation apparatus
JP5819135B2 (ja) 水処理方法および水処理装置
JP3101502U (ja) 安定化二酸化塩素液に紫外線殺菌燈を照射し、二酸化塩素液に改質して温水循環回路に注入し、殺菌浄化防臭防腐蝕効果を得る装置。
WO2013120147A1 (en) Improved water sanitisation
ES1096233U (es) Sistema de tratamiento de agua
ES2350131A1 (es) Dispositivo y procedimiento para tratar agua mediante electrocloracion.
BR102014014113A2 (pt) Estação compacta para tratamento de água
KR20140078607A (ko) 오존 발생기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018351746

Country of ref document: AU

Date of ref document: 20181016

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018822413

Country of ref document: EP

Effective date: 20200518