WO2019076270A1 - 散热结构、机柜及通信系统 - Google Patents

散热结构、机柜及通信系统 Download PDF

Info

Publication number
WO2019076270A1
WO2019076270A1 PCT/CN2018/110259 CN2018110259W WO2019076270A1 WO 2019076270 A1 WO2019076270 A1 WO 2019076270A1 CN 2018110259 W CN2018110259 W CN 2018110259W WO 2019076270 A1 WO2019076270 A1 WO 2019076270A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
cabinet
layer side
gap
inner layer
Prior art date
Application number
PCT/CN2018/110259
Other languages
English (en)
French (fr)
Inventor
李江
汪俊
贾利锐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18868981.4A priority Critical patent/EP3684151B1/en
Publication of WO2019076270A1 publication Critical patent/WO2019076270A1/zh
Priority to US16/849,445 priority patent/US20200245499A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20536Modifications to facilitate cooling, ventilating, or heating for racks or cabinets of standardised dimensions, e.g. electronic racks for aircraft or telecommunication equipment
    • H05K7/206Air circulating in closed loop within cabinets wherein heat is removed through air-to-air heat-exchanger
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications

Definitions

  • the present application relates to the field of heat dissipation technologies, and in particular, to a heat dissipation structure, a cabinet, and a communication system.
  • the cabinet In order to ensure that the electronic equipment installed in the cabinet can work normally and reliably within the allowable working temperature range, the cabinet must have a certain heat dissipation function to transfer the heat generated by the electronic equipment to the outside of the cabinet.
  • the electronic devices in the cabinet can be dissipated as follows.
  • the side panels of the cabinet are three-layer side panels, which may be referred to as a side panel a, a side panel b, and a side panel c in order of distance from the electronic device.
  • the gap between the side plate a and the side plate b communicates with the outside of the cabinet to form an outer circulation air passage; the gap between the side plate c and the side plate b communicates with the air inlet and the air outlet of the electronic device to form an inner loop. Wind tunnel.
  • Both the inner circulation duct and the outer circulation duct pass the same side panel (ie, side panel b) to transfer heat generated by the electronic device to the outside of the cabinet.
  • the present invention provides a heat dissipation structure, a cabinet, and a communication system, which are used to solve the problem in the prior art that the heat generated by the electronic device is transmitted to the outside of the cabinet through the same side plate due to the inner circulation air passage and the outer circulation air passage, thereby causing low heat dissipation efficiency.
  • the problem is a heat dissipation structure, a cabinet, and a communication system, which are used to solve the problem in the prior art that the heat generated by the electronic device is transmitted to the outside of the cabinet through the same side plate due to the inner circulation air passage and the outer circulation air passage, thereby causing low heat dissipation efficiency. The problem.
  • the present application provides a heat dissipation structure for dissipating heat from an electronic device installed in a cabinet, including: an outer casing of the cabinet.
  • a first tuyere and a second tuyere having different heights are disposed on the outer casing, and the first tuyere and the second tuyere are both in communication with an outer portion of the cabinet.
  • the outer casing comprises a 2N+1 layer side plate, the 2N+1 layer side plate comprises an outer side side plate and 2N inner layer side plates, and a gap exists between two adjacent side plates, and the 2N inner layer side
  • the boards are sequentially divided into N sets of inner side panels in the order of arrangement, and N is a positive integer.
  • a first gap existing between the first inner layer side panel and the outer layer side panel communicates with the interior of the cabinet to form an inner circulation air passage.
  • the first inner layer side panel is an inner layer side panel of the 2N inner layer side panels that is farthest from the electronic device.
  • the second gap existing between the two inner side panels of the same group communicates with each other and communicates with the first tuyere and the second tuyere to form an outer circulation duct.
  • the outer circulation air passage is formed, and the outer circulation air passage is designed to the inner side of the inner circulation air passage, so that the heat exchange area is additionally increased in the case where the size of the side panel of the cabinet is determined.
  • the heat dissipation structure provided by the intermediate layer side plate of the three-layer side plate can provide heat dissipation structure, and the side plates of each layer can provide heat dissipation area, thereby improving The heat dissipation efficiency.
  • the 2N inner layer side plates are sequentially divided into N sets of inner layer side plates in order of arrangement, and the first gap existing between adjacent two inner layer side plates of different groups, and the first inner side
  • the first gap existing between the layer side panel and the outer layer side panel communicates with each other and communicates with the interior of the cabinet to form an inner circulation air passage
  • a second gap existing between the two inner side panels of the same group The first air outlet and the second air outlet are both connected to the outside of the cabinet to form an outer circulation air passage, which realizes the exchange provided by the 2+1 layer side panel.
  • the heat dissipation structure provided by the embodiment of the present application can improve the heat dissipation efficiency without using an additional heat exchange component. Therefore, the heat dissipation structure provided by the embodiment of the present application can reduce the cost. In addition, the heat dissipation structure provided by the embodiment of the present application can improve the heat dissipation efficiency without changing the size of the side panel of the cabinet. Therefore, the heat dissipation structure provided by the embodiment of the present application can ensure the consistency of the appearance of the cabinet.
  • the heat dissipation structure further includes a baffle and a tubular wind guiding structure.
  • the baffle is disposed between an upper end of the two side plates forming the first gap and a lower end of the two side plates forming the first gap.
  • Each of the inner layer side plates is provided with a first through hole and a second through hole having different heights, and the first through hole and the second through hole disposed on the second inner layer side plate respectively are respectively connected to the cabinet Internal connectivity.
  • the second inner layer side plate is an inner layer side plate of the 2N inner layer side plates which is closest to the electronic device;
  • the air guiding structure is connected between the first through holes of the two inner side panels of the same group and between the second through holes of the two inner side panels of the same group.
  • a baffle is disposed between the upper ends of the two side plates forming the first gap, and the lower ends of the two side plates forming the first gap, each inner side plate a first through hole and a second through hole having different heights are disposed, and the first through hole and the second through hole disposed on the second inner layer side plate respectively communicate with the inside of the cabinet, and the second inner side plate is The inner side panel closest to the electronic device in the 2N inner layer side plates, the first through holes of the two inner side panels of the same group, and the second through holes of the two inner side panels of the same group An air guiding structure is connected between each other, so that when N is equal to 1, the first gap existing between the first inner side panel and the outer side panel is communicated with the interior of the cabinet, and when N is greater than 1, the difference is different.
  • the first gap existing between the adjacent two inner side panels of the group communicates with the first gap existing between the first inner side panel and the outer side panel, and communicates with the interior of the
  • the first tuyere is disposed on a top plate of the outer casing, and the second tuyere is disposed on a bottom plate of the outer casing and/or the outer side panel;
  • the first tuyere is disposed on an outer side panel of the outer casing, and the second tuyere is disposed on a bottom plate of the outer casing and/or the outer side panel.
  • the baffle comprises a top plate and/or a bottom plate of the outer casing.
  • the heat dissipation structure further includes: a baffle.
  • the baffle is disposed between the upper ends of the two inner side panels forming the second gap and between the lower ends of the two inner side panels forming the second gap.
  • a third gap exists between an upper end of the side plate forming the first gap and a top plate of the outer casing, and a fourth gap exists between a lower end of the side plate forming the first gap and a bottom plate of the outer casing,
  • the third gap and the fourth gap are both in communication with the interior of the cabinet.
  • a baffle is disposed between the upper ends of the two inner layer side plates forming the second gap, and the lower ends of the two inner layer side plates forming the second gap are formed to form the first a third gap exists between an upper end of the side plate of the gap and a top plate of the outer casing, and a fourth gap exists between a lower end of the side plate forming the first gap and a bottom plate of the outer casing, and the third gap and the fourth gap are both Communicating with the interior of the cabinet, the first gap existing between the first inner side panel and the outer side panel is achieved when N is equal to 1, and communicates with the interior of the cabinet. When N is greater than 1, the difference is different.
  • the first gap existing between the adjacent two inner side panels of the group communicates with the first gap existing between the first inner side panel and the outer side panel, and communicates with the interior of the cabinet to form Inner circulation air duct.
  • the first tuyere and the second tuyere are disposed on the outer side panel; the heat dissipation structure further includes: a tubular air guiding structure.
  • the other inner side plates of the 2N inner layer side plates except the second inner side plate are provided with third through holes and fourth through holes having different heights, and the second inner side plates are The inner side panel of the 2N inner layer side panels closest to the electronic device.
  • the wind guiding structure is connected between the third through holes of the adjacent two inner side plates of different groups and between the fourth through holes of the adjacent two inner side plates of different groups.
  • the cold air outside the cabinet can be introduced into the same group through the air guiding structure disposed between the fourth through hole of the first inner layer side plate and the second air outlet.
  • the second gap between the inner side panels is led out by the air guiding structure disposed between the third through hole of the first inner side panel and the first tuyere after being heated by the inner side panel.
  • the heat dissipation structure when N is greater than 1, cold air outside the cabinet may pass between the fourth through hole of the first inner side plate and the second air outlet, and adjacent two inner side sides of different groups
  • the air guiding structure disposed between the fourth through holes of the plate is introduced into the second gap between the two inner side plates of the same group, and after being heated by the inner side plates, passes through the first inner side plate
  • An air guiding structure disposed between the three through holes and the first tuyere and between the third through holes of the adjacent two inner side panels of different groups is led out.
  • the heat dissipation structure further includes: a fan disposed in the outer circulation air passage.
  • a fan is disposed in the outer circulation air passage, which can greatly increase the flow rate of the air in the outer circulation air passage, thereby further improving the heat dissipation efficiency.
  • the side panels comprise a smooth or corrugated sheet.
  • the side panel is further provided with a rib structure or a spoiler structure.
  • the rib structure or the spoiler structure is disposed on the side plate, so that the heat dissipation capability of the side plate itself can be improved, thereby further improving the heat dissipation efficiency.
  • the present application provides a cabinet including a fan and the heat dissipation structure according to any one of the above aspects, wherein the fan is disposed in an inner circulation air passage of the heat dissipation structure.
  • the first gap existing between the inner side panel and the outer side panel of the two inner layer side panels that are far from the electronic device is connected to the interior of the cabinet.
  • the outer circulation air passage is formed, and the outer circulation air passage is designed to the inner side of the inner circulation air passage, so that the heat exchange area is additionally increased in the case where the size of the side panel of the cabinet is determined.
  • the heat dissipation area provided by only the intermediate layer side plates of the three-layer side plates can be provided with the heat dissipation area of the cabinet provided by the embodiments of the present application, thereby improving the heat dissipation area.
  • the heat dissipation efficiency of the cabinet Compared with the heat dissipation structure of the prior art, the heat dissipation area provided by only the intermediate layer side plates of the three-layer side plates can be provided with the heat dissipation area of the cabinet provided by the embodiments of the present application, thereby improving the heat dissipation area.
  • the heat dissipation efficiency of the cabinet Compared with the heat dissipation structure of the prior art, the heat dissipation area provided by only the intermediate layer side plates of the three-layer side plates can be provided with the heat dissipation area of the cabinet provided by the embodiments of the present application, thereby improving the heat dissipation area.
  • the heat dissipation efficiency of the cabinet Compared with
  • the 2N inner layer side plates are sequentially divided into N sets of inner layer side plates in order of arrangement, and the first gap existing between adjacent two inner layer side plates of different groups, and the first inner side
  • the first gap existing between the layer side panel and the outer layer side panel communicates with each other and communicates with the interior of the cabinet to form an inner circulation air passage
  • a second gap existing between the two inner side panels of the same group The first air outlet and the second air outlet are both connected to the outside of the cabinet to form an outer circulation air passage, which realizes the exchange provided by the 2+1 layer side panel.
  • the cabinet provided by the embodiment of the present application can improve the heat dissipation efficiency without using additional heat exchange components, the cost is reduced.
  • the cabinet provided in the embodiment of the present invention can improve the heat dissipation efficiency without changing the size of the side panels of the cabinet, thereby ensuring the consistency of the appearance of the cabinet.
  • the present application provides a communication system comprising the cabinet of the above second aspect and an electronic device installed in the cabinet.
  • FIG. 1 is a schematic structural view of a heat dissipation structure in the prior art
  • FIG. 2A is a schematic structural view 1 of a heat dissipation structure according to an embodiment of the present application
  • FIG. 2B is a schematic structural view 2 of a heat dissipation structure according to an embodiment of the present application.
  • FIG. 3A is a front view of a heat dissipation structure according to another embodiment of the present application.
  • 3B is a top view of a heat dissipation structure according to another embodiment of the present application.
  • FIG. 4 is a schematic structural view of a heat dissipation structure according to still another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a heat dissipation structure according to still another embodiment of the present application.
  • FIG. 6A is a front view of a heat dissipation structure according to another embodiment of the present application.
  • FIG. 6B is a top view of a heat dissipation structure according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a heat dissipation structure according to still another embodiment of the present application.
  • the embodiment of the present application provides a heat dissipation structure for dissipating heat from an electronic device installed in a cabinet.
  • FIG. 2A is a schematic structural diagram of a heat dissipation structure according to an embodiment of the present disclosure.
  • FIG. 2B is a schematic structural diagram of a heat dissipation structure according to an embodiment of the present disclosure.
  • the heat dissipation structure provided in the embodiment is used for installing the heat dissipation structure in the cabinet 21
  • the electronic device 22 performs heat dissipation.
  • the heat dissipation structure of the embodiment may include an outer casing of the cabinet 21.
  • the first air outlet A1 and the second air outlet A2 having different heights are disposed on the outer casing, and the first air outlet A1 and the second air outlet A2 are both connected to the outside of the cabinet 21.
  • the outer casing includes a 2N+1 layer side plate, and the 2N+1 layer side plate includes an outer side plate 211 and 2N inner side plates 212. There is a gap between two adjacent side plates, and the 2N inner side
  • the layer side plates 212 are sequentially divided into N sets of inner layer side plates in order of arrangement, and N is a positive integer.
  • the first gap B1 existing between the first inner layer side plate C1 and the outer layer side plate 211 communicates with the interior of the cabinet 21 to form an inner circulation air passage.
  • the first inner layer side panel C1 is an inner side panel which is the farthest from the electronic device 22 among the 2N inner layer side panels 212.
  • the second gap B2 existing between the two inner side panels 212 of the same group communicates with each other and communicates with the first tuyere A1 and the second tuyere A2 to form an outer circulation duct.
  • the wind direction of the inner circulation air passage in the embodiment of the present application may be specifically as shown by the thick arrow in FIG. 2A and FIG. 2B
  • the wind direction in the outer circulation air passage may be specifically as shown by the thin arrow in FIG. 2A and FIG. 2B. .
  • the wind direction in the outer circulation air passage may be from bottom to top or from top to bottom; the wind direction in the inner circulation air passage may be clockwise or counterclockwise.
  • the wind direction of the outer circulation air passage and the inner circulation air passage is not specifically limited in the embodiment of the present application.
  • the wind direction in the outer circulation duct is from bottom to top.
  • the wind direction in the outer circulation duct is from top to bottom.
  • the first gap B1 existing between the adjacent two inner layer side plates 212 of different groups and the first inner layer side plate C1 and the outer layer side plate 211 are not present.
  • the specific implementation manner in which the first gap B1 communicates with each other and the specific implementation in which the second gap B2 existing between the two inner layer side plates 212 of the same group communicate with each other is limited.
  • a plurality of gaps may communicate with each other through other gaps; or, a plurality of first gaps may communicate with each other through the air guiding structure.
  • the embodiment of the present application does not limit the specific manner in which the first gap B1 communicates with the interior of the cabinet to form an inner circulation air passage.
  • the inside of the cabinet connected to the electronic device 22 may be provided with a through hole to form an inner circulation duct.
  • a fan may be disposed between the plate and the top plate of the cabinet to drive the flow of air in the inner circulation duct.
  • the height of the first tuyere A1 is greater than the height of the second tuyere A2.
  • the first tuyere A1 may be disposed on the top plate of the outer casing, and the second tuyere A2 may be disposed on the bottom plate and/or outside of the outer casing.
  • Layer side plate 211 Alternatively, the first tuyere A1 may be disposed on the outer side panel 211 of the outer casing, and the second tuyere A2 may be disposed on the bottom panel and/or the outer side panel 211 of the outer casing.
  • the heat transfer principle of the heat dissipation structure provided by the embodiment of the present application may be as follows:
  • the heat can be transferred to the first inner side panel C1 and the outer layer by convective heat transfer.
  • the side plate 211 and the outer layer side plate 211 can directly perform convective heat exchange and radiation heat exchange with the outside air, and the first inner layer side plate C1 can perform convective heat exchange with the air in the outer circulation air passage.
  • the other inner side panel 212 other than the first inner side panel C1 can be directly in contact with the hot air in the cabinet, directly heated, and then convectively exchanges heat with the air in the outer circulation duct.
  • the air in the outer circulation duct is heated by the inner side panel 212 to form a chimney effect, and the hot air in the outer circulation duct is driven to flow out from the higher air outlet, and the cold air is continuously replenished from the lower inlet. Take the heat inside the cabinet to achieve heat dissipation.
  • the heat dissipation structure provided in this embodiment can simultaneously dissipate heat through the side plates of each of the three side panels included in the outer casing.
  • the heat dissipation capability can be further improved by superposing an even number of inner side plates, that is, increasing the N mode.
  • the heat transfer principle of the heat dissipation structure of the embodiment of the present application may be as follows:
  • the heat in the cabinet 21 When the hot air in the cabinet 21 reaches the first gap B1 existing between the first inner side panel C1 and the outer side panel 211, the heat can be transferred to the first inner side panel C1 and the outer layer by convective heat transfer.
  • the side plate 211 and the outer layer side plate 211 can directly perform convective heat exchange and radiation heat exchange with the outside air, and the first inner layer side plate C1 can perform convective heat exchange with the air in the outer circulation air passage.
  • the hot air in the cabinet 21 reaches the first gap B1 existing between the adjacent two inner side panels 212 of different groups, the heat can be transferred to the adjacent two inner side panels of the different groups by convective heat transfer. 212.
  • the adjacent two inner side panels 212 of different groups may be convectively exchanged with the air in the outer circulation duct.
  • the inner side panel closest to the electronic device 22 can be directly in contact with the hot air in the cabinet, directly heated, and then convectively exchanges heat with the air in the outer circulation duct.
  • the air in the outer circulation duct is heated by the inner side panel 212 to form a chimney effect, and the hot air in the outer circulation duct is driven to flow out to the higher air outlet, and the cold air is continuously replenished from the lower air inlet, continuously Take the heat inside the cabinet to achieve heat dissipation.
  • the heat dissipation structure provided by the embodiment can simultaneously dissipate heat through the side plates of each layer of the 2N+1 layer side plates included in the outer casing.
  • the first gap existing between the inner side panel and the outer side panel of the two inner layer side panels that are far from the electronic device communicates with the interior of the cabinet.
  • the outer circulation air passage realizes designing the outer circulation air passage to the inner layer of the inner circulation air passage, thereby realizing an additional heat exchange area in the case where the size of the cabinet side panel is determined.
  • the heat dissipation structure provided by the embodiment of the present invention can provide a heat dissipation area, thereby improving the heat dissipation area.
  • the heat dissipation efficiency can be improved.
  • the 2N inner layer side plates are sequentially divided into N sets of inner layer side plates in order of arrangement, and the first gap existing between adjacent two inner layer side plates of different groups, and the first inner side
  • the first gap existing between the layer side panel and the outer layer side panel communicates with each other and communicates with the interior of the cabinet to form an inner circulation air passage
  • a second gap existing between the two inner side panels of the same group The first air outlet and the second air outlet are both connected to the outside of the cabinet to form an outer circulation air passage, which realizes the exchange provided by the 2+1 layer side panel.
  • the heat dissipation structure provided by the embodiment of the present application can improve the heat dissipation efficiency without using an additional heat exchange component. Therefore, the heat dissipation structure provided by the embodiment of the present application can reduce the cost. In addition, the heat dissipation structure provided by the embodiment of the present application can improve the heat dissipation efficiency without changing the size of the side panel of the cabinet. Therefore, the heat dissipation structure provided by the embodiment of the present application can ensure the consistency of the appearance of the cabinet.
  • heat dissipation structure provided by the embodiment of the present application may be adopted on the side panel of any one or more sides of the outer casing of the cabinet.
  • FIG. 3A is a front view of a heat dissipation structure according to another embodiment of the present application
  • FIG. 3B is a top view of a heat dissipation structure according to another embodiment of the present application.
  • This embodiment mainly describes an alternative implementation for forming the above-described inner circulation air passage based on the embodiment shown in Figs. 2A and 2B.
  • the heat dissipation structure of the embodiment may further include: a baffle 23 and a tubular wind guiding structure 24.
  • a baffle 23 is disposed between the upper ends of the two side plates forming the first gap B1 and between the lower ends of the two side plates forming the first gap B1.
  • Each of the inner layer side plates 212 is provided with a first through hole (not shown) having a different height and a second through hole (not shown), and the first through hole and the first through hole are provided on the second inner layer side plate C2
  • the four through holes communicate with the interior of the cabinet 21, respectively.
  • the second inner layer side plate C2 is an inner layer side plate closest to the electronic device 22 among the 2N inner layer side plates.
  • An air guiding structure 24 is connected between the first through holes of the two inner side panels of the same group and between the second through holes of the two inner side panels of the same group.
  • the number of the first through holes and the second through holes provided on the same inner layer side plate may be one or plural.
  • the number of the first through holes and the second through holes provided on the two inner side plates of the same group may be the same.
  • the heights of the first through holes and the second through holes provided on the different inner side plates may be the same or different, and are not limited in the embodiment of the present application.
  • the two side plates forming the first gap B1 may be the first inner layer side plate C1 and the outer layer side plate 211, or may be different groups of adjacent two inner layer side plates 212.
  • the first tuyere A1 is disposed on the top plate of the outer casing
  • the second tuyere A2 is disposed on the bottom plate of the outer casing
  • N is equal to 1 as an example.
  • the thick solid arrow in Fig. 3B may indicate the wind direction entering the first gap B1 in the inner circulation duct
  • the thick dashed arrow may indicate the wind direction in the inner loop duct out of the first gap B1.
  • the number of the first through holes and the second through holes on the same inner layer side plate is two.
  • the hot air in the cabinet 21 is introduced into the first inner side panel C1 and the outer side by the air guiding structure disposed between the upper ends of the two inner side panels.
  • the first gap B1 between the plates 211 is cooled by heat exchange, and then returned to the cabinet 21 through the air guiding structure disposed between the lower ends of the two inner side plates.
  • the air guiding structure 24 may specifically be an air guiding nozzle.
  • the shape of the cross section of the air guiding nozzle includes, but is not limited to, a long square, a circle, an ellipse, a triangle, a multi-deformation, etc., or a combination of the above shapes.
  • the heat dissipation structure of the embodiment may further include: a fan 25 disposed in the outer circulation air duct.
  • a fan 25 disposed in the outer circulation air duct.
  • the fan 25 is disposed at the top of the cabinet. This embodiment does not limit the position of the fan 25.
  • the fan 25 may also be disposed at the bottom of the cabinet.
  • the baffle 23 disposed between the upper ends of the two side plates forming the first gap B1 in FIGS. 3A and 3B is the top plate of the outer casing, and the lower ends of the two side plates forming the first gap B1 are formed.
  • the baffle 23 disposed between is an example of the bottom plate of the outer casing.
  • the baffle 23 may also be a plate provided in addition to the top and bottom plates of the outer casing dedicated to the formation of the inner circulation duct of the airtightness.
  • the baffle 23 provided between the lower ends of the two side plates forming the first gap B1 may be a plate provided for the inner circulation duct dedicated to forming the airtight except for the top plate and the bottom plate of the outer casing.
  • the baffle 23 disposed between the upper ends of the two side plates forming the first gap B1 may also be an inner circulation air duct which is provided for the airtightness except for the top plate and the bottom plate of the outer casing. Board.
  • the first tuyere A1 is disposed on the top plate of the outer casing
  • the second tuyere A2 is disposed on the bottom plate and the outer side plate 211 of the outer casing
  • N is equal to 2.
  • the hot air in the cabinet 21 is introduced into the first inner side panel C1 through the air guiding structure disposed between the first through holes of the two inner side panels of the same group.
  • the first gap B1 between the outer layer side plates 211 and the two inner layer side plates of the different groups is cooled by heat exchange and then passed between the second through holes of the two inner side plates of the same group.
  • the arranged air guiding structure returns to the inside of the cabinet 21.
  • the number of the air guiding structures 24 in the present embodiment is at least 2N.
  • This embodiment does not limit the specific number of the air guiding structure 24, and ensures that at least one air guiding structure guides the hot air in the cabinet 21 to the first gap, and at least one air guiding structure is cooled by the heat exchange.
  • the cold air is directed back to the foundation within the cabinet 21, and the number of air guiding structures can be flexibly set.
  • a baffle is disposed between the upper ends of the two side plates forming the first gap, and the lower ends of the two side plates forming the first gap, and each inner side plate is provided with a height Different first through holes and second through holes, and the first through holes and the second through holes provided on the second inner layer side plate are both connected to the inside of the cabinet;
  • the second inner side plate is 2N inner
  • the inner side panel closest to the electronic device in the layer side panel, the first through hole of the two inner side panel of the same group, and the second through hole of the two inner side panel of the same group are connected
  • the air guiding structure realizes that the first gap existing between the adjacent two inner side panels of different groups and the first gap existing between the first inner side panel and the outer side panel are connected to each other, and
  • the third tuyere and the fourth tuyere are connected to form an inner circulation duct.
  • FIG. 6 is a front view of a heat dissipation structure according to another embodiment of the present application
  • FIG. 6B is a top view of a heat dissipation structure according to another embodiment of the present application.
  • This embodiment mainly describes another alternative implementation for forming the above-described inner circulation air passage based on the embodiment shown in Figs. 2A and 2B.
  • the heat dissipation structure of the embodiment may further include: a baffle 26.
  • a baffle 26 is disposed between the upper ends of the two inner layer side plates 212 forming the second gap B2 and between the lower ends of the two inner layer side plates forming the second gap B2.
  • the two side plates forming the second gap B2 may specifically be two inner side panels 212 of the same group.
  • N is equal to 1.
  • the thick solid arrow in Fig. 6B may indicate the wind direction entering the first gap B1 in the inner circulation duct, and the thick dashed arrow may indicate the wind direction in the inner loop duct out of the first gap B1.
  • the hot air in the cabinet 21 enters the first space through the third gap B3 between the upper end of the side plate forming the first gap B1 and the top plate of the outer casing.
  • the first gap B1 between the layer side plate C1 and the outer layer side plate 211 is cooled by heat exchange, and then there is a fourth gap B4 between the lower end of the side plate forming the first gap B1 and the bottom plate of the outer casing. Go to the inside of the cabinet 21.
  • the first tuyere A1 and the second tuyere A2 may be disposed on the outer side panel 211; the heat dissipation structure may further include: a tubular air guiding structure 27.
  • the other inner side plates of the 2N inner layer side plates 212 except the second inner layer side plate C2 are provided with third through holes (not shown) having different heights and fourth through holes (not shown).
  • the second inner layer side panel C2 is an inner layer side panel closest to the electronic device 22 among the 2N inner layer side panels.
  • the number of the third through holes and the fourth through holes provided on the same inner layer side plate may be one or plural.
  • the number of the third through holes and the fourth through holes provided on the two inner side plates of the same group may be the same.
  • the heights of the third through holes provided on the different inner side plates may be the same or different, and the heights of the fourth through holes provided on the different inner side plates may be the same or different, which is not limited in the embodiment of the present application.
  • the height of the third through hole and the first air outlet A1 on the first inner layer side plate may be the same or different, and is not limited in the embodiment of the present application.
  • the height of the fourth through hole and the second air opening A2 on the first inner layer side plate may be the same or different, and is not limited in the embodiment of the present application.
  • the thin solid arrow of FIG. 6B may indicate the wind direction entering the second gap B2 in the outer circulation air passage
  • the thin dotted arrow may indicate the wind direction of the second gap B2 in the outer circulation air passage.
  • the number of the third through hole and the fourth through hole on the same inner layer side plate is two.
  • the cold air outside the cabinet may pass through the air guiding structure 27 disposed between the fourth through hole of the first inner layer side plate C1 and the second air opening A2.
  • the second gap B2 introduced between the two inner side panels of the same group is disposed between the third through hole of the first inner side panel C1 and the first tuyere A1 after being heated by the inner side panel.
  • the wind guiding structure 27 is derived.
  • cold air outside the cabinet may pass between the fourth through hole of the first inner layer side plate C1 and the second air outlet A2 and between two adjacent groups of different groups.
  • the air guiding structure 27 disposed between the fourth through holes of the layer side plates is introduced into the second gap B2 between the two inner side plates of the same group, and after being heated by the inner side plates, passes through the first inner layer
  • the wind guiding structure 27 disposed between the third through hole of the side plate C1 and the first air opening A1 and between the third through holes of the adjacent two inner side plates of different groups is led out.
  • the air guiding structure 27 may specifically be an air guiding nozzle.
  • the shape of the cross section of the air guiding nozzle includes, but is not limited to, a long square, a circle, an ellipse, a triangle, a multi-deformation, etc., or a combination of the above shapes.
  • the heat dissipation structure of the embodiment may further include: a fan (not shown) disposed in the outer circulation air passage.
  • a fan (not shown) disposed in the outer circulation air passage.
  • the position where the fan is disposed is not limited.
  • the fan may be disposed at the top or bottom of the cabinet 21 or the like.
  • the number of the air guiding structures 27 in the present embodiment is at least 2N.
  • This embodiment does not limit the specific number of the air guiding structure 27, and ensures that at least one air guiding structure introduces cold air outside the cabinet into the second gap, and at least one air guiding structure is heated by heat exchange.
  • the hot air is exported to the foundation outside the cabinet, and the number of air guiding structures can be flexibly set.
  • a baffle is disposed between the upper ends of the two inner layer side plates forming the second gap and the lower ends of the two inner layer side plates forming the second gap, and the side of the first gap is formed a third gap exists between an upper end of the board and a top board of the outer casing, a fourth gap exists between a lower end of the side plate forming the first gap and a bottom plate of the outer casing, and the third gap and the fourth gap are both opposite to the cabinet Internal communication, which realizes that the first gap existing between the adjacent two inner side panels of different groups and the first gap existing between the first inner side panel and the outer side panel communicate with each other, and the cabinet Internally connected to form an inner circulation duct.
  • the side panels may include a smooth plate or a corrugated plate or the like.
  • the side plate may specifically be an inner side panel or an outer side panel.
  • the side panel may further be provided with a rib structure or a spoiler structure.
  • a rib structure or a spoiler structure By providing a rib structure or a spoiler structure on the side plate, the heat dissipation capability of the side plate itself can be improved, thereby further improving the heat dissipation efficiency.
  • the embodiments of the present application do not limit the specific form of the rib structure or the spoiler structure.
  • it may be a triangular winglet, a rectangular wing, a semi-elliptical wing, or the like, or a combination of several of the above structural forms.
  • the embodiment of the present application further provides a cabinet, which includes a heat dissipation structure according to any one of the foregoing embodiments of the fan, and the fan is disposed in an inner circulation air passage of the heat dissipation structure.
  • the first gap existing between the inner side panel and the outer side panel of the two inner layer side panels that are far away from the electronic device communicates with the interior of the cabinet to form an inner portion.
  • the air duct realizes the design of the outer circulation air duct to the inner layer of the inner circulation air passage, thereby realizing an additional heat exchange area in the case where the cabinet size is determined.
  • the heat dissipation area provided by the intermediate layer side plates of the three-layer side plates can provide heat dissipation area, thereby improving the heat dissipation area of the cabinet provided by the embodiment of the present application.
  • the heat dissipation efficiency of the cabinet can provide heat dissipation area, thereby improving the heat dissipation area of the cabinet provided by the embodiment of the present application.
  • the 2N inner layer side plates are sequentially divided into N sets of inner layer side plates in order of arrangement, and the first gap existing between adjacent two inner layer side plates of different groups, and the first inner side
  • the first gap existing between the layer side panel and the outer layer side panel communicates with each other and communicates with the interior of the cabinet to form an inner circulation air passage
  • the second gap existing between the two inner layer side panels of the same group communicates with each other
  • communicating with the first tuyere and the second tuyere the first tuyere and the second tuyere are communicated with the outside of the cabinet to form an outer circulation duct, and the heat exchange area provided by the 2+1 layer side panel is realized.
  • the heat dissipation requirements are not met, the heat dissipation capability of the cabinet can be further improved by stacking an even number of inner side panels.
  • the cabinet provided by the embodiment of the present application can improve the heat dissipation efficiency without using the additional heat exchange component, the cabinet provided by the embodiment of the present application can reduce the cost.
  • the cabinet provided by the embodiment of the present application can improve the heat dissipation efficiency without changing the size of the side panel of the cabinet. Therefore, the cabinet provided in the embodiment of the present application can ensure the consistency of the appearance of the cabinet.
  • the embodiment of the present application further provides a communication system, which includes the cabinet described in the foregoing embodiment and an electronic device installed in the cabinet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热结构、机柜(21)及通信系统。该散热结构包括:机柜(21)的外壳;外壳上设置有高度不同且与机柜(21)的外部连通的第一风口(A1)和第二风口(A2);外壳包括外层侧板(211)和2N个内层侧板(212),相邻两个侧板之间存在间隙,2N个内层侧板(212)按排列顺序依次划分为N组内层侧板(212);当N等于1时,第一内层侧板(C1)与外层侧板(211)之间存在的第一间隙(B1),与机柜(21)的内部连通,形成内循环风道;当N大于1时,不同组的相邻两个内层侧板(212)之间存在的第一间隙(B1)与第一内层侧板(C1)与外层侧板(211)之间存在的第一间隙(B1)相互连通,并与机柜(21)的内部连通,形成内循环风道;同一组的两个内层侧板(212)之间存在的第二间隙(B2)相互连通,并与第一风口(A1)和第二风口(A2)连通,形成外循环风道。上述结构提高了散热效率。

Description

散热结构、机柜及通信系统
本申请要求于2017年10月16日提交中国专利局、申请号为201710958161.5、申请名称为“散热结构、机柜及通信系统”的中国专利申请以及于2017年11月29日提交到中国专利局、申请号为201721628701.5、申请名称为“散热结构、机柜及通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热技术领域,尤其涉及一种散热结构、机柜及通信系统。
背景技术
为了保证安装在机柜内的电子设备能够在允许的工作温度范围内正常可靠工作,机柜必须具备一定的散热功能,以将电子设备产生的热量传递至机柜外。
现有技术中,可以通过如下方式对机柜内的电子设备进行散热。具体的,如图1所示,机柜的侧板为三层侧板,按照距离电子设备由远及近的顺序依次可以记为侧板a、侧板b和侧板c。其中,侧板a和侧板b之间的间隙与机柜的外部连通,形成外循环风道;侧板c与侧板b之间的间隙与电子设备的进风口和出风口连通,形成内循环风道。内循环风道和外循环风道都通过同一侧板(即侧板b),将电子设备产生的热量传递至机柜外。
但是,现有技术中,由于内循环风道和外循环风道通过同一侧板将电子设备产生的热量传递至机柜外,而导致散热效率低的问题。
发明内容
本申请提供一种散热结构、机柜及通信系统,用以解决现有技术中由于内循环风道和外循环风道通过同一侧板将电子设备产生的热量传递至机柜外,而导致散热效率低的问题。
本申请提供一种散热结构,用于对机柜内安装的电子设备进行散热,包括:所述机柜的外壳。
所述外壳上设置有高度不同的第一风口和第二风口,所述第一风口和所述第二风口均与所述机柜的外部连通。
所述外壳包括2N+1层侧板,所述2N+1层侧板包括外层侧板和2N个内层侧板,相邻两个侧板之间存在间隙,所述2N个内层侧板按排列顺序依次划分为N组内层侧板,N为正整数。
当N等于1时,第一内层侧板与所述外层侧板之间存在的第一间隙,与所述机柜的内部连通,形成内循环风道。
当N大于1时,不同组的相邻两个内层侧板之间存在的第一间隙与所述第一内层侧 板与所述外层侧板之间存在的第一间隙相互连通,并与所述机柜的内部连通,形成内循环风道;所述第一内层侧板为所述2N个内层侧板中距离所述电子设备最远的内层侧板。
同一组的两个内层侧板之间存在的第二间隙相互连通,并与所述第一风口和所述第二风口连通,形成外循环风道。
通过第一方面提供的散热结构,N=1时,两个内层侧板中距离电子设备较远的内层侧板与外层侧板之间存在的第一间隙,与所述机柜的内部连通,形成内循环风道,以及两个内层侧板之间存在的第二间隙,与第一风口和第二风口连通,所述第一风口和所述第二风口均与机柜的外部连通,形成外循环风道,实现了将外循环风道设计到内循环风道的内侧,从而实现在机柜侧板的尺寸确定的情况下,额外增加换热面积。与现有技术中的散热结构仅通过三层侧板的中间层侧板提供的换热面积进行散热相比,本申请实施例提供的散热结构,各层侧板都能够提供散热面积,从而提高了散热效率。
另外,通过N大于1时,2N个内层侧板按排列顺序依次划分为N组内层侧板,不同组的相邻两个内层侧板之间存在的第一间隙,与第一内层侧板与外层侧板之间存在的第一间隙相互连通,并与所述机柜的内部连通,形成内循环风道,以及同一组的两个内层侧板之间存在的第二间隙相互连通,并与第一风口和第二风口连通,所述第一风口和所述第二风口均与机柜的外部连通,形成外循环风道,实现了当2+1层侧板提供的换热面积不能够满足散热要求时,可以通过叠加偶数个内层侧板,来进一步提升散热能力。
另外,由于本申请实施例提供的散热结构能够在不采用额外的换热部件的前提下,提高散热效率,因此本申请实施例提供的散热结构能够降低成本。并且,由于本申请实施例提供的散热结构能够在不改变机柜的侧板的尺寸的前提下,提高散热效率,因此本申请实施例提供的散热结构能够确保机柜外观的一致性。
在一种可能实现的方式中,所述散热结构还包括挡板和管状的导风结构。
形成所述第一间隙的两个侧板的上端之间,以及形成所述第一间隙的两个侧板的下端之间均设置有所述挡板。
每个所述内层侧板上设置有高度不同的第一通孔和第二通孔,且第二内层侧板上设置的第一通孔和所述第二通孔分别与所述机柜的内部连通。所述第二内层侧板为所述2N个内层侧板中距离所述电子设备最近的内层侧板;
同一组的两个内层侧板的第一通孔之间,以及同一组的两个内层侧板的第二通孔之间均连接有所述导风结构。
通过第一方面提供的散热结构,形成第一间隙的两个侧板的上端之间,以及形成第一间隙的两个侧板的下端之间均设置有挡板,每个内层侧板上设置有高度不同的第一通孔和第二通孔,且第二内层侧板上设置的第一通孔和第二通孔分别与所述机柜的内部连通,第二内层侧板为2N个内层侧板中距离电子设备最近的内层侧板,同一组的两个内层侧板的第一通孔之间,以及同一组的两个内层侧板的第二通孔之间均连接有导风结构,实现了当N等于1时将第一内层侧板与外层侧板之间存在的第一间隙,与所述机柜的内部连通,当N大于1时将不同组的相邻两个内层侧板之间存在的第一间隙与第一内层侧板与外层侧板之间存在的第一间隙相互连通,并与所述机柜的内部连通,从而形成内循环风道。
在一种可能实现的方式中,所述第一风口设置在所述外壳的顶板,所述第二风口设置在所述外壳的底板和/或所述外层侧板;
或者,
所述第一风口设置在所述外壳的外层侧板,所述第二风口设置在所述外壳的底板和/或所述外层侧板。
在一种可能实现的方式中,所述挡板包括所述外壳的顶板和/或底板。
在一种可能实现的方式中,所述散热结构还包括:挡板。
形成所述第二间隙的两个内层侧板的上端之间,以及形成所述第二间隙的两个内层侧板的下端之间均设置有所述挡板。
形成所述第一间隙的侧板的上端与所述外壳的顶板之间存在第三间隙,形成所述第一间隙的侧板的下端与所述外壳的底板之间存在第四间隙,所述第三间隙和所述第四间隙均与所述机柜的内部连通。
通过第一方面提供的散热结构,形成第二间隙的两个内层侧板的上端之间,以及形成第二间隙的两个内层侧板的下端之间均设置有挡板,形成第一间隙的侧板的上端与所述外壳的顶板之间存在第三间隙,形成第一间隙的侧板的下端与所述外壳的底板之间存在第四间隙,且第三间隙和第四间隙均与所述机柜的内部连通,实现了当N等于1时将第一内层侧板与外层侧板之间存在的第一间隙,与所述机柜的内部连通,当N大于1时将不同组的相邻两个内层侧板之间存在的第一间隙与第一内层侧板与外层侧板之间存在的第一间隙相互连通,并与所述机柜的内部连通,从而形成内循环风道。
在一种可能实现的方式中,所述第一风口和所述第二风口均设置在所述外层侧板上;所述散热结构还包括:管状的导风结构。
所述2N个内层侧板中除第二内层侧板外的其他内层侧板上均设置有高度不同的第三通孔和第四通孔,所述第二内层侧板为所述2N个内层侧板中距离所述电子设备最近的内层侧板。
当N等于1时,所述第一内层侧板的第三通孔与所述第一风口之间,以及所述第一内层侧板的第四通孔与所述第二风口之间,均连接有所述导风结构。
当N大于1时,所述第一内层侧板的第三通孔与所述第一风口之间,所述第一内层侧板的第四通孔与所述第二风口之间,不同组的相邻两个内层侧板的第三通孔之间,以及不同组的相邻两个内层侧板的第四通孔之间,均连接有所述导风结构。
通过第一方面提供的散热结构,当N等于1时,机柜外的冷空气可以通过第一内层侧板的第四通孔与第二风口之间设置的导风结构导入到同一组的两个内层侧板之间的第二间隙,在被内层侧板加热之后,再通过第一内层侧板的第三通孔与第一风口之间设置的导风结构导出。
通过第一方面提供的散热结构,当N大于1时,机柜外的冷空气可以通过第一内层侧板的第四通孔与第二风口之间以及不同组的相邻两个内层侧板的第四通孔之间设置的导风结构导入到同一组的两个内层侧板之间的第二间隙,在被内层侧板加热之后,再通过第一内层侧板的第三通孔与第一风口之间以及不同组的相邻两个内层侧板的第三通孔之间设置的导风结构导出。
在一种可能实现的方式中,所述散热结构还包括:设置在所述外循环风道中的风 扇。
通过第一方面提供的散热结构,在外循环风道中设置风扇,可以大幅提升外循环风道中空气的流速,进一步提高了散热效率。
在一种可能实现的方式中,所述侧板包括光滑板或波纹板。
在一种可能实现的方式中,所述侧板上还设置有肋片结构或扰流结构。
通过第一方面提供的散热结构,在侧板上设置肋片结构或扰流结构,可以提高侧板自身的散热能力,从而进一步提高散热效率。
第二方面,本申请提供一种机柜,包括风扇以及上述第一方面任一项所述的散热结构,所述风扇设置在所述散热结构的内循环风道中。
通过第二方面提供的机柜,N=1时,两个内层侧板中距离电子设备较远的内层侧板与外层侧板之间存在的第一间隙,与所述机柜的内部连通,形成内循环风道,以及两个内层侧板之间存在的第二间隙,与第一风口和第二风口连通,所述第一风口和所述第二风口均与机柜的外部连通,形成外循环风道,实现了将外循环风道设计到内循环风道的内侧,从而实现在机柜侧板的尺寸确定的情况下,额外增加换热面积。与现有技术中的散热结构仅通过三层侧板的中间层侧板提供的换热面积进行散热相比,本申请实施例提供的机柜,各层侧板都能够提供散热面积,从而提高了机柜的散热效率。
另外,通过N大于1时,2N个内层侧板按排列顺序依次划分为N组内层侧板,不同组的相邻两个内层侧板之间存在的第一间隙,与第一内层侧板与外层侧板之间存在的第一间隙相互连通,并与所述机柜的内部连通,形成内循环风道,以及同一组的两个内层侧板之间存在的第二间隙相互连通,并与第一风口和第二风口连通,所述第一风口和所述第二风口均与机柜的外部连通,形成外循环风道,实现了当2+1层侧板提供的换热面积不能够满足散热要求时,可以通过叠加偶数个内层侧板,来进一步提升机柜的散热能力。
另外,由于本申请实施例提供的机柜能够在不采用额外的换热部件的前提下,提高散热效率,从而降低了成本。并且,由于本申请实施例提供的机柜能够在不改变机柜的侧板的尺寸的前提下,提高散热效率,从而确保了机柜外观的一致性。
第三方面,本申请提供了一种通信系统,包括上述第二方面所述的机柜以及安装在位于所述机柜内的电子设备。
附图说明
图1为现有技术中散热结构的结构示意图;
图2A为本申请一实施例提供的散热结构的结构示意图一;
图2B为本申请一实施例提供的散热结构的结构示意图二;
图3A为本申请另一实施例提供的散热结构的主视图;
图3B为本申请另一实施例提供的散热结构的俯视图;
图4为本申请又一实施例的散热结构的结构示意图;
图5为本申请又一实施例的散热结构的结构示意图;
图6A为本申请又一实施例提供的散热结构的主视图;
图6B为本申请又一实施例提供的散热结构的俯视图;
图7为本申请又一实施例的散热结构的结构示意图。
具体实施方式
本申请实施例提供一种散热结构,用于对机柜内安装的电子设备进行散热。
图2A为本申请一实施例提供的散热结构的结构示意图一,图2B为本申请一实施例提供的散热结构的结构示意图二,本实施例提供的散热结构,用于对机柜21内安装的电子设备22进行散热。如图2A和图2B所示,本实施例的散热结构可以包括:机柜21的外壳。
其中,所述外壳上设置有高度不同的第一风口A1和第二风口A2,第一风口A1和第二风口A2均与机柜21的外部连通。
所述外壳包括2N+1层侧板,所述2N+1层侧板包括外层侧板211和2N个内层侧板212,相邻两个侧板之间存在间隙,所述2N个内层侧板212按排列顺序依次划分为N组内层侧板,N为正整数。
当N等于1时,第一内层侧板C1与外层侧板211之间存在的第一间隙B1,与机柜21的内部连通,形成内循环风道。
当N大于1时,不同组的相邻两个内层侧板212之间存在的第一间隙B1与第一内层侧板C1与外层侧板211之间存在的第一间隙B1相互连通,并与机柜21的内部连通,形成内循环风道。第一内层侧板C1为2N个内层侧板212中距离电子设备22最远的内层侧板。
同一组的两个内层侧板212之间存在的第二间隙B2相互连通,并与第一风口A1和第二风口A2连通,形成外循环风道。
需要说明的是,图2A以N=1的场景为例,图2B以N=2的场景为例。本申请实施例中所述内循环风道的风向具体可以如图2A和图2B中粗线箭头所示,所述外循环风道中的风向具体可以如图2A和图2B中细线箭头所示。
需要说明的是,所述外循环风道中的风向可以从下至上,也可以从上至下;所述内循环风道中的风向可以为顺时针方向,也可以为逆时针方向。本申请实施例对外循环风道及内循环风道的风向并不作具体的限制。例如,当在外循环风道中依靠烟囱效应时,外循环风道中的风向为从下往上。当在外循环风道中增加从上往下吹风的风扇时,外循环风道中的风向为从上往下。
需要说明的是,本申请实施例中并不对不同组的相邻两个内层侧板212之间存在的第一间隙B1与第一内层侧板C1与外层侧板211之间存在的第一间隙B1相互连通的具体实现方式,以及同一组的两个内层侧板212之间存在的第二间隙B2相互连通的具体实现方式作限制。例如,多个间隙之间可以通过其他间隙相互连通;或者,多个第一间隙之间也可以通过导风结构相互连通。
需要说明的是,本申请实施例并不对第一间隙B1与机柜的内部连通,形成内循环风道的具体方式作限制。例如,如图2A和图2B所示,机柜的内部与电子设备22连接的板上可以设置有通孔,从而形成内循环风道。该板与机柜的顶板之间可以设置有风扇,从而驱动内循环风道中空气的流动。
以第一风口A1的高度大于第二风口A2的高度为例,可选的,第一风口A1可以设置在所述外壳的顶板,第二风口A2可以设置在所述外壳的底板和/或外层侧板211。或者,第一风口A1可以设置在所述外壳的外层侧板211,第二风口A2可以设置在所述外壳的底板和/或外层侧板211。
如图2A所示,以N等于1,外循环风道依靠烟囱效应为例,本申请实施例提供的散热结构的换热原理具体可以如下:
当机柜21内的热空气到达第一内层侧板C1与外层侧板211之间存在的第一间隙B1时,可以通过对流换热将热量传递给第一内层侧板C1和外层侧板211,外层侧板211可以直接与外界空气进行对流换热和辐射换热,第一内层侧板C1可以与外循环风道中的空气进行对流换热。第一内层侧板C1之外的另一个内层侧板212可以直接与机柜内的热空气接触,直接被加热,然后再与外循环风道中的空气进行对流换热。外循环风道中的空气因被内层侧板212加热,形成烟囱效应,驱动外循环风道中的热空气从高度较高的出风口流出,冷空气不断从高度较低的进风口补充,不断带走机柜内的热量,从而实现散热。
基于上述换热原理可以看出,当N等于1时,本实施例提供的散热结构可以同时通过外壳包括的三层侧板中的各层侧板进行散热。
本实施例中,当2+1层侧板提供的换热面积不能够满足散热要求时,可以通过叠加偶数个内层侧板,即增大N的方式,来进一步提升散热能力。
如图2B所示,以N等于2,外循环风道依靠烟囱效应为例,本申请实施例散热结构的换热原理具体可以如下:
当机柜21内的热空气到达第一内层侧板C1与外层侧板211之间存在的第一间隙B1时,可以通过对流换热将热量传递给第一内层侧板C1和外层侧板211,外层侧板211可以直接与外界空气进行对流换热和辐射换热,第一内层侧板C1可以与外循环风道中的空气进行对流换热。当机柜21内的热空气到达不同组的相邻两个内层侧板212之间存在的第一间隙B1时,可以通过对流换热将热量传递给不同组的相邻两个内层侧板212,不同组的相邻两个内层侧板212可以与外循环风道中的空气进行对流换热。距离电子设备22最近的内层侧板可以直接与机柜内的热空气接触,直接被加热,然后再与外循环风道中的空气进行对流换热。外循环风道中的空气因被内层侧板212加热,形成烟囱效应,驱动外循环风道中的热空气向高度较高的出风口流出,冷空气不断从高度较低的进风口补充,不断带走机柜内的热量,从而实现散热。
基于上述换热原理可以看出,当N大于1时,本实施例提供的散热结构可以同时通过外壳包括的2N+1层侧板中的各层侧板进行散热。
本申请实施例中,通过N=1时,两个内层侧板中距离电子设备较远的内层侧板与外层侧板之间存在的第一间隙,与所述机柜的内部连通,形成内循环风道,以及两个内层侧板之间存在的第二间隙,与第一风口和第二风口连通,所述第一风口和所述第二风口均与机柜的外部连通,形成外循环风道,实现了将外循环风道设计到内循环风道的内层,从而实现在机柜侧板的尺寸确定的情况下,额外增加换热面积。与图1所示的散热结构仅通过三层侧板的中间层侧板提供的换热面积进行散热相比,本申请实施例提供的散热结构,各层侧板都能够提供散热面积,从而提高了散热效率。
另外,通过N大于1时,2N个内层侧板按排列顺序依次划分为N组内层侧板,不同组的相邻两个内层侧板之间存在的第一间隙,与第一内层侧板与外层侧板之间存在的第一间隙相互连通,并与所述机柜的内部连通,形成内循环风道,以及同一组的两个内层侧板之间存在的第二间隙相互连通,并与第一风口和第二风口连通,所述第一风口和所述第二风口均与机柜的外部连通,形成外循环风道,实现了当2+1层侧板提供的换热面积不能够满足散热要求时,可以通过叠加偶数个内层侧板,来进一步提升了散热能力。
另外,由于本申请实施例提供的散热结构能够在不采用额外的换热部件的前提下,提高散热效率,因此本申请实施例提供的散热结构能够降低成本。并且,由于本申请实施例提供的散热结构能够在不改变机柜的侧板的尺寸的前提下,提高散热效率,因此本申请实施例提供的散热结构能够确保机柜外观的一致性。
需要说明的是,机柜的外壳的任意一侧或多侧的侧板都可以采用本申请实施例提供的散热结构。
图3A为本申请另一实施例提供的散热结构的主视图,图3B为本申请另一实施例提供的散热结构的俯视图。本实施例在图2A和2B所示实施例的基础上,主要描述了形成上述内循环风道的一种可选的实现方式。如图3A和图3B所示,本实施例的散热结构还可以包括:挡板23和管状的导风结构24。
其中,形成第一间隙B1的两个侧板的上端之间,以及形成第一间隙B1的两个侧板的下端之间均设置有挡板23。
每个内层侧板212上设置有高度不同的第一通孔(未示出)和第二通孔(未示出),且第二内层侧板C2上设置的第一通孔和第四通孔分别与机柜21的内部连通。其中,第二内层侧板C2为2N个内层侧板中距离电子设备22最近的内层侧板。
同一组的两个内层侧板的第一通孔之间,以及同一组的两个内层侧板的第二通孔之间均连接有导风结构24。
需要说明的是,同一内层侧板上设置的第一通孔和第二通孔的个数可以为一个,也可以为多个。同一组的两个内层侧板上设置的第一通孔和第二通孔的个数可以相同。不同内层侧板上设置的第一通孔和第二通孔的高度可以相同,也可以不同,本申请实施例并不作限制。
需要说明的是,形成第一间隙B1的两个侧板可以为第一内层侧板C1和外层侧板211,或者,也可以为不同组的相邻两个内层侧板212。
需要说明的是,图3A中以第一风口A1设置在所述外壳的顶板,第二风口A2设置在所述外壳的底板,N等于1为例。图3B中粗实线箭头可以表示内循环风道中进入第一间隙B1的风向,粗虚线箭头可以表示内循环风道中出第一间隙B1的风向。图3B中以同一内层侧板上第一通孔和第二通孔的个数都为2个为例。
如图3A和3B所示,当N等于1时,机柜21内的热空气,通过两个内层侧板的上端之间设置的导风结构导入到第一内层侧板C1与外层侧板211之间的第一间隙B1,经换热冷却后,再通过两个内层侧板的下端之间设置的导风结构回到机柜21内。
可选的,导风结构24具体可以为导风嘴。导风嘴的横截面的形状包括但不限于长 方形、圆形、椭圆、三角形、多变形等,或为上述形状的组合。
可选的,如图4所示,本实施例的散热结构还可以包括:设置在所述外循环风道中的风扇25。本实施例中,通过在外循环风道中设置风扇,可以大幅提升外循环风道中空气的流速,进一步提高了散热效率。
需要说明的是,图4中以风扇25设置在机柜的顶部为例,本实施例并不对设置风扇25的位置作限定,例如,风扇25也可以设置在机柜的底部。
需要说明的是,图3A和图3B中以形成第一间隙B1的两个侧板的上端之间设置的挡板23为所述外壳的顶板,形成第一间隙B1的两个侧板的下端之间设置的挡板23为所述外壳的底板为例。挡板23还可以为除外壳的顶板和底板以外设置的专用于形成密闭性的内循环风道的板。例如,如图5所示,形成第一间隙B1的两个侧板的下端之间设置的挡板23可以为除外壳的顶板和底板以外设置的专用于形成密闭性的内循环风道的板。本领域技术人员可以理解的是,形成第一间隙B1的两个侧板的上端之间设置的挡板23也可以为除外壳的顶板和底板以外设置的专用于形成密闭性的内循环风道的板。
需要说明的是,图5中以第一风口A1设置在所述外壳的顶板,第二风口A2设置在所述外壳的底板和外层侧板211,N等于2为例。
如图5所示,当N等于2时,机柜21内的热空气,通过同一组的两个内层侧板的第一通孔之间设置的导风结构导入到第一内层侧板C1与外层侧板211之间以及不同组的两个内层侧板之间的第一间隙B1,经换热冷却后,再通过同一组的两个内层侧板的第二通孔之间设置的导风结构回到机柜21的内部。
如图3A-图5所示,本实施例中导风结构24的数量至少为2N个。本实施例并不对导风结构24的具体数量进行限制,在确保有至少有一个导风结构将机柜21内的热空气导入到第一间隙,以及至少有一个导风结构将经换热冷却后的冷空气导回到机柜21内的基础上,导风结构的数量可以灵活设置。
本实施例中,通过形成第一间隙的两个侧板的上端之间,以及形成第一间隙的两个侧板的下端之间均设置有挡板,每个内层侧板上设置有高度不同的第一通孔和第二通孔,且第二内层侧板上设置的第一通孔和第二通孔均与所述机柜的内部连通;第二内层侧板为2N个内层侧板中距离电子设备最近的内层侧板,同一组的两个内层侧板的第一通孔之间,以及同一组的两个内层侧板的第二通孔之间均连接有导风结构,实现了将不同组的相邻两个内层侧板之间存在的第一间隙与第一内层侧板与外层侧板之间存在的第一间隙相互连通,并与第三风口和第四风口连通,从而形成内循环风道。
图6A为本申请又一实施例提供的散热结构的主视图,图6B为本申请另一实施例提供的散热结构的俯视图。本实施例在图2A和2B所示实施例的基础上,主要描述了形成上述内循环风道的另一种可选的实现方式。如图6A和图6B所示,本实施例的散热结构还可以包括:挡板26。
其中,形成第二间隙B2的两个内层侧板212的上端之间,以及形成第二间隙B2的两个内层侧板的下端之间均设置有挡板26。
形成第一间隙B1的侧板的上端与所述外壳的顶板之间存在第三间隙B3,形成第一间隙B1的侧板的下端与所述外壳的底板之间存在第四间隙B4,第三间隙B3和第四 间隙B4均与机柜21的内部连通。
需要说明的是,形成第二间隙B2的两个侧板具体可以为同一组的两个内层侧板212。图6A和图6B中以N等于1为例。图6B中粗实线箭头可以表示内循环风道中进入第一间隙B1的风向,粗虚线箭头可以表示内循环风道中出第一间隙B1的风向。
如图6A和6B所示,当N等于1时,机柜21内的热空气,通过形成第一间隙B1的侧板的上端与所述外壳的顶板之间存在第三间隙B3进入到第一内层侧板C1与外层侧板211之间的第一间隙B1,经换热冷却后,再通过形成第一间隙B1的侧板的下端与所述外壳的底板之间存在第四间隙B4回到机柜21的内部。
本实施例中,当N等于2时,散热结构的结构示意图可以如图7所示。
可选的,如图6A-图7所示,第一风口A1和第二风口A2可以均设置在外层侧板211上;所述散热结构还可以包括:管状的导风结构27。
2N个内层侧板212中除第二内层侧板C2外的其他内层侧板上均设置有高度不同的第三通孔(未示出)和第四通孔(未示出),第二内层侧板C2为2N个内层侧板中距离电子设备22最近的内层侧板。
需要说明的是,同一内层侧板上设置的第三通孔和第四通孔的个数可以为一个,也可以为多个。同一组的两个内层侧板上设置的第三通孔和第四通孔的个数可以相同。不同内层侧板上设置的第三通孔的高度可以相同也可以不同,不同内层侧板上设置的第四通孔的高度可以相同也可以不同,本申请实施例并不作限制。第一内层侧板上设置的第三通孔与第一风口A1的高度可以相同,也可以不同,本申请实施例并不作限制。第一内层侧板上设置的第四通孔与第二风口A2的高度可以相同,也可以不同,本申请实施例并不作限制。
需要说明的是,图6B细实线箭头可以表示外循环风道中进入第二间隙B2的风向,细虚线箭头可以表示外循环风道中出第二间隙B2的风向。图6B中以同一内层侧板上第三通孔和第四通孔的个数都为2个为例。
如图6A和图6B所示,当N等于1时,第一内层侧板C1的第三通孔与第一风口A1之间,以及第一内层侧板C1的第四通孔与第二风口A2之间,均连接有导风结构27。
具体的,如图6A和图6B所示,当N等于1时,机柜外的冷空气可以通过第一内层侧板C1的第四通孔与第二风口A2之间设置的导风结构27导入到同一组的两个内层侧板之间的第二间隙B2,在被内层侧板加热之后,再通过第一内层侧板C1的第三通孔与第一风口A1之间设置的导风结构27导出。
如图7所示,当N大于1时,第一内层侧板C1的第三通孔与第一风口A1之间,第一内层侧板C1的第四通孔与第二风口A2之间,不同组的相邻两个内层侧板的第三通孔之间,以及不同组的相邻两个内层侧板的第四通孔之间,均连接有导风结构27。
具体的,如图7所示,当N大于1时,机柜外的冷空气可以通过第一内层侧板C1的第四通孔与第二风口A2之间以及不同组的相邻两个内层侧板的第四通孔之间设置的导风结构27导入到同一组的两个内层侧板之间的第二间隙B2,在被内层侧板加热之后,再通过第一内层侧板C1的第三通孔与第一风口A1之间以及不同组的相邻两个内层侧板的第三通孔之间设置的导风结构27导出。
可选的,导风结构27具体可以为导风嘴。导风嘴的横截面的形状包括但不限于长 方形、圆形、椭圆、三角形、多变形等,或为上述形状的组合。
可选的,本实施例的散热结构还可以包括:设置在所述外循环风道中的风扇(未示出)。本实施例中,通过在外循环风道中设置风扇,可以大幅提升外循环风道中空气的流速,进一步提高了散热效率。本实施例中,并不对设置风扇的位置作限定。例如,所述风扇可以设置在机柜21的顶部或底部等。
如图6A-图7所示,本实施例中导风结构27的数量至少为2N个。本实施例并不对导风结构27的具体数量进行限制,在确保有至少有一个导风结构将机柜外的冷空气导入到第二间隙,以及至少有一个导风结构将经换热加热后的热空气导出到机柜外的基础上,导风结构的数量可以灵活设置。
本实施例中,通过形成第二间隙的两个内层侧板的上端之间,以及形成第二间隙的两个内层侧板的下端之间均设置有挡板,形成第一间隙的侧板的上端与所述外壳的顶板之间存在第三间隙,形成第一间隙的侧板的下端与所述外壳的底板之间存在第四间隙,且第三间隙和第四间隙均与机柜的内部连通,实现了将不同组的相邻两个内层侧板之间存在的第一间隙与第一内层侧板与外层侧板之间存在的第一间隙相互连通,并与机柜的内部连通,从而形成内循环风道。
可选的,本申请上述实施例中,侧板可以包括光滑板或波纹板等。这里,侧板具体可以为内层侧板,也可以为外层侧板。
可选的,本申请上述实施例中,所述侧板上还可以设置有肋片结构或扰流结构。通过在侧板上设置肋片结构或扰流结构,可以提高侧板自身的散热能力,从而进一步提高散热效率。
需要说明的是,本申请实施例并不对肋片结构或扰流结构的具体形式作限制。例如,可以为三角形小翼、矩形翼、半椭圆翼等,或为若干上述结构形式的组合。
本申请实施例还提供一种机柜,该机柜包括风扇上述实施例中任一实施例所述的散热结构,所述风扇设置在所述散热结构的内循环风道中。
本申请实施例中,通过N=1时,两个内层侧板中距离电子设备较远的内层侧板与外层侧板之间存在的第一间隙,与机柜的内部连通,形成内循环风道,以及两个内层侧板之间存在的第二间隙,与第一风口和第二风口连通,所述第一风口和所述第二风口均与机柜的外部连通,形成外循环风道,实现了将外循环风道设计到内循环风道的内层,从而实现在机柜尺寸确定的情况下,额外增加换热面积。与图1所示的散热结构仅通过三层侧板的中间层侧板提供的换热面积进行散热相比,本申请实施例提供的机柜,各层侧板都能够提供散热面积,从而提高了机柜的散热效率。
另外,通过N大于1时,2N个内层侧板按排列顺序依次划分为N组内层侧板,不同组的相邻两个内层侧板之间存在的第一间隙,与第一内层侧板与外层侧板之间存在的第一间隙相互连通,并与机柜的内部连通,形成内循环风道,以及同一组的两个内层侧板之间存在的第二间隙相互连通,并与第一风口和第二风口连通,所述第一风口和所述第二风口均与机柜的外部连通,形成外循环风道,实现了当2+1层侧板提供的换热面积不能够满足散热要求时,可以通过叠加偶数个内层侧板,来进一步提升机柜的散热能力。
另外,由于本申请实施例提供的机柜能够在不采用额外的换热部件的前提下,提高散热效率,因此本申请实施例提供的机柜能够降低成本。并且,由于本申请实施例提供的机柜能够在不改变机柜的侧板的尺寸的前提下,提高散热效率,因此本申请实施例提供的机柜能够确保机柜外观的一致性。
本申请实施例还提供一种通信系统,该通信系统包括上述实施例中所述的机柜以及安装在位于所述机柜内的电子设备。

Claims (11)

  1. 一种散热结构,用于对机柜内安装的电子设备进行散热,其特征在于,包括:所述机柜的外壳;
    所述外壳上设置有高度不同的第一风口和第二风口,所述第一风口和所述第二风口均与所述机柜的外部连通;
    所述外壳包括2N+1层侧板,所述2N+1层侧板包括外层侧板和2N个内层侧板,相邻两个侧板之间存在间隙,所述2N个内层侧板按排列顺序依次划分为N组内层侧板,N为正整数;
    当N等于1时,第一内层侧板与所述外层侧板之间存在的第一间隙,与所述机柜的内部连通,形成内循环风道;
    当N大于1时,不同组的相邻两个内层侧板之间存在的第一间隙与所述第一内层侧板与所述外层侧板之间存在的第一间隙相互连通,并与所述机柜的内部连通,形成内循环风道;所述第一内层侧板为所述2N个内层侧板中距离所述电子设备最远的内层侧板;
    同一组的两个内层侧板之间存在的第二间隙相互连通,并与所述第一风口和所述第二风口连通,形成外循环风道。
  2. 根据权利要求1所述的散热结构,其特征在于,所述散热结构还包括挡板和管状的导风结构;
    形成所述第一间隙的两个侧板的上端之间,以及形成所述第一间隙的两个侧板的下端之间均设置有所述挡板;
    每个所述内层侧板上设置有高度不同的第一通孔和第二通孔,且第二内层侧板上设置的第一通孔和第二通孔分别与所述机柜的内部连通;所述第二内层侧板为所述2N个内层侧板中距离所述电子设备最近的内层侧板;
    同一组的两个内层侧板的第一通孔之间,以及同一组的两个内层侧板的第二通孔之间均连接有所述导风结构。
  3. 根据权利要求2所述的散热结构,其特征在于,所述第一风口设置在所述外壳的顶板,所述第二风口设置在所述外壳的底板和/或所述外层侧板;或者,所述第一风口设置在所述外壳的外层侧板,所述第二风口设置在所述外壳的底板和/或所述外层侧板。
  4. 根据权利要求2或3所述的散热结构,其特征在于,所述挡板包括所述外壳的顶板和/或底板。
  5. 根据权利要求1所述的散热结构,其特征在于,所述散热结构还包括:挡板;
    形成所述第二间隙的两个内层侧板的上端之间,以及形成所述第二间隙的两个内层侧板的下端之间均设置有所述挡板;
    形成所述第一间隙的侧板的上端与所述外壳的顶板之间存在第三间隙,形成所述第一间隙的侧板的下端与所述外壳的底板之间存在第四间隙,所述第三间隙和所述第四间隙均与所述机柜的内部连通。
  6. 根据权利要求5所述的散热结构,其特征在于,所述第一风口和所述第二风口 均设置在所述外层侧板上;所述散热结构还包括:管状的导风结构;
    所述2N个内层侧板中除第二内层侧板外的其他内层侧板上均设置有高度不同的第三通孔和第四通孔,所述第二内层侧板为所述2N个内层侧板中距离所述电子设备最近的内层侧板;
    当N等于1时,所述第一内层侧板的第三通孔与所述第一风口之间,以及所述第一内层侧板的第四通孔与所述第二风口之间,均连接有所述导风结构;
    当N大于1时,所述第一内层侧板的第三通孔与所述第一风口之间,所述第一内层侧板的第四通孔与所述第二风口之间,不同组的相邻两个内层侧板的第三通孔之间,以及不同组的相邻两个内层侧板的第四通孔之间,均连接有所述导风结构。
  7. 根据权利要求1-6任一项所述的散热结构,其特征在于,所述散热结构还包括:设置在所述外循环风道中的风扇。
  8. 根据权利要求1-6任一项所述的散热结构,其特征在于,所述侧板包括光滑板或波纹板。
  9. 根据权利要求8所述的散热结构,其特征在于,所述侧板上还设置有肋片结构或扰流结构。
  10. 一种机柜,其特征在于,包括风扇以及权利要求1-9任一项所述的散热结构,所述风扇设置在所述散热结构的内循环风道中。
  11. 一种通信系统,其特征在于,包括权利要求10所述的机柜以及安装在位于所述机柜内的电子设备。
PCT/CN2018/110259 2017-10-16 2018-10-15 散热结构、机柜及通信系统 WO2019076270A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18868981.4A EP3684151B1 (en) 2017-10-16 2018-10-15 Heat dissipation structure, cabinet, and communication system
US16/849,445 US20200245499A1 (en) 2017-10-16 2020-04-15 Heat Dissipation Structure, Cabinet, And Communications System

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710958161.5 2017-10-16
CN201710958161 2017-10-16
CN201721628701.5 2017-11-29
CN201721628701.5U CN208047109U (zh) 2017-10-16 2017-11-29 散热结构、机柜及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/849,445 Continuation US20200245499A1 (en) 2017-10-16 2020-04-15 Heat Dissipation Structure, Cabinet, And Communications System

Publications (1)

Publication Number Publication Date
WO2019076270A1 true WO2019076270A1 (zh) 2019-04-25

Family

ID=63958157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110259 WO2019076270A1 (zh) 2017-10-16 2018-10-15 散热结构、机柜及通信系统

Country Status (4)

Country Link
US (1) US20200245499A1 (zh)
EP (1) EP3684151B1 (zh)
CN (1) CN208047109U (zh)
WO (1) WO2019076270A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110812500B (zh) * 2019-09-16 2021-01-15 宁波方太厨具有限公司 一种热循环消毒柜
CN114630549A (zh) * 2020-12-14 2022-06-14 华为技术有限公司 机柜组件及换热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2919789Y (zh) * 2006-06-13 2007-07-04 廉纪奎 自换热型机柜
CN101453856A (zh) * 2007-12-03 2009-06-10 华为技术有限公司 一种通信设备
US20130267162A1 (en) * 2012-04-09 2013-10-10 Chun Long Technology Co., Ltd. Air discharge structure of industrial cabinet
CN103841791A (zh) * 2012-11-21 2014-06-04 华为技术有限公司 换热装置及机柜
CN105592667A (zh) * 2014-10-24 2016-05-18 华为技术有限公司 网络设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10240419B3 (de) * 2002-09-02 2004-04-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Flächiges Kühlaggregat im Gegenstromprinzip
JP2005241025A (ja) * 2004-02-24 2005-09-08 Mori Seiki Co Ltd 熱交換器及びこれを備えた制御盤
DE102004018197A1 (de) * 2004-04-15 2005-11-03 Modine Manufacturing Co., Racine Abgaswärmetauscher
US9545037B2 (en) * 2014-01-24 2017-01-10 Baker Hughes Incorporated Systems and methods for cooling electric drives
JP6337547B2 (ja) * 2014-03-20 2018-06-06 富士通株式会社 電子機器筐体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2919789Y (zh) * 2006-06-13 2007-07-04 廉纪奎 自换热型机柜
CN101453856A (zh) * 2007-12-03 2009-06-10 华为技术有限公司 一种通信设备
US20130267162A1 (en) * 2012-04-09 2013-10-10 Chun Long Technology Co., Ltd. Air discharge structure of industrial cabinet
CN103841791A (zh) * 2012-11-21 2014-06-04 华为技术有限公司 换热装置及机柜
CN105592667A (zh) * 2014-10-24 2016-05-18 华为技术有限公司 网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3684151A4

Also Published As

Publication number Publication date
US20200245499A1 (en) 2020-07-30
EP3684151B1 (en) 2023-04-26
EP3684151A1 (en) 2020-07-22
CN208047109U (zh) 2018-11-02
EP3684151A4 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US9351426B2 (en) Heat dissipating device and blade server
US20140014308A1 (en) Heat Sink and Electronic Device and Heat Exchanger Applying the Same
US20150041111A1 (en) Heat Exchange Plate, Heat Exchanger, and Communication Base Station Cabinet
TWI405945B (zh) 氣冷式熱交換器及其適用之電子設備
WO2015099471A1 (ko) 변압기용 방열장치
WO2019076270A1 (zh) 散热结构、机柜及通信系统
CN104094683B (zh) 电子设备
EP4152600A1 (en) Heat dissipation device and photovoltaic inverter
WO2009076850A1 (zh) 一种通信设备
WO2018103255A1 (zh) 空调室内机换热器和空调室内机
WO2008098494A1 (fr) Procédé et appareil de dissipation de chaleur de composant électrique sur une carte de circuits imprimés
WO2016015513A1 (zh) 一种机柜
CN109257904B (zh) 一种散热装置及机箱
TWI792253B (zh) 散熱裝置
TW201328553A (zh) 電子裝置散熱系統
EP3240376B1 (en) Cabinet
EP2941109B1 (en) Heat dissipation apparatus
CN202721595U (zh) 多面布局的变频器
TWI680629B (zh) 馬達及其散熱裝置
CN220776324U (zh) 电气设备及其散热结构
CN204288108U (zh) 散热器模块及散热器
CN217563960U (zh) 一种内置有电压检测模块的耐用型主控板
CN214676001U (zh) 一种散热柜
JP2005180906A (ja) 熱交換装置
CN103874398A (zh) 散热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868981

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018868981

Country of ref document: EP

Effective date: 20200417