WO2019073878A1 - Compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor production method - Google Patents

Compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor production method Download PDF

Info

Publication number
WO2019073878A1
WO2019073878A1 PCT/JP2018/037023 JP2018037023W WO2019073878A1 WO 2019073878 A1 WO2019073878 A1 WO 2019073878A1 JP 2018037023 W JP2018037023 W JP 2018037023W WO 2019073878 A1 WO2019073878 A1 WO 2019073878A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
substrate
pattern
pattern forming
group
Prior art date
Application number
PCT/JP2018/037023
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 川上
山口 和夫
倫子 伊藤
Original Assignee
株式会社ニコン
学校法人神奈川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018045274A external-priority patent/JP7121505B2/en
Application filed by 株式会社ニコン, 学校法人神奈川大学 filed Critical 株式会社ニコン
Priority to CN201880065020.3A priority Critical patent/CN111183143B/en
Priority to KR1020207010095A priority patent/KR20200062227A/en
Publication of WO2019073878A1 publication Critical patent/WO2019073878A1/en
Priority to US16/843,232 priority patent/US11953833B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material

Definitions

  • the present invention relates to a compound, a pattern formation substrate, a photocleavable coupling agent, a pattern formation method, and a method of manufacturing a transistor.
  • the present application claims priority based on Japanese Patent Application No. 2017-197501, filed on Oct. 11, 2017, and Japanese Patent Application No. 2018-045274, filed on Mar. 13, 2018, The contents are incorporated herein.
  • Patent Document 1 describes a fluorine-containing compound whose contact angle can be changed before and after light irradiation.
  • a material not containing fluorine is desired.
  • Patent No. 4997765 gazette
  • a first aspect of the present invention is a compound represented by the following general formula (1).
  • X represents a halogen atom or an alkoxy group
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, a group represented by the following formula (R2-1), or a group represented by the following formula (R2-2)
  • R 2 is a group represented by the following formula (R2-1) or (R2-2)
  • n0 is an integer of 0 or more
  • n1 is 0 to The integer of 5
  • n2 is a natural number of 1 to 5.
  • R 21 and R 22 each independently represent an alkyl group of 1 to 5 carbon atoms, and n is a natural number.
  • the wavy line means a bond.
  • a second aspect of the present invention is a patterning substrate having a surface chemically modified with the compound of the first aspect of the present invention.
  • a third aspect of the present invention is a photocleavable coupling agent comprising the compound of the first aspect of the present invention.
  • a fourth aspect of the present invention is a pattern forming method for forming a pattern on the surface to be treated of an object, wherein the step of chemically modifying the surface to be treated using the compound of the first aspect of the present invention And irradiating the chemically modified surface to be treated with light of a predetermined pattern to form a latent image comprising a hydrophilic area and a water repellent area, and disposing a pattern forming material on the hydrophilic area or the water repellent area.
  • a fifth aspect of the present invention is a pattern forming method for forming a pattern on a surface to be treated of an object, wherein the compound to be treated is chemically modified using the compound of the first aspect of the present invention. And irradiating a light of a predetermined pattern onto the chemically modified surface to be treated to generate a latent image consisting of a hydrophilic area and a water repellent area, and arranging an electroless plating catalyst in the hydrophilic area, And a step of performing electrolytic plating.
  • a sixth aspect of the present invention is a method of manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode, wherein at least one of the gate electrode, the source electrode, and the drain electrode is It is a manufacturing method of a transistor including the process formed with the pattern formation method of the 4th mode or the 5th mode of the above.
  • the first embodiment of the present invention is a compound represented by the following general formula (1).
  • the compound of the present embodiment has a siloxane-based water repellent group.
  • the surface of an object such as a substrate
  • the surface of the object can be modified to be water repellent.
  • the water repellent group is eliminated, a hydrophilic group is generated, and the surface of the object can be modified to be hydrophilic.
  • the compound of the present embodiment can be substituted for the fluorine-based compound which has been conventionally used for reforming to water repellency, and further exhibits the liquid repellency and releasability unique to siloxane-based water repellent groups. It is considered possible.
  • X represents a halogen atom or an alkoxy group
  • R 1 represents an alkyl group having 1 to 5 carbon atoms, a group represented by the following formula (R2-1), or a group represented by the following formula (R2-2)
  • R 2 is a group represented by the following formula (R2-1) or (R2-2)
  • n0 is an integer of 0 or more
  • n1 is 0 to The integer of 5
  • n2 is a natural number of 1 to 5.
  • R 21 and R 22 each independently represent an alkyl group of 1 to 5 carbon atoms, and n is a natural number of 1 to 5].
  • the wavy line means a bond.
  • ⁇ X ⁇ X is a halogen atom or an alkoxy group.
  • the halogen atom represented by X can include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but X is preferably an alkoxy group rather than a halogen atom.
  • n0 represents an integer of 0 or more, and is preferably an integer of 1 to 20, and more preferably an integer of 2 to 15 from the viewpoint of the availability of starting materials.
  • R 1 is an alkyl group having 1 to 5 carbon atoms, or a group represented by the following formula (R2-1) or (R2-2).
  • Examples of the alkyl group having 1 to 5 carbon atoms of R 1 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group and neopentyl group.
  • a methyl group or an ethyl group is preferable, and a methyl group is more preferable.
  • n1 is an integer of 0 to 5, and in the case of the disubstituted type described later, n1 is preferably a natural number of 1 to 5, more preferably 2 to 4, and particularly preferably 3. In the case of 1-substituted type, 0 is preferable. n2 is a natural number of 1 to 5, preferably 2 to 4, and more preferably 3.
  • R 21 and R 22 each independently represent an alkyl group of 1 to 5 carbon atoms, and n is a natural number.
  • the wavy line means a bond.
  • R 21 and R 22 each independently represent an alkyl group having 1 to 5 carbon atoms.
  • alkyl group having 1 to 5 carbon atoms include the groups described for R 1 above, among which a methyl group, an isopropyl group or a tert-butyl group is preferable.
  • N in the formula (R2-2) is a natural number, preferably 1 to 200, preferably 1 to 150, and more preferably 1 to 120.
  • Intermediate compound 14 ' can be obtained by reacting the intermediate compound 14 represented by the following formula with a siloxane compound.
  • Intermediate compound 14 may be produced by the method described in the examples described later, for example, as described in H. Nakayama et al. , Colloids Surf. B, 2010, 76, 88-97.
  • R 1 and R 21 are each independently an alkyl group having 1 to 5 carbon atoms.
  • a compound (1) of this embodiment can be obtained by further reacting a siloxane compound with the obtained intermediate compound 14 '.
  • R 1 and R 21 are each independently an alkyl group having 1 to 5 carbon atoms.
  • X represents a halogen atom or an alkoxy group, and n0 is an integer of 0 or more.
  • the compound represented by general formula (1) of 1-substituted linear type can also be manufactured by the following method. Specifically, an intermediate compound 13 represented by the following formula is reacted with a siloxane compound to obtain an intermediate compound 15.
  • R 1 and R 22 are each independently an alkyl group having 1 to 5 carbon atoms.
  • the resulting intermediate compound 15 can be reacted with squamimidyl carbonate to obtain an intermediate compound 15 '.
  • R 1 and R 22 are each independently an alkyl group having 1 to 5 carbon atoms.
  • the resulting intermediate compound 15 ' is further reacted with a siloxane compound to obtain the compound (1) of the present embodiment.
  • R 1 and R 21 are each independently an alkyl group having 1 to 5 carbon atoms.
  • X represents a halogen atom or an alkoxy group, and n0 is an integer of 0 or more.
  • the compound represented by the disubstituted general formula (1) can be produced by the following method. Specifically, each of the siloxane compounds can be reacted with an intermediate compound 25 represented by the following formula to obtain an intermediate compound 25 ′.
  • R 21 represents an alkyl group having 1 to 5 carbon atoms.
  • R 1 is an alkyl group having 1 to 5 carbon atoms.
  • a compound (1) of the present embodiment can be obtained by further reacting a siloxane compound with the obtained intermediate compound 25 '.
  • R 1 is an alkyl group having 1 to 5 carbon atoms.
  • X represents a halogen atom or an alkoxy group, and n0 is an integer of 0 or more.
  • R 1 is an alkyl group having 1 to 5 carbon atoms.
  • X represents a halogen atom or an alkoxy group, and n0 is an integer of 0 or more.
  • a second embodiment of the present invention is a substrate for pattern formation having a surface chemically modified using the compound of the first embodiment.
  • the surface of the substrate for pattern formation of this embodiment is modified using the compound of the first embodiment. For this reason, by selectively exposing through a mask or the like, a hydrophilic region is formed in the exposed area on the pattern forming substrate, and a water repellent area is formed in the unexposed area.
  • the pattern forming material can be selectively applied to the hydrophilic region formed in the exposed portion, and metal wiring Etc. can be formed.
  • the substrate is not particularly limited, and glass, quartz glass, silicon wafer, plastic plate, metal plate and the like are preferably mentioned. Moreover, you may use the board
  • the shape of the substrate is not particularly limited, and a flat surface, a curved surface, or a flat surface having a partially curved surface is preferable, and a flat surface is more preferable.
  • the area of the substrate is also not particularly limited, and a substrate having a surface of a size as long as the conventional coating method can be applied can be adopted.
  • pretreat the substrate surface When modifying the surface of the substrate, it is preferable to pretreat the substrate surface.
  • pretreatment with a piranha solution or pretreatment with a UV-ozone cleaner is preferable.
  • the third embodiment of the present invention is a photocleavable coupling agent comprising the compound of the first embodiment.
  • the photodegradable coupling agent of the present embodiment includes a photodegradable group having a liquid repellent group, and an adhesion group linked to the photodegradable group via a functional group, and the liquid repellent group has a siloxane structure.
  • the functional group is one that becomes a residue of an amino group after photolysis. Therefore, the photolytic coupling agent of the present embodiment can ensure a large difference in contact angle before and after light irradiation.
  • a fourth embodiment of the present invention is a pattern forming method for forming a pattern on a surface to be treated of an object, wherein the step of chemically modifying the surface to be treated using the compound of the first embodiment; Irradiating a light of a predetermined pattern onto the chemically modified surface to be treated to generate a latent image consisting of a hydrophilic area and a water repellent area; disposing a pattern forming material on the hydrophilic area or the water repellent area; And a pattern forming method comprising:
  • This step is a step of chemically modifying the surface to be treated using the compound of the first embodiment in the pattern forming method for forming a pattern on the surface to be treated of the object.
  • the object is not particularly limited, and, for example, metals, crystalline materials (for example, single crystalline, polycrystalline and partially crystalline materials), amorphous materials, conductors, semiconductors, insulators, optical elements, painted substrates , Fiber, glass, ceramics, zeolite, plastic, thermosetting and thermoplastic materials (eg, optionally doped: polyacrylate, polycarbonate, polyurethane, polystyrene, cellulose polymer, polyolefin, polyamide, polyimide, resin, polyester, polyphenylene Etc.), films, thin films, foils, etc.
  • crystalline materials for example, single crystalline, polycrystalline and partially crystalline materials
  • amorphous materials for example, conductors, semiconductors, insulators, optical elements, painted substrates , Fiber, glass, ceramics, zeolite, plastic
  • thermosetting and thermoplastic materials eg, optionally doped: polyacrylate, polycarbonate, polyurethane, polystyrene, cellulose polymer, polyole
  • the pattern formation method of the present embodiment it is preferable to form a circuit pattern for an electronic device on a flexible substrate.
  • a foil such as a resin film or stainless steel
  • the resin film may be made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. It can be used.
  • flexibility refers to the property of being able to bend the substrate without breaking or breaking even when a force of about its own weight is applied to the substrate.
  • the property of being bent by the force of its own weight is also included in the flexibility.
  • the flexibility varies depending on the material, size, thickness, environment such as temperature, etc. of the substrate. Note that although a single strip-shaped substrate may be used as the substrate, a plurality of unit substrates may be connected to form a strip.
  • the method for chemically modifying the surface to be treated of the object is not particularly limited as long as the group represented by X in the general formula (1) is a method of binding to the substrate, and the immersion method, chemical treatment method Known methods such as can be used.
  • the chemical modification in this step can be performed, for example, by reacting the compound represented by the general formula (1) with a substrate as shown below.
  • X represents a halogen atom or an alkoxy group
  • R 1 is an alkyl group having 1 to 5 carbon atoms, a group represented by the above formula (R2-1) or (R2-2)
  • R 2 is A group represented by the formula (R2-1) or (R2-2)
  • n0 is a natural number.
  • n1 is an integer of 0 to 5
  • n2 is a natural number of 1 to 5.
  • This step is a step of exposing the chemically modified surface to be treated to generate a latent image consisting of a hydrophilic area and a water repellent area.
  • the light irradiated at the time of exposure is preferably ultraviolet light.
  • the light to be irradiated preferably includes light having a wavelength within the range of 200 nm to 450 nm, and more preferably includes light having a wavelength within the range of 320 nm to 450 nm. It is also preferable to emit light including light with a wavelength of 365 nm.
  • the light having these wavelengths can efficiently decompose the photolytic group.
  • As a light source low pressure mercury lamp, high pressure mercury lamp, super high pressure mercury lamp, xenon lamp, sodium lamp; gas laser such as nitrogen, liquid laser of organic dye solution, solid laser containing rare earth ion in inorganic single crystal, etc. It can be mentioned.
  • a light source other than a laser capable of obtaining monochromatic light light of a specific wavelength obtained by extracting a wide-band line spectrum or a continuous spectrum using an optical filter such as a band pass filter or a cutoff filter may be used.
  • a high pressure mercury lamp or an ultrahigh pressure mercury lamp is preferable as a light source because a large area can be irradiated at one time.
  • light can be emitted arbitrarily within the above range, but it is particularly preferable to emit light energy of distribution corresponding to the circuit pattern.
  • the group having water repellent performance is dissociated by irradiating a light of a predetermined pattern to the chemically modified surface to be treated, and residues having hydrophilic performance (amino group) are generated.
  • residues having hydrophilic performance (amino group) are generated.
  • this step it is preferable to generate a latent image of a circuit pattern on the surface of the flexible substrate due to the difference in hydrophilicity and water repellency.
  • a group having water repellent performance is dissociated as shown below to generate a residue having hydrophilic performance (amino group).
  • R 1 is an alkyl group having 1 to 5 carbon atoms, a group represented by the above formula (R2-1) or (R2-2), and R 2 is a group represented by the above formula (R2-1) or (R2 And a group represented by -2).
  • n0 is a natural number.
  • n1 is an integer of 0 to 5, and n2 is a natural number of 1 to 5.
  • Step of arranging pattern forming material This step is a step of arranging a pattern forming material in the hydrophilic area or the water repellent area generated in the above-mentioned step.
  • Wiring material in which particles of gold, silver, copper or alloys thereof are dispersed in a predetermined solvent, or precursor solution containing the above-mentioned metal, insulator (resin), as a pattern forming material
  • metal solution in which particles of gold, silver, copper or alloys thereof are dispersed in a predetermined solvent, or precursor solution containing the above-mentioned metal, insulator (resin), as a pattern forming material
  • Examples thereof include electronic materials in which a semiconductor, an organic EL light emitting material and the like are dispersed in a predetermined solvent, and a resist solution.
  • the pattern formation material is preferably a conductive material, a semiconductor material, or an insulating material.
  • the conductive material examples include a pattern forming material made of a dispersion liquid in which conductive fine particles are dispersed in a dispersion medium.
  • conductive fine particles for example, metal fine particles containing any of gold, silver, copper, palladium, nickel and ITO, these oxides, and fine particles of conductive polymer and superconductor, etc. are used.
  • These conductive fine particles can also be used by coating an organic substance or the like on the surface in order to improve the dispersibility.
  • the dispersion medium is not particularly limited as long as it can disperse the above-mentioned conductive fine particles and does not cause aggregation.
  • alcohols such as methanol, ethanol, propanol and butanol, n-heptane, n-octane, decane, dodecane, tetradecane, tetradecane, toluene, xylene, cymene, durene, indene, dipentene, tetrahydronaphthalene, decahydro Hydrocarbon compounds such as naphthalene and cyclohexylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, 1,2-dimethoxyethane, bis (2-
  • water, alcohols, hydrocarbon compounds, and ether compounds are preferable in terms of the dispersibility of the fine particles, the stability of the dispersion, and the ease of application to the droplet discharge method (ink jet method),
  • water and a hydrocarbon type compound can be mentioned.
  • an organic semiconductor material composed of a dispersion liquid dispersed or dissolved in a dispersion medium can be used.
  • a low molecular weight material or a high molecular weight material of ⁇ electron conjugated system whose skeleton is composed of conjugated double bonds is desirable.
  • soluble low molecular weight materials such as acenes such as pentacene, and thienoacenes such as benzothienobenzothiophene
  • soluble high molecular weight materials such as polythiophene, poly (3-alkylthiophene) and polythiophene derivatives can be mentioned.
  • a soluble precursor material may be used which is converted to the above-described semiconductor by heat treatment, and examples of the pentacene precursor include sulfinylacetamide pentacene and the like.
  • the present invention is not limited to the organic semiconductor material, and an inorganic semiconductor material may be used.
  • Insulating materials are represented by polyimide, polyamide, polyester, acrylic, PSG (phosphor glass), BPSG (phosphoboron glass), polysilazane SOG, silicate SOG (Spin on Glass), alkoxysilicate SOG, and siloxane polymer.
  • An insulating material comprising a dispersion in which SiO 2 or the like having a Si—CH 3 bond is dispersed or dissolved in a dispersion medium can be mentioned.
  • a droplet discharge method As a method of arranging a pattern forming material, a droplet discharge method, an inkjet method, a spin coat method, a roll coat method, a slot coat method, a dip coat method, or the like can be applied.
  • a substrate processing apparatus 100 which is a roll-to-roll apparatus as shown in FIG. It may be used to form a pattern.
  • the structure of the substrate processing apparatus 100 is shown in FIG.
  • the substrate processing apparatus 100 performs processing on a substrate supply unit 2 that supplies a strip-shaped substrate (for example, a strip-shaped film member) S, and a surface (processed surface) Sa of the substrate S.
  • the substrate processing unit 3, the substrate recovery unit 4 for recovering the substrate S, the application unit 6 of the compound of the first embodiment, the exposure unit 7, the mask 8, the pattern material application unit 9, and these units And a controller CONT to control.
  • the substrate processing unit 3 can execute various processes on the surface of the substrate S after the substrate S is sent out from the substrate supply unit 2 and before the substrate recovery unit 4 recovers the substrate S.
  • This substrate processing apparatus 100 can be suitably used, when forming display elements (electronic device), such as an organic EL element and a liquid crystal display element, on a substrate S, for example.
  • FIG. 1 illustrates a method of using a photomask to generate desired pattern light
  • the present embodiment may be suitably applied to a maskless exposure method that does not use a photomask. it can.
  • a maskless exposure method of generating pattern light without using a photomask a method of using a spatial light modulation element such as DMD, a method of scanning a spot light as in a laser beam printer, and the like can be mentioned.
  • an XYZ coordinate system is set as shown in FIG. 1, and the following description will be made using this XYZ coordinate system as appropriate.
  • the XYZ coordinate system for example, an X axis and a Y axis are set along a horizontal surface, and a Z axis is set upward along the vertical direction.
  • the substrate processing apparatus 100 transports the substrate S along the X axis as a whole from the minus side ( ⁇ side) to the plus side (+ side). At that time, the width direction (short direction) of the strip-like substrate S is set in the Y-axis direction.
  • the resin film may be made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. It can be used.
  • the substrate S preferably has a small thermal expansion coefficient so that the dimensions do not change even if it receives heat of, for example, about 200.degree.
  • an inorganic filler can be mixed with a resin film to reduce the thermal expansion coefficient.
  • the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like.
  • the substrate S may be a single layer of ultrathin glass having a thickness of about 100 ⁇ m manufactured by the float method or the like, or a laminate in which the above-mentioned resin film or aluminum foil is bonded to the ultrathin glass.
  • the dimension in the width direction (short direction) of the substrate S is, for example, about 1 m to 2 m, and the dimension in the longitudinal direction (long direction) is, for example, 10 m or more.
  • this dimension is only an example, and is not limited to this.
  • the dimension in the Y direction of the substrate S may be 50 cm or less, or 2 m or more.
  • the dimension of the substrate S in the X direction may be 10 m or less.
  • the substrate S is preferably formed to have flexibility.
  • flexibility refers to the property of being able to bend the substrate without breaking or breaking even when a force of about its own weight is applied to the substrate.
  • the property of being bent by the force of its own weight is also included in the flexibility.
  • the flexibility varies depending on the material, size, thickness, environment such as temperature, etc. of the substrate. Note that although a single strip-shaped substrate may be used as the substrate S, a plurality of unit substrates may be connected to form a strip.
  • the substrate supply unit 2 feeds and supplies, for example, the substrate S wound in a roll shape to the substrate processing unit 3.
  • the substrate supply unit 2 is provided with a shaft portion around which the substrate S is wound, a rotation driving device which rotates the shaft portion, and the like.
  • a cover provided to cover the substrate S in a rolled state may be provided.
  • the substrate supply unit 2 is not limited to a mechanism for delivering the substrate S wound in a roll, but includes a mechanism (for example, a nip type drive roller) for sequentially delivering the strip-like substrate S in its length direction. I hope there is.
  • the substrate recovery unit 4 rolls up and recovers the substrate S which has passed through the substrate processing apparatus 100, for example, in a roll shape. Similar to the substrate supply unit 2, the substrate recovery unit 4 is provided with a shaft for winding the substrate S, a rotational drive source for rotating the shaft, and a cover for covering the collected substrate S. When the substrate S is cut into a panel shape in the substrate processing unit 3, the substrate S is collected in a state different from the state of being wound in a roll shape, for example, the substrate S is collected in a stacked state. It does not matter.
  • the substrate processing unit 3 transports the substrate S supplied from the substrate supply unit 2 to the substrate recovery unit 4 and uses the compound of the first embodiment for the processing surface Sa of the substrate S in the process of transport.
  • a step of chemically modifying, a step of irradiating light of a predetermined pattern onto the chemically modified treated surface, and a step of arranging a patterning material are performed.
  • the substrate processing unit 3 applies a compound application unit 6 that applies the compound of the first embodiment to the surface to be processed Sa of the substrate S, an exposure unit 7 that emits light, a mask 8, and a pattern material application unit 9.
  • a transport device 20 including a drive roller R for feeding the substrate S under conditions corresponding to the form of processing.
  • the compound application unit 6 and the pattern material application unit 9 are droplet application devices (for example, droplet discharge type application devices, inkjet type application devices, spin coat type application devices, roll coat type application devices, slot coat type application devices, etc. Can be mentioned.
  • Each of these devices is appropriately provided along the transport path of the substrate S, and a flexible display panel or the like can be produced by a so-called roll-to-roll method.
  • the exposure unit 7 is provided, and an apparatus that takes charge of steps before and after that (photosensitive layer forming step, photosensitive layer developing step, etc.) is also provided inline as necessary.
  • a fifth embodiment of the present invention is a pattern forming method for forming a pattern on the surface to be treated of an object, wherein the step of chemically modifying the surface to be treated using the compound of the first embodiment; A step of irradiating the modified surface to be treated with light of a predetermined pattern to form a latent image consisting of a hydrophilic area and a water repellant area; arranging an electroless plating catalyst in the hydrophilic area; And a step of performing the pattern formation method.
  • the wiring pattern can be formed by electroless plating by the following method. This will be described below with reference to FIG.
  • any of general film forming techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD), liquid phase growth, and the like may be used.
  • the liquid phase growth method is particularly preferable, and as the liquid phase growth method, for example, a coating method (spin coat, dip coat, die coat, spray coat, roll coat, brush coating), printing method (flexo printing, screen printing) etc. It can be mentioned. Alternatively, a SAM film or an LB film may be used.
  • a photomask 13 having an exposure area of a predetermined pattern is prepared.
  • the exposure method is not limited to a method using a photomask, and a method such as projection exposure using an optical system such as a lens or a mirror, a spatial light modulation element, maskless exposure using a laser beam or the like can be used.
  • the photomask 13 may be provided in contact with the compound layer 12 or may be provided in non-contact with the compound layer 12.
  • UV light can be irradiated with the wavelength from which an optimal quantum efficiency is exhibited by the structure of photosensitive group. For example, there is i-line at 365 nm.
  • the exposure dose and the exposure time do not necessarily have to proceed completely with deprotection, and may be such an extent that some amino groups are generated. At that time, in the plating step described later, conditions (such as the activity of the plating bath) can be appropriately changed according to the progress of deprotection.
  • the catalyst for electroless plating is a catalyst for reducing metal ions contained in a plating solution for electroless plating, and examples thereof include silver and palladium.
  • the amino group is exposed on the surface of the hydrophilic region 14, the amino group can capture and reduce the above-mentioned catalyst for electroless plating. Therefore, the electroless plating catalyst is captured only on the hydrophilic region 14 to form the catalyst layer 15. Further, as the electroless plating catalyst, one capable of supporting an amino group can be used.
  • plating layer 16 As shown in FIG. 2E, electroless plating is performed to form a plating layer 16.
  • the material of the plating layer 16 include nickel-phosphorus (NiP) and copper (Cu).
  • the substrate 11 is immersed in an electroless plating bath to reduce metal ions on the catalyst surface, thereby depositing the plating layer 16.
  • the catalyst layer 15 supporting a sufficient amount of catalyst is formed on the surface of the hydrophilic region 14, the plating layer 16 can be selectively deposited only on the hydrophilic region 14. If the reduction is insufficient, it may be immersed in a reducing agent solution such as sodium hypophosphite or sodium borohydride to actively reduce the metal ion on the amine.
  • the plating layer 16 of the electroless plating pattern formed by the above-described method of forming an electroless plating pattern is covered by a known method to form the insulator layer 17 on the compound layer 12.
  • the insulator layer 17 applies the coating solution using, for example, a coating solution in which one or more resins such as an ultraviolet curable acrylic resin, an epoxy resin, an ene / thiol resin, and a silicone resin are dissolved in an organic solvent. It may be formed by By irradiating the coating film with ultraviolet light through a mask provided with an opening corresponding to the region where the insulator layer 17 is to be formed, the insulator layer 17 can be formed into a desired pattern.
  • a coating solution in which one or more resins such as an ultraviolet curable acrylic resin, an epoxy resin, an ene / thiol resin, and a silicone resin are dissolved in an organic solvent. It may be formed by By irradiating the coating film with ultraviolet light through a mask provided with an opening corresponding to the region where
  • the seventh step As shown in FIG. 3B, in the same manner as the first to third steps of the method of forming an electroless plating pattern described above, the hydrophilic region 14 is formed in the portion where the source electrode and the drain electrode are to be formed.
  • the catalyst for electroless plating is supported on the hydrophilic region 14 to form the catalyst layer 15 in the same manner as the fourth and fifth steps of the method for forming an electroless plating pattern described above. Thereafter, electroless plating is performed to form a plating layer 18 (source electrode) and a plating layer 19 (drain electrode).
  • a plating layer 18 source electrode
  • a plating layer 19 drain electrode
  • NiP nickel-phosphorus
  • Cu copper
  • the semiconductor layer 21 is formed between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode).
  • the semiconductor layer 21 is prepared, for example, by forming a solution in which an organic semiconductor material soluble in an organic solvent such as TIPS pentacene (6, 13-bis (triisopropylsilylethynyl) pentacene) is dissolved in the organic solvent, and the plating layer 18 (source It may be formed by applying and drying between the electrode) and the plating layer 19 (drain electrode).
  • the compound layer 12 between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) may be exposed to be hydrophilic.
  • the solution is suitably applied to the hydrophilized portion, so that the semiconductor layer 21 can be selectively formed easily.
  • the semiconductor layer 21 is formed by adding one or more kinds of insulating polymers such as PS (polystyrene) and PMMA (polymethyl methacrylate) to the solution, and applying and drying a solution containing the insulating polymer. May be Thus, when the semiconductor layer 21 is formed, the insulating polymer is formed in a concentrated manner below the semiconductor layer 21 (on the side of the insulator layer 17). If a polar group such as an amino group is present at the interface between the organic semiconductor and the insulator layer, the transistor characteristics tend to be degraded. However, by providing the organic semiconductor through the above-described insulating polymer, Deterioration of transistor characteristics can be suppressed. As described above, a transistor can be manufactured.
  • the step of removing the resist layer is not necessary.
  • the catalyst reduction ability of the amino group makes it possible to omit the catalyst activation treatment step that is usually required, and enables highly precise patterning while realizing significant cost reduction and time reduction.
  • a dip coating method can be used, it can be used very well even in roll-to-roll processes.
  • the structure of the transistor is not particularly limited and can be selected as appropriate depending on the purpose.
  • FIGS. 2 to 3 has described a method of manufacturing a bottom contact / bottom gate type transistor, the same applies to top contact / bottom gate type, top contact / top gate type, bottom contact / top gate type transistors. It may be manufactured.
  • FIGS. 2-3 demonstrated the method to form all of a gate electrode, a source electrode, and a drain electrode using the compound of 1st Embodiment, only a gate electrode is a 1st embodiment. It may be formed using a compound, or only the source electrode and the drain electrode may be formed using the compound of the first embodiment.
  • Step 1 Synthesis of 1- (4-allyloxy-3-methoxyphenyl) ethanone >> Add 4-hydroxy-3-methoxyacetophenone (5.00 g, 30.1 mmol) to a 300 mL eggplant flask, dissolve in acetone (50 mL), add potassium carbonate (6.24 g, 45.1 mmol), and add 5 at room temperature. After stirring for a minute, allyl bromide (5.46 g, 45.1 mmol) was added and stirred at room temperature for 24 hours.
  • Step 2 Synthesis of 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethanone
  • the above intermediate compound 11 (497 mg, 2.41 mmol) is added to a 50 mL eggplant flask and dissolved in acetic acid (3 mL), and fuming nitric acid (1 mL, 24.1 mmol) is slowly added dropwise on an ice bath. Stir for 30 minutes.
  • Cold water (10 mL) is added and extraction is performed with ethyl acetate (10 mL ⁇ 3), and the organic layer is washed successively with saturated aqueous sodium hydrogen carbonate solution (10 mL) and saturated brine (10 mL ⁇ 2), dried over anhydrous magnesium sulfate, and filtered. Concentrated.
  • Step 3 Synthesis of 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethanol
  • the intermediate compound 12 (1.41 g, 5.61 mmol) obtained in the above step
  • tetrahydrofuran (10 mL)
  • methanol 10 mL
  • sodium borohydride (637 mg, 16. 8 mmol) were added in small portions. The mixture was stirred at 0 ° C. for 20 minutes and then at room temperature for 40 minutes.
  • Step 4 Synthesis of 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate >> Intermediate compound 13 (2.50 g, 9.85 mmol) is put in a 200 mL two-necked eggplant flask and dissolved in dry acetonitrile (35 mL), and di (N-succinimidyl) carbonate (6.36 g, 24.8 mmol), triethylamine (4.05 g, 40.1 mmol) was added and stirred at room temperature for 17 hours under a nitrogen atmosphere.
  • Intermediate Compound 14 was synthesized by the above method. Nakayama et al. , Colloids Surf. B, 2010, The intermediate compound 14 synthesized by the method described in 76, 88-97 may be used.
  • Step 6 Synthesis of 1- (5-methoxy-2-nitro-4- (3-tris (trimethylsiloxy) silylpropoxy) phenyl) ethyl 3-trimethoxysilylpropyl carbamate >> Intermediate compound 1a (100 mg, 0.145 mmol) is placed in a 30 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (1 mL), 3-aminopropyltrimethoxysilane (0.028 mL, 0.161 mmol) is added, and light shielding is performed under a nitrogen atmosphere. The mixture was then stirred at room temperature for 22 hours.
  • ⁇ Surface modification> The thermally oxidized silicon wafer (SiO 2 / Si substrate) was ultrasonically cleaned with methanol for 5 minutes, dried with a nitrogen stream, and then pretreated by UV irradiation with a UV-ozone cleaner for 1 hour. Next, the compound 3a obtained by the above method was dissolved in dry toluene to prepare a 1 mM solution, the above-described pretreated substrate was placed, and immersed at room temperature for 20 hours under a nitrogen atmosphere. The substrate was rinsed with methanol, ultrasonically cleaned with methanol and chloroform for 5 minutes each, and dried with a nitrogen stream (Step 1 below).
  • the modified substrate was irradiated with light having a wavelength of 365 nm and an illuminance of 15 J in the atmosphere via a filter with an extra-high pressure mercury lamp.
  • the substrate was ultrasonically cleaned with chloroform for 5 minutes and dried with a stream of nitrogen (Step 2 below).
  • FIG. 4 shows XPS spectra before and after light irradiation. It is considered that the surface of the substrate was modified because of the large contact angle after modification and the hydrophobicity.
  • XPS showed that after modification, the appearance of a peak derived from a nitro group was observed, and thus modification was possible. It was confirmed that the contact angle decreased after the light irradiation. In addition, it was confirmed from XPS that the peak derived from the nitro group disappeared after light irradiation and the C (carbon) peak decreased, and that the photodegradable group was detached by light irradiation.
  • Step 2 Synthesis of 1- (4,5-diallyloxy-2-nitrophenyl) ethanone >> Intermediate compound 21 (15.2 g, 65.2 mmol) is placed in a 300 mL eggplant flask and dissolved in acetic acid (60 mL), and fuming nitric acid (27.3 mL) is slowly added over 20 minutes on an ice bath to react After confirming the progress by TLC, it was poured into pure water (200 mL).
  • Step 3 Synthesis of 1- (4,5-diallyloxy-2-nitrophenyl) ethanol
  • Intermediate compound 22 (6.08 g, 21.9 mmol) is put in a 300 mL eggplant flask, dissolved in tetrahydrofuran (70 mL), methanol (30 mL) is added, and then sodium borohydride (2.90 g) on an ice bath , 76.7 mmol) was added in small portions and stirred at 0 ° C. for 1.5 hours.
  • Step 4 Synthesis of 1- (4,5-diallyloxy-2-nitrophenyl) ethyl N-succinimidyl carbonate >> Intermediate compound 23 (2.86 g, 10.2 mmol) is put into a 300 mL two-necked eggplant flask and dissolved in dry acetonitrile (35 mL), di (N-succinimidyl) carbonate (4.46 g, 17.4 mmol), triethylamine (3.21 g, 31.7 mmol) was added and stirred at room temperature for 19 hours under a nitrogen atmosphere.
  • Step 6 Synthesis of 1- (2-nitro-4,5-bis (3-tris (trimethylsiloxy) silylpropoxy) phenyl) ethyl 3-trimethoxysilylpropyl carbamate >>
  • Intermediate compound 2a 147 mg, 0.145 mmol
  • 3-aminopropyltrimethoxysilane 78 mg, 0.43 mmol
  • triethylamine 44 mg, 0.43 mmol
  • the mixture was stirred at room temperature for 13 hours under light shielding under a nitrogen atmosphere.
  • Step 1 Synthesis of 1- (4,5-bis (3- (polydimethylsiloxanyl) propoxy) -2-nitrophenyl) ethyl N-succinimidyl carbonate >>
  • Intermediate compound 24 (1.01 g, 2.39 mmol) is put into a 200 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (30 mL), and polydimethylsiloxane (6.69 g, 6.19 mmol), the Karsted catalyst (10) Drop) was added and stirred at room temperature for 20 hours under nitrogen atmosphere.
  • Step 2 Synthesis of 1- (4,5-bis (3- (polydimethylsilyl) propoxy) -2-nitrophenyl) ethyl 3-trimethoxysilylpropyl carbamate >> Intermediate compound 2c (305 mg, 0.12 mmol) is placed in a 30 mL two-necked eggplant flask, dissolved in dry tetrahydrofuran (12 mL), 3-aminopropyltrimethoxysilane (66 mg, 0.37 mmol), triethylamine (37 mg, 0.37 mmol) In addition, the mixture was stirred at room temperature for 2.5 hours under light shielding under a nitrogen atmosphere.
  • the silicon wafer with thermal oxide film (SiO 2 / Si substrate) is ultrasonically cleaned with pure water, acetone, methanol and chloroform for 5 minutes each, dried with a nitrogen stream, and then irradiated with UV for 1 hour with a UV-ozone cleaner. Pre-treated.
  • the compounds 3b, 4a, 4b and 4c obtained by the above method were each dissolved in dry toluene to prepare a 1 mM (compound 4a, 4b and 4c was 0.1 mM) solution, and the above pretreatment was carried out.
  • the substrate was placed, and immersed in a nitrogen atmosphere at room temperature for 20 hours (the compounds 4a and 4c were for 24 hours).
  • the substrate was ultrasonically cleaned with chloroform for 5 minutes and dried with a stream of nitrogen (Step 1 below).
  • the modified substrate was irradiated with light of wavelength 365 nm and illuminance 15 J (only compound 4 b was 10 J) through a filter with an extra-high pressure mercury lamp in the atmosphere.
  • the substrate was ultrasonically cleaned with chloroform for 5 minutes and dried with a stream of nitrogen (Step 2 below).
  • FIG. 5 shows a substrate modified with compound 3b
  • FIG. 6 shows a substrate modified with compound 4a
  • FIG. 7 shows a substrate modified with compound 4b
  • FIG. 8 shows XPS spectra before and after light irradiation on a substrate modified with compound 4c.
  • the obtained modified substrate was compared before and after light irradiation by static contact angle measurement and XPS. It is considered that the surface of the substrate was modified because the contact angle was large after the modification and the water repellency was shown. Moreover, compound 3b, 4a, 4c has confirmed the appearance of the peak derived from a nitro group after modification from XPS. Although a clear peak derived from a nitro group by XPS was not confirmed for the compound 4b, it is considered that this is because the film thickness is thin and sufficient sensitivity can not be obtained. It was confirmed that the contact angle decreased after the light irradiation.
  • the compounds 3b, 4a and 4c were able to confirm the disappearance of the peak derived from the nitro group after light irradiation. Further, in any of the compounds, the C (carbon) peak decreased, and it was confirmed that the photodegradable group was eliminated by light irradiation.
  • Substrate CONT Control unit Sa: Surface to be treated 2 ... Substrate supply unit 3 ... Substrate treatment unit 4 ... Substrate recovery unit 6 ... Compound application unit 7 .. Exposure unit 8: Mask 9: Pattern material application unit 100: Substrate processing device

Abstract

This compound is represented by general formula (1) (in the formula: X represents a halogen or an alkoxy group; R1 is any one group selected from C1-5 alkyl groups, groups represented by formula (R2-1), and groups represented by formula (R2-2); R2 is a group represented by formula (R2-1) or (R2-2); n0 is an integer of 0 or higher; n1 is an integer in the range of 0-5; and n2 is a natural number in the range of 1-5).

Description

化合物、パターン形成用基板、光分解性カップリング剤、パターン形成方法及びトランジスタの製造方法Compound, substrate for pattern formation, photodegradable coupling agent, method for pattern formation, and method for manufacturing transistor
 本発明は、化合物、パターン形成用基板、光分解性カップリング剤、パターン形成方法及びトランジスタの製造方法に関する。
本願は、2017年10月11日に日本に出願された特願2017-197501号、及び、2018年3月13日に日本に出願された特願2018-045274号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a compound, a pattern formation substrate, a photocleavable coupling agent, a pattern formation method, and a method of manufacturing a transistor.
The present application claims priority based on Japanese Patent Application No. 2017-197501, filed on Oct. 11, 2017, and Japanese Patent Application No. 2018-045274, filed on Mar. 13, 2018, The contents are incorporated herein.
 近年、半導体素子、集積回路、有機ELディスプレイ用デバイス等の微細デバイス等の製造において、基板上に、表面特性の異なるパターンを形成し、その表面特性の違いを利用して微細デバイスを作成する方法が提案されている。
 基板上の表面特性の違いを利用したパターン形成方法としては、たとえば、基板上に親水領域と撥水領域とを形成し、機能性材料の水溶液を親水領域に塗布する方法がある。この方法は、親水領域でのみ機能性材料の水溶液が濡れ広がるため、機能性材料の薄膜パターンが形成できる。
 基板上に親水領域と撥水領域とを形成させることができる材料として、例えば、特許文献1には、光照射の前後で接触角を変化させることができる含フッ素化合物が記載されている。しかしながら、環境残留性の観点から、フッ素を含有しない材料が望まれている。
In recent years, in the manufacture of fine devices such as semiconductor devices, integrated circuits, devices for organic EL displays, etc., a method of forming patterns having different surface characteristics on a substrate and creating the fine devices using the difference in the surface characteristics Has been proposed.
As a method of forming a pattern utilizing differences in surface characteristics on a substrate, for example, there is a method of forming a hydrophilic region and a water repellent region on a substrate and applying an aqueous solution of a functional material to the hydrophilic region. In this method, since the aqueous solution of the functional material wets and spreads only in the hydrophilic region, a thin film pattern of the functional material can be formed.
As a material capable of forming a hydrophilic region and a water repellent region on a substrate, for example, Patent Document 1 describes a fluorine-containing compound whose contact angle can be changed before and after light irradiation. However, from the viewpoint of environmental persistence, a material not containing fluorine is desired.
特許第4997765号公報Patent No. 4997765 gazette
 本発明の第1の態様は、下記一般式(1)で表される化合物である。 A first aspect of the present invention is a compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
[式中、Xはハロゲン原子又はアルコキシ基を表し、Rは炭素数1~5のアルキル基、下記式(R2-1)で表される基、下記式(R2-2)で表される基から選択されるいずれか1つの基であり、Rは下記式(R2-1)又は(R2-2)で表される基であり、n0は0以上の整数であり、n1は0~5の整数、n2は1~5の自然数である。]
Figure JPOXMLDOC01-appb-C000003
[Wherein, X represents a halogen atom or an alkoxy group, R 1 represents an alkyl group having 1 to 5 carbon atoms, a group represented by the following formula (R2-1), or a group represented by the following formula (R2-2) R 2 is a group represented by the following formula (R2-1) or (R2-2), n0 is an integer of 0 or more, and n1 is 0 to The integer of 5, n2 is a natural number of 1 to 5. ]
Figure JPOXMLDOC01-appb-C000004
[式中、R21、R22は、それぞれ独立に、炭素数1~5のアルキル基、nは自然数である。波線は結合手を意味する。]
Figure JPOXMLDOC01-appb-C000004
[Wherein, R 21 and R 22 each independently represent an alkyl group of 1 to 5 carbon atoms, and n is a natural number. The wavy line means a bond. ]
 本発明の第2の態様は、前記本発明の第1の態様の化合物で化学修飾された表面を有するパターン形成用基板である。
 本発明の第3の態様は、前記本発明の第1の態様の化合物からなる光分解性カップリング剤である。
 本発明の第4の態様は、対象物の被処理面にパターンを形成するパターン形成方法であって、前記本発明の第1の態様の化合物を用いて、前記被処理面を化学修飾する工程と、化学修飾された前記被処理面に所定パターンの光を照射して、親水領域及び撥水領域からなる潜像を生成させる工程と、前記親水領域又は撥水領域にパターン形成材料を配置させる工程と、を備えるパターン形成方法である。
 本発明の第5の態様は、対象物の被処理面にパターンを形成するパターン形成方法であって、前記本発明の第1の態様の化合物を用いて、前記被処理面を化学修飾する工程と、化学修飾された前記被処理面に所定パターンの光を照射して、親水領域及び撥水領域からなる潜像を生成させる工程と、前記親水領域に無電解めっき用触媒を配置し、無電解めっきを行う工程と、を備えるパターン形成方法である。
 本発明の第6の態様は、ゲート電極と、ソース電極と、ドレイン電極と、を有するトランジスタの製造方法であって、前記ゲート電極、前記ソース電極、前記ドレイン電極のうち少なくとも1つの電極を、前記第4の態様又は前記第5の態様のパターン形成方法で形成する工程を含むトランジスタの製造方法である。
A second aspect of the present invention is a patterning substrate having a surface chemically modified with the compound of the first aspect of the present invention.
A third aspect of the present invention is a photocleavable coupling agent comprising the compound of the first aspect of the present invention.
A fourth aspect of the present invention is a pattern forming method for forming a pattern on the surface to be treated of an object, wherein the step of chemically modifying the surface to be treated using the compound of the first aspect of the present invention And irradiating the chemically modified surface to be treated with light of a predetermined pattern to form a latent image comprising a hydrophilic area and a water repellent area, and disposing a pattern forming material on the hydrophilic area or the water repellent area. And a process of forming a pattern.
A fifth aspect of the present invention is a pattern forming method for forming a pattern on a surface to be treated of an object, wherein the compound to be treated is chemically modified using the compound of the first aspect of the present invention. And irradiating a light of a predetermined pattern onto the chemically modified surface to be treated to generate a latent image consisting of a hydrophilic area and a water repellent area, and arranging an electroless plating catalyst in the hydrophilic area, And a step of performing electrolytic plating.
A sixth aspect of the present invention is a method of manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode, wherein at least one of the gate electrode, the source electrode, and the drain electrode is It is a manufacturing method of a transistor including the process formed with the pattern formation method of the 4th mode or the 5th mode of the above.
基板処理装置の全体構成を示す模式図である。It is a schematic diagram which shows the whole structure of a substrate processing apparatus. パターン形成方法の概略工程を示す図である。It is a figure which shows the general | schematic process of the pattern formation method. トランジスタの製造方法の概略工程の一例を示す図である。It is a figure which shows an example of the general | schematic process of the manufacturing method of a transistor. 光照射前後でのXPSスペクトルの結果を示す図である。It is a figure which shows the result of the XPS spectrum before and behind light irradiation. 光照射前後でのXPSスペクトルの結果を示す図である。It is a figure which shows the result of the XPS spectrum before and behind light irradiation. 光照射前後でのXPSスペクトルの結果を示す図である。It is a figure which shows the result of the XPS spectrum before and behind light irradiation. 光照射前後でのXPSスペクトルの結果を示す図である。It is a figure which shows the result of the XPS spectrum before and behind light irradiation. 光照射前後でのXPSスペクトルの結果を示す図である。It is a figure which shows the result of the XPS spectrum before and behind light irradiation.
<化合物>
 本発明の第1の実施形態は、下記一般式(1)で表される化合物である。本実施形態の化合物は、シロキサン系の撥水基を有する。本実施形態の化合物を用いて基板等の対象物表面を修飾すると、対象物表面を撥水性に改質できる。また、修飾後に光照射すると、撥水性基が脱離し、親水基が生成し、対象物表面を親水性に改質できる。
 本実施形態の化合物は、従来撥水性に改質するため用いられてきたフッ素系の化合物に代替が可能であり、さらに、シロキサン系の撥水基に特有の撥液性や離形性を発揮できると考えられる。
<Compound>
The first embodiment of the present invention is a compound represented by the following general formula (1). The compound of the present embodiment has a siloxane-based water repellent group. When the surface of an object such as a substrate is modified using the compound of the present embodiment, the surface of the object can be modified to be water repellent. In addition, when light is irradiated after modification, the water repellent group is eliminated, a hydrophilic group is generated, and the surface of the object can be modified to be hydrophilic.
The compound of the present embodiment can be substituted for the fluorine-based compound which has been conventionally used for reforming to water repellency, and further exhibits the liquid repellency and releasability unique to siloxane-based water repellent groups. It is considered possible.
Figure JPOXMLDOC01-appb-C000005
[式中、Xはハロゲン原子又はアルコキシ基を表し、Rは炭素数1~5のアルキル基、下記式(R2-1)で表される基、下記式(R2-2)で表される基から選択されるいずれか1つの基であり、Rは下記式(R2-1)又は(R2-2)で表される基であり、n0は0以上の整数であり、n1は0~5の整数、n2は1~5の自然数である。]
Figure JPOXMLDOC01-appb-C000005
[Wherein, X represents a halogen atom or an alkoxy group, R 1 represents an alkyl group having 1 to 5 carbon atoms, a group represented by the following formula (R2-1), or a group represented by the following formula (R2-2) R 2 is a group represented by the following formula (R2-1) or (R2-2), n0 is an integer of 0 or more, and n1 is 0 to The integer of 5, n2 is a natural number of 1 to 5. ]
Figure JPOXMLDOC01-appb-C000006
[式中、R21、R22は、それぞれ独立に、炭素数1~5のアルキル基、nは1~5の自然数である。波線は結合手を意味する。]
Figure JPOXMLDOC01-appb-C000006
[Wherein, R 21 and R 22 each independently represent an alkyl group of 1 to 5 carbon atoms, and n is a natural number of 1 to 5]. The wavy line means a bond. ]
{X}
 Xはハロゲン原子又はアルコキシ基である。Xで表されるハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子等を挙げることができるが、Xはハロゲン原子であるよりもアルコキシ基であることが好ましい。n0は0以上の整数を表し、出発原料の入手の容易さの点から、1~20の整数であることが好ましく、2~15の整数であることがより好ましい。
{X}
X is a halogen atom or an alkoxy group. The halogen atom represented by X can include a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, but X is preferably an alkoxy group rather than a halogen atom. n0 represents an integer of 0 or more, and is preferably an integer of 1 to 20, and more preferably an integer of 2 to 15 from the viewpoint of the availability of starting materials.
{R
 一般式(1)中、Rは炭素数1~5のアルキル基、下記式(R2-1)又は(R2-2)で表される基である。
 Rの炭素数1~5のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基が挙げられ、メチル基又はエチル基が好ましく、メチル基がより好ましい。
{R 1 }
In the general formula (1), R 1 is an alkyl group having 1 to 5 carbon atoms, or a group represented by the following formula (R2-1) or (R2-2).
Examples of the alkyl group having 1 to 5 carbon atoms of R 1 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, pentyl group, isopentyl group and neopentyl group. A methyl group or an ethyl group is preferable, and a methyl group is more preferable.
{n1、n2}
 一般式(1)中、n1は0~5の整数であり、後述する2置換型の場合にはn1は1~5の自然数が好ましく、2~4がより好ましく、3が特に好ましい。1置換型の場合には0が好ましい。n2は1~5の自然数であり、2~4が好ましく、3がより好ましい。
{N1, n2}
In the general formula (1), n1 is an integer of 0 to 5, and in the case of the disubstituted type described later, n1 is preferably a natural number of 1 to 5, more preferably 2 to 4, and particularly preferably 3. In the case of 1-substituted type, 0 is preferable. n2 is a natural number of 1 to 5, preferably 2 to 4, and more preferably 3.
{式(R2-1)又は(R2-2)で表される基}
 一般式(1)中、R、Rで表される基として下記式(R2-1)又は(R2-2)で表される基が挙げられる。
{Group represented by Formula (R2-1) or (R2-2)}
Examples of the group represented by R 1 and R 2 in the general formula (1) include groups represented by the following formula (R2-1) or (R2-2).
Figure JPOXMLDOC01-appb-C000007
[式中、R21、R22は、それぞれ独立に、炭素数1~5のアルキル基、nは自然数である。波線は結合手を意味する。]
Figure JPOXMLDOC01-appb-C000007
[Wherein, R 21 and R 22 each independently represent an alkyl group of 1 to 5 carbon atoms, and n is a natural number. The wavy line means a bond. ]
 式(R2-1)又は(R2-2)中、R21、R22は、それぞれ独立に、炭素数1~5のアルキル基である。炭素数1~5のアルキル基としては、前記Rで記載した基が挙げられ、なかでもメチル基、イソプロピル基、又はtert-ブチル基が好ましい。式(R2-2)中のnは自然数であり、1~200が好ましく、1~150が好ましく、1~120がより好ましい。 In formulas (R2-1) or (R2-2), R 21 and R 22 each independently represent an alkyl group having 1 to 5 carbon atoms. Examples of the alkyl group having 1 to 5 carbon atoms include the groups described for R 1 above, among which a methyl group, an isopropyl group or a tert-butyl group is preferable. N in the formula (R2-2) is a natural number, preferably 1 to 200, preferably 1 to 150, and more preferably 1 to 120.
 以下において、R、Rで表される基として式(R2-1)で表される基を有する場合を「分岐型」、R、Rで表される基として式(R2-2)で表される基を有する場合を「直鎖型」、と記載して説明する場合がある。また、Rがアルキル基である場合を「1置換型」、Rが式(R2-1)又は(R2-2)で表される基である場合を「2置換型」と記載して説明する場合がある。 In the following, when a group represented by the formula (R2-1) is contained as a group represented by R 1 and R 2 is referred to as “branched type” and a group represented by R 1 and R 2 is a group represented by formula (R2-2 The case having a group represented by) may be described as "straight chain type". In addition, when R 1 is an alkyl group is described as “monosubstituted type”, and when R 1 is a group represented by formula (R2-1) or (R2-2) as “disubstituted type” It may be explained.
 本実施形態の一般式(1)で表される化合物には、R、Rに導入する基を調整することにより、1置換分岐型、1置換鎖状型、2置換分岐型、2置換鎖状型の化合物が含まれる。 In the compound represented by the general formula (1) of the present embodiment, by adjusting the groups to be introduced into R 1 and R 2 , monosubstituted branched type, monosubstituted chain type, disubstituted branched type, disubstituted It includes compounds of linear type.
 以下に、一般式(1)で表される化合物の具体例を記載する。 Below, the specific example of a compound represented by General formula (1) is described.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
≪化合物の製造方法≫
 本実施形態の一般式(1)で表される化合物は、下記の方法により製造することができる。
 以下の製造方法の説明において、R、R21、R22に関する説明は前記同様である。
«Method for producing compound»
The compound represented by General formula (1) of this embodiment can be manufactured by the following method.
In the following description of the production method, the descriptions regarding R 1 , R 21 and R 22 are the same as above.
[製造方法1]
 下記式で表される中間体化合物14に、シロキサン化合物を反応させることにより、中間体化合物14’を得ることができる。中間体化合物14は、後述する実施例に記載の方法により製造してもよく、例えばH.Nakayama et al.,Colloids Surf.B,2010,76,88-97に記載されている方法により合成してもよい。
[Manufacturing method 1]
Intermediate compound 14 'can be obtained by reacting the intermediate compound 14 represented by the following formula with a siloxane compound. Intermediate compound 14 may be produced by the method described in the examples described later, for example, as described in H. Nakayama et al. , Colloids Surf. B, 2010, 76, 88-97.
Figure JPOXMLDOC01-appb-C000010
[式中、R、R21は、それぞれ独立に、炭素数1~5のアルキル基である。]
Figure JPOXMLDOC01-appb-C000010
[Wherein, R 1 and R 21 are each independently an alkyl group having 1 to 5 carbon atoms. ]
 得られた中間体化合物14’に、さらにシロキサン化合物を反応させることにより、本実施形態の化合物(1)を得ることができる。 A compound (1) of this embodiment can be obtained by further reacting a siloxane compound with the obtained intermediate compound 14 '.
Figure JPOXMLDOC01-appb-C000011
[式中、R、R21は、それぞれ独立に、炭素数1~5のアルキル基である。Xはハロゲン原子又はアルコキシ基を表し、n0は0以上の整数である。]
Figure JPOXMLDOC01-appb-C000011
[Wherein, R 1 and R 21 are each independently an alkyl group having 1 to 5 carbon atoms. X represents a halogen atom or an alkoxy group, and n0 is an integer of 0 or more. ]
[製造方法2]
 1置換直鎖型の一般式(1)で表される化合物は、下記の方法により製造することもできる。具体的には、下記式で表される中間体化合物13に、シロキサン化合物を反応させ、中間体化合物15を得る。
[Manufacturing method 2]
The compound represented by general formula (1) of 1-substituted linear type can also be manufactured by the following method. Specifically, an intermediate compound 13 represented by the following formula is reacted with a siloxane compound to obtain an intermediate compound 15.
Figure JPOXMLDOC01-appb-C000012
[式中、R、R22は、それぞれ独立に、炭素数1~5のアルキル基である。]
Figure JPOXMLDOC01-appb-C000012
[Wherein, R 1 and R 22 are each independently an alkyl group having 1 to 5 carbon atoms. ]
 得られた中間体化合物15に、スクインイミジルカーボネートを反応させ、中間体化合物15’を得ることができる。 The resulting intermediate compound 15 can be reacted with squamimidyl carbonate to obtain an intermediate compound 15 '.
Figure JPOXMLDOC01-appb-C000013
[式中、R、R22は、それぞれ独立に、炭素数1~5のアルキル基である。]
Figure JPOXMLDOC01-appb-C000013
[Wherein, R 1 and R 22 are each independently an alkyl group having 1 to 5 carbon atoms. ]
 得られた中間体化合物15’に、さらにシロキサン化合物を反応させることにより、本実施形態の化合物(1)を得ることができる。 The resulting intermediate compound 15 'is further reacted with a siloxane compound to obtain the compound (1) of the present embodiment.
Figure JPOXMLDOC01-appb-C000014
[式中、R、R21は、それぞれ独立に、炭素数1~5のアルキル基である。Xはハロゲン原子又はアルコキシ基を表し、n0は0以上の整数である。]
Figure JPOXMLDOC01-appb-C000014
[Wherein, R 1 and R 21 are each independently an alkyl group having 1 to 5 carbon atoms. X represents a halogen atom or an alkoxy group, and n0 is an integer of 0 or more. ]
[製造方法3]
 2置換型の一般式(1)で表される化合物は、下記の方法により製造することができる。
 具体的には、下記式で表される中間体化合物25に、各シロキサン化合物をそれぞれ反応させ、中間体化合物25’を得ることができる。
[Manufacturing method 3]
The compound represented by the disubstituted general formula (1) can be produced by the following method.
Specifically, each of the siloxane compounds can be reacted with an intermediate compound 25 represented by the following formula to obtain an intermediate compound 25 ′.
Figure JPOXMLDOC01-appb-C000015
[式中、R21は炭素数1~5のアルキル基である。]
Figure JPOXMLDOC01-appb-C000015
[Wherein, R 21 represents an alkyl group having 1 to 5 carbon atoms. ]
Figure JPOXMLDOC01-appb-C000016
[式中、Rは炭素数1~5のアルキル基である。]
Figure JPOXMLDOC01-appb-C000016
Wherein R 1 is an alkyl group having 1 to 5 carbon atoms. ]
 得られた中間体化合物25’に、さらにシロキサン化合物を反応させることにより、本実施形態の化合物(1)を得ることができる。 A compound (1) of the present embodiment can be obtained by further reacting a siloxane compound with the obtained intermediate compound 25 '.
Figure JPOXMLDOC01-appb-C000017
[式中、Rは炭素数1~5のアルキル基である。Xはハロゲン原子又はアルコキシ基を表し、n0は0以上の整数である。]
Figure JPOXMLDOC01-appb-C000017
Wherein R 1 is an alkyl group having 1 to 5 carbon atoms. X represents a halogen atom or an alkoxy group, and n0 is an integer of 0 or more. ]
Figure JPOXMLDOC01-appb-C000018
[式中、Rは炭素数1~5のアルキル基である。Xはハロゲン原子又はアルコキシ基を表し、n0は0以上の整数である。]
Figure JPOXMLDOC01-appb-C000018
Wherein R 1 is an alkyl group having 1 to 5 carbon atoms. X represents a halogen atom or an alkoxy group, and n0 is an integer of 0 or more. ]
<パターン形成用基板>
 本発明の第2の実施形態は、第1の実施形態の化合物を用いて化学修飾された表面を有するパターン形成用基板である。
 本実施形態のパターン形成用基板は、表面が第1の実施形態の化合物を用いて修飾されている。このため、マスク等を介して選択的に露光することにより、パターン形成用基板上に露光部には親水性領域が、未露光部には撥水性領域が形成される。
 親水性領域と撥水性領域とが形成された基板上に、パターン形成材料を塗布することにより、露光部に形成された親水性領域に選択的にパターン形成材料を塗布することができ、金属配線等を形成することができる。
<Board for pattern formation>
A second embodiment of the present invention is a substrate for pattern formation having a surface chemically modified using the compound of the first embodiment.
The surface of the substrate for pattern formation of this embodiment is modified using the compound of the first embodiment. For this reason, by selectively exposing through a mask or the like, a hydrophilic region is formed in the exposed area on the pattern forming substrate, and a water repellent area is formed in the unexposed area.
By applying the pattern forming material on the substrate on which the hydrophilic region and the water repellent region are formed, the pattern forming material can be selectively applied to the hydrophilic region formed in the exposed portion, and metal wiring Etc. can be formed.
 基材としては、特に限定されず、ガラス、石英ガラス、シリコンウェハ、プラスチック板、金属板等が好ましく挙げられる。また、これらの基板上に、金属薄膜が形成された基板を用いてもよい。 The substrate is not particularly limited, and glass, quartz glass, silicon wafer, plastic plate, metal plate and the like are preferably mentioned. Moreover, you may use the board | substrate with which the metal thin film was formed on these board | substrates.
 基材の形状としては、特に限定されず、平面、曲面、または部分的に曲面を有する平面が好ましく、平面がより好ましい。また基材の面積も特に限定されず、従来の塗布方法が適用できる限りの大きさの面を有する基材を採用できる。また、第1の実施形態の化合物を用いて化学修飾された表面は平面上の基材の片面に形成するのが好ましい。 The shape of the substrate is not particularly limited, and a flat surface, a curved surface, or a flat surface having a partially curved surface is preferable, and a flat surface is more preferable. Further, the area of the substrate is also not particularly limited, and a substrate having a surface of a size as long as the conventional coating method can be applied can be adopted. Moreover, it is preferable to form the surface chemically modified using the compound of the first embodiment on one side of the planar substrate.
 基板の表面を修飾する際は、基板表面を前処理しておくことが好ましい。前処理方法としては、ピラニア溶液での前処理や、UV-オゾンクリーナーによる前処理が好ましい。 When modifying the surface of the substrate, it is preferable to pretreat the substrate surface. As a pretreatment method, pretreatment with a piranha solution or pretreatment with a UV-ozone cleaner is preferable.
<光分解性カップリング剤>
 本発明の第3の実施形態は、第1の実施形態の化合物からなる光分解性カップリング剤である。
 本実施形態の光分解性カップリング剤は、撥液基を備えた光分解性基と、この光分解性基に官能基を介して連結された付着基とを備え、撥液基がシロキサン構造を有するものであり、また、官能基が光分解後にアミノ基を残基となるものである。そのため、本実施形態の光分解性カップリング剤は、光照射前後での接触角の差を大きく確保することができる。
<Photodegradable coupling agent>
The third embodiment of the present invention is a photocleavable coupling agent comprising the compound of the first embodiment.
The photodegradable coupling agent of the present embodiment includes a photodegradable group having a liquid repellent group, and an adhesion group linked to the photodegradable group via a functional group, and the liquid repellent group has a siloxane structure. In addition, the functional group is one that becomes a residue of an amino group after photolysis. Therefore, the photolytic coupling agent of the present embodiment can ensure a large difference in contact angle before and after light irradiation.
<パターン形成方法>
 本発明の第4の実施形態は、対象物の被処理面にパターンを形成するパターン形成方法であって、第1の実施形態の化合物を用いて、前記被処理面を化学修飾する工程と、化学修飾された前記被処理面に所定パターンの光を照射して、親水領域及び撥水領域からなる潜像を生成させる工程と、前記親水領域又は撥水領域にパターン形成材料を配置させる工程と、を備えるパターン形成方法である。
<Pattern formation method>
A fourth embodiment of the present invention is a pattern forming method for forming a pattern on a surface to be treated of an object, wherein the step of chemically modifying the surface to be treated using the compound of the first embodiment; Irradiating a light of a predetermined pattern onto the chemically modified surface to be treated to generate a latent image consisting of a hydrophilic area and a water repellent area; disposing a pattern forming material on the hydrophilic area or the water repellent area; And a pattern forming method comprising:
[化学修飾工程]
 本工程は、対象物の被処理面にパターンを形成するパターン形成方法において、第1の実施形態の化合物を用いて、前記被処理面を化学修飾する工程である。
[Chemical modification process]
This step is a step of chemically modifying the surface to be treated using the compound of the first embodiment in the pattern forming method for forming a pattern on the surface to be treated of the object.
 対象物としては、特に限定されず、例えば、金属、結晶質材料(例えば単結晶質、多結晶質および部分結晶質材料)、非晶質材料、導体、半導体、絶縁体、光学素子、塗装基板、繊維、ガラス、セラミックス、ゼオライト、プラスチック、熱硬化性および熱可塑性材料(例えば、場合によってドープされた:ポリアクリレート、ポリカーボネート、ポリウレタン、ポリスチレン、セルロースポリマー、ポリオレフィン、ポリアミド、ポリイミド、樹脂、ポリエステル、ポリフェニレンなど)、フィルム、薄膜、箔、が挙げられる。 The object is not particularly limited, and, for example, metals, crystalline materials (for example, single crystalline, polycrystalline and partially crystalline materials), amorphous materials, conductors, semiconductors, insulators, optical elements, painted substrates , Fiber, glass, ceramics, zeolite, plastic, thermosetting and thermoplastic materials (eg, optionally doped: polyacrylate, polycarbonate, polyurethane, polystyrene, cellulose polymer, polyolefin, polyamide, polyimide, resin, polyester, polyphenylene Etc.), films, thin films, foils, etc.
 本実施形態のパターン形成方法においては、可撓性の基板の上に電子デバイス用の回路パターンを形成することが好ましい。 In the pattern formation method of the present embodiment, it is preferable to form a circuit pattern for an electronic device on a flexible substrate.
 本実施形態において、対象物となる可撓性の基板としては、例えば樹脂フィルムやステンレス鋼などの箔(フォイル)を用いることができる。例えば、樹脂フィルムは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。 In the present embodiment, as a flexible substrate to be an object, for example, a foil such as a resin film or stainless steel can be used. For example, the resin film may be made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. It can be used.
 ここで可撓性とは、基板に自重程度の力を加えても線断したり破断したりすることはなく、該基板を撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、上記可撓性は、該基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板としては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。 The term "flexibility" as used herein refers to the property of being able to bend the substrate without breaking or breaking even when a force of about its own weight is applied to the substrate. In addition, the property of being bent by the force of its own weight is also included in the flexibility. Also, the flexibility varies depending on the material, size, thickness, environment such as temperature, etc. of the substrate. Note that although a single strip-shaped substrate may be used as the substrate, a plurality of unit substrates may be connected to form a strip.
 本工程において、対象物の被処理面の表面全体、または特定の領域内を第1の実施形態の化合物を用いて化学修飾することが好ましい。 In this step, it is preferable to chemically modify the entire surface or the specific region of the surface to be treated of the object using the compound of the first embodiment.
 対象物の被処理面を化学修飾する方法としては、前記一般式(1)中の、Xで表される基が、基板と結合する方法であれば特に限定されず、浸漬法、化学処理法等の公知の方法を用いることができる。 The method for chemically modifying the surface to be treated of the object is not particularly limited as long as the group represented by X in the general formula (1) is a method of binding to the substrate, and the immersion method, chemical treatment method Known methods such as can be used.
 本工程における化学修飾の一例を示す。
 本工程における化学修飾は、例えば下記に示すように基板に、前記一般式(1)で表される化合物を反応させることにより行うことができる。
An example of the chemical modification in this process is shown.
The chemical modification in this step can be performed, for example, by reacting the compound represented by the general formula (1) with a substrate as shown below.
Figure JPOXMLDOC01-appb-C000019
[式中、Xはハロゲン原子又はアルコキシ基を表し、Rは炭素数1~5のアルキル基、前記式(R2-1)又は(R2-2)で表される基であり、Rは前記式(R2-1)又は(R2-2)で表される基であり。n0は自然数である。n1は0~5の整数、n2は1~5の自然数である。]
Figure JPOXMLDOC01-appb-C000019
[Wherein, X represents a halogen atom or an alkoxy group, R 1 is an alkyl group having 1 to 5 carbon atoms, a group represented by the above formula (R2-1) or (R2-2), and R 2 is A group represented by the formula (R2-1) or (R2-2) n0 is a natural number. n1 is an integer of 0 to 5, and n2 is a natural number of 1 to 5. ]
[潜像生成工程]
 本工程は、化学修飾された被処理面を露光し、親水領域及び撥水領域からなる潜像を生成させる工程である。
[Latent image generation process]
This step is a step of exposing the chemically modified surface to be treated to generate a latent image consisting of a hydrophilic area and a water repellent area.
 露光時に照射する光は紫外線が好ましい。照射する光は、200nm~450nmの範囲に含まれる波長を有する光を含むことが好ましく、320nm~450nmの範囲に含まれる波長を有する光を含むことがより好ましい。また、波長が365nmの光を含む光を照射することも好ましい。これらの波長を有する光は、光分解性基を効率よく分解することができる。光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプ;窒素等の気体レーザー、有機色素溶液の液体レーザー、無機単結晶に希土類イオンを含有させた固体レーザー等が挙げられる。
 また、単色光が得られるレーザー以外の光源としては、広帯域の線スペクトル、連続スペクトルをバンドパスフィルター、カットオフフィルター等の光学フィルターを使用して取出した特定波長の光を使用してもよい。一度に大きな面積を照射することができることから、光源としては高圧水銀ランプまたは超高圧水銀ランプが好ましい。
 本実施形態のパターン形成方法においては、上記の範囲で任意に光を照射することができるが、特に回路パターンに対応した分布の光エネルギーを照射することが好ましい。
The light irradiated at the time of exposure is preferably ultraviolet light. The light to be irradiated preferably includes light having a wavelength within the range of 200 nm to 450 nm, and more preferably includes light having a wavelength within the range of 320 nm to 450 nm. It is also preferable to emit light including light with a wavelength of 365 nm. The light having these wavelengths can efficiently decompose the photolytic group. As a light source, low pressure mercury lamp, high pressure mercury lamp, super high pressure mercury lamp, xenon lamp, sodium lamp; gas laser such as nitrogen, liquid laser of organic dye solution, solid laser containing rare earth ion in inorganic single crystal, etc. It can be mentioned.
Further, as a light source other than a laser capable of obtaining monochromatic light, light of a specific wavelength obtained by extracting a wide-band line spectrum or a continuous spectrum using an optical filter such as a band pass filter or a cutoff filter may be used. A high pressure mercury lamp or an ultrahigh pressure mercury lamp is preferable as a light source because a large area can be irradiated at one time.
In the pattern formation method of the present embodiment, light can be emitted arbitrarily within the above range, but it is particularly preferable to emit light energy of distribution corresponding to the circuit pattern.
 本工程において、化学修飾された被処理面に所定パターンの光を照射することにより、撥水性能を有する基が解離し、親水性能を有する残基(アミノ基)が生じるため、光照射後においては、親水領域及び撥水領域からなる潜像を生成させることができる。 In this step, the group having water repellent performance is dissociated by irradiating a light of a predetermined pattern to the chemically modified surface to be treated, and residues having hydrophilic performance (amino group) are generated. Can produce a latent image consisting of hydrophilic and water repellent regions.
 本工程においては、可撓性基板の表面に、親撥水の違いによる回路パターンの潜像を生成させることが好ましい。 In this step, it is preferable to generate a latent image of a circuit pattern on the surface of the flexible substrate due to the difference in hydrophilicity and water repellency.
 下記に化学修飾された被処理面に、所定パターンの光を照射することにより、下記に示すように撥水性能を有する基を解離させ、親水性能を有する残基(アミノ基)を生じさせる。 By irradiating a light having a predetermined pattern on a surface to be treated which is chemically modified below, a group having water repellent performance is dissociated as shown below to generate a residue having hydrophilic performance (amino group).
Figure JPOXMLDOC01-appb-C000020
[式中、Rは炭素数1~5のアルキル基、前記式(R2-1)又は(R2-2)で表される基であり、Rは前記式(R2-1)又は(R2-2)で表される基であり。n0は自然数である。n1は0~5の整数、n2は1~5の自然数である。]
Figure JPOXMLDOC01-appb-C000020
[Wherein, R 1 is an alkyl group having 1 to 5 carbon atoms, a group represented by the above formula (R2-1) or (R2-2), and R 2 is a group represented by the above formula (R2-1) or (R2 And a group represented by -2). n0 is a natural number. n1 is an integer of 0 to 5, and n2 is a natural number of 1 to 5. ]
[パターン形成材料を配置させる工程]
 本工程は、前記工程で生成した親水領域又は撥水領域にパターン形成材料を配置させる工程である。
[Step of arranging pattern forming material]
This step is a step of arranging a pattern forming material in the hydrophilic area or the water repellent area generated in the above-mentioned step.
 パターン形成材料としては、金、銀、銅やこれらの合金などの粒子を所定の溶媒に分散させた配線材料(金属溶液)、又は、上記した金属を含む前駆体溶液、絶縁体(樹脂)、半導体、有機EL発光材などを所定の溶媒に分散させた電子材料、レジスト液などが挙げられる。 Wiring material (metal solution) in which particles of gold, silver, copper or alloys thereof are dispersed in a predetermined solvent, or precursor solution containing the above-mentioned metal, insulator (resin), as a pattern forming material Examples thereof include electronic materials in which a semiconductor, an organic EL light emitting material and the like are dispersed in a predetermined solvent, and a resist solution.
 本実施形態のパターン形成方法においては、パターン形成材料は、導電材料、半導体材料、又は絶縁材料であることが好ましい。 In the pattern formation method of the present embodiment, the pattern formation material is preferably a conductive material, a semiconductor material, or an insulating material.
 導電材料としては、導電性微粒子を分散媒に分散させた分散液からなるパターン形成材料が挙げられる。導電性微粒子として、例えば、金、銀、銅、パラジウム、ニッケル及びITOのうちのいずれかを含有する金属微粒子の他、これらの酸化物、並びに導電性ポリマーや超電導体の微粒子などが用いられる。 Examples of the conductive material include a pattern forming material made of a dispersion liquid in which conductive fine particles are dispersed in a dispersion medium. As the conductive fine particles, for example, metal fine particles containing any of gold, silver, copper, palladium, nickel and ITO, these oxides, and fine particles of conductive polymer and superconductor, etc. are used.
 これらの導電性微粒子は、分散性を向上させるために表面に有機物などをコーティングして使うこともできる。 These conductive fine particles can also be used by coating an organic substance or the like on the surface in order to improve the dispersibility.
 分散媒としては、上記の導電性微粒子を分散できるもので、凝集を起こさないものであれば特に限定されない。例えば、水の他に、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、n-ヘプタン、n-オクタン、デカン、ドデカン、テトラデカン、トルエン、キシレン、シメン、デュレン、インデン、ジペンテン、テトラヒドロナフタレン、デカヒドロナフタレン、シクロヘキシルベンゼンなどの炭化水素系化合物、またエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、p-ジオキサンなどのエーテル系化合物、さらにプロピレンカーボネート、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノンなどの極性化合物を例示できる。これらのうち、微粒子の分散性と分散液の安定性、また液滴吐出法(インクジェット法)への適用の容易さの点で、水、アルコール類、炭化水素系化合物、エーテル系化合物が好ましく、より好ましい分散媒としては、水、炭化水素系化合物を挙げることができる。 The dispersion medium is not particularly limited as long as it can disperse the above-mentioned conductive fine particles and does not cause aggregation. For example, in addition to water, alcohols such as methanol, ethanol, propanol and butanol, n-heptane, n-octane, decane, dodecane, tetradecane, tetradecane, toluene, xylene, cymene, durene, indene, dipentene, tetrahydronaphthalene, decahydro Hydrocarbon compounds such as naphthalene and cyclohexylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, 1,2-dimethoxyethane, bis (2- (2-) Ether compounds such as methoxyethyl) ether and p-dioxane, and further propylene carbonate, γ- Butyrolactone, N- methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, can be exemplified polar compounds such as cyclohexanone. Among these, water, alcohols, hydrocarbon compounds, and ether compounds are preferable in terms of the dispersibility of the fine particles, the stability of the dispersion, and the ease of application to the droplet discharge method (ink jet method), As a more preferable dispersion medium, water and a hydrocarbon type compound can be mentioned.
 半導体材料としては、分散媒に分散又は溶解させた分散液からなる有機半導体材料を用いることができる。有機半導体材料としては、その骨格が共役二重結合から構成されるπ電子共役系の低分子材料または高分子材料が望ましい。代表的には、ペンタセン等のアセン類、ベンゾチエノベンゾチオフェン等のチエノアセン類等の可溶性の低分子材料、ポリチオフェン、ポリ(3-アルキルチオフェン)、ポリチオフェン誘導体等の可溶性の高分子材料が挙げられる。また、熱処理により上述の半導体に変化する可溶性の前駆体材料を用いてもよく、例えば、ペンタセン前駆体としてスルフィニルアセトアミドペンタセン等が挙げられる。なお、有機半導体材料に限られず、無機半導体材料を用いてもよい。 As the semiconductor material, an organic semiconductor material composed of a dispersion liquid dispersed or dissolved in a dispersion medium can be used. As the organic semiconductor material, a low molecular weight material or a high molecular weight material of π electron conjugated system whose skeleton is composed of conjugated double bonds is desirable. Typically, soluble low molecular weight materials such as acenes such as pentacene, and thienoacenes such as benzothienobenzothiophene, and soluble high molecular weight materials such as polythiophene, poly (3-alkylthiophene) and polythiophene derivatives can be mentioned. Alternatively, a soluble precursor material may be used which is converted to the above-described semiconductor by heat treatment, and examples of the pentacene precursor include sulfinylacetamide pentacene and the like. The present invention is not limited to the organic semiconductor material, and an inorganic semiconductor material may be used.
 絶縁材料としては、ポリイミド、ポリアミド、ポリエステル、アクリル、PSG(リンガラス)、BPSG(リンボロンガラス)、ポリシラザン系SOGや、シリケート系SOG(Spin on Glass)、アルコキシシリケート系SOG、シロキサンポリマーに代表されるSi-CH結合を有するSiO等を分散媒に分散又は溶解させた分散液からなる絶縁材料が挙げられる。 Insulating materials are represented by polyimide, polyamide, polyester, acrylic, PSG (phosphor glass), BPSG (phosphoboron glass), polysilazane SOG, silicate SOG (Spin on Glass), alkoxysilicate SOG, and siloxane polymer. An insulating material comprising a dispersion in which SiO 2 or the like having a Si—CH 3 bond is dispersed or dissolved in a dispersion medium can be mentioned.
 本工程において、パターン形成材料を配置させる方法としては、液滴吐出法、インクジェット法、スピンコート法、ロールコート法、スロットコート法、ディップコート法等を適用することができる。 In this step, as a method of arranging a pattern forming material, a droplet discharge method, an inkjet method, a spin coat method, a roll coat method, a slot coat method, a dip coat method, or the like can be applied.
 以下、図面を参照して、本実施形態のパターン形成方法を説明する。 
 本実施形態のパターン形成方法において、いわゆるロール・ツー・ロールプロセスに対応する可撓性の基板を用いる場合には、図1に示すような、ロール・ツー・ロール装置である基板処理装置100を用いてパターンを形成してもよい。図1に基板処理装置100の構成を示す。 
Hereinafter, the pattern formation method of the present embodiment will be described with reference to the drawings.
In the case of using a flexible substrate corresponding to a so-called roll-to-roll process in the pattern forming method of the present embodiment, a substrate processing apparatus 100 which is a roll-to-roll apparatus as shown in FIG. It may be used to form a pattern. The structure of the substrate processing apparatus 100 is shown in FIG.
 図1に示すように、基板処理装置100は、帯状の基板(例えば、帯状のフィルム部材)Sを供給する基板供給部2と、基板Sの表面(被処理面)Saに対して処理を行う基板処理部3と、基板Sを回収する基板回収部4と、第1の実施形態の化合物の塗布部6と、露光部7と、マスク8と、パターン材料塗布部9と、これらの各部を制御する制御部CONTと、を有している。基板処理部3は、基板供給部2から基板Sが送り出されてから、基板回収部4によって基板Sが回収されるまでの間に、基板Sの表面に各種処理を実行できる。
 この基板処理装置100は、基板S上に例えば有機EL素子、液晶表示素子等の表示素子(電子デバイス)を形成する場合に好適に用いることができる。
As shown in FIG. 1, the substrate processing apparatus 100 performs processing on a substrate supply unit 2 that supplies a strip-shaped substrate (for example, a strip-shaped film member) S, and a surface (processed surface) Sa of the substrate S. The substrate processing unit 3, the substrate recovery unit 4 for recovering the substrate S, the application unit 6 of the compound of the first embodiment, the exposure unit 7, the mask 8, the pattern material application unit 9, and these units And a controller CONT to control. The substrate processing unit 3 can execute various processes on the surface of the substrate S after the substrate S is sent out from the substrate supply unit 2 and before the substrate recovery unit 4 recovers the substrate S.
This substrate processing apparatus 100 can be suitably used, when forming display elements (electronic device), such as an organic EL element and a liquid crystal display element, on a substrate S, for example.
 なお、図1は、所望のパターン光を生成するためにフォトマスクを用いる方式を図示したものであるが、本実施形態は、フォトマスクを用いないマスクレス露光方式にも好適に適用することができる。フォトマスクを用いずにパターン光を生成するマスクレス露光方式としては、DMD等の空間光変調素子を用いる方法、レーザービームプリンターのようにスポット光を走査する方式等が挙げられる。 Although FIG. 1 illustrates a method of using a photomask to generate desired pattern light, the present embodiment may be suitably applied to a maskless exposure method that does not use a photomask. it can. As a maskless exposure method of generating pattern light without using a photomask, a method of using a spatial light modulation element such as DMD, a method of scanning a spot light as in a laser beam printer, and the like can be mentioned.
 本実施形態のパターン形成方法においては、図1に示すようにXYZ座標系を設定し、以下では適宜このXYZ座標系を用いて説明を行う。XYZ座標系は、例えば、水平面に沿ってX軸及びY軸が設定され、鉛直方向に沿って上向きにZ軸が設定される。また、基板処理装置100は、全体としてX軸に沿って、そのマイナス側(-側)からプラス側(+側)へ基板Sを搬送する。その際、帯状の基板Sの幅方向(短尺方向)は、Y軸方向に設定される。 In the pattern formation method of the present embodiment, an XYZ coordinate system is set as shown in FIG. 1, and the following description will be made using this XYZ coordinate system as appropriate. In the XYZ coordinate system, for example, an X axis and a Y axis are set along a horizontal surface, and a Z axis is set upward along the vertical direction. In addition, the substrate processing apparatus 100 transports the substrate S along the X axis as a whole from the minus side (− side) to the plus side (+ side). At that time, the width direction (short direction) of the strip-like substrate S is set in the Y-axis direction.
 基板処理装置100において処理対象となる基板Sとしては、例えば樹脂フィルムやステンレス鋼などの箔(フォイル)を用いることができる。例えば、樹脂フィルムは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。 As a substrate S to be processed in the substrate processing apparatus 100, for example, a foil such as a resin film or stainless steel can be used. For example, the resin film may be made of polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, etc. It can be used.
 基板Sは、例えば200℃程度の熱を受けても寸法が変わらないように熱膨張係数が小さい方が好ましい。例えば、無機フィラーを樹脂フィルムに混合して熱膨張係数を小さくすることができる。無機フィラーの例としては、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素などが挙げられる。また、基板Sはフロート法等で製造された厚さ100μm程度の極薄ガラスの単体、或いはその極薄ガラスに上記樹脂フィルムやアルミ箔を貼り合わせた積層体であっても良い。 The substrate S preferably has a small thermal expansion coefficient so that the dimensions do not change even if it receives heat of, for example, about 200.degree. For example, an inorganic filler can be mixed with a resin film to reduce the thermal expansion coefficient. Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like. Further, the substrate S may be a single layer of ultrathin glass having a thickness of about 100 μm manufactured by the float method or the like, or a laminate in which the above-mentioned resin film or aluminum foil is bonded to the ultrathin glass.
 基板Sの幅方向(短尺方向)の寸法は例えば1m~2m程度に形成されており、長さ方向(長尺方向)の寸法は例えば10m以上に形成されている。勿論、この寸法は一例に過ぎず、これに限られることは無い。例えば基板SのY方向の寸法が50cm以下であっても構わないし、2m以上であっても構わない。また、基板SのX方向の寸法が10m以下であっても構わない。 The dimension in the width direction (short direction) of the substrate S is, for example, about 1 m to 2 m, and the dimension in the longitudinal direction (long direction) is, for example, 10 m or more. Of course, this dimension is only an example, and is not limited to this. For example, the dimension in the Y direction of the substrate S may be 50 cm or less, or 2 m or more. Further, the dimension of the substrate S in the X direction may be 10 m or less.
 基板Sは、可撓性を有するように形成されていることが好ましい。ここで可撓性とは、基板に自重程度の力を加えても線断したり破断したりすることはなく、該基板を撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。
また、上記可撓性は、該基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板Sとしては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。
The substrate S is preferably formed to have flexibility. The term "flexibility" as used herein refers to the property of being able to bend the substrate without breaking or breaking even when a force of about its own weight is applied to the substrate. In addition, the property of being bent by the force of its own weight is also included in the flexibility.
Also, the flexibility varies depending on the material, size, thickness, environment such as temperature, etc. of the substrate. Note that although a single strip-shaped substrate may be used as the substrate S, a plurality of unit substrates may be connected to form a strip.
 基板供給部2は、例えばロール状に巻かれた基板Sを基板処理部3へ送り出して供給する。この場合、基板供給部2には、基板Sを巻きつける軸部や当該軸部を回転させる回転駆動装置などが設けられる。この他、例えばロール状に巻かれた状態の基板Sを覆うカバー部などが設けられた構成であっても構わない。なお、基板供給部2は、ロール状に巻かれた基板Sを送り出す機構に限定されず、帯状の基板Sをその長さ方向に順次送り出す機構(例えばニップ式の駆動ローラ等)を含むものであればよい。 The substrate supply unit 2 feeds and supplies, for example, the substrate S wound in a roll shape to the substrate processing unit 3. In this case, the substrate supply unit 2 is provided with a shaft portion around which the substrate S is wound, a rotation driving device which rotates the shaft portion, and the like. In addition to this, for example, a cover provided to cover the substrate S in a rolled state may be provided. The substrate supply unit 2 is not limited to a mechanism for delivering the substrate S wound in a roll, but includes a mechanism (for example, a nip type drive roller) for sequentially delivering the strip-like substrate S in its length direction. I hope there is.
 基板回収部4は、基板処理装置100を通過した基板Sを例えばロール状に巻きとって回収する。基板回収部4には、基板供給部2と同様に、基板Sを巻きつけるための軸部や当該軸部を回転させる回転駆動源、回収した基板Sを覆うカバー部などが設けられている。なお、基板処理部3において基板Sがパネル状に切断される場合などには例えば基板Sを重ねた状態に回収するなど、ロール状に巻いた状態とは異なる状態で基板Sを回収する構成であっても構わない。 The substrate recovery unit 4 rolls up and recovers the substrate S which has passed through the substrate processing apparatus 100, for example, in a roll shape. Similar to the substrate supply unit 2, the substrate recovery unit 4 is provided with a shaft for winding the substrate S, a rotational drive source for rotating the shaft, and a cover for covering the collected substrate S. When the substrate S is cut into a panel shape in the substrate processing unit 3, the substrate S is collected in a state different from the state of being wound in a roll shape, for example, the substrate S is collected in a stacked state. It does not matter.
 基板処理部3は、基板供給部2から供給される基板Sを基板回収部4へ搬送すると共に、搬送の過程で基板Sの被処理面Saに対して第1の実施形態の化合物を用いた化学修飾をする工程、化学修飾された被処理面に所定パターンの光を照射する工程、及びパターン形成材料を配置させる工程を行う。基板処理部3は、基板Sの被処理面Saに対して第1の実施形態の化合物を塗布する化合物塗布部6と、光を照射する露光部7と、マスク8と、パターン材料塗布部9と、加工処理の形態に対応した条件で基板Sを送る駆動ローラR等を含む搬送装置20とを有している。 The substrate processing unit 3 transports the substrate S supplied from the substrate supply unit 2 to the substrate recovery unit 4 and uses the compound of the first embodiment for the processing surface Sa of the substrate S in the process of transport. A step of chemically modifying, a step of irradiating light of a predetermined pattern onto the chemically modified treated surface, and a step of arranging a patterning material are performed. The substrate processing unit 3 applies a compound application unit 6 that applies the compound of the first embodiment to the surface to be processed Sa of the substrate S, an exposure unit 7 that emits light, a mask 8, and a pattern material application unit 9. And a transport device 20 including a drive roller R for feeding the substrate S under conditions corresponding to the form of processing.
 化合物塗布部6と、パターン材料塗布部9は、液滴塗布装置(例えば、液滴吐出型塗布装置、インクジェット型塗布装置、スピンコート型塗布装置、ロールコート型塗布装置、スロットコート型塗布装置など)が挙げられる。 The compound application unit 6 and the pattern material application unit 9 are droplet application devices (for example, droplet discharge type application devices, inkjet type application devices, spin coat type application devices, roll coat type application devices, slot coat type application devices, etc. Can be mentioned.
 これらの各装置は、基板Sの搬送経路に沿って適宜設けられ、フレキシブル・ディスプレイのパネル等が、所謂ロール・ツー・ロール方式で生産可能となっている。本実施形態では、露光部7が設けられるものとし、その前後の工程(感光層形成工程、感光層現像工程等)を担う装置も必要に応じてインライン化して設けられる。 Each of these devices is appropriately provided along the transport path of the substrate S, and a flexible display panel or the like can be produced by a so-called roll-to-roll method. In the present embodiment, the exposure unit 7 is provided, and an apparatus that takes charge of steps before and after that (photosensitive layer forming step, photosensitive layer developing step, etc.) is also provided inline as necessary.
<無電解めっきによる配線パターン形成方法>
 本発明の第5の実施形態、対象物の被処理面にパターンを形成するパターン形成方法であって、第1の実施形態の化合物を用いて、前記被処理面を化学修飾する工程と、化学修飾された前記被処理面に所定パターンの光を照射して、親水領域及び撥水領域からなる潜像を生成させる工程と、前記親水領域に無電解めっき用触媒を配置し、無電解めっきを行う工程と、を備えるパターン形成方法である。
 本実施形態によれば、例えば、次のような方法によって無電解めっきによる配線パターンを形成することができる。以下、図2を用いて説明する。
<Method of forming wiring pattern by electroless plating>
A fifth embodiment of the present invention is a pattern forming method for forming a pattern on the surface to be treated of an object, wherein the step of chemically modifying the surface to be treated using the compound of the first embodiment; A step of irradiating the modified surface to be treated with light of a predetermined pattern to form a latent image consisting of a hydrophilic area and a water repellant area; arranging an electroless plating catalyst in the hydrophilic area; And a step of performing the pattern formation method.
According to the present embodiment, for example, the wiring pattern can be formed by electroless plating by the following method. This will be described below with reference to FIG.
 (第1の工程)
 まず、図2(a)に示すように、第1の実施形態の化合物を塗布して化合物層12を形成する。
(First step)
First, as shown in FIG. 2A, the compound of the first embodiment is applied to form a compound layer 12.
 塗布方法としては、物理的気相成長法(PVD)や化学的気相成長法(CVD)、液相成長法等、一般的な成膜技術の何れを用いてもよい。中でも、特に液相成長法が好ましく、液相成長法としては例えば、塗布法(スピンコート、ディップコート、ダイコート、スプレーコート、ロールコート、刷毛塗り)、印刷法(フレキソ印刷、スクリーン印刷)等が挙げられる。また、SAM膜、LB膜としてもよい。 As a coating method, any of general film forming techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD), liquid phase growth, and the like may be used. Among them, the liquid phase growth method is particularly preferable, and as the liquid phase growth method, for example, a coating method (spin coat, dip coat, die coat, spray coat, roll coat, brush coating), printing method (flexo printing, screen printing) etc. It can be mentioned. Alternatively, a SAM film or an LB film may be used.
 なお、本工程においては、例えば熱や減圧等によって溶剤を乾燥させる処理を加えてもよい。 In addition, in this process, you may add the process which dries a solvent by heat, pressure reduction, etc., for example.
 (第2の工程)
 次に、図2(b)に示すように、所定のパターンの露光領域を有するフォトマスク13を用意する。露光方法としては、フォトマスクを用いる手段に限られず、レンズやミラーなどの光学系を用いたプロジェクション露光、空間光変調素子、レーザービームなどを用いたマスクレス露光等の手段を用いることができる。なお、フォトマスク13は、化合物層12と接触するように設けてもよいし、非接触となるように設けてもよい。
(Second step)
Next, as shown in FIG. 2B, a photomask 13 having an exposure area of a predetermined pattern is prepared. The exposure method is not limited to a method using a photomask, and a method such as projection exposure using an optical system such as a lens or a mirror, a spatial light modulation element, maskless exposure using a laser beam or the like can be used. The photomask 13 may be provided in contact with the compound layer 12 or may be provided in non-contact with the compound layer 12.
 (第3の工程)
 その後、図2(c)に示すように、フォトマスク13を介して化合物層12にUV光を照射する。これにより、フォトマスク13の露光領域において化合物層12が露光され、親水領域14が形成される。
(Third step)
Thereafter, as shown in FIG. 2C, the compound layer 12 is irradiated with UV light through the photomask 13. Thereby, the compound layer 12 is exposed in the exposure region of the photomask 13 to form the hydrophilic region 14.
 なお、UV光は感光性基の構造により最適な量子効率が発揮される波長を照射することができる。例えば、365nmのi線が挙げられる。また、その露光量や露光時間は、必ずしも完全に脱保護が進行する必要はなく、一部のアミノ基が発生する程度でよい。その際、後述のめっき工程において、脱保護の進行具合に応じた条件(めっき浴の活性等)を適宜変更することができる。 In addition, UV light can be irradiated with the wavelength from which an optimal quantum efficiency is exhibited by the structure of photosensitive group. For example, there is i-line at 365 nm. Further, the exposure dose and the exposure time do not necessarily have to proceed completely with deprotection, and may be such an extent that some amino groups are generated. At that time, in the plating step described later, conditions (such as the activity of the plating bath) can be appropriately changed according to the progress of deprotection.
 (第4の工程)
 次に、図2(d)に示すように、表面に無電解めっき用触媒を付与し、触媒層15を形成する。無電解めっき用触媒は、無電解めっき用のめっき液に含まれる金属イオンを還元する触媒であり、銀やパラジウムが挙げられる。
(4th step)
Next, as shown in FIG. 2D, a catalyst for electroless plating is applied to the surface to form a catalyst layer 15. The catalyst for electroless plating is a catalyst for reducing metal ions contained in a plating solution for electroless plating, and examples thereof include silver and palladium.
 親水領域14の表面にはアミノ基が露出しているが、アミノ基は、上述の無電解めっき用触媒を捕捉・還元することが可能である。そのため、親水領域14上のみに無電解用めっき用触媒が補足され、触媒層15が形成される。また、無電解めっき用触媒はアミノ基が担持可能なものを用いることができる。 Although the amino group is exposed on the surface of the hydrophilic region 14, the amino group can capture and reduce the above-mentioned catalyst for electroless plating. Therefore, the electroless plating catalyst is captured only on the hydrophilic region 14 to form the catalyst layer 15. Further, as the electroless plating catalyst, one capable of supporting an amino group can be used.
 (第5の工程)
 図2(e)に示すように、無電解めっき処理を行い、めっき層16を形成する。なお、めっき層16の材料としては、ニッケル-リン(NiP)や、銅(Cu)が挙げられる。
(Fifth step)
As shown in FIG. 2E, electroless plating is performed to form a plating layer 16. Examples of the material of the plating layer 16 include nickel-phosphorus (NiP) and copper (Cu).
 本工程では、基板11を無電解めっき浴に浸漬して触媒表面に金属イオンを還元し、めっき層16を析出させる。その際、親水領域14表面には十分な量の触媒を担持する触媒層15が形成されているため、親水領域14上にのみ選択的にめっき層16を析出させることができる。還元が不十分な場合には、次亜リン酸ナトリウム、水素化ホウ素ナトリウムなどの還元剤溶液に浸漬してアミン上の金属イオンを積極的に還元してもよい。 In this step, the substrate 11 is immersed in an electroless plating bath to reduce metal ions on the catalyst surface, thereby depositing the plating layer 16. At this time, since the catalyst layer 15 supporting a sufficient amount of catalyst is formed on the surface of the hydrophilic region 14, the plating layer 16 can be selectively deposited only on the hydrophilic region 14. If the reduction is insufficient, it may be immersed in a reducing agent solution such as sodium hypophosphite or sodium borohydride to actively reduce the metal ion on the amine.
 以上の工程により、第1の実施形態の化合物を用いて所定の基板に配線パターンを形成することが可能である。 According to the above steps, it is possible to form a wiring pattern on a predetermined substrate using the compound of the first embodiment.
<トランジスタの製造方法>
 さらに、第5の工程で得られためっき層16をゲート電極とするトランジスタの製造方法について図3を用いて説明する。
<Method of Manufacturing Transistor>
Furthermore, a method of manufacturing a transistor using the plated layer 16 obtained in the fifth step as a gate electrode will be described with reference to FIG.
 (第6の工程)
 図3(a)に示すように、上述した無電解めっきパターン形成方法により形成した無電解めっきパターンのめっき層16を、公知の方法により覆って化合物層12上に絶縁体層17を形成する。絶縁体層17は、例えば、紫外線硬化型のアクリル樹脂、エポキシ樹脂、エン・チオール樹脂、シリコーン樹脂等の1つ以上の樹脂を有機溶媒に溶解させた塗布液を用い、当該塗布液を塗布することにより形成してもよい。絶縁体層17を形成する領域に対応して開口部が設けられたマスクを介して塗膜に紫外線を照射することで、絶縁体層17を所望のパターンに形成することが可能である。
(Sixth step)
As shown in FIG. 3A, the plating layer 16 of the electroless plating pattern formed by the above-described method of forming an electroless plating pattern is covered by a known method to form the insulator layer 17 on the compound layer 12. The insulator layer 17 applies the coating solution using, for example, a coating solution in which one or more resins such as an ultraviolet curable acrylic resin, an epoxy resin, an ene / thiol resin, and a silicone resin are dissolved in an organic solvent. It may be formed by By irradiating the coating film with ultraviolet light through a mask provided with an opening corresponding to the region where the insulator layer 17 is to be formed, the insulator layer 17 can be formed into a desired pattern.
 (第7の工程)
 図3(b)に示すように、上述した無電解めっきパターン形成方法の第1~第3の工程と同様にして、ソース電極及びドレイン電極が形成される部分に親水領域14を形成する。
(The seventh step)
As shown in FIG. 3B, in the same manner as the first to third steps of the method of forming an electroless plating pattern described above, the hydrophilic region 14 is formed in the portion where the source electrode and the drain electrode are to be formed.
 (第8の工程)
 図3(c)に示すように、上述した無電解めっきパターン形成方法の第4及び第5の工程と同様にして、親水領域14上に無電解めっき用触媒を担持させ、触媒層15を形成した後、無電解めっきを行うことによりめっき層18(ソース電極)及びめっき層19(ドレイン電極)を形成する。なお、めっき層18及び19の材料としてもニッケル-リン(NiP)や、銅(Cu)が挙げられるが、めっき層16(ゲート電極)と異なる材料で形成してもよい。
(Eighth step)
As shown in FIG. 3C, the catalyst for electroless plating is supported on the hydrophilic region 14 to form the catalyst layer 15 in the same manner as the fourth and fifth steps of the method for forming an electroless plating pattern described above. Thereafter, electroless plating is performed to form a plating layer 18 (source electrode) and a plating layer 19 (drain electrode). Although nickel-phosphorus (NiP) or copper (Cu) may be mentioned as a material of the plated layers 18 and 19, it may be formed of a material different from the plated layer 16 (gate electrode).
 (第9の工程)
 図3(d)に示すように、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間に半導体層21を形成する。半導体層21は、例えば、TIPSペンタセン(6,13-Bis(triisopropylsilylethynyl)pentacene)のような有機溶媒に可溶な有機半導体材料を当該有機溶媒に溶解させた溶液を作製し、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間に塗布、乾燥させることにより形成してもよい。なお、半導体層21を形成する前に、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間の化合物層12を露光して親水化してもよい。トランジスタのチャネルに対応する部分を親水化することで、当該親水化部分に上記溶液が好適に塗布され、半導体層21を選択的に形成しやすくなる。また、半導体層21は、上記溶液にPS(ポリスチレン)やPMMA(ポリメタクリル酸メチル)などの絶縁性ポリマーを1種類以上添加し、当該絶縁性ポリマーを含む溶液を塗布、乾燥することにより形成してもよい。このようにして半導体層21を形成すると、半導体層21の下方(絶縁体層17側)に絶縁性ポリマーが集中して形成される。有機半導体と絶縁体層との界面にアミノ基などの極性基が存在する場合、トランジスタ特性の低下を生じる傾向にあるが、上述の絶縁性ポリマーを介して有機半導体を設ける構成とすることにより、トランジスタ特性の低下を抑制することができる。以上のようにして、トランジスタを製造することが可能である。
(9th step)
As shown in FIG. 3D, the semiconductor layer 21 is formed between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode). The semiconductor layer 21 is prepared, for example, by forming a solution in which an organic semiconductor material soluble in an organic solvent such as TIPS pentacene (6, 13-bis (triisopropylsilylethynyl) pentacene) is dissolved in the organic solvent, and the plating layer 18 (source It may be formed by applying and drying between the electrode) and the plating layer 19 (drain electrode). In addition, before forming the semiconductor layer 21, the compound layer 12 between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) may be exposed to be hydrophilic. By hydrophilizing the portion corresponding to the channel of the transistor, the solution is suitably applied to the hydrophilized portion, so that the semiconductor layer 21 can be selectively formed easily. The semiconductor layer 21 is formed by adding one or more kinds of insulating polymers such as PS (polystyrene) and PMMA (polymethyl methacrylate) to the solution, and applying and drying a solution containing the insulating polymer. May be Thus, when the semiconductor layer 21 is formed, the insulating polymer is formed in a concentrated manner below the semiconductor layer 21 (on the side of the insulator layer 17). If a polar group such as an amino group is present at the interface between the organic semiconductor and the insulator layer, the transistor characteristics tend to be degraded. However, by providing the organic semiconductor through the above-described insulating polymer, Deterioration of transistor characteristics can be suppressed. As described above, a transistor can be manufactured.
 上記のような方法によれば、UV露光工程において別途化学的なレジスト等を設ける必要がなく、フォトマスクのみによる簡素な工程とすることができる。従って当然ながら、レジスト層を除去する工程についても必要としない。また、アミノ基の触媒還元能により、通常必要となる触媒の活性化処理工程も省略することができ、大幅な低コスト化と時間短縮を実現しながら、高精細なパターニングが可能となる。また、ディップコート法を用いることができるため、ロール・ツー・ロール工程でも非常に相性良く利用することができる。 According to the method as described above, it is not necessary to separately provide a chemical resist or the like in the UV exposure process, and a simple process can be performed using only a photomask. Therefore, of course, the step of removing the resist layer is not necessary. In addition, the catalyst reduction ability of the amino group makes it possible to omit the catalyst activation treatment step that is usually required, and enables highly precise patterning while realizing significant cost reduction and time reduction. In addition, since a dip coating method can be used, it can be used very well even in roll-to-roll processes.
 なお、トランジスタの構造としては、特に制限はなく、目的に応じて適宜選択することができる。図2~図3の態様では、ボトムコンタクト・ボトムゲート型のトランジスタの製造方法について説明したが、トップコンタクト・ボトムゲート型、トップコンタクト・トップゲート型、ボトムコンタクト・トップゲート型のトランジスタも同様にして製造してもよい。なお、図2~図3の態様では、ゲート電極、ソース電極、ドレイン電極の全てを第1の実施形態の化合物を用いて形成する方法について説明したが、ゲート電極のみを第1の実施形態の化合物を用いて形成してもよいし、ソース電極及びドレイン電極のみを第1の実施形態の化合物を用いて形成してもよい。 The structure of the transistor is not particularly limited and can be selected as appropriate depending on the purpose. Although the embodiment of FIGS. 2 to 3 has described a method of manufacturing a bottom contact / bottom gate type transistor, the same applies to top contact / bottom gate type, top contact / top gate type, bottom contact / top gate type transistors. It may be manufactured. In addition, although the aspect of FIGS. 2-3 demonstrated the method to form all of a gate electrode, a source electrode, and a drain electrode using the compound of 1st Embodiment, only a gate electrode is a 1st embodiment. It may be formed using a compound, or only the source electrode and the drain electrode may be formed using the compound of the first embodiment.
 以下、実施例により本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to the following examples.
<化合物3aの合成>
≪工程1;1-(4-アリルオキシ-3-メトキシフェニル)エタノンの合成≫
 300mLナスフラスコに、4-ヒドロキシ-3-メトキシアセトフェノン(5.00g,30.1mmol)を入れてアセトン(50mL)に溶解し、炭酸カリウム(6.24g,45.1mmol)を加え、室温で5分間撹拌した後、臭化アリル(5.46g,45.1mmol)を添加し、室温で24時間撹拌した。濃縮後、酢酸エチル(50mL×2)と純水(50mL)を加えて抽出、有機層を飽和炭酸ナトリウム水溶液(50mL×3)、飽和食塩水(50mL×2)で順次洗浄し、無水硫酸マグネシウムで乾燥、ろ過、濃縮し、淡黄色オイル(中間体化合物11;1-(4-allyloxy-3-methoxyphenyl)ethanone)6.09g(29.5mmol,98%)を得た。
<Synthesis of Compound 3a>
<< Step 1: Synthesis of 1- (4-allyloxy-3-methoxyphenyl) ethanone >>
Add 4-hydroxy-3-methoxyacetophenone (5.00 g, 30.1 mmol) to a 300 mL eggplant flask, dissolve in acetone (50 mL), add potassium carbonate (6.24 g, 45.1 mmol), and add 5 at room temperature. After stirring for a minute, allyl bromide (5.46 g, 45.1 mmol) was added and stirred at room temperature for 24 hours. After concentration, ethyl acetate (50 mL × 2) and pure water (50 mL) are added for extraction, and the organic layer is washed successively with saturated aqueous sodium carbonate solution (50 mL × 3) and saturated brine (50 mL × 2), and anhydrous magnesium sulfate The reaction mixture was dried, filtered and concentrated to give 6.09 g (29.5 mmol, 98%) of a pale yellow oil (Intermediate compound 11; 1- (4-allyloxy-3-methoxyphenyl) ethanone).
 得られた中間体化合物11の同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 2.57 (3H, s), 3.94 (3H, s), 4.69 (2H, dt, J = 5.4, 1.5 Hz), 5.33 (1H, dq, J = 11, 1.3 Hz), 5.43 (1H, dq, J = 17, 1.5 Hz), 6.09 (1H, ddt, J = 17, 11, 5.4 Hz), 6.89 (1H, d, J = 9.0 Hz), 7.52-7.56 (2H, m).
The identification result of the obtained intermediate compound 11 is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 2.57 (3H, s), 3.94 (3H, s), 4.69 (2H, dt, J = 5.4, 1.5 Hz), 5.33 (1H, dq, J = 11, 1.3 Hz), 5.43 (1 H, dq, J = 17, 1.5 Hz), 6.09 (1 H, ddt, J = 17, 11, 5.4 Hz), 6.89 (1 H, d, J = 9.0 Hz), 7.52- 7.56 (2H, m).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
≪工程2;1-(4-アリルオキシ-5-メトキシ-2-ニトロフェニル)エタノンの合成≫
 50mLナスフラスコに、上記中間体化合物11(497mg,2.41mmol)を入れて酢酸(3mL)に溶解し、氷浴上で発煙硝酸(1mL,24.1mmol)をゆっくり滴下し、0°Cで30分間撹拌した。冷水(10mL)を加えて酢酸エチル(10mL×3)で抽出、有機層を飽和炭酸水素ナトリウム水溶液(10mL)、飽和食塩水(10mL×2)で順次洗浄し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル=4:1→2:1)、黄白色固体(中間体化合物12;1-(4-allyloxy-5-methoxy-2-nitrophenyl)ethanone)345mg(1.37mmol,57%)を得た。
Step 2: Synthesis of 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethanone
The above intermediate compound 11 (497 mg, 2.41 mmol) is added to a 50 mL eggplant flask and dissolved in acetic acid (3 mL), and fuming nitric acid (1 mL, 24.1 mmol) is slowly added dropwise on an ice bath. Stir for 30 minutes. Cold water (10 mL) is added and extraction is performed with ethyl acetate (10 mL × 3), and the organic layer is washed successively with saturated aqueous sodium hydrogen carbonate solution (10 mL) and saturated brine (10 mL × 2), dried over anhydrous magnesium sulfate, and filtered. Concentrated. Purification by silica gel column chromatography (hexane: ethyl acetate = 4: 1 → 2: 1), yellowish white solid (Intermediate compound 12; 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethanone) 345 mg ( 1.37 mmol, 57%) were obtained.
 得られた中間体化合物12の同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 2.50 (3H, s), 3.98 (3H, s), 4.71 (2H, dt, J = 5.5, 1.4 Hz), 5.39 (1H, dq, J = 11, 1.3 Hz), 5.48 (1H, dq, J = 17, 1.3 Hz), 6.07 (1H, ddt, J = 17, 11, 5.4 Hz), 6.76 (1H, s), 7.62 (1H, s).
The identification result of the obtained intermediate compound 12 is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 2.50 (3H, s), 3.98 (3H, s), 4.71 (2H, dt, J = 5.5, 1.4 Hz), 5.39 (1H, dq, J = 11, 1.3 Hz), 5.48 (1 H, dq, J = 17, 1.3 Hz), 6.07 (1 H, ddt, J = 17, 11, 5.4 Hz), 6. 76 (1 H, s), 7.62 (1 H, s).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
≪工程3;1-(4-アリルオキシ-5-メトキシ-2-ニトロフェニル)エタノールの合成≫
50mLナスフラスコに、上記工程で得られた中間体化合物12(1.41g,5.61mmol)、テトラヒドロフラン(10mL)、メタノール(10mL)を入れ、氷浴上で水素化ホウ素ナトリウム(637mg,16.8mmol)を少しずつ添加した。0℃で20分間撹拌し、さらに室温で40分間撹拌した。濃縮後、クロロホルム(10mL×3)と純水(30mL)を加えて抽出、有機層を飽和食塩水(20mL×3)で洗浄し、無水硫酸マグネシウムで乾燥、ろ過、濃縮し、黄白色固体(中間体化合物13;1-(4-allyloxy-5-methoxy-2-nitrophenyl)ethanol)1.40g(5.54mmol,99%)を得た。
Step 3: Synthesis of 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethanol
In a 50 mL recovery flask, the intermediate compound 12 (1.41 g, 5.61 mmol) obtained in the above step, tetrahydrofuran (10 mL), and methanol (10 mL) are placed, and sodium borohydride (637 mg, 16. 8 mmol) were added in small portions. The mixture was stirred at 0 ° C. for 20 minutes and then at room temperature for 40 minutes. After concentration, chloroform (10 mL × 3) and pure water (30 mL) are added for extraction, and the organic layer is washed with saturated brine (20 mL × 3), dried over anhydrous magnesium sulfate, filtered and concentrated. Intermediate compound 13; 1.40 g (5.54 mmol, 99%) of 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethanol was obtained.
 得られた中間体化合物13の同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 1.56 (3H, d, J = 6.3 Hz), 2.29 (1H, d, J = 3.7 Hz), 4.00 (3H, s), 4.67 (2H, dt, J = 5.5, 1.4 Hz), 5.36 (1H, dq, J = 11, 1.3 Hz), 5.46 (1H, dq, J = 17, 1.5 Hz), 5.57 (1H, qd, J = 6.3, 3.7 Hz), 6.07 (1H, ddt, J = 17, 11, 5.4 Hz), 7.31 (1H, s), 7.59 (1H, s).
The identification result of the obtained intermediate compound 13 is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 1.56 (3 H, d, J = 6.3 Hz), 2. 29 (1 H, d, J = 3.7 Hz), 4.00 (3 H, s), 4. 67 (2 H, dt , J = 5.5, 1.4 Hz), 5.36 (1H, dq, J = 11, 1.3 Hz), 5.46 (1 H, dq, J = 17, 1.5 Hz), 5.57 (1 H, qd, J = 6.3, 3.7 Hz) , 6.07 (1 H, ddt, J = 17, 11, 5.4 Hz), 7.31 (1 H, s), 7. 59 (1 H, s).
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
≪工程4;1-(4-アリルオキシ-5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジルカーボネートの合成≫
 200mL二口ナスフラスコに、中間体化合物13(2.50g,9.85mmol)を入れてドライアセトニトリル(35mL)に溶解し、ジ(N-スクシンイミジル)カーボネート(6.36g,24.8mmol)、トリエチルアミン(4.05g,40.1mmol)を加え、窒素雰囲気下、室温で17時間撹拌した。濃縮後、クロロホルム(150mL,60mL×2)、純水(200mL)と2N塩酸(10mL)を加えて抽出、有機層を飽和食塩水(100mL×3)で洗浄し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル=2:1)、黄白色固体(中間体化合物14;1-(4-allyloxy-5-methoxy-2-nitrophenyl)ethyl N-succinimidyl carbonate)2.97g(7.54mmol,77%)を得た。
<< Step 4: Synthesis of 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate >>
Intermediate compound 13 (2.50 g, 9.85 mmol) is put in a 200 mL two-necked eggplant flask and dissolved in dry acetonitrile (35 mL), and di (N-succinimidyl) carbonate (6.36 g, 24.8 mmol), triethylamine (4.05 g, 40.1 mmol) was added and stirred at room temperature for 17 hours under a nitrogen atmosphere. After concentration, add chloroform (150 mL, 60 mL × 2), pure water (200 mL) and 2N hydrochloric acid (10 mL) for extraction, wash the organic layer with saturated brine (100 mL × 3), dry over anhydrous magnesium sulfate, filter , Concentrated. Purification by silica gel column chromatography (hexane: ethyl acetate = 2: 1), yellowish white solid (Intermediate compound 14; 1- (4-allyloxy-5-methoxy-2-nitrophenyl) ethyl N-succinimidyl carbonate) 2. 97 g (7.54 mmol, 77%) were obtained.
 得られた中間体化合物14の同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 1.76 (3H, d, J = 6.4 Hz), 2.80 (4H, s), 4.06(3H, s), 4.67 (2H, dt, J = 5.5, 1.4 Hz), 5.37 (1H, dq, J = 11, 1.3 Hz), 5.47 (1H, dq, J = 17, 1.5 Hz), 6.07 (1H, ddt, J = 17, 11, 5.4 Hz), 6.51 (1H, q, J = 6.4Hz), 7.08 (1H, s), 7.65 (1H, s).
The identification result of the obtained intermediate compound 14 is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 1.76 (3H, d, J = 6.4 Hz), 2.80 (4H, s), 4.06 (3H, s), 4.67 (2H, dt, J = 5.5, 1.4 Hz), 5.37 (1H, dq, J = 11, 1.3 Hz), 5. 47 (1 H, dq, J = 17, 1.5 Hz), 6.07 (1 H, ddt, J = 17, 11, 5.4 Hz), 6.51 ( 1 H, q, J = 6.4 Hz), 7.08 (1 H, s), 7. 65 (1 H, s).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 本実施例においては、中間体化合物14を上記の方法により合成したが、例えばH. 
Nakayama et al., Colloids Surf. B, 2010,
 76, 88-97に記載されている方法により合成した中間体化合物14を用いてもよい。
In this example, Intermediate Compound 14 was synthesized by the above method.
Nakayama et al. , Colloids Surf. B, 2010,
The intermediate compound 14 synthesized by the method described in 76, 88-97 may be used.
≪工程5;1-(5-メトキシ-2-ニトロ-4-(3-トリス(トリメチルシロキシ)シリルプロポキシ)フェニル)エチル N-スクシンイミジルカーボネートの合成≫
 30mL二口ナスフラスコに、中間体化合物14 (300mg,0.761mmol)を入れてドライテトラヒドロフラン(6mL)に溶解し、トリス(トリメチルシロキシ)シラン(677mg,2.28mmol)、カーステッド触媒(5滴)を加え、窒素雰囲気下、室温で20時間撹拌した。濃縮後、シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル:テトラメトキシシラン=60:20:1→50:50:1)、黄色粘体(中間体化合物1a;1-(5-methoxy-2-nitro-4-(3-tris(trimethylsiloxy)silylpropoxy)phenyl)ethyl N-succinimidyl carbonate)281mg(0.407mmol,53%)を得た。
<< Step 5; Synthesis of 1- (5-methoxy-2-nitro-4- (3-tris (trimethylsiloxy) silylpropoxy) phenyl) ethyl N-succinimidyl carbonate >>
Intermediate compound 14 (300 mg, 0.761 mmol) is placed in a 30 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (6 mL), tris (trimethylsiloxy) silane (677 mg, 2.28 mmol), Karsted catalyst (5 drops) ) Was added and stirred at room temperature for 20 hours under a nitrogen atmosphere. After concentration, the residue is purified by silica gel column chromatography (hexane: ethyl acetate: tetramethoxysilane = 60: 20: 1 → 50: 50: 1) to give a yellow gum (intermediate compound 1a; 1- (5-methoxy-2-). It was obtained 281 mg (0.407 mmol, 53%) of nitro-4- (3-tris (trimethylsiloxy) silylpropoxy) phenyl N-succinimidyl carbonate).
 得られた化合物中間体化合物1aの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.10 (27H, s), 0.55-0.60 (2H, m), 1.76 (3H,d, J = 6.5 Hz), 1.85-1.94 (2H, m), 2.80 (4H, s), 3.98-4.03 (2H, m), 4.04 (3H,s), 6.51 (1H, q, J = 6.4 Hz), 7.07 (1H, s), 7.62 (1H, s).
The identification result of the obtained compound intermediate compound 1a is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.10 (27 H, s), 0.55-0.60 (2 H, m), 1. 76 (3 H, d, J = 6.5 Hz), 1.85-1.94 (2 H, m) , 2.80 (4H, s), 3.98-4.03 (2H, m), 4.04 (3H, s), 6.51 (1 H, q, J = 6.4 Hz), 7.07 (1 H, s), 7.62 (1 H, s).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
≪工程6;1-(5-methoxy-2-nitro-4-(3-tris(trimethylsiloxy)silylpropoxy)phenyl)ethyl 3-trimethoxysilylpropyl carbamateの合成≫
 30mL二口ナスフラスコに、中間体化合物1a(100mg,0.145mmol)を入れてドライテトラヒドロフラン(1mL)に溶解し、3-aminopropyltrimethoxysilane(0.028mL,0.161mmol)を加え、窒素雰囲気下、遮光して室温で22時間撹拌した。濃縮後、シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル:テトラメトキシシラン=60:20:1)、明黄色粘体48mg(0.0636mmol,44%)を得た。
<< Step 6: Synthesis of 1- (5-methoxy-2-nitro-4- (3-tris (trimethylsiloxy) silylpropoxy) phenyl) ethyl 3-trimethoxysilylpropyl carbamate >>
Intermediate compound 1a (100 mg, 0.145 mmol) is placed in a 30 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (1 mL), 3-aminopropyltrimethoxysilane (0.028 mL, 0.161 mmol) is added, and light shielding is performed under a nitrogen atmosphere. The mixture was then stirred at room temperature for 22 hours. After concentration, the residue was purified by silica gel column chromatography (hexane: ethyl acetate: tetramethoxysilane = 60: 20: 1) to obtain 48 mg (0.0636 mmol, 44%) of light yellow gum.
 得られた本実施形態の化合物3aの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.10 (27H, s), 0.54-0.65 (4H, m), 1.58 (3H,d, J = 6.5 Hz), 1.61-1.68 (2H, m), 1.84-1.93 (2H, m), 3.10-3.18 (2H, m), 3.56 (9H, s), 3.95 (3H, s), 3.98-4.03 (2H, m), 4.95 (1H, t, J = 5.2 Hz), 6.37 (1H,q, J = 6.4 Hz), 6.99 (1H, s), 7.56 (1H, s).
 13C NMR (CDCl3/ TMS, 100 MHz): δ 1.74 (9C), 6.31, 10.3, 22.3, 23.0, 23.2, 43.3, 50.6 (3C), 56.3, 68.8, 71.6, 108.0, 108.8, 133.9, 139.6, 147.4, 153.9, 155.3.
The identification result of the obtained compound 3a of the present embodiment is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.10 (27 H, s), 0.54-0.65 (4 H, m), 1.58 (3 H, d, J = 6.5 Hz), 1.61-1. 68 (2 H, m) , 1.84-1.93 (2H, m), 3.10-3.18 (2H, m), 3.56 (9H, s), 3.95 (3H, s), 3.98-4.03 (2H, m), 4.95 (1H, t, J = 5.2 Hz), 6.37 (1 H, q, J = 6.4 Hz), 6.99 (1 H, s), 7.56 (1 H, s).
13 C NMR (CDCl 3 / TMS, 100 MHz): δ 1.74 (9 C), 6.31, 10.3, 22.3, 23.0, 23.2, 43.3, 50.6 (3 C), 56.3, 68.8, 71.6, 108.0, 108.8, 139.6, 139.6, 139.6 147.4, 153.9, 155.3.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
<表面修飾>
 熱酸化膜付シリコンウェハ(SiO/Si基板)をメタノールで5分間超音波洗浄し、窒素気流で乾燥した後、UV-オゾンクリーナーにてUVを1時間照射して前処理した。
 次に、上記方法により得られた化合物3aをドライトルエンに溶解して1mM溶液を調製し、上記の前処理した基板を入れ、窒素雰囲気下、室温で20時間浸漬した。基板をメタノールでリンスし、メタノールとクロロホルムで各5分間超音波洗浄し、窒素気流で乾燥した(下記工程1)。
<Surface modification>
The thermally oxidized silicon wafer (SiO 2 / Si substrate) was ultrasonically cleaned with methanol for 5 minutes, dried with a nitrogen stream, and then pretreated by UV irradiation with a UV-ozone cleaner for 1 hour.
Next, the compound 3a obtained by the above method was dissolved in dry toluene to prepare a 1 mM solution, the above-described pretreated substrate was placed, and immersed at room temperature for 20 hours under a nitrogen atmosphere. The substrate was rinsed with methanol, ultrasonically cleaned with methanol and chloroform for 5 minutes each, and dried with a nitrogen stream (Step 1 below).
<光照射>
 修飾した基板に、超高圧水銀灯でフィルターを介して波長365nm、照度15Jの光を大気中で照射した。基板をクロロホルムで5分間超音波洗浄し、窒素気流で乾燥した(下記工程2)。
<Light irradiation>
The modified substrate was irradiated with light having a wavelength of 365 nm and an illuminance of 15 J in the atmosphere via a filter with an extra-high pressure mercury lamp. The substrate was ultrasonically cleaned with chloroform for 5 minutes and dried with a stream of nitrogen (Step 2 below).
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
<接触角測定>
 接触角計(協和界面科学株式会社)を用いて液滴法・θ/2法に従って、ローブ液体に水、ジヨードメタン、1-ブロモナフタレンをそれぞれ用いて光照射前後の静的接触角を測定した。その結果を表1に記載する。下記表1において、「光照射前」は上記工程1の直後を「光照射後」は上記工程2の直後を、それぞれ意味する。
<Contact angle measurement>
Using a contact angle meter (Kyowa Interface Science Co., Ltd.), the static contact angle before and after light irradiation was measured using water, diiodomethane, and 1-bromonaphthalene as the lobe liquid according to the droplet method / θ / 2 method. The results are listed in Table 1. In Table 1 below, “before light irradiation” means immediately after the above step 1 and “after light irradiation” means immediately after the above step 2.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 上記表1に示した結果の通り、フッ素を含まない化合物3aは、光照射後に接触角が小さくなることが確認された。 As a result shown in the above-mentioned Table 1, it was confirmed that the contact angle becomes small after light irradiation of the compound 3a which does not contain fluorine.
<XPS測定>
 得られた修飾基板は、静的接触角測定及びX線光電子分光法(X-ray photoelectron spectroscopy、以下「XPS」という。)により光照射前後を比較した。図4に、光照射前後でのXPSスペクトルを示す。
 修飾後に接触角が大きく、疎水性を示したことから基板上が修飾されたと考えられる。
また、XPSより、修飾後にニトロ基由来のピークの出現が見られたことからも修飾できたことを示した。
 光照射後に接触角が小さくなることが確認された。また、XPSより、光照射後にニトロ基由来のピークが消失し、C(炭素)ピークが減少したことから光分解性基が光照射により脱離したことが確認できた。
<XPS measurement>
The obtained modified substrate was compared before and after light irradiation by static contact angle measurement and X-ray photoelectron spectroscopy (hereinafter referred to as “XPS”). FIG. 4 shows XPS spectra before and after light irradiation.
It is considered that the surface of the substrate was modified because of the large contact angle after modification and the hydrophobicity.
In addition, XPS showed that after modification, the appearance of a peak derived from a nitro group was observed, and thus modification was possible.
It was confirmed that the contact angle decreased after the light irradiation. In addition, it was confirmed from XPS that the peak derived from the nitro group disappeared after light irradiation and the C (carbon) peak decreased, and that the photodegradable group was detached by light irradiation.
<化合物3bの合成>
≪工程1;1-(4-(3-(1,1,3,3,5,5,5-ヘプタメチルトリシロキサニル)プロポキシ)-5-メトキシ-2-ニトロフェニル)エチル N-スクシンイミジルカーボナートの合成≫
 50mL二口ナスフラスコに、中間体化合物14(1.0g,2.53mmol)を入れてドライテトラヒドロフラン(21mL)に溶解し、1,1,3,3,5,5,5-ヘプタメチルトリシロキサン(1.13g,5.07mmol)、カーステッド触媒(1.0mL)を加え、窒素雰囲気下、遮光して室温で3時間撹拌した。濃縮後、シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル:テトラメトキシシラン=200:100:3)、黄色粘体0.597g(0.968mmol,38%)を得た。
<Synthesis of Compound 3b>
<< Step 1; 1- (4- (3- (1,1,3,3,5,5,5-heptamethyltrisiloxanyl) propoxy) -5-methoxy-2-nitrophenyl) ethyl N-sk Synthesis of cinimidyl carbonate >>
Intermediate compound 14 (1.0 g, 2.53 mmol) is put in a 50 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (21 mL) to obtain 1,1,3,3,5,5,5-heptamethyltrisiloxane (1.13 g, 5.07 mmol) and a Karstedt catalyst (1.0 mL) were added, and the mixture was stirred at room temperature for 3 hours under a light-shielded nitrogen atmosphere. After concentration, the residue was purified by silica gel column chromatography (hexane: ethyl acetate: tetramethoxysilane = 200: 100: 3) to obtain 0.597 g (0.968 mmol, 38%) of a yellow viscous material.
 得られた中間体化合物1bの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.03 (6H, s), 0.09 (9H, s), 0.12 (6H, s), 0.62-0.69 (2H, m), 1.76 (3H, d, J = 6.4 Hz), 1.86-1.95 (2H, m), 2.80 (4H, s), 3.99-4.05 (2H, m), 4.04 (3H, s), 6.51 (1H, q, J = 6.4 Hz), 7.07 (1H, s), 7.63 (1H, s).
The identification result of the obtained intermediate compound 1b is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.03 (6 H, s), 0.09 (9 H, s), 0.12 (6 H, s), 0.62-0.69 (2 H, m), 1. 76 (3 H, d, J = 6.4 Hz), 1.86-1.95 (2H, m), 2.80 (4H, s), 3.99-4.05 (2H, m), 4.04 (3H, s), 6.51 (1 H, q, J = 6.4 Hz), 7.07 (1 H, s), 7.63 (1 H, s).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
≪工程2;1-(4-(3-(1,1,3,3,5,5,5-heptamethyltrisiloxanyl)propoxy)-5-methoxy-2-nitrophenyl)ethyl 3-trimethoxysilylpropyl carbamateの合成≫
 30mL二口ナスフラスコに、中間体化合物1b(200mg,0.324mmol)を入れてドライテトラヒドロフラン(2mL)に溶解し、3-aminopropyltrimethoxysilane(0.085mL,0.486mmol)、トリエチルアミン(0.113mL,0.81mmol)を加え、窒素雰囲気下、遮光して室温で13時間撹拌した。濃縮後、シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル:テトラメトキシシラン=50:50:1)、明黄色粘体98mg(0.144mmol,45%)を得た。
<< Step 2; Synthesis of 1- (4- (3- (1,1,3,3,5,5,5- heptmethyltrisilyloxyl) propoxy) -5-methoxy-2-nitrophenyl) ethyl 3-trimethoxysilylpropyl carbamate >>
Intermediate compound 1b (200 mg, 0.324 mmol) is placed in a 30 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (2 mL), 3-aminopropyltrimethoxysilane (0.085 mL, 0.486 mmol), triethylamine (0.113 mL, 0) .81 mmol) was added, and the mixture was stirred at room temperature for 13 hours with shielding light under a nitrogen atmosphere. After concentration, the residue was purified by silica gel column chromatography (hexane: ethyl acetate: tetramethoxysilane = 50: 50: 1) to obtain 98 mg (0.144 mmol, 45%) of light yellow gum.
 得られた化合物3bの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.03 (6H, s), 0.09 (9H, s), 0.11 (6H, s), 0.58-0.69 (4H, m), 1.53-1.69 (5H, m), 1.84-1.94 (2H, m), 3.06-3.21 (2H, m), 3.56 (9H, s), 3.95 (3H, s), 4.01 (2H, t, J = 7.2 Hz), 4.95 (1H, t, J = 5.8 Hz), 6.37 (1H, q, J = 6.4 Hz), 6.99 (1H, s), 7.56 (1H, s).
The identification result of the obtained compound 3b is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.03 (6H, s), 0.09 (9H, s), 0.11 (6H, s), 0.58-0.69 (4H, m), 1.53-1.69 (5H, m), 1.84-1.94 (2H, m), 3.06-3.21 (2H, m), 3.56 (9H, s), 3.95 (3H, s), 4.01 (2H, t, J = 7.2 Hz), 4.95 (1H , t, J = 5.8 Hz), 6.37 (1 H, q, J = 6.4 Hz), 6.99 (1 H, s), 7.56 (1 H, s).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
<化合物4aの合成>
≪工程1;1-(3,4-ジアリルオキシフェニル)エタノンの合成≫
 300mL二口ナスフラスコに、3,4-ジヒドロキシアセトフェノン(10.0g,65.7mmol)を入れてアセトン(145mL)に溶解し、炭酸カリウム(36.3g,263mmol)を加え、室温で1時間撹拌した後、臭化アリル(37.4g,309mmol)を添加し、2.5時間還流した。濃縮後、酢酸エチル(150mL×3)と純水(150mL)を加えて抽出、有機層を飽和食塩水(150 mL×3)で洗浄し、無水硫酸マグネシウムで乾燥、ろ過、濃縮し、淡黄色固体15.2g(65.2mmol,99%)を得た。
<Synthesis of Compound 4a>
<< Step 1: Synthesis of 1- (3,4-diallyloxyphenyl) ethanone >>
In a 300 mL two-necked eggplant flask, 3,4-dihydroxyacetophenone (10.0 g, 65.7 mmol) is added and dissolved in acetone (145 mL), potassium carbonate (36.3 g, 263 mmol) is added, and stirred at room temperature for 1 hour After that, allyl bromide (37.4 g, 309 mmol) was added and refluxed for 2.5 hours. After concentration, ethyl acetate (150 mL × 3) and pure water (150 mL) are added for extraction, and the organic layer is washed with saturated brine (150 mL × 3), dried over anhydrous magnesium sulfate, filtered and concentrated. 15.2 g (65.2 mmol, 99%) of solid were obtained.
 得られた中間体化合物21の同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 2.55 (3H, s), 4.65-4.70 (4H, m), 5.29-5.34(2H, m), 5.41-5.48 (2H, m), 6.03-6.14 (2H, m), 6.88-6.91 (1H, m), 7.53-7.56(2H, m).
The identification result of the obtained intermediate compound 21 is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 2.55 (3H, s), 4.65-4.70 (4H, m), 5. 29-5. 34 (2H, m), 5.41-5. 48 (2H, m), 6.03- 6.14 (2H, m), 6.88-6. 91 (1H, m), 7.53-7.56 (2H, m).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
≪工程2;1-(4,5-ジアリルオキシ-2-ニトロフェニル)エタノンの合成≫
 300mLナスフラスコに、中間体化合物21(15.2g,65.2mmol)を入れて酢酸(60mL)に溶解し、氷浴上で発煙硝酸(27.3mL)を20分かけてゆっくり加え、反応の進行をTLCで確認後、純水(200mL)に注いだ。クロロホルム(250mL×3)で抽出、有機層を5%炭酸水素ナトリウム水溶液(250mL×2)、飽和食塩水(250mL×2)で順次洗浄し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル=4:1)、淡黄色固体を得た。エタノールから再結晶し、針状淡黄色結晶6.08g(21.9mmol,34%)を得た。
<< Step 2: Synthesis of 1- (4,5-diallyloxy-2-nitrophenyl) ethanone >>
Intermediate compound 21 (15.2 g, 65.2 mmol) is placed in a 300 mL eggplant flask and dissolved in acetic acid (60 mL), and fuming nitric acid (27.3 mL) is slowly added over 20 minutes on an ice bath to react After confirming the progress by TLC, it was poured into pure water (200 mL). The extract was extracted with chloroform (250 mL × 3), and the organic layer was washed successively with 5% aqueous sodium hydrogen carbonate solution (250 mL × 2) and saturated brine (250 mL × 2), dried over anhydrous magnesium sulfate, filtered and concentrated. Purification by silica gel column chromatography (hexane: ethyl acetate = 4: 1) gave a pale yellow solid. Recrystallization from ethanol gave 6.08 g (21.9 mmol, 34%) of needle-like pale yellow crystals.
 得られた中間体化合物22の同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 2.49 (3H, s), 4.68-4.72 (4H, m), 5.35-5.40(2H, m), 5.42-5.51 (2H, m), 6.00-6.12 (2H, m), 6.76 (1H, s), 7.62 (1H, s).
The identification result of the obtained intermediate compound 22 is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 2.49 (3H, s), 4.68-4.72 (4H, m), 5.35-5. 40 (2H, m), 5.42-5.51 (2H, m), 6.00- 6.12 (2H, m), 6.76 (1 H, s), 7.62 (1 H, s).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
≪工程3;1-(4,5-ジアリルオキシ-2-ニトロフェニル)エタノールの合成≫
 300mLナスフラスコに、中間体化合物22(6.08g,21.9mmol)を入れてテトラヒドロフラン(70mL)に溶解し、メタノール(30mL)を加えた後、氷浴上で水素化ホウ素ナトリウム(2.90g,76.7mmol)を少しずつ添加し、0℃で1.5時間撹拌した。濃縮後、酢酸エチル(100mL×3)、純水(100mL)、2N塩酸(15mL)を加えて抽出、有機層を飽和食塩水(150mL×2)で洗浄し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。得られた黄褐色固体をヘキサンで洗浄、吸引ろ過し、黄色固体5.51g(19.7mmol,90%)を得た。
Step 3: Synthesis of 1- (4,5-diallyloxy-2-nitrophenyl) ethanol
Intermediate compound 22 (6.08 g, 21.9 mmol) is put in a 300 mL eggplant flask, dissolved in tetrahydrofuran (70 mL), methanol (30 mL) is added, and then sodium borohydride (2.90 g) on an ice bath , 76.7 mmol) was added in small portions and stirred at 0 ° C. for 1.5 hours. After concentration, ethyl acetate (100 mL × 3), pure water (100 mL) and 2N hydrochloric acid (15 mL) are added for extraction, and the organic layer is washed with saturated brine (150 mL × 2), dried over anhydrous magnesium sulfate, and filtered. Concentrated. The resulting yellow-brown solid was washed with hexane and suction filtered to obtain 5.51 g (19.7 mmol, 90%) of a yellow solid.
 得られた中間体化合物23の同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 1.54 (3H, d, J = 6.3 Hz), 2.27 (1H, d, J = 3.6 Hz), 4.64-4.76 (4H, m), 5.32-5.38 (2H, m), 5.42-5.50 (2H, m), 5.51-5.57 (1H, m), 6.02-6.13 (2H, m), 7.30 (1H, s), 7.59 (1H, s).
The identification result of the obtained intermediate compound 23 is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 1.54 (3 H, d, J = 6.3 Hz), 2.27 (1 H, d, J = 3.6 Hz), 4.64-4. 76 (4 H, m), 5.32-5.38 (2H, m), 5.42-5. 50 (2H, m), 5.51-5. 57 (1 H, m), 6.02-6. 13 (2 H, m), 7.30 (1 H, s), 7. 59 (1 H, s).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
≪工程4;1-(4,5-ジアリルオキシ-2-ニトロフェニル)エチル N-スクシンイミジルカーボナートの合成≫
 300mL二口ナスフラスコに、中間体化合物23(2.86g,10.2mmol)を入れてドライアセトニトリル(35mL)に溶解し、ジ(N-スクシンイミジル)カーボナート(4.46g,17.4mmol)、トリエチルアミン(3.21g,31.7mmol)を加え、窒素雰囲気下、室温で19時間撹拌した。濃縮後、酢酸エチル(250mL×3)と純水(250mL)を加えて抽出、有機層を飽和食塩水(250mL×3)で洗浄し、無水硫酸マグネシウムで乾燥、ろ過、濃縮した。シリカゲルクロマトグラフィにて精製し(ヘキサン:酢酸エチル=2:1)、白黄色固体3.13g(7.45mmol,73%)を得た。
<< Step 4: Synthesis of 1- (4,5-diallyloxy-2-nitrophenyl) ethyl N-succinimidyl carbonate >>
Intermediate compound 23 (2.86 g, 10.2 mmol) is put into a 300 mL two-necked eggplant flask and dissolved in dry acetonitrile (35 mL), di (N-succinimidyl) carbonate (4.46 g, 17.4 mmol), triethylamine (3.21 g, 31.7 mmol) was added and stirred at room temperature for 19 hours under a nitrogen atmosphere. After concentration, ethyl acetate (250 mL × 3) and pure water (250 mL) were added for extraction, and the organic layer was washed with saturated brine (250 mL × 3), dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (hexane: ethyl acetate = 2: 1) to obtain 3.13 g (7.45 mmol, 73%) of a white yellow solid.
 得られた中間体化合物24の同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 1.74 (3H, d, J = 6.4 Hz), 2.80 (4H, s), 4.65-4.69 (2H, m), 4.73-4.86 (2H, m), 5.33-5.41 (2H, m), 5.43-5.54 (2H, m), 6.01-6.16 (2H, m), 6.50 (1H, q, J = 6.4 Hz), 7.10 (1H, s), 7.65 (1H, s).
The identification result of the obtained intermediate compound 24 is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 1.74 (3H, d, J = 6.4 Hz), 2.80 (4H, s), 4.65-4.69 (2H, m), 4.73-4.86 (2H, m) , 5.33-5.41 (2H, m), 5.43-5.54 (2H, m), 6.01-6.16 (2H, m), 6.50 (1H, q, J = 6.4 Hz), 7.10 (1H, s), 7.65 (1H , s).
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
≪工程5;1-(2-ニトロ-4,5-ビス(3-トリス(トリメチルシロキシ)シリルプロポキシ)フェニル)エチル N-スクシンイミジルカーボナートの合成≫
 30mL二口ナスフラスコに、中間体化合物24(400mg,0.95mmol)を入れてドライテトラヒドロフラン(10mL)に溶解し、トリス(トリメチルシロキシ)シラン(1.41g,4.75mmol)、カーステッド触媒(10滴)を加え、窒素雰囲気下、室温で27時間撹拌した。濃縮後、シリカゲルクロマトグラフィにて精製し(ヘキサン:酢酸エチル=8:1,テトラメトキシシラン1%含)、黄色粘体314mg(0.31mmol,33%)を得た。
<< Step 5; Synthesis of 1- (2-nitro-4,5-bis (3-tris (trimethylsiloxy) silylpropoxy) phenyl) ethyl N-succinimidyl carbonate >>
Intermediate compound 24 (400 mg, 0.95 mmol) was placed in a 30 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (10 mL) to obtain tris (trimethylsiloxy) silane (1.41 g, 4.75 mmol), a Karstedt catalyst ( 10 drops were added and stirred at room temperature for 27 hours under nitrogen atmosphere. After concentration, the residue was purified by silica gel chromatography (hexane: ethyl acetate = 8: 1, containing 1% tetramethoxysilane) to obtain 314 mg (0.31 mmol, 33%) of a yellow gum.
 得られた中間体化合物2aの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.10-0.11 (54H, m), 0.54-0.65 (4H, m), 1.75 (3H, d, J = 6.4 Hz), 1.83-1.97 (4H, m), 2.80 (4H, s), 3.97-4.17 (4H, m), 6.52 (1H, q, J = 6.6 Hz), 7.05 (1H, s), 7.61 (1H, s).
The identification result of the obtained intermediate compound 2a is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.10-0.11 (54H, m), 0.54-0.65 (4H, m), 1.75 (3H, d, J = 6.4 Hz), 1.83-1.97 (4H, 4H, m) m), 2.80 (4H, s), 3.97-4.17 (4H, m), 6.52 (1 H, q, J = 6.6 Hz), 7.05 (1 H, s), 7.61 (1 H, s).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
≪工程6;1-(2-nitro-4,5-bis(3-tris(trimethylsiloxy)silylpropoxy)phenyl)ethyl 3-trimethoxysilylpropyl carbamateの合成≫
 30mL二口ナスフラスコに、中間体化合物2a(147mg,0.145mmol)を入れてドライテトラヒドロフラン(7mL)に溶解し、3-aminopropyltrimethoxysilane(78mg,0.43mmol)、トリエチルアミン(44mg,0.43mmol)を加え、窒素雰囲気下、遮光して室温で13時間撹拌した。濃縮後、シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル=3:1,テトラメトキシシラン1%含)、明黄色粘体64mg(0.059mmol,41%)を得た。
Step 6: Synthesis of 1- (2-nitro-4,5-bis (3-tris (trimethylsiloxy) silylpropoxy) phenyl) ethyl 3-trimethoxysilylpropyl carbamate >>
Intermediate compound 2a (147 mg, 0.145 mmol) is placed in a 30 mL two-necked eggplant flask, dissolved in dry tetrahydrofuran (7 mL), 3-aminopropyltrimethoxysilane (78 mg, 0.43 mmol), triethylamine (44 mg, 0.43 mmol) In addition, the mixture was stirred at room temperature for 13 hours under light shielding under a nitrogen atmosphere. After concentration, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1, containing 1% of tetramethoxysilane) to obtain 64 mg (0.059 mmol, 41%) of a light yellow gum.
 得られた化合物4aの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.09-0.12 (54H, m), 0.51-0.67 (6H, m), 1.52-1.66 (5H, m), 1.81-1.94 (4H, m), 3.03-3.22 (2H, m), 3.56 (9H, s), 3.93-4.05 (4H, m), 4.88 (1H, t, J = 5.9 Hz), 6.37 (1H, q, J = 6.4 Hz), 6.97 (1H, s), 7.55 (1H, s).
The identification result of the obtained compound 4a is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.09-0.12 (54H, m), 0.51-0.67 (6H, m), 1.52-1.66 (5H, m), 1.81-1.94 (4H, m), 3.03-3.22 (2H, m), 3.56 (9H, s), 3.93-4.05 (4H, m), 4.88 (1H, t, J = 5.9 Hz), 6.37 (1 H, q, J = 6.4 Hz), 6.97 (1H, s), 7.55 (1H, s).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
<化合物4bの合成>
≪工程1;1-(4,5-ビス(3-(1,1,3,3,5,5,5-ヘプタメチルトリシロキサニル)プロポキシ)-2-ニトロフェニル)エチル N-スクシンイミジルカーボナートの合成≫
 30mL二口ナスフラスコに、中間体化合物24(800mg,1.90mmol)を入れドライテトラヒドロフラン(15mL)に溶解し、1,1,3,3,5,5,5-ヘプタメチルトリシロキサン(1.69g,7.61mmol)、カーステッド触媒(10滴)を加え、窒素雰囲気下、室温で4時間撹拌した。濃縮後、シリカゲルクロマトグラフィにて精製し(ヘキサン:酢酸エチル=8:1,テトラメトキシシラン1%含)、黄色粘体527mg(0.60mmol,32%)を得た。
<Synthesis of Compound 4b>
<< Step 1; 1- (4,5-Bis (3- (1,1,3,3,5,5,5-heptamethyltrisiloxanyl) propoxy) -2-nitrophenyl) ethyl N-succin Synthesis of imizyl carbonate »
Intermediate compound 24 (800 mg, 1.90 mmol) was put in a 30 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (15 mL), and 1,1,3,3,3,5,5,5-heptamethyltrisiloxane (1. 69 g (7.61 mmol) and a Karstedt catalyst (10 drops) were added and stirred at room temperature for 4 hours under nitrogen atmosphere. After concentration, the residue was purified by silica gel chromatography (hexane: ethyl acetate = 8: 1, containing 1% tetramethoxysilane) to obtain 527 mg (0.60 mmol, 32%) of a yellow gum.
 得られた化合物2bの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.03 (6H, s), 0.04 (6H, s), 0.08 (9H, s), 0.09 (9H, s), 0.12 (6H, s), 0.12 (6H, s), 0.63-0.73 (4H, m), 1.75 (3H, d, J = 6.4Hz), 1.84-1.96 (4H, m), 2.80 (4H, s), 3.97-4.21 (4H, m), 6.48-6.55 (1H, m), 7.05 (1H, s), 7.61 (1H, s).
The identification result of the obtained compound 2b is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.03 (6 H, s), 0.04 (6 H, s), 0.08 (9 H, s), 0.09 (9 H, s), 0.12 (6 H, s), 0.12 (6H, s), 0.63 to 0.73 (4H, m), 1.75 (3H, d, J = 6.4 Hz), 1.84-1.96 (4H, m), 2.80 (4H, s), 3.97-4.21 (4H, m) ), 6.48-6.55 (1 H, m), 7.05 (1 H, s), 7.61 (1 H, s).
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
≪工程2; 1-(4,5-bis(3-(1,1,3,3,5,5,5-heptamethyltrisiloxanyl)propoxy)-2-nitrophenyl)ethyl 3-trimethoxysilylpropyl carbamateの合成≫
 30mL二口ナスフラスコに、中間体化合物2b(500mg,0.578mmol)を入れてドライテトラヒドロフラン(10mL)に溶解し、3-aminopropyltrimethoxysilane(0.122mL,0.692mmol)、トリエチルアミン(70mg,0.69mmol)を加え、窒素雰囲気下、遮光して室温で3時間撹拌した。濃縮後、シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル=3:1,テトラメトキシシラン1%含)、明黄色粘体342mg(0.368mmol,64%)を得た。
<< Step 2; Synthesis of 1- (4,5-bis (3- (1,1,3,3,5,5,5-heptamethyltrisiloxyl) propoxy) -2-nitrophenyl) ethyl 3-trimethoxysilylpropyl carbamate >>
Intermediate compound 2b (500 mg, 0.578 mmol) is placed in a 30 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (10 mL), 3-aminopropyltrimethoxysilane (0.122 mL, 0.692 mmol), triethylamine (70 mg, 0.69 mmol) ) Was added, and the mixture was stirred at room temperature for 3 hours while shielding light under a nitrogen atmosphere. After concentration, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1, containing 1% of tetramethoxysilane) to obtain 342 mg (0.368 mmol, 64%) of a light yellow gum.
 得られた化合物4bの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.025 (6H, s), 0.031 (6H, s), 0.080 (9H, s),0.085 (9H, s), 0.11 (6H, s), 0.12 (6H, s), 0.58-0.71 (6H, m), 1.53-1.67 (5H, m), 1.82-1.94 (4H, m), 3.03-3.22 (2H, m), 3.56 (9H, s), 3.99 (2H, t, J = 7.0 Hz), 4.03 (2H, t, J = 7.0 Hz), 4.90 (1H, t, J = 5.8 Hz), 6.37 (1H, q, J = 6.4 Hz), 6.97 (1H, s), 7.55 (1H, s).
The identification result of the obtained compound 4b is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.025 (6 H, s), 0.031 (6 H, s), 0.080 (9 H, s), 0.085 (9 H, s), 0.11 (6 H, s), 0.12 (6H, s), 0.58-0.71 (6H, m), 1.53-1.67 (5H, m), 1.82-1.94 (4H, m), 3.03-3.22 (2H, m), 3.56 (9H, s), 3.99 (2H, t, J = 7.0 Hz), 4.03 (2H, t, J = 7.0 Hz), 4.90 (1 H, t, J = 5.8 Hz), 6.37 (1 H, q, J = 6.4 Hz), 6.97 (1 H , s), 7.55 (1 H, s).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
<化合物4cの合成>
≪工程1;1-(4,5-ビス(3-(ポリジメチルシロキサニル)プロポキシ)-2-ニトロフェニル)エチル N-スクシンイミジルカーボナートの合成≫
 200mL二口ナスフラスコに、中間体化合物24(1.01g,2.39mmol)を入れてドライテトラヒドロフラン(30mL)に溶解し、ポリジメチルシロキサン(6.69g,6.19mmol)、カーステッド触媒(10滴)を加え、窒素雰囲気下、室温で20時間撹拌した。濃縮後、シリカゲルクロマトグラフィにて精製し(ヘキサン:酢酸エチル=8:1,テトラメトキシシラン1%含)、黄色粘体630mg(0.26mmol,11%)を得た。
<Synthesis of Compound 4c>
<< Step 1: Synthesis of 1- (4,5-bis (3- (polydimethylsiloxanyl) propoxy) -2-nitrophenyl) ethyl N-succinimidyl carbonate >>
Intermediate compound 24 (1.01 g, 2.39 mmol) is put into a 200 mL two-necked eggplant flask and dissolved in dry tetrahydrofuran (30 mL), and polydimethylsiloxane (6.69 g, 6.19 mmol), the Karsted catalyst (10) Drop) was added and stirred at room temperature for 20 hours under nitrogen atmosphere. After concentration, the residue was purified by silica gel chromatography (hexane: ethyl acetate = 8: 1, containing 1% tetramethoxysilane) to obtain 630 mg (0.26 mmol, 11%) of a yellow gum.
 得られた化合物2cの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.03-0.14 (156H, m), 0.49-0.57 (4H, m), 0.62-0.75 (4H, m), 0.88 (6H, t, J = 7.0 Hz), 1.24-1.38 (8H, m), 1.75 (3H, d, J =6.4 Hz), 1.83-1.97 (4H, m), 2.80 (4H, s), 3.97-4.21 (4H, m), 6.48-6.55 (1H, m), 7.04 (1H, s), 7.61 (1H, s).
The identification result of the obtained compound 2c is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.03-0.14 (156 H, m), 0.49-0.57 (4 H, m), 0.62-0.75 (4 H, m), 0.88 (6 H, t, J = 7.0) Hz), 1.24-1.38 (8H, m), 1.75 (3H, d, J = 6.4 Hz), 1.83-1.97 (4H, m), 2.80 (4H, s), 3.97-4.21 (4H, m), 6.48 -6.55 (1 H, m), 7.04 (1 H, s), 7.61 (1 H, s).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
≪工程2;1-(4,5-bis(3-(polydimethylsiloxanyl)propoxy)-2-nitrophenyl)ethyl 3-trimethoxysilylpropyl carbamateの合成≫
 30mL二口ナスフラスコに、中間体化合物2c(305mg,0.12mmol)を入れてドライテトラヒドロフラン(12mL)に溶解し、3-aminopropyltrimethoxysilane(66mg,0.37mmol)、トリエチルアミン(37mg,0.37mmol)を加え、窒素雰囲気下、遮光して室温で2.5時間撹拌した。濃縮後、シリカゲルカラムクロマトグラフィにて精製し(ヘキサン:酢酸エチル=2:1,テトラメトキシシラン1%含)、黄色粘体91mg(0.036mmol,29%)を得た。
<< Step 2; Synthesis of 1- (4,5-bis (3- (polydimethylsilyl) propoxy) -2-nitrophenyl) ethyl 3-trimethoxysilylpropyl carbamate >>
Intermediate compound 2c (305 mg, 0.12 mmol) is placed in a 30 mL two-necked eggplant flask, dissolved in dry tetrahydrofuran (12 mL), 3-aminopropyltrimethoxysilane (66 mg, 0.37 mmol), triethylamine (37 mg, 0.37 mmol) In addition, the mixture was stirred at room temperature for 2.5 hours under light shielding under a nitrogen atmosphere. After concentration, the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2: 1, containing 1% tetramethoxysilane) to obtain 91 mg (0.036 mmol, 29%) of a yellow gum.
 得られた化合物4cの同定結果を以下に示す。
 1H NMR (CDCl3/ TMS, 400 MHz): δ 0.02-0.14 (156H, m), 0.49-0.57 (4H, m), 0.58-0.71 (6H, m), 0.88 (3H, t, J = 7.0 Hz), 1.24-1.36 (8H, m), 1.52-1.65 (5H, m), 1.81-1.94 (4H, m), 3.03-3.23 (2H, m), 3.56 (9H, s), 3.98 (2H, t, J = 7.0 Hz), 4.03 (2H, t, J = 7.0 Hz), 4.89 (1H, t, J = 5.7 Hz), 6.33-6.40 (1H, m), 6.97(1H, s), 7.55 (1H, s).
The identification result of the obtained compound 4c is shown below.
1 H NMR (CDCl 3 / TMS, 400 MHz): δ 0.02-0.14 (156 H, m), 0.49-0.57 (4 H, m), 0.58-0.71 (6 H, m), 0.88 (3 H, t, J = 7.0) Hz), 1.24-1.36 (8H, m), 1.52-1.65 (5H, m), 1.81-1.94 (4H, m), 3.03-3.23 (2H, m), 3.56 (9H, s), 3.98 (2H, m) t, J = 7.0 Hz), 4.03 (2 H, t, J = 7.0 Hz), 4. 89 (1 H, t, J = 5.7 Hz), 6.33-6. 40 (1 H, m), 6. 97 (1 H, s), 7.55 ( 1H, s).
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
<表面修飾>
 熱酸化膜付シリコンウェハ(SiO/Si基板)を純水、アセトン、メタノール、クロロホルムで各5分間超音波洗浄し、窒素気流で乾燥した後、UV-オゾンクリーナーにてUVを1時間照射して前処理した。
 次に、上記方法により得られた化合物3b、4a、4b、4cをそれぞれドライトルエンに溶解して1mM(化合物4a、4b、4cは0.1mMとした)溶液を調製し、上記の前処理した基板を入れ、窒素雰囲気下、室温で20時間(化合物4a、4cは24時間とした)浸漬した。基板をクロロホルムで5分間超音波洗浄し、窒素気流で乾燥した(下記工程1)。
<Surface modification>
The silicon wafer with thermal oxide film (SiO 2 / Si substrate) is ultrasonically cleaned with pure water, acetone, methanol and chloroform for 5 minutes each, dried with a nitrogen stream, and then irradiated with UV for 1 hour with a UV-ozone cleaner. Pre-treated.
Next, the compounds 3b, 4a, 4b and 4c obtained by the above method were each dissolved in dry toluene to prepare a 1 mM (compound 4a, 4b and 4c was 0.1 mM) solution, and the above pretreatment was carried out. The substrate was placed, and immersed in a nitrogen atmosphere at room temperature for 20 hours (the compounds 4a and 4c were for 24 hours). The substrate was ultrasonically cleaned with chloroform for 5 minutes and dried with a stream of nitrogen (Step 1 below).
<光照射>
 修飾した基板に、超高圧水銀灯でフィルターを介して波長365nm、照度15J(化合物4bのみ10Jとした)の光を大気中で照射した。基板をクロロホルムで5分間超音波洗浄し、窒素気流で乾燥した(下記工程2)。
<Light irradiation>
The modified substrate was irradiated with light of wavelength 365 nm and illuminance 15 J (only compound 4 b was 10 J) through a filter with an extra-high pressure mercury lamp in the atmosphere. The substrate was ultrasonically cleaned with chloroform for 5 minutes and dried with a stream of nitrogen (Step 2 below).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
<接触角測定>
 接触角計(協和界面科学株式会社)を用いて液滴法・θ/2法に従って、プローブ液体に水、ジヨードメタン、1-ブロモナフタレンをそれぞれ用いて光照射前後の静的接触角を測定した。その結果を表に記載する。下記表において、「光照射前」は上記工程1の直後を「光照射後」は上記工程2の直後を、それぞれ意味する。
<Contact angle measurement>
Using a contact angle meter (Kyowa Interface Science Co., Ltd.), water, diiodomethane, and 1-bromonaphthalene were respectively used as the probe liquid according to the droplet method / θ / 2 method to measure static contact angles before and after light irradiation. The results are shown in the table. In the following table, "before light irradiation" means immediately after the above step 1 and "after light irradiation" means immediately after the above step 2.
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000044
<XPS測定>
 X線光電子分光法(X-ray photoelectron spectroscopy、以下「XPS」という。)により評価した。図5は化合物3bで修飾した基板、図6は化合物4aで修飾した基板、図7は化合物4bで修飾した基板、図8は化合物4cで修飾した基板における光照射前後でのXPSスペクトルを示す。
<XPS measurement>
It was evaluated by X-ray photoelectron spectroscopy (hereinafter referred to as "XPS"). FIG. 5 shows a substrate modified with compound 3b, FIG. 6 shows a substrate modified with compound 4a, FIG. 7 shows a substrate modified with compound 4b, and FIG. 8 shows XPS spectra before and after light irradiation on a substrate modified with compound 4c.
 得られた修飾基板は、静的接触角測定及びXPSにより光照射前後を比較した。
 修飾後に接触角が大きく、撥水性を示したことから基板上が修飾されたと考えられる。
 また、化合物3b、4a、4cは、XPSより、修飾後にニトロ基由来のピークの出現を確認できた。化合物4bについては、XPSによるニトロ基由来の明確なピークは確認されなかったが、これは、膜厚が薄く、十分な感度を得られなかったことが原因であると考えられる。
 光照射後に接触角が小さくなることが確認された。また、XPSより、化合物3b、4a、4cは、光照射後にニトロ基由来のピークの消失を確認できた。また、いずれの化合物においても、C(炭素)ピークが減少したことから光分解性基が光照射により脱離したことが確認できた。
The obtained modified substrate was compared before and after light irradiation by static contact angle measurement and XPS.
It is considered that the surface of the substrate was modified because the contact angle was large after the modification and the water repellency was shown.
Moreover, compound 3b, 4a, 4c has confirmed the appearance of the peak derived from a nitro group after modification from XPS. Although a clear peak derived from a nitro group by XPS was not confirmed for the compound 4b, it is considered that this is because the film thickness is thin and sufficient sensitivity can not be obtained.
It was confirmed that the contact angle decreased after the light irradiation. Further, according to XPS, the compounds 3b, 4a and 4c were able to confirm the disappearance of the peak derived from the nitro group after light irradiation. Further, in any of the compounds, the C (carbon) peak decreased, and it was confirmed that the photodegradable group was eliminated by light irradiation.
S…基板 CONT…制御部 Sa…被処理面 2…基板供給部  3…基板処理部 4…基板回収部 6…化合物塗布部 7…露光部  8…マスク 9…パターン材料塗布部 100…基板処理装置 S: Substrate CONT: Control unit Sa: Surface to be treated 2 ... Substrate supply unit 3 ... Substrate treatment unit 4 ... Substrate recovery unit 6 ... Compound application unit 7 .. Exposure unit 8: Mask 9: Pattern material application unit 100: Substrate processing device

Claims (14)

  1.  下記一般式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、Xはハロゲン原子又はアルコキシ基を表し、Rは炭素数1~5のアルキル基、下記式(R2-1)で表される基、下記式(R2-2)で表される基から選択されるいずれか1つの基であり、Rは下記式(R2-1)又は(R2-2)で表される基であり、n0は0以上の整数であり、n1は0~5の整数、n2は1~5の自然数である。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R21、R22は、それぞれ独立に、炭素数1~5のアルキル基、nは自然数である。波線は結合手を意味する。]
    The compound represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [Wherein, X represents a halogen atom or an alkoxy group, R 1 represents an alkyl group having 1 to 5 carbon atoms, a group represented by the following formula (R2-1), or a group represented by the following formula (R2-2) R 2 is a group represented by the following formula (R2-1) or (R2-2), n0 is an integer of 0 or more, and n1 is 0 to The integer of 5, n2 is a natural number of 1 to 5. ]
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, R 21 and R 22 each independently represent an alkyl group of 1 to 5 carbon atoms, and n is a natural number. The wavy line means a bond. ]
  2.  前記R21又はR22は、メチル基、イソプロピル基、tert-ブチル基のいずれかである請求項1に記載の化合物。 The compound according to claim 1, wherein R 21 or R 22 is any one of a methyl group, an isopropyl group and a tert-butyl group.
  3.  請求項1又は2に記載の化合物で化学修飾された表面を有するパターン形成用基板。 A substrate for pattern formation having a surface chemically modified with the compound according to claim 1 or 2.
  4.  請求項1又は2に記載の化合物からなる光分解性カップリング剤。 A photocleavable coupling agent comprising the compound according to claim 1 or 2.
  5.  対象物の被処理面にパターンを形成するパターン形成方法であって、
     請求項1又は2に記載の化合物を用いて、前記被処理面を化学修飾する工程と、
     化学修飾された前記被処理面に所定パターンの光を照射して、親水領域及び撥水領域からなる潜像を生成させる工程と、
     前記親水領域又は撥水領域にパターン形成材料を配置させる工程と、を備えるパターン形成方法。
    A pattern forming method for forming a pattern on a surface to be processed of an object, comprising:
    Chemically modifying the surface to be treated using the compound according to claim 1 or 2;
    Irradiating the chemically modified surface to be treated with light of a predetermined pattern to generate a latent image comprising a hydrophilic area and a water repellant area;
    And disposing a pattern forming material on the hydrophilic area or the water repellent area.
  6.  前記所定パターンは電子デバイス用の回路パターンに対応している請求項5に記載のパターン形成方法。 The pattern forming method according to claim 5, wherein the predetermined pattern corresponds to a circuit pattern for an electronic device.
  7.  前記パターン形成材料は、導電材料、半導体材料、又は絶縁材料を含む請求項5又は6に記載のパターン形成方法。 The pattern forming method according to claim 5, wherein the pattern forming material includes a conductive material, a semiconductor material, or an insulating material.
  8.  前記導電材料は、導電性微粒子分散液からなる請求項7に記載のパターン形成方法。 The pattern forming method according to claim 7, wherein the conductive material comprises a conductive fine particle dispersion.
  9.  前記半導体材料は、有機半導体材料分散液からなる請求項7に記載のパターン形成方法。 The pattern forming method according to claim 7, wherein the semiconductor material comprises an organic semiconductor material dispersion.
  10.  対象物の被処理面にパターンを形成するパターン形成方法であって、
     請求項1又は2に記載の化合物を用いて、前記被処理面を化学修飾する工程と、
     化学修飾された前記被処理面に所定パターンの光を照射して、親水領域及び撥水領域からなる潜像を生成させる工程と、
     前記親水領域に無電解めっき用触媒を配置し、無電解めっきを行う工程と、を備えるパターン形成方法。
    A pattern forming method for forming a pattern on a surface to be processed of an object, comprising:
    Chemically modifying the surface to be treated using the compound according to claim 1 or 2;
    Irradiating the chemically modified surface to be treated with light of a predetermined pattern to generate a latent image comprising a hydrophilic area and a water repellant area;
    And disposing an electroless plating catalyst in the hydrophilic region and performing electroless plating.
  11.  前記対象物は可撓性を有する基板である請求項5~10のいずれか一項に記載のパターン形成方法。 The pattern forming method according to any one of claims 5 to 10, wherein the object is a flexible substrate.
  12.  前記対象物は樹脂材料からなる請求項5~11のいずれか一項に記載のパターン形成方法。 The pattern forming method according to any one of claims 5 to 11, wherein the object is made of a resin material.
  13.  前記光は波長が200nm~450nmの範囲に含まれる光を含む請求項5~12のいずれか一項に記載のパターン形成方法。 The pattern forming method according to any one of claims 5 to 12, wherein the light includes light whose wavelength is included in a range of 200 nm to 450 nm.
  14.  ゲート電極と、ソース電極と、ドレイン電極と、を有するトランジスタの製造方法であって、
     前記ゲート電極、前記ソース電極、前記ドレイン電極のうち少なくとも1つの電極を、請求項5~13のいずれか一項に記載のパターン形成方法で形成する工程を含むトランジスタの製造方法。 
    A method of manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode, comprising:
    A method of manufacturing a transistor, comprising the step of forming at least one of the gate electrode, the source electrode, and the drain electrode by the pattern forming method according to any one of claims 5 to 13.
PCT/JP2018/037023 2017-10-11 2018-10-03 Compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor production method WO2019073878A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880065020.3A CN111183143B (en) 2017-10-11 2018-10-03 Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and method for manufacturing transistor
KR1020207010095A KR20200062227A (en) 2017-10-11 2018-10-03 Compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor manufacturing method
US16/843,232 US11953833B2 (en) 2017-10-11 2020-04-08 Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and transistor production method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017197501 2017-10-11
JP2017-197501 2017-10-11
JP2018-045274 2018-03-13
JP2018045274A JP7121505B2 (en) 2017-10-11 2018-03-13 Compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/843,232 Continuation US11953833B2 (en) 2017-10-11 2020-04-08 Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and transistor production method

Publications (1)

Publication Number Publication Date
WO2019073878A1 true WO2019073878A1 (en) 2019-04-18

Family

ID=66100845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037023 WO2019073878A1 (en) 2017-10-11 2018-10-03 Compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor production method

Country Status (1)

Country Link
WO (1) WO2019073878A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248726A (en) * 2006-03-15 2007-09-27 Asahi Glass Co Ltd Processed substrate having hydrophilic area and water-repellent area and method for producing the same
WO2008105503A1 (en) * 2007-03-01 2008-09-04 Asahi Glass Company, Limited Processed substrates having water-repellent areas in patterns, process for production thereof, and process for production of members having patterms made of functional material films
JP2011149017A (en) * 2009-12-24 2011-08-04 Dow Corning Toray Co Ltd Copolymer having carbosiloxane dendrimer structure, and composition and cosmetic containing the same
JP2016157111A (en) * 2015-02-25 2016-09-01 学校法人神奈川大学 Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248726A (en) * 2006-03-15 2007-09-27 Asahi Glass Co Ltd Processed substrate having hydrophilic area and water-repellent area and method for producing the same
WO2008105503A1 (en) * 2007-03-01 2008-09-04 Asahi Glass Company, Limited Processed substrates having water-repellent areas in patterns, process for production thereof, and process for production of members having patterms made of functional material films
JP2011149017A (en) * 2009-12-24 2011-08-04 Dow Corning Toray Co Ltd Copolymer having carbosiloxane dendrimer structure, and composition and cosmetic containing the same
JP2016157111A (en) * 2015-02-25 2016-09-01 学校法人神奈川大学 Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor

Similar Documents

Publication Publication Date Title
JP6640593B2 (en) Fluorine-containing composition, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor manufacturing method
US11953833B2 (en) Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and transistor production method
US11518731B2 (en) Fluorine-containing compound, substrate for patterning, photodegradable coupling agent, patterning method, and compound
US20170158606A1 (en) Fluorine-containing compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and compound
TWI788477B (en) Pattern forming method
WO2016136817A1 (en) Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor
JP6548572B2 (en) Pattern formation method and modification method of treated surface of object
US11225461B2 (en) Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and transistor production method
WO2019073878A1 (en) Compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor production method
TWI811426B (en) Method of manufacturing transistor, and method of manufacturing electronic device
WO2020100710A1 (en) Pattern forming method, transistor manufacturing method, and film for pattern formation
WO2020045078A1 (en) Transistor production method
WO2019017386A1 (en) Compound, pattern forming substrate, coupling agent, and pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207010095

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866919

Country of ref document: EP

Kind code of ref document: A1