WO2020100710A1 - Pattern forming method, transistor manufacturing method, and film for pattern formation - Google Patents
Pattern forming method, transistor manufacturing method, and film for pattern formation Download PDFInfo
- Publication number
- WO2020100710A1 WO2020100710A1 PCT/JP2019/043672 JP2019043672W WO2020100710A1 WO 2020100710 A1 WO2020100710 A1 WO 2020100710A1 JP 2019043672 W JP2019043672 W JP 2019043672W WO 2020100710 A1 WO2020100710 A1 WO 2020100710A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pattern
- pattern forming
- substrate
- oxide film
- layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/28—Sensitising or activating
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/075—Silicon-containing compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/11—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
Definitions
- the present invention relates to a pattern forming method, a transistor manufacturing method, and a pattern forming film.
- the present application claims priority based on Japanese Patent Application No. 2018-215168 filed in Japan on Nov. 16, 2018, and the content thereof is incorporated herein.
- a pattern forming method utilizing the difference in surface characteristics on the substrate, for example, there is a method of forming a hydrophilic region and a water repellent region on the substrate and applying an aqueous solution of a functional material to the hydrophilic region. According to this method, since the aqueous solution of the functional material spreads only in the hydrophilic region, a thin film pattern of the functional material can be formed.
- Patent Document 1 describes a photodegradable coupling agent capable of significantly changing the contact angle before and after light irradiation. In order to improve the resolution of the pattern such as wiring, it is preferable to obtain a higher contrast between the hydrophilic region and the water repellent region.
- One embodiment of the present invention is a pattern forming method for forming a pattern on a surface to be processed of an object, which includes a step of forming an oxide film layer on the surface to be processed, and a photosensitive layer on the oxide film layer.
- a pattern forming method comprising: a step of forming a latent image including a region and a water repellent region; and a step of disposing a pattern forming material on at least a part of the hydrophilic region or at least a part of the water repellent region.
- One embodiment of the present invention is a method for manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode, wherein at least one electrode of the gate electrode, the source electrode, and the drain electrode is 1 is a method for manufacturing a transistor, including a step of forming by a pattern forming method according to one embodiment of the invention.
- One embodiment of the present invention is a pattern-forming film in which an object, an oxide film layer, and a compound-containing layer having a photosensitive deprotecting group are laminated in this order.
- the present embodiment is a pattern forming method for forming a pattern on a surface to be processed of an object.
- the pattern forming method of the present embodiment comprises a step of forming an oxide film layer on the surface to be treated, and applying a compound containing composition having a photosensitive deprotecting group on the oxide film layer to form a photosensitive deprotecting group.
- the pattern forming method of the present embodiment it is possible to form a pattern with high resolution.
- the compound having a photosensitive deprotecting group is a fluorine compound
- the present invention is not limited to this.
- an oxide film layer is formed on the surface to be processed of the object.
- the material forming the oxide film layer is preferably one or more inorganic oxides selected from the group consisting of SiO 2 , Al 2 O 3 , ZrO 2 , SiON, ZnO, MgO, and TiO 2 .
- any one or more methods selected from physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) are used.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- ALD atomic layer deposition
- the method of forming the oxide film layer is not limited to the above-mentioned embodiment, and a wet film forming method may be used.
- a silicon compound such as alkoxysilane or silazane, or polysiloxane or polysilazane in which these are oligomerized is applied to a substrate, and an organic component is removed by heating or ashing. The film may be formed by doing so.
- the silicon compound When the silicon compound is applied to the substrate, the silicon compound may be diluted with water or an organic solvent and then applied.
- the coating method is not particularly limited, and a general method such as spin coating or dip coating can be adopted.
- a metal alkoxide may be used as a raw material instead of the above silicon compound.
- the thickness of the oxide film layer formed is preferably 2 nm to 1000 nm. If the thickness of the oxide film layer is smaller than the above lower limit value, it tends to be difficult to control the film thickness uniformly depending on the film forming method. When the thickness of the oxide film layer exceeds the above upper limit, the oxide film layer tends to be hard and it is difficult to obtain flexibility.
- the oxide film layer when the object is a substrate, the oxide film layer may be formed on only one side of the substrate, or the oxide film layer may be formed on both sides.
- OH groups are generated on the surface.
- a plurality of OH groups are generated on the surface, so that the reactivity with the fluorine compound-containing composition applied in the subsequent step is improved.
- the fluorine compound-containing composition is more likely to bond to the surface to be treated.
- the oxide film layer when the oxide film layer is provided, it is expected that the amount of the fluorine compound-containing composition bonded to the surface to be treated will be larger than that in the case where the oxide film layer is not provided. Therefore, the water repellency of the fluorine compound-containing composition can be sufficiently exhibited, and the contact angle on the surface of the object can be improved. This makes it possible to enhance the water repellency of the surface to be processed of the object and obtain a higher wettability contrast with the hydrophilic region formed in the step of forming a latent image described later.
- the method for forming the fluorine compound-containing layer is not particularly limited as long as X bound to the reactive Si in the general formula (1) described later is a method for binding to the substrate, and a dipping method or a chemical treatment method is used. Known methods such as the above can be used.
- This step is a step of irradiating the surface on which the fluorine compound-containing layer is formed with a predetermined pattern of light to selectively expose the surface to form a latent image composed of a hydrophilic region and a water repellent region.
- a group having water repellency protecting group
- a hydrophilic region is formed. In the unexposed area, this detachment does not occur and remains in the water repellent area.
- the light to be irradiated is preferably ultraviolet light.
- the irradiation light preferably includes light having a wavelength included in the range of 200 nm to 450 nm, and more preferably includes light having a wavelength included in the range of 320 nm to 450 nm. It is also preferable to irradiate light including light having a wavelength of 365 nm. Light having these wavelengths can efficiently decompose the protective group of the compound used in the present embodiment.
- Light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, sodium lamps; gas lasers such as nitrogen, liquid lasers of organic dye solutions, solid-state lasers containing inorganic earth crystals containing rare earth ions, etc. Can be mentioned.
- a light source other than a laser capable of obtaining monochromatic light light having a specific wavelength obtained by extracting a broadband line spectrum or continuous spectrum using an optical filter such as a bandpass filter or a cutoff filter may be used.
- a high-pressure mercury lamp or an ultra-high-pressure mercury lamp is preferable as the light source because a large area can be irradiated at one time.
- light can be emitted arbitrarily within the above range, but it is particularly preferable to emit light energy having a distribution corresponding to the circuit pattern.
- the exposure process is not particularly limited, and one exposure may be performed or multiple exposures may be performed. Further, when a transparent object is processed, the exposure may be performed from the object side or the fluorine compound-containing layer side. From the viewpoint of further shortening the exposure process, the exposure is preferably performed once.
- the formation of an oxide film layer on the surface to be processed of the object can suppress the permeation of chemical substances and gases. Therefore, it is possible to obtain an effect that it is possible to protect the laminated structure such as wiring and electrodes that can be formed after this step from chemical substances and gas.
- heating may be performed after the exposure.
- the heating method include an oven, a hot plate, and an infrared heater.
- the heating temperature may be 40 ° C to 200 ° C, or 50 ° C to 120 ° C.
- a cleaning process may be provided after the exposure process or the heating process.
- the cleaning method include immersion cleaning, spray cleaning and ultrasonic cleaning.
- a polar solvent such as water or alcohol or a nonpolar solvent such as toluene may be used, or a mixed solution thereof or a liquid containing an additive such as a surfactant may be used.
- a drying process such as gas spraying or heating may be provided.
- Step of placing pattern forming material This step is a step of disposing the pattern forming material in the hydrophilic region or the water repellent region generated in the process of generating the latent image.
- the fluorine compound-containing layer since the fluorine compound-containing layer is provided on the oxide film layer, the fluorine compound-containing layer exhibits sufficient water repellency in the present embodiment. That is, since the hydrophilic region and the water-repellent region have a high wettability contrast, the pattern forming material is less likely to remain in the water-repellent region, and is favorably arranged in the hydrophilic region.
- a wiring material in which particles such as gold, silver, copper and alloys thereof are dispersed in a predetermined solvent, or a precursor solution containing the above metal, an insulator (resin),
- metal solution in which particles such as gold, silver, copper and alloys thereof are dispersed in a predetermined solvent, or a precursor solution containing the above metal, an insulator (resin)
- examples include electronic materials obtained by dispersing semiconductors, organic EL light emitting materials and the like in a predetermined solvent, resist solutions, and the like.
- the pattern forming material is preferably a conductive material, a semiconductor material or an insulating material. Further, these pattern forming materials are preferably liquid conductive materials, liquid semiconductor materials, or liquid insulating materials.
- the liquid conductive material may be a pattern forming material made of a dispersion liquid in which conductive fine particles are dispersed in a dispersion medium.
- conductive fine particles for example, metal fine particles containing any one of gold, silver, copper, palladium, nickel and ITO, as well as oxides thereof, fine particles of conductive polymers and superconductors, and the like are used.
- the conductive fine particles can be used by coating the surface with an organic substance in order to improve the dispersibility.
- the dispersion medium is not particularly limited as long as it can disperse the above conductive fine particles and does not cause aggregation.
- alcohols such as methanol, ethanol, propanol, butanol, n-heptane, n-octane, decane, dodecane, tetradecane, toluene, xylene, cymene, durene, indene, dipentene, tetrahydronaphthalene, decahydro.
- Hydrocarbon compounds such as naphthalene and cyclohexylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, 1,2-dimethoxyethane, bis (2- Examples thereof include ether compounds such as methoxyethyl) ether and p-dioxane, and polar compounds such as propylene carbonate, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, dimethylformamide, dimethylsulfoxide and cyclohexanone.
- ether compounds such as methoxyethyl) ether and p-dioxane
- polar compounds such as propylene carbonate, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, dimethylformamide, dimethylsul
- water, alcohols, hydrocarbon compounds, and ether compounds are preferable from the viewpoints of dispersibility of fine particles, stability of dispersion liquid, and ease of application to a droplet discharge method (inkjet method).
- water and hydrocarbon compounds can be mentioned.
- an organic semiconductor material dispersed or dissolved in a dispersion medium can be used.
- a ⁇ -electron conjugated polymer material whose skeleton is composed of conjugated double bonds is desirable.
- a soluble polymer material such as polythiophene, poly (3-alkylthiophene), polythiophene derivative, and pentacene can be used.
- Liquid insulating materials include polyimide, polyamide, polyester, acrylic, PSG (phosphorus glass), BPSG (phosphorus glass), polysilazane SOG, silicate SOG (Spin on Glass), alkoxy silicate SOG, and siloxane polymer.
- a typical example is an insulating material in which SiO 2 having a Si—CH 3 bond or the like is dispersed or dissolved in a dispersion medium.
- a droplet discharge method As a method for disposing the pattern forming material, a droplet discharge method, an inkjet method, a spin coating method, a roll coating method, a slot coating method, or the like can be applied.
- this step is not limited to the method described above, and may be performed by an electroless plating step in which an electroless plating catalyst is placed in a hydrophilic region or a water repellent region and electroless plating is performed. Details of the electroless plating process will be described later.
- the material of the object is, for example, a metal, a crystalline material (for example, a single crystalline material, a polycrystalline material and a partially crystalline material), an amorphous material, a conductor, a semiconductor, an insulator, a fiber, a glass, Ceramics, zeolites, plastics, thermosetting and thermoplastic materials (eg optionally doped: polyacrylates, polycarbonates, polyurethanes, polystyrenes, cellulosic polymers, polyolefins, polyamides, polyimides, polyesters, polyphenylenes, polyethylene, polyethylene terephthalate, polypropylene) , Ethylene vinyl copolymer, polyvinyl chloride, etc.).
- the object may be an optical element, a coated substrate, a film, etc., which may have flexibility.
- the term "flexible” refers to the property of being able to bend the substrate without breaking or breaking even if a force of about its own weight is applied to the substrate. Further, flexibility also includes the property of bending by a force of about its own weight. Further, the flexibility changes depending on the material, size, thickness, environment such as temperature, etc. of the substrate.
- the substrate one strip-shaped substrate may be used, but a plurality of unit substrates may be connected to form a strip-shaped substrate.
- the object is preferably a substrate made of a resin material.
- the pattern can be a circuit pattern for an electronic device.
- the fluorine compound-containing composition used in the present embodiment preferably contains a fluorine compound represented by the following formula (1).
- the fluorine compound represented by the following formula (1) is a compound that acts as a silane coupling agent.
- the group exhibiting water repellency is decomposed (desorbed) by exposure to produce a group exhibiting hydrophilicity. Therefore, the surface of the object to be treated can be changed from water-repellent to hydrophilic by the action of exposure.
- X represents a halogen atom or an alkoxy group
- R 1 represents a hydrogen atom or a linear, branched, or cyclic alkyl group having 1 to 10 carbon atoms
- R f1 , R f2 Are each independently an alkoxy group, a siloxy group, or a fluorinated alkoxy group
- n represents an integer of 0 or more.
- X is a halogen atom or an alkoxy group.
- halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, but X is preferably an alkoxy group rather than a halogen atom.
- n represents an integer and is preferably an integer of 1 to 20 and more preferably an integer of 2 to 15 from the viewpoint of easy availability of starting materials.
- R 1 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
- alkyl group for R 1 a linear or branched alkyl group having 1 to 5 carbon atoms is preferable, and specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and isobutyl. Group, tert-butyl group, pentyl group, isopentyl group, neopentyl group and the like.
- cyclic alkyl group examples include groups in which one or more hydrogen atoms have been removed from polycycloalkane such as monocycloalkane, bicycloalkane, tricycloalkane, and tetracycloalkane.
- R 1 is preferably a hydrogen atom, a methyl group or an ethyl group.
- R f1 and R f2 are each independently an alkoxy group, a siloxy group, or a fluorinated alkoxy group.
- the alkoxy group, siloxy group or fluorinated alkoxy group of R f1 and R f2 is preferably an alkoxy group having 3 or more carbon atoms, which is partially fluorinated. Or may be a perfluoroalkoxy group. In the present embodiment, it is preferably a partially fluorinated fluorinated alkoxy group.
- examples of the fluorinated alkoxy group for R f1 and R f2 include a group represented by —O— (CH 2 ) n f1 — (C n f2 F 2n f2 +1 ).
- the n f1 is an integer of 0 or more
- the n f2 is an integer of 0 or more.
- n f1 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 0 to 5.
- n f2 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 1 to 5.
- n is an integer of 0 or more. In the present embodiment, n is preferably 1 or more, and more preferably 3 or more.
- the above-mentioned fluorine compound can be produced by the method described in International Publication No. WO 2015/029981.
- the fluorine compound represented by the formula (1) is dissolved in an organic solvent such as hexafluoroxylene to obtain a fluorine compound-containing composition.
- the compound concentration of the fluorine compound in the fluorine compound-containing composition is not particularly limited, and is preferably 0.05 mM to 1.0 mM in terms of molar concentration (M), more preferably 0.075 mM to 0.5 mM, and 0.085 mM to 0. 0.2 mM is particularly preferred.
- a substrate processing apparatus 100 as a roll-to-roll apparatus as shown in FIG. 1 is used. It may be used to form a pattern.
- the substrate processing apparatus 100 performs processing on a substrate supply unit 2 that supplies a belt-shaped substrate (for example, a belt-shaped film member) S and a surface (a surface to be processed) Sa of the substrate S.
- the substrate processing unit 3 can perform various kinds of processing on the surface of the substrate S after the substrate S is delivered from the substrate supply unit 2 and before the substrate S is recovered by the substrate recovery unit 4.
- the substrate processing apparatus 100 can be suitably used when a display element (electronic device) such as an organic EL element or a liquid crystal display element is formed on the substrate S.
- FIG. 1 illustrates a method using a photomask to generate a desired pattern light
- this embodiment can be suitably applied to a maskless exposure method that does not use a photomask. it can.
- Examples of the maskless exposure method for generating pattern light without using a photomask include a method using a spatial light modulator such as a DMD and a method of scanning spot light like a laser beam printer.
- an XYZ coordinate system is set as shown in FIG. 1, and description will be made below using this XYZ coordinate system as appropriate.
- the XYZ coordinate system for example, the X axis and the Y axis are set along the horizontal plane, and the Z axis is set upward along the vertical direction.
- the substrate processing apparatus 100 conveys the substrate S from the minus side ( ⁇ side) to the plus side (+ side) along the X axis as a whole. At that time, the width direction (short direction) of the strip-shaped substrate S is set to the Y-axis direction.
- the resin film is a polyolefin resin, a polysilicone resin, a polyethylene resin, a polypropylene resin, a polyester resin, an ethylene vinyl copolymer resin, a polyvinyl chloride resin, a cellulose resin, a polyamide resin, a polyimide resin, a polycarbonate resin, a polystyrene resin, acetic acid.
- a material such as vinyl resin can be used.
- the substrate S preferably has a small coefficient of thermal expansion so that its dimensions do not change even if it receives heat of about 200 ° C., for example. For example, the dimensional change can be suppressed by annealing the film.
- an inorganic filler can be mixed with the resin film to reduce the coefficient of thermal expansion. Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like.
- the substrate S may be a single body of ultra-thin glass having a thickness of about 100 ⁇ m manufactured by a float method or the like, or a laminated body in which the resin film or aluminum foil is attached to the ultra-thin glass.
- the dimension of the substrate S in the width direction is, for example, about 1 m to 2 m
- the dimension in the length direction (long direction) is, for example, 10 m or more.
- this size is merely an example, and the size is not limited to this.
- the dimension of the substrate S in the Y direction may be 50 cm or less, or 2 m or more.
- the dimension of the substrate S in the X direction may be 10 m or less.
- the substrate S is preferably formed so as to have flexibility.
- the term "flexible” refers to the property of being able to bend the substrate without breaking or breaking even if a force of about its own weight is applied to the substrate. Further, flexibility also includes the property of bending by a force of about its own weight. Further, the flexibility changes depending on the material, size, thickness, environment such as temperature, etc. of the substrate.
- the substrate S one strip-shaped substrate may be used, or a plurality of unit substrates may be connected to form a strip-shaped substrate.
- the substrate supply unit 2 sends out and supplies the substrate S wound in a roll shape to the substrate processing unit 3, for example.
- the substrate supply unit 2 is provided with a shaft portion around which the substrate S is wound, a rotary drive device that rotates the shaft portion, and the like.
- a cover portion that covers the substrate S in a rolled state may be provided.
- the substrate supply unit 2 is not limited to a mechanism that feeds the substrate S wound in a roll shape, but includes a mechanism that sequentially feeds the belt-shaped substrate S in its length direction (for example, a nip-type drive roller or the like). I wish I had it.
- the substrate collecting unit 4 collects the substrate S, which has passed through the substrate processing apparatus 100, in a roll shape, for example. Similar to the substrate supply unit 2, the substrate collecting unit 4 is provided with a shaft for winding the substrate S, a rotary drive source for rotating the shaft, a cover unit for covering the collected substrate S, and the like. When the substrate S is cut into a panel shape in the substrate processing unit 3, the substrate S is collected in a state different from the rolled state, for example, the substrate S is collected in a stacked state. It doesn't matter.
- the substrate processing unit 3 transfers the substrate S supplied from the substrate supply unit 2 to the substrate recovery unit 4, and forms a fluorine compound-containing layer on the surface Sa to be processed of the substrate S during the transfer process.
- a step of irradiating light of a pattern and a step of disposing a pattern forming material are performed.
- the substrate processing section 3 includes a coating section 6 for coating a material for forming a fluorine compound-containing layer on the surface Sa to be processed of the substrate S, an exposure section 7 for irradiating light, a mask 8, and pattern material coating.
- the unit 9 and the transfer device 20 including the drive roller R that sends the substrate S under the condition corresponding to the processing mode are provided.
- the coating unit 6 and the pattern material coating unit 9 include a droplet coating device (for example, a droplet discharge coating device, an inkjet coating device, a spin coating coating device, a roll coating coating device, a slot coating coating device, etc.). Is mentioned.
- a droplet coating device for example, a droplet discharge coating device, an inkjet coating device, a spin coating coating device, a roll coating coating device, a slot coating coating device, etc.
- each of these devices is appropriately installed along the transportation path of the substrate S, and the panel of the flexible display or the like can be produced by a so-called roll-to-roll method.
- the exposure unit 7 is provided, and an apparatus for performing the steps before and after the exposure section 7 (photosensitive layer forming step, photosensitive layer developing step, etc.) is provided inline as necessary.
- the present embodiment is a method of manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode.
- at least one of the gate electrode, the source electrode and the drain electrode is formed by the pattern forming method of the present invention.
- a method of forming a wiring pattern by an electroless plating step in which a catalyst for electroless plating is placed in a hydrophilic region or a water repellent region and electroless plating is performed in the method for manufacturing a transistor will be described.
- the wiring pattern may be formed by applying a metal solution as described in [Step of placing pattern forming material].
- a wiring pattern can be formed by electroless plating by the following method. This will be described below with reference to FIG.
- the fluorine compound-containing composition is applied onto the oxide film layer to form a fluorine compound-containing layer.
- the compound layer 12 is a layer in which an oxide film and a fluorine compound-containing layer are laminated in this order.
- oxide film layer As a method for forming the oxide film layer, one or more methods selected from physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) are used, and SiO 2 is formed. It is possible to form one or more inorganic oxides selected from the group consisting of 2 , Al 2 O 3 , ZrO 2 , SiON, ZnO, MgO, and TiO 2 .
- the method of forming the oxide film layer is not limited to the above-mentioned embodiment, and a wet film forming method may be used.
- a silicon compound such as alkoxysilane or silazane, or polysiloxane or polysilazane in which these are oligomerized is applied to a substrate, and an organic component is removed by heating or ashing.
- the film may be formed by doing so.
- the silicon compound When the silicon compound is applied to the substrate, the silicon compound may be diluted with water or an organic solvent and then applied.
- the application method is not particularly limited, and general methods such as spin coating and dip coating can be adopted.
- a metal alkoxide may be used as a raw material instead of the above silicon compound.
- any of general film forming techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD), liquid phase epitaxy and the like may be used.
- the liquid phase growth method is particularly preferable, and examples of the liquid phase growth method include a coating method (spin coating, dip coating, die coating, spray coating, roll coating, brush coating), a printing method (flexo printing, screen printing) and the like. Can be mentioned. Alternatively, a SAM film or an LB film may be used.
- a treatment of drying the solvent by heat or reduced pressure may be added.
- a photomask 13 having an exposure area of a predetermined pattern is prepared.
- the exposure method is not limited to the means using a photomask, and means such as projection exposure using an optical system such as a lens or a mirror, maskless exposure using a spatial light modulator, a laser beam, or the like can be used.
- the photomask 13 may be provided so as to be in contact with the compound layer 12 or may be provided so as not to be in contact with the compound layer 12.
- the compound layer 12 is irradiated with UV light through the photomask 13. As a result, the compound layer 12 is exposed in the exposed region of the photomask 13 and the hydrophilic region 14 is formed.
- UV light can irradiate a wavelength at which optimum quantum efficiency is exhibited due to the structure of the photosensitive group.
- an i line of 365 nm can be used.
- the exposure amount and the exposure time do not necessarily need to completely proceed with deprotection, and may be such that a part of deprotection occurs. In that case, in the plating step described later, the conditions (activity of the plating bath, etc.) can be appropriately changed according to the progress of deprotection.
- the electroless plating catalyst is a catalyst that reduces metal ions contained in the plating solution for electroless plating, and examples thereof include silver and palladium.
- the electroless plating catalyst is supplemented only on the hydrophilic region 14 to form the catalyst layer 15. Further, as the electroless plating catalyst, a catalyst capable of supporting a hydrophilic group such as an amino group generated by the decomposition of the protective group can be used.
- the material of the plating layer 16 may be nickel-phosphorus (NiP) or copper (Cu).
- the substrate 11 is immersed in an electroless plating bath to reduce metal ions on the catalyst surface and deposit the plating layer 16.
- the catalyst layer 15 supporting a sufficient amount of catalyst is formed on the surface of the hydrophilic region 14, the plating layer 16 can be selectively deposited only on the hydrophilic region 14.
- a reducing agent solution such as sodium hypophosphite or sodium borohydride to positively reduce the metal ion on the amine.
- the insulating layer 17 is formed on the compound layer 12 by covering the plating layer 16 of the electroless plating pattern formed by the above-described electroless plating pattern forming method by a known method.
- the insulating layer 17 is formed by using a coating liquid prepared by dissolving one or more resins such as an ultraviolet curable acrylic resin, epoxy resin, ene / thiol resin, and silicone resin in an organic solvent, and applying the coating liquid. You may form by this.
- the insulating layer 17 can be formed into a desired pattern by irradiating the coating film with ultraviolet rays through a mask provided with an opening corresponding to a region where the insulating layer 17 is to be formed.
- the hydrophilic region 14 is formed in the portion where the source electrode and the drain electrode are formed in the same manner as the above-described first to third steps.
- the catalyst for electroless plating is supported on the hydrophilic region 14 to form the catalyst layer 15, and then the electroless plating is performed. By doing so, the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) are formed.
- the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) are formed.
- nickel-phosphorus (NiP) and copper (Cu) are also used as the material of the plated layers 18 and 19, but a material different from that of the plated layer 16 (gate electrode) may be used.
- the semiconductor layer 21 is formed between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode).
- the semiconductor layer 21 is formed by, for example, preparing a solution in which an organic semiconductor material soluble in an organic solvent such as TIPS pentacene (6,13-Bis (triisopropysilyltyl) pentacene) is dissolved in the organic solvent, and the plating layer 18 (source It may be formed by applying and drying between the electrode) and the plating layer 19 (drain electrode). Before forming the semiconductor layer 21, the compound layer 12 between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) may be exposed to be hydrophilic.
- an organic semiconductor material soluble in an organic solvent such as TIPS pentacene (6,13-Bis (triisopropysilyltyl) pentacene
- the solution is preferably applied to the hydrophilized portion, and the semiconductor layer 21 is easily formed selectively.
- the semiconductor layer 21 is formed by adding one or more insulating polymers such as PS (polystyrene) and PMMA (polymethylmethacrylate) to the above solution, applying a solution containing the insulating polymer, and drying. May be. When the semiconductor layer 21 is formed in this manner, the insulating polymer is concentrated and formed below the semiconductor layer 21 (on the side of the insulator layer 17).
- the transistor characteristics tend to deteriorate, but by providing the organic semiconductor via the insulating polymer described above, It is possible to suppress deterioration of transistor characteristics.
- the transistor can be manufactured as described above.
- the structure of the transistor is not particularly limited and can be appropriately selected according to the purpose. 2 to 3, the manufacturing method of the bottom contact / bottom gate type transistor has been described, but the same applies to the top contact / bottom gate type, top contact / top gate type and bottom contact / top gate type transistors. You may manufacture it. 2 to 3, the method of forming all of the gate electrode, the source electrode, and the drain electrode by the pattern forming method has been described in the present embodiment, but only the gate electrode is formed by the pattern forming method in the present embodiment. It may be formed, or only the source electrode and the drain electrode may be formed in the present embodiment by the pattern forming method.
- the present embodiment is a film for pattern formation in which an oxide film layer and a compound-containing layer having a photosensitive deprotecting group are laminated in this order.
- the compound having a photosensitive deprotecting group is a fluorine compound
- the present invention is not limited to this.
- the pattern forming film of the present embodiment includes an oxide film layer and a fluorine compound-containing layer in this order. Therefore, by selectively exposing through a mask or the like, in the exposed portion, the group exhibiting water repellency is decomposed (desorbed), and the group exhibiting hydrophilicity is generated. According to the film for forming a pattern of the present embodiment, a desired pattern including a hydrophilic region and a water repellent region can be formed by selectively exposing the film.
- the oxide film layer preferably contains at least one inorganic oxide selected from the group consisting of SiO 2 , Al 2 O 3 , ZrO 2 , SiON, ZnO, MgO, and TiO 2 .
- the compound contained in the fluorine compound-containing layer is preferably a compound which produces an amino group when the protective group is decomposed.
- the compound contained in the fluorine compound-containing layer is preferably the fluorine compound represented by the general formula (1).
- the substrate used is preferably made of a resin material.
- the resin material that can be preferably used the same resin material as the resin material of the substrate described in the pattern forming method of the present invention can be used.
- the substrate used is preferably flexible.
- Example 1 [Oxide film formation process] A commercially available polyethylene terephthalate (PET) substrate having a SiO 2 vapor deposition film was prepared.
- PET polyethylene terephthalate
- [Surface treatment process] polyethylene terephthalate (PET) substrate was cut (5 cm ⁇ 5 cm) with a cleaning process SiO 2 deposited film on the substrate, to obtain a test substrate.
- the obtained test substrate piece was dipped in a cleaning container containing 100 ml of isopropyl alcohol, and ultrasonically cleaned at 28 kHz for 1 minute. Furthermore, after drying with a nitrogen flow, cleaning was performed with an atmospheric pressure plasma device.
- Fluorine Compound-Containing Composition A 0.1% by mass hexafluoroxylene solution of the following compound (F1) was prepared to give a fluorine compound-containing composition.
- the following compound (F1) was produced by the method described in WO 2015/029981.
- Step of forming fluorine compound-containing layer The washed test substrate was immersed in a container containing the prepared composition containing a fluorine compound, and the container was heated at 60 ° C. for 60 minutes. The test substrate was taken out from the fluorine compound-containing composition, immersed in a cleaning container containing chloroform and rinsed. Then, the test substrate was immersed in a cleaning container containing acetone, and ultrasonic cleaning was performed at 28 kHz for 3 minutes. After drying with a nitrogen stream, the formed test substrate was heated at 90 ° C. for 1 minute.
- the exposed test substrate was immersed in a cleaning container containing chloroform for rinsing.
- the test substrate was immersed in a cleaning container containing acetone, and ultrasonic cleaning was performed at 28 kHz for 3 minutes. After drying with a nitrogen stream, the formed test substrate was heated at 90 ° C. for 1 minute.
- the silver nanometal ink manufactured by Bando Kagaku Co., Ltd., solid content concentration 40% by mass
- a printing tester having a doctor blade, an anilox roller, and an inking roller by using a pipettor, and the exposed substrate was inked did.
- the metal wiring was produced on the substrate by firing the ink applied on the substrate at room temperature.
- Example 2 The polyethylene terephthalate (PET) substrate having a SiO 2 vapor deposition film of Example 1 was changed to a polyethylene naphthalate (PEN) substrate having a SiO 2 CVD film, the same treatment was performed, and after exposure of 2000 mJ / cm 2, exposure was carried out by printing. Metal wiring was produced.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- Example 3 The SiO 2 vapor deposition film of Example 1 was changed to an Al 2 O 3 ALD film, the same treatment was carried out, and after exposing at 1000 mJ / cm 2 , metal wiring was produced by printing.
- Example 4 The polyethylene terephthalate (PET) substrate having the SiO 2 vapor deposition film of Example 1 was changed to a polyethylene naphthalate (PEN) substrate having an Al 2 O 3 ALD film, the same treatment was carried out, and after 500 mJ / cm 2 exposure, Metal wiring was produced by printing.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- FIG. 4A shows an image of an optical microscope (VHX-900, manufactured by Keyence Corporation) on which printed wiring processing was performed in Example 1.
- FIG. 4 (b) shows the same example as that of Example 2
- FIG. 4 (c) shows Example 3
- FIG. 4 (d) shows the same example as that obtained in Example 4.
- FIG. 5A shows a substrate obtained as a result of performing the printed wiring process in Comparative Example 1 and FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Thin Film Transistor (AREA)
Abstract
This pattern forming method for forming a pattern on a surface to be treated of an object is provided with: a step for forming an oxide film layer on the surface to be treated; a step for forming a compound-containing layer having a photosensitive deprotecting group by applying a compound-containing composition having the photosensitive deprotecting group onto the oxide film layer; a step for generating a latent image comprising a hydrophilic region and a water-repellent region by irradiating the compound-containing layer having the photosensitive deprotecting group with light with a predetermined pattern; and a step for disposing a pattern forming material in at least part of the hydrophilic region or at least part of the water-repellent region.
Description
本発明は、パターン形成方法、トランジスタの製造方法及びパターン形成用フィルムに関する。
本願は、2018年11月16日に、日本に出願された特願2018-215168号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a pattern forming method, a transistor manufacturing method, and a pattern forming film.
The present application claims priority based on Japanese Patent Application No. 2018-215168 filed in Japan on Nov. 16, 2018, and the content thereof is incorporated herein.
本願は、2018年11月16日に、日本に出願された特願2018-215168号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a pattern forming method, a transistor manufacturing method, and a pattern forming film.
The present application claims priority based on Japanese Patent Application No. 2018-215168 filed in Japan on Nov. 16, 2018, and the content thereof is incorporated herein.
近年、半導体素子、集積回路、有機ELディスプレイ用デバイス等の微細デバイス等の製造において、基板上に、表面特性の異なるパターンを形成し、その表面特性の違いを利用して微細デバイスを作成する方法が提案されている。
In recent years, in the production of semiconductor devices, integrated circuits, fine devices such as devices for organic EL displays, etc., a method of forming a pattern having different surface characteristics on a substrate and utilizing the difference in the surface characteristics to create a fine device. Is proposed.
基板上の表面特性の違いを利用したパターン形成方法としては、たとえば、基板上に親水領域と撥水領域とを形成し、機能性材料の水溶液を親水領域に塗布する方法がある。この方法は、親水領域でのみ機能性材料の水溶液が濡れ広がるため、機能性材料の薄膜パターンが形成できる。
As a pattern forming method utilizing the difference in surface characteristics on the substrate, for example, there is a method of forming a hydrophilic region and a water repellent region on the substrate and applying an aqueous solution of a functional material to the hydrophilic region. According to this method, since the aqueous solution of the functional material spreads only in the hydrophilic region, a thin film pattern of the functional material can be formed.
基板上に親水領域と撥水領域とを形成させることができる材料として、近年、カップリング剤が用いられている。特許文献1には、光照射の前後で接触角を大きく変化させることができる、光分解性カップリング剤が記載されている。配線等のパターンの解像性を向上させるため、親水領域と撥水領域とのより高いコントラストを得ることが好ましい。
A coupling agent has been used in recent years as a material capable of forming a hydrophilic region and a water repellent region on a substrate. Patent Document 1 describes a photodegradable coupling agent capable of significantly changing the contact angle before and after light irradiation. In order to improve the resolution of the pattern such as wiring, it is preferable to obtain a higher contrast between the hydrophilic region and the water repellent region.
本発明の一態様は、対象物の被処理面にパターンを形成するパターン形成方法であって、前記被処理面に酸化膜層を形成する工程と、前記酸化膜層の上に、感光性脱保護基を有する化合物含有組成物を塗布し、感光性脱保護基を有する化合物含有層を形成する工程と、前記感光性脱保護基を有する化合物含有層に所定パターンの光を照射して、親水領域および撥水領域からなる潜像を生成させる工程と、前記親水領域の少なくとも一部又は前記撥水領域の少なくとも一部にパターン形成材料を配置させる工程と、を備えるパターン形成方法である。
本発明の一態様は、ゲート電極と、ソース電極と、ドレイン電極と、を有するトランジスタの製造方法であって、前記ゲート電極、前記ソース電極、前記ドレイン電極のうち少なくとも1つの電極を、前記本発明の一態様のパターン形成方法で形成する工程を含むトランジスタの製造方法である。
本発明の一態様は、対象物と、酸化膜層と、感光性脱保護基を有する化合物含有層と、がこの順で積層された、パターン形成用フィルムである。 One embodiment of the present invention is a pattern forming method for forming a pattern on a surface to be processed of an object, which includes a step of forming an oxide film layer on the surface to be processed, and a photosensitive layer on the oxide film layer. A step of applying a compound-containing composition having a protective group to form a compound-containing layer having a photosensitive deprotecting group, and irradiating the compound-containing layer having a photosensitive deprotecting group with a predetermined pattern of light to make it hydrophilic. A pattern forming method comprising: a step of forming a latent image including a region and a water repellent region; and a step of disposing a pattern forming material on at least a part of the hydrophilic region or at least a part of the water repellent region.
One embodiment of the present invention is a method for manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode, wherein at least one electrode of the gate electrode, the source electrode, and the drain electrode is 1 is a method for manufacturing a transistor, including a step of forming by a pattern forming method according to one embodiment of the invention.
One embodiment of the present invention is a pattern-forming film in which an object, an oxide film layer, and a compound-containing layer having a photosensitive deprotecting group are laminated in this order.
本発明の一態様は、ゲート電極と、ソース電極と、ドレイン電極と、を有するトランジスタの製造方法であって、前記ゲート電極、前記ソース電極、前記ドレイン電極のうち少なくとも1つの電極を、前記本発明の一態様のパターン形成方法で形成する工程を含むトランジスタの製造方法である。
本発明の一態様は、対象物と、酸化膜層と、感光性脱保護基を有する化合物含有層と、がこの順で積層された、パターン形成用フィルムである。 One embodiment of the present invention is a pattern forming method for forming a pattern on a surface to be processed of an object, which includes a step of forming an oxide film layer on the surface to be processed, and a photosensitive layer on the oxide film layer. A step of applying a compound-containing composition having a protective group to form a compound-containing layer having a photosensitive deprotecting group, and irradiating the compound-containing layer having a photosensitive deprotecting group with a predetermined pattern of light to make it hydrophilic. A pattern forming method comprising: a step of forming a latent image including a region and a water repellent region; and a step of disposing a pattern forming material on at least a part of the hydrophilic region or at least a part of the water repellent region.
One embodiment of the present invention is a method for manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode, wherein at least one electrode of the gate electrode, the source electrode, and the drain electrode is 1 is a method for manufacturing a transistor, including a step of forming by a pattern forming method according to one embodiment of the invention.
One embodiment of the present invention is a pattern-forming film in which an object, an oxide film layer, and a compound-containing layer having a photosensitive deprotecting group are laminated in this order.
<パターン形成方法>
本実施形態は、対象物の被処理面にパターンを形成するパターン形成方法である。本実施形態のパターン形成方法は、被処理面に酸化膜層を形成する工程と、酸化膜層の上に、感光性脱保護基を有する化合物含有組成物を塗布し、感光性脱保護基を有する化合物含有層を形成する工程と、感光性脱保護基を有する化合物含有層に所定パターンの光を照射して、親水領域および撥水領域からなる潜像を生成させる工程と、親水領域の少なくとも一部又は撥水領域の少なくとも一部にパターン形成材料を配置させる工程と、を含む。 <Pattern forming method>
The present embodiment is a pattern forming method for forming a pattern on a surface to be processed of an object. The pattern forming method of the present embodiment comprises a step of forming an oxide film layer on the surface to be treated, and applying a compound containing composition having a photosensitive deprotecting group on the oxide film layer to form a photosensitive deprotecting group. A step of forming a compound-containing layer having, a step of irradiating the compound-containing layer having a photosensitive deprotecting group with a predetermined pattern of light to form a latent image composed of a hydrophilic region and a water-repellent region, and at least the hydrophilic region. Disposing a pattern forming material on at least a part of the water repellent region.
本実施形態は、対象物の被処理面にパターンを形成するパターン形成方法である。本実施形態のパターン形成方法は、被処理面に酸化膜層を形成する工程と、酸化膜層の上に、感光性脱保護基を有する化合物含有組成物を塗布し、感光性脱保護基を有する化合物含有層を形成する工程と、感光性脱保護基を有する化合物含有層に所定パターンの光を照射して、親水領域および撥水領域からなる潜像を生成させる工程と、親水領域の少なくとも一部又は撥水領域の少なくとも一部にパターン形成材料を配置させる工程と、を含む。 <Pattern forming method>
The present embodiment is a pattern forming method for forming a pattern on a surface to be processed of an object. The pattern forming method of the present embodiment comprises a step of forming an oxide film layer on the surface to be treated, and applying a compound containing composition having a photosensitive deprotecting group on the oxide film layer to form a photosensitive deprotecting group. A step of forming a compound-containing layer having, a step of irradiating the compound-containing layer having a photosensitive deprotecting group with a predetermined pattern of light to form a latent image composed of a hydrophilic region and a water-repellent region, and at least the hydrophilic region. Disposing a pattern forming material on at least a part of the water repellent region.
本実施形態のパターン形成方法によれば、解像性が高いパターンを形成することができる。なお、本実施形態では、感光性脱保護基を有する化合物がフッ素化合物である場合について説明するがこれに限られない。
According to the pattern forming method of the present embodiment, it is possible to form a pattern with high resolution. In this embodiment, the case where the compound having a photosensitive deprotecting group is a fluorine compound will be described, but the present invention is not limited to this.
[酸化膜を形成する工程]
本実施形態においては、対象物の被処理面に酸化膜層を形成する。酸化膜層を構成する材料は、SiO2、Al2O3、ZrO2、SiON、ZnO、MgO、TiO2からなる群より選択される1種以上の無機酸化物であることが好ましい。 [Process of forming oxide film]
In this embodiment, an oxide film layer is formed on the surface to be processed of the object. The material forming the oxide film layer is preferably one or more inorganic oxides selected from the group consisting of SiO 2 , Al 2 O 3 , ZrO 2 , SiON, ZnO, MgO, and TiO 2 .
本実施形態においては、対象物の被処理面に酸化膜層を形成する。酸化膜層を構成する材料は、SiO2、Al2O3、ZrO2、SiON、ZnO、MgO、TiO2からなる群より選択される1種以上の無機酸化物であることが好ましい。 [Process of forming oxide film]
In this embodiment, an oxide film layer is formed on the surface to be processed of the object. The material forming the oxide film layer is preferably one or more inorganic oxides selected from the group consisting of SiO 2 , Al 2 O 3 , ZrO 2 , SiON, ZnO, MgO, and TiO 2 .
酸化膜層を形成する方法としては、物理的気相成長法(PVD)や化学的気相成長法(CVD)、原子層堆積(ALD)から選択されるいずれか1つ以上の方法で形成することが好ましい。
As a method for forming the oxide film layer, any one or more methods selected from physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) are used. Preferably.
また、酸化膜層を形成する方法としては上記の態様に限られず、湿式成膜法を用いてもよい。例えば、SiO2膜を湿式成膜法により形成する場合、アルコキシシランやシラザン、あるいはそれらがオリゴマー化したポリシロキサン、ポリシラザンなどのケイ素化合物を基板に塗布し、加熱やアッシングなどにより有機成分を除去することで膜を形成してもよい。なお、ケイ素化合物を基板に塗布する際は、ケイ素化合物を水や有機溶剤を用いて希釈してから塗布してもよい。また、塗布方法は特に限られず、スピンコート、ディップコートなどの一般的な方法を採用することができる。また、他の金属酸化物膜を形成する場合は、上記のケイ素化合物に替えて、金属アルコキシドを原料として用いればよい。
Further, the method of forming the oxide film layer is not limited to the above-mentioned embodiment, and a wet film forming method may be used. For example, when a SiO 2 film is formed by a wet film formation method, a silicon compound such as alkoxysilane or silazane, or polysiloxane or polysilazane in which these are oligomerized is applied to a substrate, and an organic component is removed by heating or ashing. The film may be formed by doing so. When the silicon compound is applied to the substrate, the silicon compound may be diluted with water or an organic solvent and then applied. The coating method is not particularly limited, and a general method such as spin coating or dip coating can be adopted. When forming another metal oxide film, a metal alkoxide may be used as a raw material instead of the above silicon compound.
本実施形態において、形成する酸化膜層の厚みは2nm~1000nmが好ましい。酸化膜層の厚みが上記下限値より薄いと、成膜方法によっては膜厚を均一に制御しにくくなる傾向にある。また酸化膜層の厚みが上記上限値を超えると、酸化膜層が硬くなり、可撓性が得られにくくなる傾向にある。
In this embodiment, the thickness of the oxide film layer formed is preferably 2 nm to 1000 nm. If the thickness of the oxide film layer is smaller than the above lower limit value, it tends to be difficult to control the film thickness uniformly depending on the film forming method. When the thickness of the oxide film layer exceeds the above upper limit, the oxide film layer tends to be hard and it is difficult to obtain flexibility.
本実施形態において、対象物が基板である場合、基板の片面のみに酸化膜層を形成してもよく、両面に酸化膜層を形成してもよい。
In the present embodiment, when the object is a substrate, the oxide film layer may be formed on only one side of the substrate, or the oxide film layer may be formed on both sides.
一般的に、酸化膜層を形成した際、その表面には複数のOH基が生じる。本実施形態においても、対象物の被処理面に酸化膜層を形成することによりその表面に複数のOH基が生じるため、後の工程において塗布されるフッ素化合物含有組成物との反応性が向上し、フッ素化合物含有組成物が被処理面により結合しやすくなる。
Generally, when an oxide film layer is formed, multiple OH groups are generated on the surface. Also in this embodiment, by forming an oxide film layer on the surface to be processed of the object, a plurality of OH groups are generated on the surface, so that the reactivity with the fluorine compound-containing composition applied in the subsequent step is improved. However, the fluorine compound-containing composition is more likely to bond to the surface to be treated.
すなわち、酸化膜層を設けた場合は、酸化膜層を設けない場合に比べて被処理面に結合するフッ素化合物含有組成物の量が多くなることが期待される。このため、フッ素化合物含有組成物の持つ撥水性を十分に発揮することができ、対象物表面の接触角を向上させることができる。これにより、対象物の被処理面の撥水性を高め、後述する潜像を生成させる工程において形成される親水領域とのより高い濡れ性のコントラストを得ることができる。
That is, when the oxide film layer is provided, it is expected that the amount of the fluorine compound-containing composition bonded to the surface to be treated will be larger than that in the case where the oxide film layer is not provided. Therefore, the water repellency of the fluorine compound-containing composition can be sufficiently exhibited, and the contact angle on the surface of the object can be improved. This makes it possible to enhance the water repellency of the surface to be processed of the object and obtain a higher wettability contrast with the hydrophilic region formed in the step of forming a latent image described later.
[フッ素化合物含有層を形成する工程]
フッ素化合物含有層を形成する方法としては、後述する一般式(1)中の、反応性のSiに結合したXが、基板と結合する方法であれば特に限定されず、浸漬法、化学処理法等の公知の方法を用いることができる。 [Step of forming fluorine compound-containing layer]
The method for forming the fluorine compound-containing layer is not particularly limited as long as X bound to the reactive Si in the general formula (1) described later is a method for binding to the substrate, and a dipping method or a chemical treatment method is used. Known methods such as the above can be used.
フッ素化合物含有層を形成する方法としては、後述する一般式(1)中の、反応性のSiに結合したXが、基板と結合する方法であれば特に限定されず、浸漬法、化学処理法等の公知の方法を用いることができる。 [Step of forming fluorine compound-containing layer]
The method for forming the fluorine compound-containing layer is not particularly limited as long as X bound to the reactive Si in the general formula (1) described later is a method for binding to the substrate, and a dipping method or a chemical treatment method is used. Known methods such as the above can be used.
[潜像を生成させる工程]
本工程は、フッ素化合物含有層が形成された被処理面に所定パターンの光を照射して、選択的に露光し、親水領域及び撥水領域からなる潜像を生成させる工程である。本工程により、露光部のフッ素化合物は、撥水性を有する基(保護基)が脱離して相対的に親水性を有する基が生成し、親水領域が形成される。未露光部はこの脱離が起こらず、撥水領域のままとなる。
撥水性能を有する基が解離し、親水性能を有する残基(アミノ基)が生じるため、光照射後においては、親水領域及び撥水領域からなる潜像を生成させることができる。 [Process of generating latent image]
This step is a step of irradiating the surface on which the fluorine compound-containing layer is formed with a predetermined pattern of light to selectively expose the surface to form a latent image composed of a hydrophilic region and a water repellent region. According to this step, in the fluorine compound in the exposed area, a group having water repellency (protecting group) is eliminated to generate a group having relative hydrophilicity, and a hydrophilic region is formed. In the unexposed area, this detachment does not occur and remains in the water repellent area.
Since the group having the water-repellent property is dissociated and the residue (amino group) having the hydrophilic property is generated, a latent image composed of the hydrophilic region and the water-repellent region can be formed after the light irradiation.
本工程は、フッ素化合物含有層が形成された被処理面に所定パターンの光を照射して、選択的に露光し、親水領域及び撥水領域からなる潜像を生成させる工程である。本工程により、露光部のフッ素化合物は、撥水性を有する基(保護基)が脱離して相対的に親水性を有する基が生成し、親水領域が形成される。未露光部はこの脱離が起こらず、撥水領域のままとなる。
撥水性能を有する基が解離し、親水性能を有する残基(アミノ基)が生じるため、光照射後においては、親水領域及び撥水領域からなる潜像を生成させることができる。 [Process of generating latent image]
This step is a step of irradiating the surface on which the fluorine compound-containing layer is formed with a predetermined pattern of light to selectively expose the surface to form a latent image composed of a hydrophilic region and a water repellent region. According to this step, in the fluorine compound in the exposed area, a group having water repellency (protecting group) is eliminated to generate a group having relative hydrophilicity, and a hydrophilic region is formed. In the unexposed area, this detachment does not occur and remains in the water repellent area.
Since the group having the water-repellent property is dissociated and the residue (amino group) having the hydrophilic property is generated, a latent image composed of the hydrophilic region and the water-repellent region can be formed after the light irradiation.
本工程において、照射する光は紫外線が好ましい。照射する光は、200nm~450nmの範囲に含まれる波長を有する光を含むことが好ましく、320nm~450nmの範囲に含まれる波長を有する光を含むことがより好ましい。また、波長が365nmの光を含む光を照射することも好ましい。これらの波長を有する光は、本実施形態に用いる化合物の保護基を効率よく分解することができる。光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプ;窒素等の気体レーザー、有機色素溶液の液体レーザー、無機単結晶に希土類イオンを含有させた固体レーザー等が挙げられる。
In this step, the light to be irradiated is preferably ultraviolet light. The irradiation light preferably includes light having a wavelength included in the range of 200 nm to 450 nm, and more preferably includes light having a wavelength included in the range of 320 nm to 450 nm. It is also preferable to irradiate light including light having a wavelength of 365 nm. Light having these wavelengths can efficiently decompose the protective group of the compound used in the present embodiment. Light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, sodium lamps; gas lasers such as nitrogen, liquid lasers of organic dye solutions, solid-state lasers containing inorganic earth crystals containing rare earth ions, etc. Can be mentioned.
また、単色光が得られるレーザー以外の光源としては、広帯域の線スペクトル、連続スペクトルをバンドパスフィルター、カットオフフィルター等の光学フィルターを使用して取出した特定波長の光を使用してもよい。一度に大きな面積を照射することができることから、光源としては高圧水銀ランプまたは超高圧水銀ランプが好ましい。
本実施形態のパターン形成方法においては、上記の範囲で任意に光を照射することができるが、特に回路パターンに対応した分布の光エネルギーを照射することが好ましい。 Further, as a light source other than a laser capable of obtaining monochromatic light, light having a specific wavelength obtained by extracting a broadband line spectrum or continuous spectrum using an optical filter such as a bandpass filter or a cutoff filter may be used. A high-pressure mercury lamp or an ultra-high-pressure mercury lamp is preferable as the light source because a large area can be irradiated at one time.
In the pattern forming method of the present embodiment, light can be emitted arbitrarily within the above range, but it is particularly preferable to emit light energy having a distribution corresponding to the circuit pattern.
本実施形態のパターン形成方法においては、上記の範囲で任意に光を照射することができるが、特に回路パターンに対応した分布の光エネルギーを照射することが好ましい。 Further, as a light source other than a laser capable of obtaining monochromatic light, light having a specific wavelength obtained by extracting a broadband line spectrum or continuous spectrum using an optical filter such as a bandpass filter or a cutoff filter may be used. A high-pressure mercury lamp or an ultra-high-pressure mercury lamp is preferable as the light source because a large area can be irradiated at one time.
In the pattern forming method of the present embodiment, light can be emitted arbitrarily within the above range, but it is particularly preferable to emit light energy having a distribution corresponding to the circuit pattern.
露光工程は特に限定されず、1回の露光を行ってもよく、複数回の露光を行ってもよい。また、透過性のある対象物を処理する場合には、対象物側から露光を行ってもよく、フッ素化合物含有層側から露光を行ってもよい。露光工程をより短縮できる観点から、露光は1回行うことが好ましい。
The exposure process is not particularly limited, and one exposure may be performed or multiple exposures may be performed. Further, when a transparent object is processed, the exposure may be performed from the object side or the fluorine compound-containing layer side. From the viewpoint of further shortening the exposure process, the exposure is preferably performed once.
本実施形態においては、対象物の被処理面に酸化膜層を形成することにより、化学物質やガスの透過を抑制することができる。そのため、本工程以降に形成され得る配線や電極等の積層構造を化学物質やガスから保護することができるという効果も得られる。
In the present embodiment, the formation of an oxide film layer on the surface to be processed of the object can suppress the permeation of chemical substances and gases. Therefore, it is possible to obtain an effect that it is possible to protect the laminated structure such as wiring and electrodes that can be formed after this step from chemical substances and gas.
[任意の露光後加熱工程]
本実施形態においては、露光の後、加熱を実施してもよい。加熱方法としては、オーブン、ホットプレート、赤外線ヒーターなどが挙げられる。加熱温度は40℃~200℃としてよく、50℃~120℃としてもよい。 [Arbitrary post-exposure heating step]
In this embodiment, heating may be performed after the exposure. Examples of the heating method include an oven, a hot plate, and an infrared heater. The heating temperature may be 40 ° C to 200 ° C, or 50 ° C to 120 ° C.
本実施形態においては、露光の後、加熱を実施してもよい。加熱方法としては、オーブン、ホットプレート、赤外線ヒーターなどが挙げられる。加熱温度は40℃~200℃としてよく、50℃~120℃としてもよい。 [Arbitrary post-exposure heating step]
In this embodiment, heating may be performed after the exposure. Examples of the heating method include an oven, a hot plate, and an infrared heater. The heating temperature may be 40 ° C to 200 ° C, or 50 ° C to 120 ° C.
[任意の洗浄工程]
本実施形態においては、露光工程の後、あるいは加熱工程の後に洗浄工程を設けてもよい。洗浄方法としては、浸漬洗浄、スプレー洗浄、超音波洗浄などが挙げられる。洗浄液は水やアルコールなどの極性溶媒や、トルエンなどの非極性溶媒を用いてもよく、その混合溶液や、界面活性剤などの添加剤を含むものを用いてもよい。また、洗浄後、ガス吹付や加熱などによる乾燥工程を設けてもよい。 [Arbitrary cleaning process]
In the present embodiment, a cleaning process may be provided after the exposure process or the heating process. Examples of the cleaning method include immersion cleaning, spray cleaning and ultrasonic cleaning. As the cleaning liquid, a polar solvent such as water or alcohol or a nonpolar solvent such as toluene may be used, or a mixed solution thereof or a liquid containing an additive such as a surfactant may be used. Further, after the cleaning, a drying process such as gas spraying or heating may be provided.
本実施形態においては、露光工程の後、あるいは加熱工程の後に洗浄工程を設けてもよい。洗浄方法としては、浸漬洗浄、スプレー洗浄、超音波洗浄などが挙げられる。洗浄液は水やアルコールなどの極性溶媒や、トルエンなどの非極性溶媒を用いてもよく、その混合溶液や、界面活性剤などの添加剤を含むものを用いてもよい。また、洗浄後、ガス吹付や加熱などによる乾燥工程を設けてもよい。 [Arbitrary cleaning process]
In the present embodiment, a cleaning process may be provided after the exposure process or the heating process. Examples of the cleaning method include immersion cleaning, spray cleaning and ultrasonic cleaning. As the cleaning liquid, a polar solvent such as water or alcohol or a nonpolar solvent such as toluene may be used, or a mixed solution thereof or a liquid containing an additive such as a surfactant may be used. Further, after the cleaning, a drying process such as gas spraying or heating may be provided.
[パターン形成材料を配置させる工程]
本工程は、前記潜像を生成させる工程で生成した親水領域又は撥水領域にパターン形成材料を配置させる工程である。上述したとおり、酸化膜層の上にフッ素化合物含有層を設けた構成としていることで、本実施形態においては、フッ素化合物含有層が十分な撥水性を発揮している。すなわち、親水領域と撥水領域に濡れ性の高いコントラストがあるため、パターン形成材料が撥水領域に残りにくくなり、親水領域に良好に配置される。 [Step of placing pattern forming material]
This step is a step of disposing the pattern forming material in the hydrophilic region or the water repellent region generated in the process of generating the latent image. As described above, since the fluorine compound-containing layer is provided on the oxide film layer, the fluorine compound-containing layer exhibits sufficient water repellency in the present embodiment. That is, since the hydrophilic region and the water-repellent region have a high wettability contrast, the pattern forming material is less likely to remain in the water-repellent region, and is favorably arranged in the hydrophilic region.
本工程は、前記潜像を生成させる工程で生成した親水領域又は撥水領域にパターン形成材料を配置させる工程である。上述したとおり、酸化膜層の上にフッ素化合物含有層を設けた構成としていることで、本実施形態においては、フッ素化合物含有層が十分な撥水性を発揮している。すなわち、親水領域と撥水領域に濡れ性の高いコントラストがあるため、パターン形成材料が撥水領域に残りにくくなり、親水領域に良好に配置される。 [Step of placing pattern forming material]
This step is a step of disposing the pattern forming material in the hydrophilic region or the water repellent region generated in the process of generating the latent image. As described above, since the fluorine compound-containing layer is provided on the oxide film layer, the fluorine compound-containing layer exhibits sufficient water repellency in the present embodiment. That is, since the hydrophilic region and the water-repellent region have a high wettability contrast, the pattern forming material is less likely to remain in the water-repellent region, and is favorably arranged in the hydrophilic region.
パターン形成材料としては、金、銀、銅やこれらの合金などの粒子を所定の溶媒に分散させた配線材料(金属溶液)、又は、上記した金属を含む前駆体溶液、絶縁体(樹脂)、半導体、有機EL発光材などを所定の溶媒に分散させた電子材料、レジスト液などが挙げられる。
As the pattern forming material, a wiring material (metal solution) in which particles such as gold, silver, copper and alloys thereof are dispersed in a predetermined solvent, or a precursor solution containing the above metal, an insulator (resin), Examples include electronic materials obtained by dispersing semiconductors, organic EL light emitting materials and the like in a predetermined solvent, resist solutions, and the like.
本実施形態のパターン形成方法においては、パターン形成材料は、導電材料、半導体材料又は絶縁材料が好ましい。さらに、これらのパターン形成材料は、液状の導電材料、液状の半導体材料、又は液状の絶縁材料であることが好ましい。
In the pattern forming method of this embodiment, the pattern forming material is preferably a conductive material, a semiconductor material or an insulating material. Further, these pattern forming materials are preferably liquid conductive materials, liquid semiconductor materials, or liquid insulating materials.
液状の導電材料としては、導電性微粒子を分散媒に分散させた分散液からなるパターン形成材料が挙げられる。導電性微粒子として、例えば、金、銀、銅、パラジウム、ニッケル及びITOのうちのいずれかを含有する金属微粒子の他、これらの酸化物、並びに導電性ポリマーや超電導体の微粒子などが用いられる。
The liquid conductive material may be a pattern forming material made of a dispersion liquid in which conductive fine particles are dispersed in a dispersion medium. As the conductive fine particles, for example, metal fine particles containing any one of gold, silver, copper, palladium, nickel and ITO, as well as oxides thereof, fine particles of conductive polymers and superconductors, and the like are used.
これらの導電性微粒子は、分散性を向上させるために表面に有機物などをコーティングして使うこともできる。
The conductive fine particles can be used by coating the surface with an organic substance in order to improve the dispersibility.
分散媒としては、上記の導電性微粒子を分散できるもので、凝集を起こさないものであれば特に限定されない。例えば、水の他に、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、n-ヘプタン、n-オクタン、デカン、ドデカン、テトラデカン、トルエン、キシレン、シメン、デュレン、インデン、ジペンテン、テトラヒドロナフタレン、デカヒドロナフタレン、シクロヘキシルベンゼンなどの炭化水素系化合物、またエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、p-ジオキサンなどのエーテル系化合物、さらにプロピレンカーボネート、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノンなどの極性化合物を例示できる。これらのうち、微粒子の分散性と分散液の安定性、また液滴吐出法(インクジェット法)への適用の容易さの点で、水、アルコール類、炭化水素系化合物、エーテル系化合物が好ましく、より好ましい分散媒としては、水、炭化水素系化合物を挙げることができる。
The dispersion medium is not particularly limited as long as it can disperse the above conductive fine particles and does not cause aggregation. For example, in addition to water, alcohols such as methanol, ethanol, propanol, butanol, n-heptane, n-octane, decane, dodecane, tetradecane, toluene, xylene, cymene, durene, indene, dipentene, tetrahydronaphthalene, decahydro. Hydrocarbon compounds such as naphthalene and cyclohexylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, 1,2-dimethoxyethane, bis (2- Examples thereof include ether compounds such as methoxyethyl) ether and p-dioxane, and polar compounds such as propylene carbonate, γ-butyrolactone, N-methyl-2-pyrrolidone, dimethylformamide, dimethylsulfoxide and cyclohexanone. Among these, water, alcohols, hydrocarbon compounds, and ether compounds are preferable from the viewpoints of dispersibility of fine particles, stability of dispersion liquid, and ease of application to a droplet discharge method (inkjet method). As more preferable dispersion media, water and hydrocarbon compounds can be mentioned.
液状の半導体材料としては、分散媒に分散又は溶解させた有機半導体材料を用いることができる。有機半導体材料としては、その骨格が共役二重結合から構成されるπ電子共役系の高分子材料が望ましい。代表的には、ポリチオフェン、ポリ(3-アルキルチオフェン)、ポリチオフェン誘導体、ペンタセン等の可溶性の高分子材料が挙げられる。
As the liquid semiconductor material, an organic semiconductor material dispersed or dissolved in a dispersion medium can be used. As the organic semiconductor material, a π-electron conjugated polymer material whose skeleton is composed of conjugated double bonds is desirable. Typically, a soluble polymer material such as polythiophene, poly (3-alkylthiophene), polythiophene derivative, and pentacene can be used.
液状の絶縁材料としては、ポリイミド、ポリアミド、ポリエステル、アクリル、PSG(リンガラス)、BPSG(リンボロンガラス)、ポリシラザン系SOGや、シリケート系SOG(Spin on Glass)、アルコキシシリケート系SOG、シロキサンポリマーに代表されるSi-CH3結合を有するSiO2等を分散媒に分散又は溶解させた絶縁材料が挙げられる。
Liquid insulating materials include polyimide, polyamide, polyester, acrylic, PSG (phosphorus glass), BPSG (phosphorus glass), polysilazane SOG, silicate SOG (Spin on Glass), alkoxy silicate SOG, and siloxane polymer. A typical example is an insulating material in which SiO 2 having a Si—CH 3 bond or the like is dispersed or dissolved in a dispersion medium.
本工程において、パターン形成材料を配置させる方法としては、液滴吐出法、インクジェット法、スピンコート法、ロールコート法、スロットコート法等を適用することができる。
In this step, as a method for disposing the pattern forming material, a droplet discharge method, an inkjet method, a spin coating method, a roll coating method, a slot coating method, or the like can be applied.
なお、本工程は、上述の方法に限られず、親水領域又は撥水領域に無電解めっき用触媒を配置し、無電解めっきを行う無電解めっき工程により実施されてもよい。無電解めっき工程の詳細については後述する。
Note that this step is not limited to the method described above, and may be performed by an electroless plating step in which an electroless plating catalyst is placed in a hydrophilic region or a water repellent region and electroless plating is performed. Details of the electroless plating process will be described later.
対象物としては、特に限定されない。本実施形態において、対象物の材料は、例えば、金属、結晶質材料(例えば単結晶質、多結晶質および部分結晶質材料)、非晶質材料、導体、半導体、絶縁体、繊維、ガラス、セラミックス、ゼオライト、プラスチック、熱硬化性および熱可塑性材料(例えば、場合によってドープされた:ポリアクリレート、ポリカーボネート、ポリウレタン、ポリスチレン、セルロースポリマー、ポリオレフィン、ポリアミド、ポリイミド、ポリエステル、ポリフェニレン、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレン、エチレンビニル共重合体、ポリ塩化ビニルなど)が挙げられる。また、対象物は、光学素子、塗装基板、フィルム等であってよく、これらは可撓性を有していてもよい。
The target object is not particularly limited. In the present embodiment, the material of the object is, for example, a metal, a crystalline material (for example, a single crystalline material, a polycrystalline material and a partially crystalline material), an amorphous material, a conductor, a semiconductor, an insulator, a fiber, a glass, Ceramics, zeolites, plastics, thermosetting and thermoplastic materials (eg optionally doped: polyacrylates, polycarbonates, polyurethanes, polystyrenes, cellulosic polymers, polyolefins, polyamides, polyimides, polyesters, polyphenylenes, polyethylene, polyethylene terephthalate, polypropylene) , Ethylene vinyl copolymer, polyvinyl chloride, etc.). Further, the object may be an optical element, a coated substrate, a film, etc., which may have flexibility.
ここで可撓性とは、基板に自重程度の力を加えても線断したり破断したりすることはなく、該基板を撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、上記可撓性は、該基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板としては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。
本実施形態においては、対象物は樹脂材料からなる基板であることが好ましい。 Here, the term "flexible" refers to the property of being able to bend the substrate without breaking or breaking even if a force of about its own weight is applied to the substrate. Further, flexibility also includes the property of bending by a force of about its own weight. Further, the flexibility changes depending on the material, size, thickness, environment such as temperature, etc. of the substrate. As the substrate, one strip-shaped substrate may be used, but a plurality of unit substrates may be connected to form a strip-shaped substrate.
In this embodiment, the object is preferably a substrate made of a resin material.
本実施形態においては、対象物は樹脂材料からなる基板であることが好ましい。 Here, the term "flexible" refers to the property of being able to bend the substrate without breaking or breaking even if a force of about its own weight is applied to the substrate. Further, flexibility also includes the property of bending by a force of about its own weight. Further, the flexibility changes depending on the material, size, thickness, environment such as temperature, etc. of the substrate. As the substrate, one strip-shaped substrate may be used, but a plurality of unit substrates may be connected to form a strip-shaped substrate.
In this embodiment, the object is preferably a substrate made of a resin material.
本実施形態のパターン形成方法においては、パターンを電子デバイス用の回路パターンとすることができる。
In the pattern forming method of this embodiment, the pattern can be a circuit pattern for an electronic device.
・フッ素化合物含有組成物
本実施形態において使用するフッ素化合物含有組成物について説明する。フッ素化合物含有組成物は、下記式(1)で表されるフッ素化合物を含むことが好ましい。下記式(1)で表されるフッ素化合物は、シランカップリング剤として作用する化合物である。
下記式(1)で表されるフッ素化合物は、露光により撥水性を発揮する基が分解(脱離)し、親水性を発揮する基が生成する。このため、露光の作用により、対象物の被処理面を撥水性から親水性に変化させることができる。 -Fluorine compound-containing composition The fluorine compound-containing composition used in the present embodiment will be described. The fluorine compound-containing composition preferably contains a fluorine compound represented by the following formula (1). The fluorine compound represented by the following formula (1) is a compound that acts as a silane coupling agent.
In the fluorine compound represented by the following formula (1), the group exhibiting water repellency is decomposed (desorbed) by exposure to produce a group exhibiting hydrophilicity. Therefore, the surface of the object to be treated can be changed from water-repellent to hydrophilic by the action of exposure.
本実施形態において使用するフッ素化合物含有組成物について説明する。フッ素化合物含有組成物は、下記式(1)で表されるフッ素化合物を含むことが好ましい。下記式(1)で表されるフッ素化合物は、シランカップリング剤として作用する化合物である。
下記式(1)で表されるフッ素化合物は、露光により撥水性を発揮する基が分解(脱離)し、親水性を発揮する基が生成する。このため、露光の作用により、対象物の被処理面を撥水性から親水性に変化させることができる。 -Fluorine compound-containing composition The fluorine compound-containing composition used in the present embodiment will be described. The fluorine compound-containing composition preferably contains a fluorine compound represented by the following formula (1). The fluorine compound represented by the following formula (1) is a compound that acts as a silane coupling agent.
In the fluorine compound represented by the following formula (1), the group exhibiting water repellency is decomposed (desorbed) by exposure to produce a group exhibiting hydrophilicity. Therefore, the surface of the object to be treated can be changed from water-repellent to hydrophilic by the action of exposure.
前記一般式(1)中、Xはハロゲン原子又はアルコキシ基である。Xで表されるハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子等を挙げることができるが、Xはハロゲン原子であるよりもアルコキシ基であることが好ましい。nは整数を表し、出発原料の入手の容易さの点から、1~20の整数であることが好ましく、2~15の整数であることがより好ましい。
In the general formula (1), X is a halogen atom or an alkoxy group. Examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, but X is preferably an alkoxy group rather than a halogen atom. n represents an integer and is preferably an integer of 1 to 20 and more preferably an integer of 2 to 15 from the viewpoint of easy availability of starting materials.
前記一般式(1)中、R1は水素原子、又は炭素数1~10の直鎖状、分岐鎖状又は環状のアルキル基である。
R1のアルキル基としては、炭素数1~5の直鎖状または分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。 In the general formula (1), R 1 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
As the alkyl group for R 1, a linear or branched alkyl group having 1 to 5 carbon atoms is preferable, and specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and isobutyl. Group, tert-butyl group, pentyl group, isopentyl group, neopentyl group and the like.
R1のアルキル基としては、炭素数1~5の直鎖状または分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。 In the general formula (1), R 1 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
As the alkyl group for R 1, a linear or branched alkyl group having 1 to 5 carbon atoms is preferable, and specific examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group and isobutyl. Group, tert-butyl group, pentyl group, isopentyl group, neopentyl group and the like.
環状のアルキル基としては、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
本実施形態においては、R1は水素原子、メチル基又はエチル基であることが好ましい。 Examples of the cyclic alkyl group include groups in which one or more hydrogen atoms have been removed from polycycloalkane such as monocycloalkane, bicycloalkane, tricycloalkane, and tetracycloalkane.
In this embodiment, R 1 is preferably a hydrogen atom, a methyl group or an ethyl group.
本実施形態においては、R1は水素原子、メチル基又はエチル基であることが好ましい。 Examples of the cyclic alkyl group include groups in which one or more hydrogen atoms have been removed from polycycloalkane such as monocycloalkane, bicycloalkane, tricycloalkane, and tetracycloalkane.
In this embodiment, R 1 is preferably a hydrogen atom, a methyl group or an ethyl group.
前記一般式(1)中、Rf1、Rf2はそれぞれ独立にアルコキシ基、シロキシ基、またはフッ素化アルコキシ基である。
前記一般式(1)中、Rf1、Rf2のアルコキシ基、シロキシ基、またはフッ素化アルコキシ基は、好ましくは炭素数3以上のアルコキシ基であって、部分的にフッ素化されたものであってもよく、パーフルオロアルコキシ基であってもよい。本実施形態においては、部分的にフッ素化されたフッ素化アルコキシ基であることが好ましい。 In the general formula (1), R f1 and R f2 are each independently an alkoxy group, a siloxy group, or a fluorinated alkoxy group.
In the general formula (1), the alkoxy group, siloxy group or fluorinated alkoxy group of R f1 and R f2 is preferably an alkoxy group having 3 or more carbon atoms, which is partially fluorinated. Or may be a perfluoroalkoxy group. In the present embodiment, it is preferably a partially fluorinated fluorinated alkoxy group.
前記一般式(1)中、Rf1、Rf2のアルコキシ基、シロキシ基、またはフッ素化アルコキシ基は、好ましくは炭素数3以上のアルコキシ基であって、部分的にフッ素化されたものであってもよく、パーフルオロアルコキシ基であってもよい。本実施形態においては、部分的にフッ素化されたフッ素化アルコキシ基であることが好ましい。 In the general formula (1), R f1 and R f2 are each independently an alkoxy group, a siloxy group, or a fluorinated alkoxy group.
In the general formula (1), the alkoxy group, siloxy group or fluorinated alkoxy group of R f1 and R f2 is preferably an alkoxy group having 3 or more carbon atoms, which is partially fluorinated. Or may be a perfluoroalkoxy group. In the present embodiment, it is preferably a partially fluorinated fluorinated alkoxy group.
本実施形態において、Rf1、Rf2のフッ素化アルコキシ基としては、例えば、-O-(CH2)n
f1-(Cn
f2F2n
f2
+1)で表される基が挙げられる。前記nf1は0以上の整数であり、nf2は0以上の整数である。
本実施形態において、nf1は0~30であることが好ましく、0~15であることがより好ましく、0~5であることが特に好ましい。
また、本実施形態において、nf2は0~30であることが好ましく、0~15であることがより好ましく、1~5であることが特に好ましい。 In the present embodiment, examples of the fluorinated alkoxy group for R f1 and R f2 include a group represented by —O— (CH 2 ) n f1 — (C n f2 F 2n f2 +1 ). The n f1 is an integer of 0 or more, and the n f2 is an integer of 0 or more.
In this embodiment, n f1 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 0 to 5.
Further, in the present embodiment, n f2 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 1 to 5.
本実施形態において、nf1は0~30であることが好ましく、0~15であることがより好ましく、0~5であることが特に好ましい。
また、本実施形態において、nf2は0~30であることが好ましく、0~15であることがより好ましく、1~5であることが特に好ましい。 In the present embodiment, examples of the fluorinated alkoxy group for R f1 and R f2 include a group represented by —O— (CH 2 ) n f1 — (C n f2 F 2n f2 +1 ). The n f1 is an integer of 0 or more, and the n f2 is an integer of 0 or more.
In this embodiment, n f1 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 0 to 5.
Further, in the present embodiment, n f2 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 1 to 5.
前記一般式(1)中、nは0以上の整数である。本実施形態においては、nは1以上が好ましく、3以上であることがより好ましい。
In the general formula (1), n is an integer of 0 or more. In the present embodiment, n is preferably 1 or more, and more preferably 3 or more.
以下に一般式(1)で表されるフッ素化合物の具体例を示す。
Specific examples of the fluorine compound represented by the general formula (1) are shown below.
上記のフッ素化合物は、国際公開第2015/029981号公報に記載の方法により製造することができる。
The above-mentioned fluorine compound can be produced by the method described in International Publication No. WO 2015/029981.
本工程における化学修飾の一例を下記に示す。下記式中、X、R1、Rf1、Rf2、nについての説明は前記一般式(1)中におけるR1、Rf1、Rf2、nについての説明と同様である。
An example of chemical modification in this step is shown below. In the following formula, X, R 1 , R f1 , R f2 , and n are the same as the description of R 1 , R f1 , R f2 , and n in the general formula (1).
式(1)で表されるフッ素化合物を、ヘキサフルオロキシレン等の有機溶剤に溶解させて、フッ素化合物含有組成物とする。
フッ素化合物含有組成物のフッ素化合物の化合物濃度は特に限定されず、モル濃度(M)換算で0.05mM~1.0mMが好ましく、0.075mM~0.5mMがより好ましく、0.085mM~0.2mMが特に好ましい。 The fluorine compound represented by the formula (1) is dissolved in an organic solvent such as hexafluoroxylene to obtain a fluorine compound-containing composition.
The compound concentration of the fluorine compound in the fluorine compound-containing composition is not particularly limited, and is preferably 0.05 mM to 1.0 mM in terms of molar concentration (M), more preferably 0.075 mM to 0.5 mM, and 0.085 mM to 0. 0.2 mM is particularly preferred.
フッ素化合物含有組成物のフッ素化合物の化合物濃度は特に限定されず、モル濃度(M)換算で0.05mM~1.0mMが好ましく、0.075mM~0.5mMがより好ましく、0.085mM~0.2mMが特に好ましい。 The fluorine compound represented by the formula (1) is dissolved in an organic solvent such as hexafluoroxylene to obtain a fluorine compound-containing composition.
The compound concentration of the fluorine compound in the fluorine compound-containing composition is not particularly limited, and is preferably 0.05 mM to 1.0 mM in terms of molar concentration (M), more preferably 0.075 mM to 0.5 mM, and 0.085 mM to 0. 0.2 mM is particularly preferred.
以下、図面を参照して、本実施形態のパターン形成方法を説明する。
本実施形態のパターン形成方法において、いわゆるロール・ツー・ロールプロセスに対応する可撓性の基板を用いる場合には、図1に示すような、ロール・ツー・ロール装置である基板処理装置100を用いてパターンを形成してもよい。 Hereinafter, the pattern forming method of the present embodiment will be described with reference to the drawings.
In the pattern forming method of this embodiment, when a flexible substrate corresponding to a so-called roll-to-roll process is used, asubstrate processing apparatus 100 as a roll-to-roll apparatus as shown in FIG. 1 is used. It may be used to form a pattern.
本実施形態のパターン形成方法において、いわゆるロール・ツー・ロールプロセスに対応する可撓性の基板を用いる場合には、図1に示すような、ロール・ツー・ロール装置である基板処理装置100を用いてパターンを形成してもよい。 Hereinafter, the pattern forming method of the present embodiment will be described with reference to the drawings.
In the pattern forming method of this embodiment, when a flexible substrate corresponding to a so-called roll-to-roll process is used, a
図1に示すように、基板処理装置100は、帯状の基板(例えば、帯状のフィルム部材)Sを供給する基板供給部2と、基板Sの表面(被処理面)Saに対して処理を行う基板処理部3と、基板Sを回収する基板回収部4と、フッ素化合物の塗布部6と、露光部7と、マスク8と、パターン材料塗布部9と、これらの各部を制御する制御部CONTと、を有している。基板処理部3は、基板供給部2から基板Sが送り出されてから、基板回収部4によって基板Sが回収されるまでの間に、基板Sの表面に各種処理を実行できる。
この基板処理装置100は、基板S上に例えば有機EL素子、液晶表示素子等の表示素子(電子デバイス)を形成する場合に好適に用いることができる。 As illustrated in FIG. 1, thesubstrate processing apparatus 100 performs processing on a substrate supply unit 2 that supplies a belt-shaped substrate (for example, a belt-shaped film member) S and a surface (a surface to be processed) Sa of the substrate S. The substrate processing unit 3, the substrate recovery unit 4 for recovering the substrate S, the fluorine compound coating unit 6, the exposure unit 7, the mask 8, the pattern material coating unit 9, and a control unit CONT for controlling these units. And have. The substrate processing unit 3 can perform various kinds of processing on the surface of the substrate S after the substrate S is delivered from the substrate supply unit 2 and before the substrate S is recovered by the substrate recovery unit 4.
Thesubstrate processing apparatus 100 can be suitably used when a display element (electronic device) such as an organic EL element or a liquid crystal display element is formed on the substrate S.
この基板処理装置100は、基板S上に例えば有機EL素子、液晶表示素子等の表示素子(電子デバイス)を形成する場合に好適に用いることができる。 As illustrated in FIG. 1, the
The
なお、図1は、所望のパターン光を生成するためにフォトマスクを用いる方式を図示したものであるが、本実施形態は、フォトマスクを用いないマスクレス露光方式にも好適に適用することができる。フォトマスクを用いずにパターン光を生成するマスクレス露光方式としては、DMD等の空間光変調素子を用いる方法、レーザービームプリンターのようにスポット光を走査する方式等が挙げられる。
Note that, although FIG. 1 illustrates a method using a photomask to generate a desired pattern light, this embodiment can be suitably applied to a maskless exposure method that does not use a photomask. it can. Examples of the maskless exposure method for generating pattern light without using a photomask include a method using a spatial light modulator such as a DMD and a method of scanning spot light like a laser beam printer.
本実施形態のパターン形成方法においては、図1に示すようにXYZ座標系を設定し、以下では適宜このXYZ座標系を用いて説明を行う。XYZ座標系は、例えば、水平面に沿ってX軸及びY軸が設定され、鉛直方向に沿って上向きにZ軸が設定される。また、基板処理装置100は、全体としてX軸に沿って、そのマイナス側(-側)からプラス側(+側)へ基板Sを搬送する。その際、帯状の基板Sの幅方向(短尺方向)は、Y軸方向に設定される。
In the pattern forming method of the present embodiment, an XYZ coordinate system is set as shown in FIG. 1, and description will be made below using this XYZ coordinate system as appropriate. In the XYZ coordinate system, for example, the X axis and the Y axis are set along the horizontal plane, and the Z axis is set upward along the vertical direction. Further, the substrate processing apparatus 100 conveys the substrate S from the minus side (− side) to the plus side (+ side) along the X axis as a whole. At that time, the width direction (short direction) of the strip-shaped substrate S is set to the Y-axis direction.
基板処理装置100において処理対象となる基板Sとしては、例えば樹脂フィルムやステンレス鋼などの箔(フォイル)を用いることができる。例えば、樹脂フィルムは、ポリオレフィン樹脂、ポリシリコーン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。
As the substrate S to be processed in the substrate processing apparatus 100, for example, a resin film or a foil such as stainless steel can be used. For example, the resin film is a polyolefin resin, a polysilicone resin, a polyethylene resin, a polypropylene resin, a polyester resin, an ethylene vinyl copolymer resin, a polyvinyl chloride resin, a cellulose resin, a polyamide resin, a polyimide resin, a polycarbonate resin, a polystyrene resin, acetic acid. A material such as vinyl resin can be used.
基板Sは、例えば200℃程度の熱を受けても寸法が変わらないように熱膨張係数が小さい方が好ましい。例えば、フィルムをアニールすることで、寸法変化を抑制することができる。また、無機フィラーを樹脂フィルムに混合して熱膨張係数を小さくすることができる。無機フィラーの例としては、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素などが挙げられる。また、基板Sはフロート法等で製造された厚さ100μm程度の極薄ガラスの単体、或いはその極薄ガラスに上記樹脂フィルムやアルミ箔を貼り合わせた積層体であっても良い。
The substrate S preferably has a small coefficient of thermal expansion so that its dimensions do not change even if it receives heat of about 200 ° C., for example. For example, the dimensional change can be suppressed by annealing the film. In addition, an inorganic filler can be mixed with the resin film to reduce the coefficient of thermal expansion. Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, silicon oxide and the like. Further, the substrate S may be a single body of ultra-thin glass having a thickness of about 100 μm manufactured by a float method or the like, or a laminated body in which the resin film or aluminum foil is attached to the ultra-thin glass.
基板Sの幅方向(短尺方向)の寸法は例えば1m~2m程度に形成されており、長さ方向(長尺方向)の寸法は例えば10m以上に形成されている。勿論、この寸法は一例に過ぎず、これに限られることは無い。例えば基板SのY方向の寸法が50cm以下であっても構わないし、2m以上であっても構わない。また、基板SのX方向の寸法が10m以下であっても構わない。
The dimension of the substrate S in the width direction (short direction) is, for example, about 1 m to 2 m, and the dimension in the length direction (long direction) is, for example, 10 m or more. Of course, this size is merely an example, and the size is not limited to this. For example, the dimension of the substrate S in the Y direction may be 50 cm or less, or 2 m or more. Further, the dimension of the substrate S in the X direction may be 10 m or less.
基板Sは、可撓性を有するように形成されていることが好ましい。ここで可撓性とは、基板に自重程度の力を加えても線断したり破断したりすることはなく、該基板を撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。
また、上記可撓性は、該基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板Sとしては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。 The substrate S is preferably formed so as to have flexibility. Here, the term "flexible" refers to the property of being able to bend the substrate without breaking or breaking even if a force of about its own weight is applied to the substrate. Further, flexibility also includes the property of bending by a force of about its own weight.
Further, the flexibility changes depending on the material, size, thickness, environment such as temperature, etc. of the substrate. As the substrate S, one strip-shaped substrate may be used, or a plurality of unit substrates may be connected to form a strip-shaped substrate.
また、上記可撓性は、該基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板Sとしては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。 The substrate S is preferably formed so as to have flexibility. Here, the term "flexible" refers to the property of being able to bend the substrate without breaking or breaking even if a force of about its own weight is applied to the substrate. Further, flexibility also includes the property of bending by a force of about its own weight.
Further, the flexibility changes depending on the material, size, thickness, environment such as temperature, etc. of the substrate. As the substrate S, one strip-shaped substrate may be used, or a plurality of unit substrates may be connected to form a strip-shaped substrate.
基板供給部2は、例えばロール状に巻かれた基板Sを基板処理部3へ送り出して供給する。この場合、基板供給部2には、基板Sを巻きつける軸部や当該軸部を回転させる回転駆動装置などが設けられる。この他、例えばロール状に巻かれた状態の基板Sを覆うカバー部などが設けられた構成であっても構わない。なお、基板供給部2は、ロール状に巻かれた基板Sを送り出す機構に限定されず、帯状の基板Sをその長さ方向に順次送り出す機構(例えばニップ式の駆動ローラ等)を含むものであればよい。
The substrate supply unit 2 sends out and supplies the substrate S wound in a roll shape to the substrate processing unit 3, for example. In this case, the substrate supply unit 2 is provided with a shaft portion around which the substrate S is wound, a rotary drive device that rotates the shaft portion, and the like. In addition to this, for example, a cover portion that covers the substrate S in a rolled state may be provided. The substrate supply unit 2 is not limited to a mechanism that feeds the substrate S wound in a roll shape, but includes a mechanism that sequentially feeds the belt-shaped substrate S in its length direction (for example, a nip-type drive roller or the like). I wish I had it.
基板回収部4は、基板処理装置100を通過した基板Sを例えばロール状に巻きとって回収する。基板回収部4には、基板供給部2と同様に、基板Sを巻きつけるための軸部や当該軸部を回転させる回転駆動源、回収した基板Sを覆うカバー部などが設けられている。なお、基板処理部3において基板Sがパネル状に切断される場合などには例えば基板Sを重ねた状態に回収するなど、ロール状に巻いた状態とは異なる状態で基板Sを回収する構成であっても構わない。
The substrate collecting unit 4 collects the substrate S, which has passed through the substrate processing apparatus 100, in a roll shape, for example. Similar to the substrate supply unit 2, the substrate collecting unit 4 is provided with a shaft for winding the substrate S, a rotary drive source for rotating the shaft, a cover unit for covering the collected substrate S, and the like. When the substrate S is cut into a panel shape in the substrate processing unit 3, the substrate S is collected in a state different from the rolled state, for example, the substrate S is collected in a stacked state. It doesn't matter.
基板処理部3は、基板供給部2から供給される基板Sを基板回収部4へ搬送すると共に、搬送の過程で基板Sの被処理面Saに対してフッ素化合物含有層を形成する工程、所定パターンの光を照射する工程、及びパターン形成材料を配置させる工程を行う。基板処理部3は、基板Sの被処理面Saに対してフッ素化合物含有層を形成するための材料を塗布する塗布部6と、光を照射する露光部7と、マスク8と、パターン材料塗布部9と、加工処理の形態に対応した条件で基板Sを送る駆動ローラR等を含む搬送装置20とを有している。
The substrate processing unit 3 transfers the substrate S supplied from the substrate supply unit 2 to the substrate recovery unit 4, and forms a fluorine compound-containing layer on the surface Sa to be processed of the substrate S during the transfer process. A step of irradiating light of a pattern and a step of disposing a pattern forming material are performed. The substrate processing section 3 includes a coating section 6 for coating a material for forming a fluorine compound-containing layer on the surface Sa to be processed of the substrate S, an exposure section 7 for irradiating light, a mask 8, and pattern material coating. The unit 9 and the transfer device 20 including the drive roller R that sends the substrate S under the condition corresponding to the processing mode are provided.
塗布部6と、パターン材料塗布部9は、液滴塗布装置(例えば、液滴吐出型塗布装置、インクジェット型塗布装置、スピンコート型塗布装置、ロールコート型塗布装置、スロットコート型塗布装置など)が挙げられる。
The coating unit 6 and the pattern material coating unit 9 include a droplet coating device (for example, a droplet discharge coating device, an inkjet coating device, a spin coating coating device, a roll coating coating device, a slot coating coating device, etc.). Is mentioned.
これらの各装置は、基板Sの搬送経路に沿って適宜設けられ、フレキシブル・ディスプレイのパネル等が、所謂ロール・ツー・ロール方式で生産可能となっている。本実施形態では、露光部7が設けられるものとし、その前後の工程(感光層形成工程、感光層現像工程等)を担う装置も必要に応じてインライン化して設けられる。
Each of these devices is appropriately installed along the transportation path of the substrate S, and the panel of the flexible display or the like can be produced by a so-called roll-to-roll method. In the present embodiment, the exposure unit 7 is provided, and an apparatus for performing the steps before and after the exposure section 7 (photosensitive layer forming step, photosensitive layer developing step, etc.) is provided inline as necessary.
<トランジスタの製造方法>
本実施形態は、ゲート電極と、ソース電極と、ドレイン電極と、を有するトランジスタの製造方法である。本実施形態においては、ゲート電極、ソース電極、ドレイン電極のうち少なくとも1つの電極を、前記本発明のパターン形成方法により形成する。 <Transistor manufacturing method>
The present embodiment is a method of manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode. In this embodiment, at least one of the gate electrode, the source electrode and the drain electrode is formed by the pattern forming method of the present invention.
本実施形態は、ゲート電極と、ソース電極と、ドレイン電極と、を有するトランジスタの製造方法である。本実施形態においては、ゲート電極、ソース電極、ドレイン電極のうち少なくとも1つの電極を、前記本発明のパターン形成方法により形成する。 <Transistor manufacturing method>
The present embodiment is a method of manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode. In this embodiment, at least one of the gate electrode, the source electrode and the drain electrode is formed by the pattern forming method of the present invention.
本実施形態では、トランジスタの製造方法において、親水領域又は撥水領域に無電解めっき用触媒を配置し、無電解めっきを行う無電解めっき工程により配線パターンを形成する方法について説明するが、上述の[パターン形成材料を配置させる工程]で説明したように金属溶液を塗布することにより配線パターンを形成してもよい。
本実施形態によれば、例えば、次のような方法によって無電解めっきによる配線パターンを形成することができる。以下、図2を用いて説明する。 In the present embodiment, a method of forming a wiring pattern by an electroless plating step in which a catalyst for electroless plating is placed in a hydrophilic region or a water repellent region and electroless plating is performed in the method for manufacturing a transistor will be described. The wiring pattern may be formed by applying a metal solution as described in [Step of placing pattern forming material].
According to this embodiment, for example, a wiring pattern can be formed by electroless plating by the following method. This will be described below with reference to FIG.
本実施形態によれば、例えば、次のような方法によって無電解めっきによる配線パターンを形成することができる。以下、図2を用いて説明する。 In the present embodiment, a method of forming a wiring pattern by an electroless plating step in which a catalyst for electroless plating is placed in a hydrophilic region or a water repellent region and electroless plating is performed in the method for manufacturing a transistor will be described. The wiring pattern may be formed by applying a metal solution as described in [Step of placing pattern forming material].
According to this embodiment, for example, a wiring pattern can be formed by electroless plating by the following method. This will be described below with reference to FIG.
(第1の工程)
まず、基板11の表面に酸化膜層を形成する。次に、酸化膜層の上に、フッ素化合物含有組成物を塗布し、フッ素化合物含有層を形成する。図2(a)中、化合物層12は、酸化膜とフッ素化合物含有層とがこの順に積層された層である。 (First step)
First, an oxide film layer is formed on the surface of thesubstrate 11. Next, the fluorine compound-containing composition is applied onto the oxide film layer to form a fluorine compound-containing layer. In FIG. 2A, the compound layer 12 is a layer in which an oxide film and a fluorine compound-containing layer are laminated in this order.
まず、基板11の表面に酸化膜層を形成する。次に、酸化膜層の上に、フッ素化合物含有組成物を塗布し、フッ素化合物含有層を形成する。図2(a)中、化合物層12は、酸化膜とフッ素化合物含有層とがこの順に積層された層である。 (First step)
First, an oxide film layer is formed on the surface of the
酸化膜層を形成する方法としては、物理的気相成長法(PVD)や化学的気相成長法(CVD)、原子層堆積(ALD)から選択されるいずれか1つ以上の方法により、SiO2、Al2O3、ZrO2、SiON、ZnO、MgO、TiO2からなる群より選択される1種以上の無機酸化物を成膜することができる。
As a method for forming the oxide film layer, one or more methods selected from physical vapor deposition (PVD), chemical vapor deposition (CVD), and atomic layer deposition (ALD) are used, and SiO 2 is formed. It is possible to form one or more inorganic oxides selected from the group consisting of 2 , Al 2 O 3 , ZrO 2 , SiON, ZnO, MgO, and TiO 2 .
また、酸化膜層を形成する方法としては上記の態様に限られず、湿式成膜法を用いてもよい。例えば、SiO2膜を湿式成膜法により形成する場合、アルコキシシランやシラザン、あるいはそれらがオリゴマー化したポリシロキサン、ポリシラザンなどのケイ素化合物を基板に塗布し、加熱やアッシングなどにより有機成分を除去することで膜を形成してもよい。なお、ケイ素化合物を基板に塗布する際は、ケイ素化合物を水や有機溶剤を用いて希釈してから塗布してもよい。
Further, the method of forming the oxide film layer is not limited to the above-mentioned embodiment, and a wet film forming method may be used. For example, when a SiO 2 film is formed by a wet film formation method, a silicon compound such as alkoxysilane or silazane, or polysiloxane or polysilazane in which these are oligomerized is applied to a substrate, and an organic component is removed by heating or ashing. The film may be formed by doing so. When the silicon compound is applied to the substrate, the silicon compound may be diluted with water or an organic solvent and then applied.
また、塗布方法は特に限られず、スピンコート、ディップコートなどの一般的な方法を採用することができる。また、他の金属酸化物膜を形成する場合は、上記のケイ素化合物に替えて、金属アルコキシドを原料として用いればよい。
Also, the application method is not particularly limited, and general methods such as spin coating and dip coating can be adopted. When forming another metal oxide film, a metal alkoxide may be used as a raw material instead of the above silicon compound.
フッ素化合物含有組成物の塗布方法としては、物理的気相成長法(PVD)や化学的気相成長法(CVD)、液相成長法等、一般的な成膜技術の何れを用いてもよい。中でも、特に液相成長法が好ましく、液相成長法としては例えば、塗布法(スピンコート、ディップコート、ダイコート、スプレーコート、ロールコート、刷毛塗り)、印刷法(フレキソ印刷、スクリーン印刷)等が挙げられる。また、SAM膜、LB膜としてもよい。
As a method for applying the fluorine compound-containing composition, any of general film forming techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD), liquid phase epitaxy and the like may be used. . Among them, the liquid phase growth method is particularly preferable, and examples of the liquid phase growth method include a coating method (spin coating, dip coating, die coating, spray coating, roll coating, brush coating), a printing method (flexo printing, screen printing) and the like. Can be mentioned. Alternatively, a SAM film or an LB film may be used.
なお、本工程においては、例えば熱や減圧等によって溶剤を乾燥させる処理を加えてもよい。
In this step, for example, a treatment of drying the solvent by heat or reduced pressure may be added.
(第2の工程)
次に、図2(b)に示すように、所定のパターンの露光領域を有するフォトマスク13を用意する。露光方法としては、フォトマスクを用いる手段に限られず、レンズやミラーなどの光学系を用いたプロジェクション露光、空間光変調素子、レーザービームなどを用いたマスクレス露光等の手段を用いることができる。なお、フォトマスク13は、化合物層12と接触するように設けてもよいし、非接触となるように設けてもよい。 (Second step)
Next, as shown in FIG. 2B, aphotomask 13 having an exposure area of a predetermined pattern is prepared. The exposure method is not limited to the means using a photomask, and means such as projection exposure using an optical system such as a lens or a mirror, maskless exposure using a spatial light modulator, a laser beam, or the like can be used. Note that the photomask 13 may be provided so as to be in contact with the compound layer 12 or may be provided so as not to be in contact with the compound layer 12.
次に、図2(b)に示すように、所定のパターンの露光領域を有するフォトマスク13を用意する。露光方法としては、フォトマスクを用いる手段に限られず、レンズやミラーなどの光学系を用いたプロジェクション露光、空間光変調素子、レーザービームなどを用いたマスクレス露光等の手段を用いることができる。なお、フォトマスク13は、化合物層12と接触するように設けてもよいし、非接触となるように設けてもよい。 (Second step)
Next, as shown in FIG. 2B, a
(第3の工程)
その後、図2(c)に示すように、フォトマスク13を介して化合物層12にUV光を照射する。これにより、フォトマスク13の露光領域において化合物層12が露光され、親水領域14が形成される。 (Third step)
Then, as shown in FIG. 2C, thecompound layer 12 is irradiated with UV light through the photomask 13. As a result, the compound layer 12 is exposed in the exposed region of the photomask 13 and the hydrophilic region 14 is formed.
その後、図2(c)に示すように、フォトマスク13を介して化合物層12にUV光を照射する。これにより、フォトマスク13の露光領域において化合物層12が露光され、親水領域14が形成される。 (Third step)
Then, as shown in FIG. 2C, the
なお、UV光は感光性基の構造により最適な量子効率が発揮される波長を照射することができる。例えば、365nmのi線が挙げられる。また、その露光量や露光時間は、必ずしも完全に脱保護が進行する必要はなく、一部に脱保護が発生する程度でよい。その際、後述のめっき工程において、脱保護の進行具合に応じた条件(めっき浴の活性等)を適宜変更することができる。
Note that UV light can irradiate a wavelength at which optimum quantum efficiency is exhibited due to the structure of the photosensitive group. For example, an i line of 365 nm can be used. Further, the exposure amount and the exposure time do not necessarily need to completely proceed with deprotection, and may be such that a part of deprotection occurs. In that case, in the plating step described later, the conditions (activity of the plating bath, etc.) can be appropriately changed according to the progress of deprotection.
(第4の工程)
次に、図2(d)に示すように、表面に無電解めっき用触媒を付与し、触媒層15を形成する。無電解めっき用触媒は、無電解めっき用のめっき液に含まれる金属イオンを還元する触媒であり、銀やパラジウムが挙げられる。 (Fourth step)
Next, as shown in FIG. 2D, a catalyst for electroless plating is applied to the surface to form acatalyst layer 15. The electroless plating catalyst is a catalyst that reduces metal ions contained in the plating solution for electroless plating, and examples thereof include silver and palladium.
次に、図2(d)に示すように、表面に無電解めっき用触媒を付与し、触媒層15を形成する。無電解めっき用触媒は、無電解めっき用のめっき液に含まれる金属イオンを還元する触媒であり、銀やパラジウムが挙げられる。 (Fourth step)
Next, as shown in FIG. 2D, a catalyst for electroless plating is applied to the surface to form a
親水領域14の表面にはアミノ基が露出しているが、アミノ基は、無電解めっき用触媒を捕捉・還元することが可能である。そのため、親水領域14上のみに無電解用めっき用触媒が補足され、触媒層15が形成される。また、無電解めっき用触媒は、保護基が分解されることにより生じるアミノ基等の親水性基が担持可能なものを用いることができる。
An amino group is exposed on the surface of the hydrophilic region 14, but the amino group can capture and reduce the electroless plating catalyst. Therefore, the electroless plating catalyst is supplemented only on the hydrophilic region 14 to form the catalyst layer 15. Further, as the electroless plating catalyst, a catalyst capable of supporting a hydrophilic group such as an amino group generated by the decomposition of the protective group can be used.
(第5の工程)
図2(e)に示すように、無電解めっき処理を行い、めっき層16を形成する。なお、めっき層16の材料としては、ニッケル-リン(NiP)や、銅(Cu)が挙げられる。 (Fifth step)
As shown in FIG. 2E, electroless plating is performed to form theplating layer 16. The material of the plating layer 16 may be nickel-phosphorus (NiP) or copper (Cu).
図2(e)に示すように、無電解めっき処理を行い、めっき層16を形成する。なお、めっき層16の材料としては、ニッケル-リン(NiP)や、銅(Cu)が挙げられる。 (Fifth step)
As shown in FIG. 2E, electroless plating is performed to form the
本工程では、基板11を無電解めっき浴に浸漬して触媒表面に金属イオンを還元し、めっき層16を析出させる。その際、親水領域14表面には十分な量の触媒を担持する触媒層15が形成されているため、親水領域14上にのみ選択的にめっき層16を析出させることができる。還元が不十分な場合には、次亜リン酸ナトリウム、水素化ホウ素ナトリウムなどの還元剤溶液に浸漬してアミン上の金属イオンを積極的に還元してもよい。
In this step, the substrate 11 is immersed in an electroless plating bath to reduce metal ions on the catalyst surface and deposit the plating layer 16. At this time, since the catalyst layer 15 supporting a sufficient amount of catalyst is formed on the surface of the hydrophilic region 14, the plating layer 16 can be selectively deposited only on the hydrophilic region 14. When the reduction is insufficient, it may be immersed in a reducing agent solution such as sodium hypophosphite or sodium borohydride to positively reduce the metal ion on the amine.
さらに、第5の工程で得られためっき層16をゲート電極とするトランジスタの製造方法について図3を用いて説明する。
Further, a method of manufacturing a transistor using the plating layer 16 obtained in the fifth step as a gate electrode will be described with reference to FIG.
(第6の工程)
図3(a)に示すように、上述した無電解めっきパターン形成方法により形成した無電解めっきパターンのめっき層16を、公知の方法により覆って化合物層12上に絶縁体層17を形成する。絶縁体層17は、例えば、紫外線硬化型のアクリル樹脂、エポキシ樹脂、エン・チオール樹脂、シリコーン樹脂等の1つ以上の樹脂を有機溶媒に溶解させた塗布液を用い、当該塗布液を塗布することにより形成してもよい。絶縁体層17を形成する領域に対応して開口部が設けられたマスクを介して塗膜に紫外線を照射することで、絶縁体層17を所望のパターンに形成することが可能である。 (Sixth step)
As shown in FIG. 3A, the insulatinglayer 17 is formed on the compound layer 12 by covering the plating layer 16 of the electroless plating pattern formed by the above-described electroless plating pattern forming method by a known method. The insulating layer 17 is formed by using a coating liquid prepared by dissolving one or more resins such as an ultraviolet curable acrylic resin, epoxy resin, ene / thiol resin, and silicone resin in an organic solvent, and applying the coating liquid. You may form by this. The insulating layer 17 can be formed into a desired pattern by irradiating the coating film with ultraviolet rays through a mask provided with an opening corresponding to a region where the insulating layer 17 is to be formed.
図3(a)に示すように、上述した無電解めっきパターン形成方法により形成した無電解めっきパターンのめっき層16を、公知の方法により覆って化合物層12上に絶縁体層17を形成する。絶縁体層17は、例えば、紫外線硬化型のアクリル樹脂、エポキシ樹脂、エン・チオール樹脂、シリコーン樹脂等の1つ以上の樹脂を有機溶媒に溶解させた塗布液を用い、当該塗布液を塗布することにより形成してもよい。絶縁体層17を形成する領域に対応して開口部が設けられたマスクを介して塗膜に紫外線を照射することで、絶縁体層17を所望のパターンに形成することが可能である。 (Sixth step)
As shown in FIG. 3A, the insulating
(第7の工程)
図3(b)に示すように、上述した第1~第3の工程と同様にして、ソース電極及びドレイン電極が形成される部分に親水領域14を形成する。 (Seventh step)
As shown in FIG. 3B, thehydrophilic region 14 is formed in the portion where the source electrode and the drain electrode are formed in the same manner as the above-described first to third steps.
図3(b)に示すように、上述した第1~第3の工程と同様にして、ソース電極及びドレイン電極が形成される部分に親水領域14を形成する。 (Seventh step)
As shown in FIG. 3B, the
(第8の工程)
図3(c)に示すように、上述した第4及び第5の工程と同様にして、親水領域14上に無電解めっき用触媒を担持させ、触媒層15を形成した後、無電解めっきを行うことによりめっき層18(ソース電極)及びめっき層19(ドレイン電極)を形成する。なお、めっき層18及び19の材料としてもニッケル-リン(NiP)や、銅(Cu)が挙げられるが、めっき層16(ゲート電極)と異なる材料で形成してもよい。 (Eighth step)
As shown in FIG. 3C, similarly to the fourth and fifth steps described above, the catalyst for electroless plating is supported on thehydrophilic region 14 to form the catalyst layer 15, and then the electroless plating is performed. By doing so, the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) are formed. Note that nickel-phosphorus (NiP) and copper (Cu) are also used as the material of the plated layers 18 and 19, but a material different from that of the plated layer 16 (gate electrode) may be used.
図3(c)に示すように、上述した第4及び第5の工程と同様にして、親水領域14上に無電解めっき用触媒を担持させ、触媒層15を形成した後、無電解めっきを行うことによりめっき層18(ソース電極)及びめっき層19(ドレイン電極)を形成する。なお、めっき層18及び19の材料としてもニッケル-リン(NiP)や、銅(Cu)が挙げられるが、めっき層16(ゲート電極)と異なる材料で形成してもよい。 (Eighth step)
As shown in FIG. 3C, similarly to the fourth and fifth steps described above, the catalyst for electroless plating is supported on the
(第9の工程)
図3(d)に示すように、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間に半導体層21を形成する。半導体層21は、例えば、TIPSペンタセン(6,13-Bis(triisopropylsilylethynyl)pentacene)のような有機溶媒に可溶な有機半導体材料を当該有機溶媒に溶解させた溶液を作製し、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間に塗布、乾燥させることにより形成してもよい。なお、半導体層21を形成する前に、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間の化合物層12を露光して親水化してもよい。トランジスタのチャネルに対応する部分を親水化することで、当該親水化部分に上記溶液が好適に塗布され、半導体層21を選択的に形成しやすくなる。また、半導体層21は、上記溶液にPS(ポリスチレン)やPMMA(ポリメタクリル酸メチル)などの絶縁性ポリマーを1種類以上添加し、当該絶縁性ポリマーを含む溶液を塗布、乾燥することにより形成してもよい。このようにして半導体層21を形成すると、半導体層21の下方(絶縁体層17側)に絶縁性ポリマーが集中して形成される。有機半導体と絶縁体層との界面にアミノ基などの極性基が存在する場合、トランジスタ特性の低下を生じる傾向にあるが、上述の絶縁性ポリマーを介して有機半導体を設ける構成とすることにより、トランジスタ特性の低下を抑制することができる。以上のようにして、トランジスタを製造することが可能である。 (Ninth step)
As shown in FIG. 3D, thesemiconductor layer 21 is formed between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode). The semiconductor layer 21 is formed by, for example, preparing a solution in which an organic semiconductor material soluble in an organic solvent such as TIPS pentacene (6,13-Bis (triisopropysilyltyl) pentacene) is dissolved in the organic solvent, and the plating layer 18 (source It may be formed by applying and drying between the electrode) and the plating layer 19 (drain electrode). Before forming the semiconductor layer 21, the compound layer 12 between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) may be exposed to be hydrophilic. By hydrophilizing the portion corresponding to the channel of the transistor, the solution is preferably applied to the hydrophilized portion, and the semiconductor layer 21 is easily formed selectively. The semiconductor layer 21 is formed by adding one or more insulating polymers such as PS (polystyrene) and PMMA (polymethylmethacrylate) to the above solution, applying a solution containing the insulating polymer, and drying. May be. When the semiconductor layer 21 is formed in this manner, the insulating polymer is concentrated and formed below the semiconductor layer 21 (on the side of the insulator layer 17). When a polar group such as an amino group is present at the interface between the organic semiconductor and the insulating layer, the transistor characteristics tend to deteriorate, but by providing the organic semiconductor via the insulating polymer described above, It is possible to suppress deterioration of transistor characteristics. The transistor can be manufactured as described above.
図3(d)に示すように、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間に半導体層21を形成する。半導体層21は、例えば、TIPSペンタセン(6,13-Bis(triisopropylsilylethynyl)pentacene)のような有機溶媒に可溶な有機半導体材料を当該有機溶媒に溶解させた溶液を作製し、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間に塗布、乾燥させることにより形成してもよい。なお、半導体層21を形成する前に、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間の化合物層12を露光して親水化してもよい。トランジスタのチャネルに対応する部分を親水化することで、当該親水化部分に上記溶液が好適に塗布され、半導体層21を選択的に形成しやすくなる。また、半導体層21は、上記溶液にPS(ポリスチレン)やPMMA(ポリメタクリル酸メチル)などの絶縁性ポリマーを1種類以上添加し、当該絶縁性ポリマーを含む溶液を塗布、乾燥することにより形成してもよい。このようにして半導体層21を形成すると、半導体層21の下方(絶縁体層17側)に絶縁性ポリマーが集中して形成される。有機半導体と絶縁体層との界面にアミノ基などの極性基が存在する場合、トランジスタ特性の低下を生じる傾向にあるが、上述の絶縁性ポリマーを介して有機半導体を設ける構成とすることにより、トランジスタ特性の低下を抑制することができる。以上のようにして、トランジスタを製造することが可能である。 (Ninth step)
As shown in FIG. 3D, the
なお、トランジスタの構造としては、特に制限はなく、目的に応じて適宜選択することができる。図2~図3の態様では、ボトムコンタクト・ボトムゲート型のトランジスタの製造方法について説明したが、トップコンタクト・ボトムゲート型、トップコンタクト・トップゲート型、ボトムコンタクト・トップゲート型のトランジスタも同様にして製造してもよい。なお、図2~図3の態様では、ゲート電極、ソース電極、ドレイン電極の全てを本実施形態にパターン形成方法により形成する方法について説明したが、ゲート電極のみを本実施形態にパターン形成方法により形成してもよいし、ソース電極及びドレイン電極のみを本実施形態にパターン形成方法により形成してもよい。
The structure of the transistor is not particularly limited and can be appropriately selected according to the purpose. 2 to 3, the manufacturing method of the bottom contact / bottom gate type transistor has been described, but the same applies to the top contact / bottom gate type, top contact / top gate type and bottom contact / top gate type transistors. You may manufacture it. 2 to 3, the method of forming all of the gate electrode, the source electrode, and the drain electrode by the pattern forming method has been described in the present embodiment, but only the gate electrode is formed by the pattern forming method in the present embodiment. It may be formed, or only the source electrode and the drain electrode may be formed in the present embodiment by the pattern forming method.
<パターン形成用フィルム>
本実施形態は、酸化膜層と、感光性脱保護基を有する化合物含有層と、がこの順で積層された、パターン形成用フィルムである。なお、本実施形態においても、感光性脱保護基を有する化合物がフッ素化合物である場合について説明するがこれに限られない。 <Pattern forming film>
The present embodiment is a film for pattern formation in which an oxide film layer and a compound-containing layer having a photosensitive deprotecting group are laminated in this order. In the present embodiment, the case where the compound having a photosensitive deprotecting group is a fluorine compound will be described, but the present invention is not limited to this.
本実施形態は、酸化膜層と、感光性脱保護基を有する化合物含有層と、がこの順で積層された、パターン形成用フィルムである。なお、本実施形態においても、感光性脱保護基を有する化合物がフッ素化合物である場合について説明するがこれに限られない。 <Pattern forming film>
The present embodiment is a film for pattern formation in which an oxide film layer and a compound-containing layer having a photosensitive deprotecting group are laminated in this order. In the present embodiment, the case where the compound having a photosensitive deprotecting group is a fluorine compound will be described, but the present invention is not limited to this.
本実施形態のパターン形成用フィルムは、酸化膜層と、フッ素化合物含有層とをこの順で備える。このため、マスク等を介して選択的に露光することにより、露光部では、撥水性を発揮する基が分解(脱離)し、親水性を発揮する基が生成する。
本実施形態のパターン形成用フィルムによれば、選択的に露光することにより親水性領域と撥水性領域とからなる所望のパターンを形成することができる。 The pattern forming film of the present embodiment includes an oxide film layer and a fluorine compound-containing layer in this order. Therefore, by selectively exposing through a mask or the like, in the exposed portion, the group exhibiting water repellency is decomposed (desorbed), and the group exhibiting hydrophilicity is generated.
According to the film for forming a pattern of the present embodiment, a desired pattern including a hydrophilic region and a water repellent region can be formed by selectively exposing the film.
本実施形態のパターン形成用フィルムによれば、選択的に露光することにより親水性領域と撥水性領域とからなる所望のパターンを形成することができる。 The pattern forming film of the present embodiment includes an oxide film layer and a fluorine compound-containing layer in this order. Therefore, by selectively exposing through a mask or the like, in the exposed portion, the group exhibiting water repellency is decomposed (desorbed), and the group exhibiting hydrophilicity is generated.
According to the film for forming a pattern of the present embodiment, a desired pattern including a hydrophilic region and a water repellent region can be formed by selectively exposing the film.
本実施形態において、酸化膜層はSiO2、Al2O3、ZrO2、SiON、ZnO、MgO、TiO2からなる群より選択される1種以上の無機酸化物を含むことが好ましい。
In this embodiment, the oxide film layer preferably contains at least one inorganic oxide selected from the group consisting of SiO 2 , Al 2 O 3 , ZrO 2 , SiON, ZnO, MgO, and TiO 2 .
本実施形態のパターン形成用フィルムにおいて、フッ素化合物含有層が含有する化合物は、保護基が分解されることによりアミノ基を生じる化合物であることが好ましい。
In the film for pattern formation of the present embodiment, the compound contained in the fluorine compound-containing layer is preferably a compound which produces an amino group when the protective group is decomposed.
本実施形態のパターン形成用フィルムにおいて、フッ素化合物含有層が有する化合物は、前記一般式(1)で表されるフッ素化合物であることが好ましい。
In the film for pattern formation of the present embodiment, the compound contained in the fluorine compound-containing layer is preferably the fluorine compound represented by the general formula (1).
本実施形態のパターン形成用フィルムにおいて、使用する基板は樹脂材料からなることが好ましい。好適に使用できる樹脂材料としては、前記本発明のパターン形成方法において説明した基板の樹脂材料と同様の樹脂材料を使用できる。
本実施形態のパターン形成用フィルムにおいて、使用する基板は可撓性を有することが好ましい。 In the film for pattern formation of the present embodiment, the substrate used is preferably made of a resin material. As the resin material that can be preferably used, the same resin material as the resin material of the substrate described in the pattern forming method of the present invention can be used.
In the film for pattern formation of the present embodiment, the substrate used is preferably flexible.
本実施形態のパターン形成用フィルムにおいて、使用する基板は可撓性を有することが好ましい。 In the film for pattern formation of the present embodiment, the substrate used is preferably made of a resin material. As the resin material that can be preferably used, the same resin material as the resin material of the substrate described in the pattern forming method of the present invention can be used.
In the film for pattern formation of the present embodiment, the substrate used is preferably flexible.
以下、実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples.
<実施例1>
[酸化膜形成工程]
SiO2蒸着膜を有する、市販のポリエチレンテレフタレート(PET)基板を用意した。 <Example 1>
[Oxide film formation process]
A commercially available polyethylene terephthalate (PET) substrate having a SiO 2 vapor deposition film was prepared.
[酸化膜形成工程]
SiO2蒸着膜を有する、市販のポリエチレンテレフタレート(PET)基板を用意した。 <Example 1>
[Oxide film formation process]
A commercially available polyethylene terephthalate (PET) substrate having a SiO 2 vapor deposition film was prepared.
[表面処理工程]
・基板の洗浄工程
SiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板をカット(5cm×5cm)し、試験基板とした。得られた試基板片を100mlのイソプロピルアルコールが入った洗浄用容器に浸漬し、28kHzで超音波洗浄を1分間行った。さらに、窒素フローで乾燥させた後、大気圧プラズマ装置で洗浄を行った。 [Surface treatment process]
- polyethylene terephthalate (PET) substrate was cut (5 cm × 5 cm) with a cleaning process SiO 2 deposited film on the substrate, to obtain a test substrate. The obtained test substrate piece was dipped in a cleaning container containing 100 ml of isopropyl alcohol, and ultrasonically cleaned at 28 kHz for 1 minute. Furthermore, after drying with a nitrogen flow, cleaning was performed with an atmospheric pressure plasma device.
・基板の洗浄工程
SiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板をカット(5cm×5cm)し、試験基板とした。得られた試基板片を100mlのイソプロピルアルコールが入った洗浄用容器に浸漬し、28kHzで超音波洗浄を1分間行った。さらに、窒素フローで乾燥させた後、大気圧プラズマ装置で洗浄を行った。 [Surface treatment process]
- polyethylene terephthalate (PET) substrate was cut (5 cm × 5 cm) with a cleaning process SiO 2 deposited film on the substrate, to obtain a test substrate. The obtained test substrate piece was dipped in a cleaning container containing 100 ml of isopropyl alcohol, and ultrasonically cleaned at 28 kHz for 1 minute. Furthermore, after drying with a nitrogen flow, cleaning was performed with an atmospheric pressure plasma device.
・フッ素化合物含有組成物の調製
下記化合物(F1)の、0.1質量%ヘキサフルオロキシレン溶液を調製し、フッ素化合物含有組成物とした。下記化合物(F1)は、国際公開第2015/029981号公報に記載の方法により製造した。 Preparation of Fluorine Compound-Containing Composition A 0.1% by mass hexafluoroxylene solution of the following compound (F1) was prepared to give a fluorine compound-containing composition. The following compound (F1) was produced by the method described in WO 2015/029981.
下記化合物(F1)の、0.1質量%ヘキサフルオロキシレン溶液を調製し、フッ素化合物含有組成物とした。下記化合物(F1)は、国際公開第2015/029981号公報に記載の方法により製造した。 Preparation of Fluorine Compound-Containing Composition A 0.1% by mass hexafluoroxylene solution of the following compound (F1) was prepared to give a fluorine compound-containing composition. The following compound (F1) was produced by the method described in WO 2015/029981.
[フッ素化合物含有層を形成する工程]
調製したフッ素化合物含有組成物が入った容器に対し、洗浄した試験基板を浸漬し、容器を60℃で60分間加熱した。試験基板をフッ素化合物含有組成物から取り出し、クロロホルムが入った洗浄用容器に浸漬しリンスした。その後、アセトンが入った洗浄用容器に試験基板を浸漬し、28kHzで超音波洗浄を3分間行った。窒素気流で乾燥させた後、成膜した試験基板を90℃で1分間加熱した。 [Step of forming fluorine compound-containing layer]
The washed test substrate was immersed in a container containing the prepared composition containing a fluorine compound, and the container was heated at 60 ° C. for 60 minutes. The test substrate was taken out from the fluorine compound-containing composition, immersed in a cleaning container containing chloroform and rinsed. Then, the test substrate was immersed in a cleaning container containing acetone, and ultrasonic cleaning was performed at 28 kHz for 3 minutes. After drying with a nitrogen stream, the formed test substrate was heated at 90 ° C. for 1 minute.
調製したフッ素化合物含有組成物が入った容器に対し、洗浄した試験基板を浸漬し、容器を60℃で60分間加熱した。試験基板をフッ素化合物含有組成物から取り出し、クロロホルムが入った洗浄用容器に浸漬しリンスした。その後、アセトンが入った洗浄用容器に試験基板を浸漬し、28kHzで超音波洗浄を3分間行った。窒素気流で乾燥させた後、成膜した試験基板を90℃で1分間加熱した。 [Step of forming fluorine compound-containing layer]
The washed test substrate was immersed in a container containing the prepared composition containing a fluorine compound, and the container was heated at 60 ° C. for 60 minutes. The test substrate was taken out from the fluorine compound-containing composition, immersed in a cleaning container containing chloroform and rinsed. Then, the test substrate was immersed in a cleaning container containing acetone, and ultrasonic cleaning was performed at 28 kHz for 3 minutes. After drying with a nitrogen stream, the formed test substrate was heated at 90 ° C. for 1 minute.
[潜像を生成させる工程]
次に、F1層を全面成膜した試験基板にフォトマスク(L/S=100μm/100μm)を介して、波長365nm光を500mJ/cm2露光し、F1層を感光させパターンを形成した。
露光した試験基板をクロロホルムが入った洗浄用容器に浸漬しリンスした。その後、アセトンが入った洗浄用容器に試験基板を浸漬し、28kHzで超音波洗浄を3分間行った。窒素気流で乾燥させた後、成膜した試験基板を90℃で1分間加熱した。 [Process of generating latent image]
Next, a test substrate on which the F1 layer was entirely deposited was exposed to light having a wavelength of 365 nm at 500 mJ / cm 2 through a photomask (L / S = 100 μm / 100 μm) to expose the F1 layer to form a pattern.
The exposed test substrate was immersed in a cleaning container containing chloroform for rinsing. Then, the test substrate was immersed in a cleaning container containing acetone, and ultrasonic cleaning was performed at 28 kHz for 3 minutes. After drying with a nitrogen stream, the formed test substrate was heated at 90 ° C. for 1 minute.
次に、F1層を全面成膜した試験基板にフォトマスク(L/S=100μm/100μm)を介して、波長365nm光を500mJ/cm2露光し、F1層を感光させパターンを形成した。
露光した試験基板をクロロホルムが入った洗浄用容器に浸漬しリンスした。その後、アセトンが入った洗浄用容器に試験基板を浸漬し、28kHzで超音波洗浄を3分間行った。窒素気流で乾燥させた後、成膜した試験基板を90℃で1分間加熱した。 [Process of generating latent image]
Next, a test substrate on which the F1 layer was entirely deposited was exposed to light having a wavelength of 365 nm at 500 mJ / cm 2 through a photomask (L / S = 100 μm / 100 μm) to expose the F1 layer to form a pattern.
The exposed test substrate was immersed in a cleaning container containing chloroform for rinsing. Then, the test substrate was immersed in a cleaning container containing acetone, and ultrasonic cleaning was performed at 28 kHz for 3 minutes. After drying with a nitrogen stream, the formed test substrate was heated at 90 ° C. for 1 minute.
[パターン形成材料を配置させる工程]
次いで、ドクターブレード、アニロックスローラー、インキングローラーを有する印刷試験機に銀ナノメタルインク(バンドー化学株式会社製、固形分濃度40質量%)を、ピペッターを用いて導入し、露光した基板に対しインキングした。基板上に塗布したインクを室温焼成することで、基板上に金属配線を作製した。 [Step of placing pattern forming material]
Then, the silver nanometal ink (manufactured by Bando Kagaku Co., Ltd., solid content concentration 40% by mass) was introduced into a printing tester having a doctor blade, an anilox roller, and an inking roller by using a pipettor, and the exposed substrate was inked did. The metal wiring was produced on the substrate by firing the ink applied on the substrate at room temperature.
次いで、ドクターブレード、アニロックスローラー、インキングローラーを有する印刷試験機に銀ナノメタルインク(バンドー化学株式会社製、固形分濃度40質量%)を、ピペッターを用いて導入し、露光した基板に対しインキングした。基板上に塗布したインクを室温焼成することで、基板上に金属配線を作製した。 [Step of placing pattern forming material]
Then, the silver nanometal ink (manufactured by Bando Kagaku Co., Ltd., solid content concentration 40% by mass) was introduced into a printing tester having a doctor blade, an anilox roller, and an inking roller by using a pipettor, and the exposed substrate was inked did. The metal wiring was produced on the substrate by firing the ink applied on the substrate at room temperature.
<実施例2>
実施例1のSiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板を、SiO2CVD膜を有するポリエチレンナフタレート(PEN)基板に変えて、同様の処理を行い、2000mJ/cm2露光後、印刷により金属配線を作製した。 <Example 2>
The polyethylene terephthalate (PET) substrate having a SiO 2 vapor deposition film of Example 1 was changed to a polyethylene naphthalate (PEN) substrate having a SiO 2 CVD film, the same treatment was performed, and after exposure of 2000 mJ / cm 2, exposure was carried out by printing. Metal wiring was produced.
実施例1のSiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板を、SiO2CVD膜を有するポリエチレンナフタレート(PEN)基板に変えて、同様の処理を行い、2000mJ/cm2露光後、印刷により金属配線を作製した。 <Example 2>
The polyethylene terephthalate (PET) substrate having a SiO 2 vapor deposition film of Example 1 was changed to a polyethylene naphthalate (PEN) substrate having a SiO 2 CVD film, the same treatment was performed, and after exposure of 2000 mJ / cm 2, exposure was carried out by printing. Metal wiring was produced.
<実施例3>
実施例1のSiO2蒸着膜を、Al2O3ALD膜に変えて、同様の処理を行い、1000mJ/cm2露光後、印刷により金属配線を作製した。 <Example 3>
The SiO 2 vapor deposition film of Example 1 was changed to an Al 2 O 3 ALD film, the same treatment was carried out, and after exposing at 1000 mJ / cm 2 , metal wiring was produced by printing.
実施例1のSiO2蒸着膜を、Al2O3ALD膜に変えて、同様の処理を行い、1000mJ/cm2露光後、印刷により金属配線を作製した。 <Example 3>
The SiO 2 vapor deposition film of Example 1 was changed to an Al 2 O 3 ALD film, the same treatment was carried out, and after exposing at 1000 mJ / cm 2 , metal wiring was produced by printing.
<実施例4>
実施例1のSiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板を、Al2O3ALD膜を有するポリエチレンナフタレート(PEN)基板に変えて、同様の処理を行い、500mJ/cm2露光後、印刷により金属配線を作製した。 <Example 4>
The polyethylene terephthalate (PET) substrate having the SiO 2 vapor deposition film of Example 1 was changed to a polyethylene naphthalate (PEN) substrate having an Al 2 O 3 ALD film, the same treatment was carried out, and after 500 mJ / cm 2 exposure, Metal wiring was produced by printing.
実施例1のSiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板を、Al2O3ALD膜を有するポリエチレンナフタレート(PEN)基板に変えて、同様の処理を行い、500mJ/cm2露光後、印刷により金属配線を作製した。 <Example 4>
The polyethylene terephthalate (PET) substrate having the SiO 2 vapor deposition film of Example 1 was changed to a polyethylene naphthalate (PEN) substrate having an Al 2 O 3 ALD film, the same treatment was carried out, and after 500 mJ / cm 2 exposure, Metal wiring was produced by printing.
<比較例1>
実施例1のSiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板を、ポリエチレンテレフタレート(PET)基板に変えて、同様の処理を行い、2000mJ/cm2露光後、印刷により金属配線を作製した。 <Comparative Example 1>
The polyethylene terephthalate (PET) substrate having the SiO 2 vapor-deposited film of Example 1 was replaced with a polyethylene terephthalate (PET) substrate, the same treatment was carried out, and after 2000 mJ / cm 2 exposure, metal wiring was produced by printing.
実施例1のSiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板を、ポリエチレンテレフタレート(PET)基板に変えて、同様の処理を行い、2000mJ/cm2露光後、印刷により金属配線を作製した。 <Comparative Example 1>
The polyethylene terephthalate (PET) substrate having the SiO 2 vapor-deposited film of Example 1 was replaced with a polyethylene terephthalate (PET) substrate, the same treatment was carried out, and after 2000 mJ / cm 2 exposure, metal wiring was produced by printing.
<比較例2>
実施例1のSiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板を、ポリエチレンナフタレート(PEN)基板に変えて、同様の処理を行い、2000mJ/cm2露光後、印刷により金属配線を作製した。 <Comparative example 2>
The polyethylene terephthalate (PET) substrate having the SiO 2 vapor deposition film of Example 1 was changed to a polyethylene naphthalate (PEN) substrate, the same treatment was carried out, and after exposing at 2000 mJ / cm 2 , metal wiring was produced by printing.
実施例1のSiO2蒸着膜を有するポリエチレンテレフタレート(PET)基板を、ポリエチレンナフタレート(PEN)基板に変えて、同様の処理を行い、2000mJ/cm2露光後、印刷により金属配線を作製した。 <Comparative example 2>
The polyethylene terephthalate (PET) substrate having the SiO 2 vapor deposition film of Example 1 was changed to a polyethylene naphthalate (PEN) substrate, the same treatment was carried out, and after exposing at 2000 mJ / cm 2 , metal wiring was produced by printing.
[印刷配線の評価]
図4(a)に実施例1で印刷配線処理を行った、光学顕微鏡(株式会社キーエンス製、VHX-900)像を示す。図4(b)に実施例2、図4(c)に実施例3、図4(d)に実施例4で処理を行った同様のものを示した。
図5(a)に比較例1、 図5(b)に2で印刷配線処理を行った結果の基板を示す。 [Evaluation of printed wiring]
FIG. 4A shows an image of an optical microscope (VHX-900, manufactured by Keyence Corporation) on which printed wiring processing was performed in Example 1. FIG. 4 (b) shows the same example as that of Example 2, FIG. 4 (c) shows Example 3, and FIG. 4 (d) shows the same example as that obtained in Example 4.
FIG. 5A shows a substrate obtained as a result of performing the printed wiring process in Comparative Example 1 and FIG.
図4(a)に実施例1で印刷配線処理を行った、光学顕微鏡(株式会社キーエンス製、VHX-900)像を示す。図4(b)に実施例2、図4(c)に実施例3、図4(d)に実施例4で処理を行った同様のものを示した。
図5(a)に比較例1、 図5(b)に2で印刷配線処理を行った結果の基板を示す。 [Evaluation of printed wiring]
FIG. 4A shows an image of an optical microscope (VHX-900, manufactured by Keyence Corporation) on which printed wiring processing was performed in Example 1. FIG. 4 (b) shows the same example as that of Example 2, FIG. 4 (c) shows Example 3, and FIG. 4 (d) shows the same example as that obtained in Example 4.
FIG. 5A shows a substrate obtained as a result of performing the printed wiring process in Comparative Example 1 and FIG.
図示するように、比較例1及び2では基板のほぼ全面に金属層が形成されたが、実施例1~4においては、細部に至るまで高精細の良好な印刷配線が形成されており、90℃以下の低温プロセスにおいても、レジストを用いる必要なく非常に簡便に、フレキシブル基板上へ配線形成できることを確認した。
As shown in the figure, in Comparative Examples 1 and 2, the metal layer was formed on almost the entire surface of the substrate, but in Examples 1 to 4, excellent fine printed wiring was formed in every detail. It was confirmed that even in a low temperature process of ℃ or less, wiring can be formed on a flexible substrate very easily without using a resist.
S…基板
CONT…制御部
Sa…被処理面
2…基板供給部
3…基板処理部
4…基板回収部
6…化合物塗布部
7…露光部
8…マスク
9…パターン材料塗布部
100…基板処理装置 S ... substrate
CONT ... Control unit Sa ... Surface to be processed
2 ... Substrate supply unit
3 ... Substrate processing unit
4 ... Board recovery unit
6 ... Compound coating part
7 ... Exposure unit
8 ... Mask
9 ... Pattern material application section
100 ... Substrate processing apparatus
CONT…制御部
Sa…被処理面
2…基板供給部
3…基板処理部
4…基板回収部
6…化合物塗布部
7…露光部
8…マスク
9…パターン材料塗布部
100…基板処理装置 S ... substrate
CONT ... Control unit Sa ... Surface to be processed
2 ... Substrate supply unit
3 ... Substrate processing unit
4 ... Board recovery unit
6 ... Compound coating part
7 ... Exposure unit
8 ... Mask
9 ... Pattern material application section
100 ... Substrate processing apparatus
Claims (14)
- 対象物の被処理面にパターンを形成するパターン形成方法であって、
前記被処理面に酸化膜層を形成する工程と、
前記酸化膜層の上に、感光性脱保護基を有する化合物含有組成物を塗布し、感光性脱保護基を有する化合物含有層を形成する工程と、
前記感光性脱保護基を有する化合物含有層に所定パターンの光を照射して、親水領域および撥水領域からなる潜像を生成させる工程と、
前記親水領域の少なくとも一部又は前記撥水領域の少なくとも一部にパターン形成材料を配置させる工程と、を備えるパターン形成方法。 A pattern forming method for forming a pattern on a surface to be processed of an object,
Forming an oxide film layer on the surface to be processed,
On the oxide film layer, a step of applying a compound-containing composition having a photosensitive deprotecting group to form a compound-containing layer having a photosensitive deprotecting group,
Irradiating the compound-containing layer having the photosensitive deprotecting group with a predetermined pattern of light to form a latent image composed of a hydrophilic region and a water-repellent region,
A step of disposing a pattern forming material on at least a part of the hydrophilic area or at least a part of the water repellent area. - 前記潜像を生成させる工程において、前記感光性脱保護基を有する化合物含有層のうち、前記所定のパターン光が照射された領域が相対的に親水化する、請求項1に記載のパターン形成方法。 The pattern forming method according to claim 1, wherein, in the step of forming the latent image, a region of the compound-containing layer having the photosensitive deprotecting group, which is irradiated with the predetermined pattern light, becomes relatively hydrophilic. ..
- 前記感光性脱保護基はフッ素を有する、請求項1又は2に記載のパターン形成方法。 The pattern forming method according to claim 1 or 2, wherein the photosensitive deprotecting group has fluorine.
- 前記酸化膜層は、SiO2、Al2O3、ZrO2、SiON、ZnO、MgO、TiO2からなる群より選択される1種以上の無機酸化物を含む、請求項1~3のいずれか1項に記載のパターン形成方法。 The oxide film layer contains at least one inorganic oxide selected from the group consisting of SiO 2 , Al 2 O 3 , ZrO 2 , SiON, ZnO, MgO, and TiO 2 . The method for forming a pattern according to item 1.
- 前記酸化膜層を形成する工程において、化学蒸着(CVD)、物理蒸着法(PVD)、原子層堆積(ALD)から選択されるいずれか1つ以上の方法により前記酸化膜層を形成する、請求項1~4のいずれか1項に記載のパターン形成方法。 In the step of forming the oxide film layer, the oxide film layer is formed by any one or more methods selected from chemical vapor deposition (CVD), physical vapor deposition (PVD), and atomic layer deposition (ALD). Item 5. The pattern forming method according to any one of Items 1 to 4.
- 前記酸化膜層を形成する工程において、金属アルコキシドを含む原料を塗布して有機成分を除去することにより前記酸化膜層を形成する、請求項1~4のいずれか1項に記載のパターン形成方法。 5. The pattern forming method according to claim 1, wherein in the step of forming the oxide film layer, the oxide film layer is formed by applying a raw material containing a metal alkoxide to remove an organic component. ..
- 前記所定パターンは、電子デバイス用の回路パターンに対応している請求項1~6のいずれか1項に記載のパターン形成方法。 The pattern forming method according to any one of claims 1 to 6, wherein the predetermined pattern corresponds to a circuit pattern for an electronic device.
- 前記対象物は樹脂材料からなる基板である、請求項1~7のいずれか1項に記載のパターン形成方法。 The pattern forming method according to claim 1, wherein the object is a substrate made of a resin material.
- 前記パターン形成材料は、導電材料、半導体材料、又は絶縁材料を含む請求項1~8のいずれか1項に記載のパターン形成方法。 The pattern forming method according to any one of claims 1 to 8, wherein the pattern forming material includes a conductive material, a semiconductor material, or an insulating material.
- 前記導電材料は、導電性微粒子である、請求項9に記載のパターン形成方法。 The pattern forming method according to claim 9, wherein the conductive material is conductive fine particles.
- 前記パターン形成材料を配置させる工程は、前記親水領域又は前記撥水領域に無電解めっき用触媒を配置し、無電解めっきを行う無電解めっき工程を含む、請求項1~8のいずれか1項に記載のパターン形成方法。 9. The step of disposing the pattern forming material includes an electroless plating step of disposing an electroless plating catalyst in the hydrophilic region or the water repellent region and performing electroless plating. The method for forming a pattern according to.
- ゲート電極と、ソース電極と、ドレイン電極と、を有するトランジスタの製造方法であって、
前記ゲート電極、前記ソース電極、前記ドレイン電極のうち少なくとも1つの電極を、請求項1~11のいずれか一項に記載のパターン形成方法で形成する工程を含むトランジスタの製造方法。 A method for manufacturing a transistor having a gate electrode, a source electrode, and a drain electrode, comprising:
A method of manufacturing a transistor, comprising a step of forming at least one electrode of the gate electrode, the source electrode, and the drain electrode by the pattern forming method according to claim 1. - 対象物と、酸化膜層と、感光性脱保護基を有する化合物含有層と、がこの順で積層された、パターン形成用フィルム。 A film for pattern formation, in which an object, an oxide film layer, and a compound-containing layer having a photosensitive deprotecting group are laminated in this order.
- 前記感光性脱保護基はフッ素を有する、請求項13に記載のパターン形成用フィルム。 The pattern forming film according to claim 13, wherein the photosensitive deprotecting group has fluorine.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018215168 | 2018-11-16 | ||
JP2018-215168 | 2018-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020100710A1 true WO2020100710A1 (en) | 2020-05-22 |
Family
ID=70730527
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/043672 WO2020100710A1 (en) | 2018-11-16 | 2019-11-07 | Pattern forming method, transistor manufacturing method, and film for pattern formation |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202036669A (en) |
WO (1) | WO2020100710A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006216654A (en) * | 2005-02-02 | 2006-08-17 | Konica Minolta Holdings Inc | Method of forming organic semiconductor film, and method of manufacturing organic thin-film transistor |
WO2008102619A1 (en) * | 2007-02-23 | 2008-08-28 | Konica Minolta Holdings, Inc. | Organic thin film transistor and method for manufacturing organic thin film transistor |
JP2015059244A (en) * | 2013-09-19 | 2015-03-30 | 学校法人関東学院 | Manufacturing method of resin material with metal pattern and resin material with metal pattern |
WO2015129799A1 (en) * | 2014-02-28 | 2015-09-03 | 株式会社ニコン | Wiring pattern production method and transistor production method |
WO2016136817A1 (en) * | 2015-02-25 | 2016-09-01 | 株式会社ニコン | Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor |
-
2019
- 2019-11-07 WO PCT/JP2019/043672 patent/WO2020100710A1/en active Application Filing
- 2019-11-11 TW TW108140795A patent/TW202036669A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006216654A (en) * | 2005-02-02 | 2006-08-17 | Konica Minolta Holdings Inc | Method of forming organic semiconductor film, and method of manufacturing organic thin-film transistor |
WO2008102619A1 (en) * | 2007-02-23 | 2008-08-28 | Konica Minolta Holdings, Inc. | Organic thin film transistor and method for manufacturing organic thin film transistor |
JP2015059244A (en) * | 2013-09-19 | 2015-03-30 | 学校法人関東学院 | Manufacturing method of resin material with metal pattern and resin material with metal pattern |
WO2015129799A1 (en) * | 2014-02-28 | 2015-09-03 | 株式会社ニコン | Wiring pattern production method and transistor production method |
WO2016136817A1 (en) * | 2015-02-25 | 2016-09-01 | 株式会社ニコン | Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor |
Also Published As
Publication number | Publication date |
---|---|
TW202036669A (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6640593B2 (en) | Fluorine-containing composition, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor manufacturing method | |
JP4604743B2 (en) | Method for manufacturing functional substrate, functional substrate, fine pattern forming method, conductive film wiring, electro-optical device, and electronic apparatus | |
US11398601B2 (en) | Pattern forming method, method for producing transistor, and member for pattern formation | |
KR102702440B1 (en) | Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method and method for manufacturing transistor | |
JP7517367B2 (en) | How a transistor is manufactured | |
JP6320392B2 (en) | Fluorine-containing compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, compound | |
JPWO2014038579A1 (en) | Fluorine-containing compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, compound | |
WO2016136817A1 (en) | Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor | |
WO2020100710A1 (en) | Pattern forming method, transistor manufacturing method, and film for pattern formation | |
TW202043244A (en) | Pattern formation method | |
US7432137B2 (en) | Method of manufacturing thin film transistor | |
WO2020045078A1 (en) | Transistor production method | |
CN110198946B (en) | Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and method for manufacturing transistor | |
JP6298989B2 (en) | Fluorine-containing compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, compound, organic thin film transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19883585 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19883585 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |