WO2020045078A1 - Transistor production method - Google Patents

Transistor production method Download PDF

Info

Publication number
WO2020045078A1
WO2020045078A1 PCT/JP2019/031832 JP2019031832W WO2020045078A1 WO 2020045078 A1 WO2020045078 A1 WO 2020045078A1 JP 2019031832 W JP2019031832 W JP 2019031832W WO 2020045078 A1 WO2020045078 A1 WO 2020045078A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
group
light
pattern
substrate
Prior art date
Application number
PCT/JP2019/031832
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 川上
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2020045078A1 publication Critical patent/WO2020045078A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a method for manufacturing a transistor.
  • Priority is claimed on Japanese Patent Application No. 2018-161268 filed on August 30, 2018, the content of which is incorporated herein by reference.
  • One embodiment of the present invention is to form a gate electrode using a conductive material over an object, form an insulating film over the gate electrode, and use a compound having a photoresponsive nitrobenzyl group on the insulating film.
  • Forming a photo-responsive film using the material containing, selectively exposing the photo-responsive film to dissociate the photo-responsive group of the exposed portion, a hydrophilic exposed portion, and a water-repellent unexposed Forming a pattern consisting of a non-exposed portion, forming a source electrode and a drain electrode by arranging a conductive material in the exposed portion, forming a modified layer having a reduced surface energy of the unexposed portion, Forming a semiconductor layer on a layer.
  • FIG. 1 is a schematic diagram illustrating an overall configuration of a substrate processing apparatus suitable for a method of manufacturing a transistor according to an embodiment.
  • FIG. 7 is a diagram illustrating an example of a schematic process of a method for manufacturing a transistor.
  • FIG. 7 is a diagram illustrating an example of a schematic process of a method for manufacturing a transistor.
  • FIG. 7 is a diagram illustrating an example of a schematic process of a method for manufacturing a transistor.
  • This embodiment is a method for manufacturing a transistor.
  • a gate electrode is formed on a target using a conductive material, and an insulating film is formed on the gate electrode.
  • a photoresponsive film is formed on the insulating film using a material containing a compound having a photoresponsive nitrobenzyl group.
  • the photoresponsive film is selectively exposed to dissociate the photoresponsive groups in the exposed portions, thereby forming a pattern including a hydrophilic exposed portion and a water-repellent unexposed portion.
  • a conductive material is disposed on the exposed portion to form a source electrode and a drain electrode. Further, a modified layer in which the surface energy of the unexposed portion is reduced is formed, and a semiconductor layer is formed on the modified layer.
  • a hydrophilic group such as a carboxy group, amino group, or hydroxyl group
  • these polar groups attract carriers flowing through the channel region, preventing the flow of carriers. Is easy to occur.
  • a carrier trap is generated, the behavior of the transistor is not stable, and for example, a problem such as occurrence of hysteresis in element characteristics is likely to occur.
  • a material containing a compound having a photoresponsive nitrobenzyl group is used because the wettability of the substrate surface can be suitably modified. When this compound is used, a nitrobenzyl group exists in an unexposed portion.
  • a hydrophilic group such as an amino group exists in a portion where the photodegradable group is decomposed by exposure.
  • the amino group is a functional group having a high surface free energy. Due to the high hydrophilicity, adsorption of moisture and impurities occurs, which can cause defects and deterioration of the device. If the surface free energy of the material to be laminated on the upper layer is significantly different from the surface free energy, desired adhesion, crystallinity and orientation may not be obtained.
  • an object is to provide a method for manufacturing a transistor with favorable characteristics even when a material including a compound having a photoresponsive nitrobenzyl group is used.
  • the method for manufacturing a transistor according to the present embodiment includes a first pattern forming step of forming a gate electrode, an insulating film forming step, a second pattern forming step of forming a source electrode and a drain electrode, and a modified layer forming step. It is preferable to provide in order.
  • a first pattern forming step of forming a gate electrode of forming a gate electrode
  • an insulating film forming step of forming a source electrode and a drain electrode
  • a modified layer forming step It is preferable to provide in order.
  • each step of the present embodiment will be described.
  • the first pattern forming step is a step of forming a pattern on an object and arranging a conductive material on the pattern to form a gate electrode.
  • the first pattern forming step preferably includes a step of forming a photoresponsive film on the object, an exposing step, and a conductive material arranging step in this order.
  • a photoresponsive film 12 containing a compound having a photoresponsive nitrobenzyl group is formed on the surface of a substrate 11. I do. It is preferable that the photoresponsive film 12 is formed by being applied on an object.
  • the compound having a photoresponsive ditrobenzyl group contained in the photoresponsive film will be described later.
  • any of general film forming techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and liquid phase growth may be used.
  • the liquid phase growth method is particularly preferable.
  • the liquid phase growth method include a coating method (spin coating, dip coating, die coating, spray coating, roll coating, brush coating), and a printing method (flexographic printing, screen printing). No. Further, it may be a SAM film or an LB film.
  • a treatment for drying the solvent by, for example, heat or reduced pressure may be added.
  • a predetermined pattern of light is irradiated to selectively expose.
  • the compound in the exposed portion is deprived of a group having a water repellency (protective group) to form a group having a hydrophilic property, and a hydrophilic region is formed in the exposed portion.
  • the detachment does not occur, and the water-repellent region remains. Since the group having water repellency is dissociated, and a residue (amino group) having hydrophilic property is generated, a latent image including a hydrophilic area and a water repellent area can be generated after light irradiation.
  • a photomask 13 having an exposure region of a predetermined pattern is prepared.
  • the exposure method is not limited to a method using a photomask, but may be a method such as a projection exposure using an optical system such as a lens or a mirror, a maskless exposure using a spatial light modulator, a laser beam, or the like.
  • the photomask 13 may be provided so as to be in contact with the photoresponsive film 12 or may be provided so as not to be in contact therewith.
  • the photoresponsive film 12 is irradiated with UV light via the photomask 13. As a result, the photoresponsive film 12 is exposed in the exposed area of the photomask 13 and the hydrophilic area 14 is formed.
  • UV The UV light can be applied at a wavelength at which the optimum quantum efficiency is exhibited by the structure of the photosensitive group. For example, there is an i-line of 365 nm. Further, the exposure amount and the exposure time do not necessarily have to completely proceed with deprotection, but may be such that deprotection occurs partially. At this time, in the plating step described below, conditions (eg, activity of the plating bath) according to the degree of progress of deprotection can be appropriately changed.
  • the light to be irradiated is preferably ultraviolet light.
  • the light to be irradiated preferably contains light having a wavelength in the range of 200 to 450 nm, and more preferably contains light having a wavelength in the range of 320 to 450 nm. It is also preferable to irradiate light including light having a wavelength of 365 nm. Light having these wavelengths can efficiently decompose the protecting group of the compound used in the present embodiment.
  • Light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, and sodium lamps; gas lasers such as nitrogen, liquid lasers of organic dye solutions, and solid-state lasers containing rare earth ions in inorganic single crystals. No.
  • a light source other than a laser that can obtain monochromatic light light of a specific wavelength obtained by extracting a broadband line spectrum or continuous spectrum using an optical filter such as a bandpass filter or a cutoff filter may be used. Since a large area can be irradiated at one time, a high-pressure mercury lamp or an ultra-high-pressure mercury lamp is preferable as the light source.
  • light can be arbitrarily irradiated within the above range, but it is particularly preferable to irradiate light energy having a distribution corresponding to the circuit pattern.
  • the exposure step is not particularly limited, and a single exposure may be performed or a plurality of exposures may be performed.
  • exposure may be performed from the object side. From the viewpoint of further shortening the exposure step, it is preferable to perform the exposure once.
  • heating may be performed after the exposure step.
  • the heating method include an oven, a hot plate, and an infrared heater.
  • the heating temperature may be from 40 ° C to 200 ° C, and may be from 50 ° C to 120 ° C.
  • a cleaning step may be provided after the exposure step or after the heating step.
  • the cleaning method include immersion cleaning, spray cleaning, and ultrasonic cleaning.
  • a polar solvent such as water or alcohol, or a non-polar solvent such as toluene may be used, or a mixed solution thereof or a solvent containing an additive such as a surfactant may be used.
  • a drying step by gas blowing, heating, or the like may be provided.
  • This step is a step of disposing a conductive material in the hydrophilic region generated in the exposure step. Through this step, a gate electrode is manufactured.
  • a catalyst for electroless plating is applied to the hydrophilic region 14 to form a catalyst layer 15.
  • a catalyst for electroless plating is a catalyst for reducing metal ions contained in a plating solution for electroless plating, and includes silver and palladium.
  • metal fine particles such as copper, nickel, and gold can be used instead of the above catalyst.
  • the amino group is exposed on the surface of the hydrophilic region 14, and the amino group can capture and reduce the above-described catalyst for electroless plating. Therefore, the electroless plating catalyst is supplemented only on the hydrophilic region 14 to form the catalyst layer 15.
  • a catalyst capable of carrying a hydrophilic group such as an amino group generated by decomposition of a protective group can be used.
  • the substrate 11 is immersed in an electroless plating bath to reduce metal ions on the catalyst surface, thereby depositing a plating layer 16.
  • the material of the plating layer 16 include nickel-phosphorus (NiP) and copper (Cu). Since the catalyst layer 15 supporting a sufficient amount of the catalyst is formed on the surface of the hydrophilic region 14, the plating layer 16 can be selectively deposited only on the hydrophilic region 14. If the reduction is insufficient, the metal ions on the amine may be positively reduced by immersion in a reducing agent solution such as sodium hypophosphite or sodium borohydride.
  • the conductive material can be arranged in the hydrophilic region.
  • the conductive material can be arranged in the hydrophilic region by applying a pattern forming material composed of a dispersion liquid in which conductive fine particles are dispersed in a dispersion medium.
  • a pattern forming material composed of a dispersion liquid in which conductive fine particles are dispersed in a dispersion medium.
  • the conductive fine particles for example, metal fine particles containing any one of gold, silver, copper, palladium, nickel and ITO, oxides thereof, and fine particles of a conductive polymer or a superconductor are used.
  • These conductive fine particles can be used by coating the surface with an organic substance or the like in order to improve dispersibility.
  • the dispersion medium is not particularly limited as long as it can disperse the above-mentioned conductive fine particles and does not cause aggregation.
  • alcohols such as methanol, ethanol, propanol and butanol, n-heptane, n-octane, decane, dodecane, tetradecane, toluene, xylene, cymene, durene, indene, dipentene, tetrahydronaphthalene, decahydro Hydrocarbon compounds such as naphthalene and cyclohexylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, 1,2-dimethoxyethane, bis (2- (Methoxyethy
  • water, alcohols, hydrocarbon compounds, and ether compounds are preferred in view of the dispersibility of the fine particles and the stability of the dispersion, and the ease of application to the droplet discharge method (inkjet method).
  • More preferred dispersion media include water and hydrocarbon compounds.
  • an organic semiconductor material dispersed or dissolved in a dispersion medium can be used.
  • a ⁇ -electron conjugated polymer material whose skeleton is composed of a conjugated double bond is desirable.
  • soluble polymer materials such as polythiophene, poly (3-alkylthiophene), polythiophene derivatives, and pentacene are given.
  • a droplet discharging method As a method of disposing the pattern forming material, a droplet discharging method, an ink jet method, a spin coating method, a roll coating method, a slot coating method, and the like can be applied.
  • the object is not particularly limited.
  • the material of the object is, for example, a metal, a crystalline material (for example, a monocrystalline, polycrystalline and partially crystalline material), an amorphous material, a conductor, a semiconductor, an insulator, a fiber, glass, Ceramics, zeolites, plastics, thermosetting and thermoplastic materials (eg, optionally doped: polyacrylate, polycarbonate, polyurethane, polystyrene, cellulose polymer, polyolefin, polyamide, polyimide, polyester, polyphenylene, polyethylene, polyethylene terephthalate, polypropylene , Ethylene-vinyl copolymer, polyvinyl chloride, etc.).
  • the target object may be an optical element, a painted substrate, a film, or the like, and these may have flexibility.
  • the term “flexible” refers to a property that the substrate can be bent without breaking or breaking even when a force of about its own weight is applied to the substrate.
  • the property of being bent by the force of its own weight is also included in the flexibility.
  • the flexibility varies depending on the material, size, thickness, environment such as temperature, and the like of the substrate. Note that a single band-shaped substrate may be used as the substrate, but a plurality of unit substrates may be connected to form a band.
  • an insulating layer 17 is formed on the photoresponsive film 12 by covering the plating layer 16 of the electroless plating pattern formed by the above-described electroless plating pattern forming method by a known method. I do.
  • the insulating layer 17 is made of, for example, a coating solution obtained by dissolving at least one resin such as an ultraviolet-curable acrylic resin, an epoxy resin, an en-thiol resin, a silicone resin, and an imide resin in an organic solvent. May be applied.
  • the coating film with ultraviolet rays through a mask provided with an opening corresponding to a region where the insulator layer 17 is formed, the insulator layer 17 can be formed in a desired pattern.
  • the material of the insulating film is not limited to the organic material, but may be an inorganic material. Further, a metal oxide precursor such as an organic silane may be used.
  • the method for forming the insulating film is not limited to the above coating method, and a known film forming technique such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) may be used.
  • Second pattern formation process A second pattern forming step for forming a source electrode and a drain electrode will be described. As shown in FIG. 3B, the hydrophilic region 14 is formed on the insulator layer 17 at the portion where the source electrode and the drain electrode are formed in the same manner as in the first pattern forming method described above.
  • the electroless plating catalyst is supported on the hydrophilic region 14 formed on the insulator layer 17, and the catalyst layer 15 is formed.
  • the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) are formed by performing electroless plating.
  • NiP nickel-phosphorus
  • Cu copper
  • the source electrode and the drain electrode may be formed using the pattern forming material described in the first pattern forming step.
  • a modified layer in which the surface energy of the unexposed portion formed in the second pattern forming step is reduced is formed.
  • reducing the surface energy means that the contact angle with water before and after the formation of the modified layer is modified to a large value.
  • the step of forming the modified layer preferably includes a light irradiation step and a surface treatment step of performing a surface treatment with a photoresponsive surface treatment agent in this order.
  • the water-repellent region 12A in FIG. 3D is a layer containing a compound having a photoresponsive nitrobenzyl group.
  • the modified layer forming step is a step of reducing the surface energy of the water-repellent region 12A.
  • the surface energy of the water-repellent region 12A is made lower than the state where the nitrobenzyl group before the modification exists. Accordingly, carrier traps can be suppressed, and further, the adhesion to the material to be laminated on the upper layer and the crystallinity and orientation can be improved.
  • the water repellent area 12A is irradiated with light.
  • the nitrobenzyl group of the nitrobenzyl compound is decomposed, and a hydrophilic group such as an amino group is exposed.
  • the hydrophilic region 12B shown in FIG. 4A is formed.
  • the light to be irradiated is preferably ultraviolet light.
  • the light to be irradiated preferably contains light having a wavelength in the range of 200 to 450 nm, and more preferably contains light having a wavelength in the range of 320 to 450 nm. It is also preferable to irradiate light including light having a wavelength of 365 nm. Light having these wavelengths can efficiently decompose the protecting group of the compound used in the present embodiment.
  • Light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, and sodium lamps; gas lasers such as nitrogen, liquid lasers of organic dye solutions, and solid lasers containing rare earth ions in inorganic single crystals. No. In the light irradiation step, the nitrobenzyl group does not always need to be completely decomposed in the exposed area, and at least a part of the nitrobenzyl group in the exposed area may be decomposed.
  • a light source other than a laser that can obtain monochromatic light light of a specific wavelength obtained by extracting a broadband line spectrum or continuous spectrum using an optical filter such as a bandpass filter or a cutoff filter may be used. Since a large area can be irradiated at one time, a high-pressure mercury lamp or an ultra-high-pressure mercury lamp is preferable as the light source.
  • a high-pressure mercury lamp or an ultra-high-pressure mercury lamp is preferable as the light source.
  • light can be arbitrarily irradiated within the above range, but it is particularly preferable to irradiate light energy having a distribution corresponding to the circuit pattern.
  • This step is a step of protecting the hydrophilic groups exposed in the light irradiation step with a surface treatment agent.
  • a surface treating agent such as a silane compound containing a phenyl group or a fluorine atom, or a phosphonic oxide can be used.
  • the surface treatment layer formed by the surface treatment step may be a layer formed from a self-assembled monomolecular SAM film material.
  • electron-rich functional groups such as phenyl groups and fluorine atoms can be arranged on the surface of the insulating film by molecular orientation.
  • the interface between the insulating film and the semiconductor layer becomes rich in electrons. Due to charge repulsion from the electron-rich insulating film interface, a hole-rich layer (positive charge) can be generated at the semiconductor-side interface.
  • the exposure amount and the exposure time are controlled in the above-described light irradiation step, and a part of the nitrobenzyl group in the exposure region is decomposed. Then, after the exposed hydrophilic group is treated with a surface treating agent, a second light irradiation step is performed to decompose the remaining nitrobenzyl group that has not been decomposed. Next, the surface containing two or more compounds is obtained by treating the hydrophilic group exposed in the second light irradiation step with a different surface treatment agent.
  • Specific examples of the compound contained in the surface treatment agent used in the present embodiment include carboxylic acid compounds shown in the following (1) -1 and (1) -2, and compounds shown in (2) -1 and (2) -2. Succinimide compounds, silazane compounds shown in (3) -1 and (3) -2, chlorosilane compounds shown in (4) -1 to (4) -3, and (5) -1 and (5) -2 Sulfone compounds shown below.
  • the surface treatment portion 12c is formed as shown in FIG. 4B.
  • the effect of forming the surface treatment portion 12c will be described using a p-type semiconductor as an example.
  • a p-type semiconductor By forming the surface treatment portion 12c, it is possible to suppress or eliminate the effect of carrier traps due to defects in the insulating film and hydrophilic groups. Thereby, it is possible to improve the carrier mobility and the sub-threshold characteristic.
  • the accumulation density of positive charges generated on the organic semiconductor side is improved, so that the on / off ratio can be improved.
  • the gate voltage required to turn on the ON state changes depending on the dipole, that is, the strength of the charge distribution in the molecule. That is, it is possible to control the threshold voltage by selecting the surface modifier.
  • the change in surface charge due to surface treatment also lowers the surface free energy, which promotes molecular reorientation and crystallization at the time of polymer / low molecular weight organic semiconductor film formation, thereby improving transistor characteristics. .
  • the semiconductor layer 21 is formed between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode).
  • the semiconductor layer 21 is formed, for example, by preparing a solution in which an organic semiconductor material soluble in an organic solvent such as TIPS pentacene (6,13-Bis (triisopropylsilylethyl) pentacene) is dissolved in the organic solvent, and forming the plating layer 18 (source). It may be formed by coating and drying between the electrode) and the plating layer 19 (drain electrode). Before forming the semiconductor layer 21, the compound layer 12 between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) may be exposed to be hydrophilic.
  • an organic semiconductor material soluble in an organic solvent such as TIPS pentacene (6,13-Bis (triisopropylsilylethyl) pentacene
  • the above solution is suitably applied to the hydrophilic portion, and the semiconductor layer 21 can be easily formed selectively.
  • the semiconductor layer 21 is formed by adding at least one kind of insulating polymer such as PS (polystyrene) or PMMA (polymethyl methacrylate) to the above solution, and applying and drying a solution containing the insulating polymer. You may. When the semiconductor layer 21 is formed in this manner, the insulating polymer is concentrated below the semiconductor layer 21 (on the insulator layer 17 side).
  • a transistor When a polar group such as an amino group is present at the interface between the organic semiconductor and the insulator layer, the transistor characteristics tend to decrease, but by providing the organic semiconductor via the insulating polymer described above, Deterioration of transistor characteristics can be suppressed. As described above, a transistor can be manufactured.
  • the structure of the transistor is not particularly limited, and can be appropriately selected depending on the purpose. 2 to 4, the method of manufacturing a bottom-contact / bottom-gate transistor has been described. However, the same applies to a top-contact / bottom-gate transistor, a top-contact / top-gate transistor, and a bottom-contact / top-gate transistor. May be manufactured.
  • the substrate processing apparatus 100 which is a roll-to-roll apparatus as shown in FIG.
  • the pattern may be formed by using the above.
  • the substrate processing apparatus 100 performs processing on a substrate supply unit 2 that supplies a band-shaped substrate (for example, a band-shaped film member) S and a surface (processed surface) Sa of the substrate S.
  • a substrate processing unit 3 a substrate recovery unit 4 for recovering the substrate S, a coating unit 6 of a compound having a photoresponsive nitrobenzyl group, an exposure unit 7, a mask 8, a pattern material coating unit 9, And a control unit CONT for controlling each unit.
  • the substrate processing unit 3 can execute various processes on the surface of the substrate S after the substrate S is sent out from the substrate supply unit 2 and before the substrate S is collected by the substrate collection unit 4.
  • the substrate processing apparatus 100 can be suitably used when a display element (electronic device) such as an organic EL element or a liquid crystal display element is formed on the substrate S.
  • FIG. 1 illustrates a method using a photomask to generate a desired pattern light
  • the present embodiment can be suitably applied to a maskless exposure method using no photomask. It can.
  • Examples of a maskless exposure method for generating pattern light without using a photomask include a method using a spatial light modulator such as a DMD, and a method of scanning a spot light like a laser beam printer.
  • an XYZ coordinate system is set as shown in FIG. 1, and the following description will be made using the XYZ coordinate system as appropriate.
  • the XYZ coordinate system for example, an X axis and a Y axis are set along a horizontal plane, and a Z axis is set upward along a vertical direction.
  • the substrate processing apparatus 100 transports the substrate S from the minus side ( ⁇ side) to the plus side (+ side) along the X axis as a whole. At that time, the width direction (short direction) of the band-shaped substrate S is set in the Y-axis direction.
  • a foil such as a resin film or stainless steel
  • the resin film may be made of a material such as polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, and the like. Can be used.
  • the substrate S has a small coefficient of thermal expansion so that its dimensions do not change even if it receives heat of about 200 ° C., for example. For example, dimensional changes can be suppressed by annealing the film. Further, the thermal expansion coefficient can be reduced by mixing the inorganic filler with the resin film. Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, and silicon oxide.
  • the substrate S may be a single piece of ultra-thin glass having a thickness of about 100 ⁇ m manufactured by a float method or the like, or may be a laminate in which the above-described resin film or aluminum foil is bonded to the ultra-thin glass.
  • the size of the substrate S in the width direction (short direction) is, for example, about 1 m to 2 m, and the size in the length direction (long direction) is, for example, 10 m or more.
  • this dimension is only an example, and is not limited to this.
  • the dimension of the substrate S in the Y direction may be 50 cm or less, or 2 m or more.
  • the dimension of the substrate S in the X direction may be 10 m or less.
  • the substrate S is preferably formed to have flexibility.
  • the term “flexible” refers to a property that the substrate can be bent without breaking or breaking even when a force of about its own weight is applied to the substrate.
  • the property of being bent by the force of its own weight is also included in the flexibility.
  • the flexibility varies depending on the material, size, thickness, environment such as temperature, and the like of the substrate. Note that, as the substrate S, a single band-shaped substrate may be used, but a configuration in which a plurality of unit substrates are connected to form a band may be used.
  • the substrate supply unit 2 sends out and supplies the substrate S wound in a roll shape to the substrate processing unit 3, for example.
  • the substrate supply unit 2 is provided with a shaft around which the substrate S is wound, a rotation driving device for rotating the shaft, and the like.
  • a configuration in which a cover or the like that covers the substrate S wound in a roll shape may be provided.
  • the substrate supply unit 2 is not limited to a mechanism that sends out the substrate S wound in a roll shape, but includes a mechanism (for example, a nip-type driving roller or the like) that sequentially sends out the band-like substrate S in the length direction. I just need.
  • the substrate recovery unit 4 recovers the substrate S that has passed through the substrate processing apparatus 100, for example, by winding it into a roll. Similar to the substrate supply unit 2, the substrate recovery unit 4 includes a shaft for winding the substrate S, a rotation drive source for rotating the shaft, a cover for covering the recovered substrate S, and the like. When the substrate S is cut into a panel in the substrate processing unit 3, the substrate S is collected in a state different from the state of being wound in a roll, for example, the substrate S is collected in a stacked state. It does not matter.
  • the substrate processing unit 3 transports the substrate S supplied from the substrate supply unit 2 to the substrate recovery unit 4, and forms a photoresponsive film on the processing target surface Sa of the substrate S during the transport process.
  • a step of irradiating the pattern with light and a step of disposing a pattern forming material are performed.
  • the substrate processing section 3 includes an application section 6 for applying a material for forming a photoresponsive film to the surface to be processed Sa of the substrate S, an exposure section 7 for irradiating light, a mask 8, and a pattern material application. It has a unit 9 and a transfer device 20 including a driving roller R for sending the substrate S under conditions corresponding to the form of processing.
  • the coating unit 6 and the pattern material coating unit 9 are formed by a droplet coating device (for example, a droplet discharge type coating device, an inkjet type coating device, a spin coating type coating device, a roll coating type coating device, and a slot coating type coating device). Is mentioned.
  • a droplet coating device for example, a droplet discharge type coating device, an inkjet type coating device, a spin coating type coating device, a roll coating type coating device, and a slot coating type coating device.
  • a panel of a flexible display or the like can be produced by a so-called roll-to-roll method.
  • the exposure unit 7 is provided, and an apparatus for performing the processes before and after the process (the photosensitive layer forming process, the photosensitive layer developing process, etc.) is provided inline as necessary.
  • the compound having a photoresponsive nitrobenzyl group used in the present embodiment is preferably a fluorine-containing compound represented by the following general formula (1).
  • X represents a halogen atom or an alkoxy group
  • R 1 represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms
  • R f1 and R f2 Is each independently an alkoxy group, a siloxy group, or a fluorinated alkoxy group
  • n represents an integer of 0 or more.
  • X is a halogen atom or an alkoxy group.
  • the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X is preferably an alkoxy group rather than a halogen atom.
  • n represents an integer and is preferably an integer of 1 to 20, more preferably an integer of 2 to 15, from the viewpoint of availability of starting materials.
  • R 1 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • the alkyl group for R 1 is preferably a straight-chain or branched-chain alkyl group having 1 to 5 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl and the like.
  • cyclic alkyl group examples include groups in which one or more hydrogen atoms have been removed from a polycycloalkane such as a monocycloalkane, a bicycloalkane, a tricycloalkane, and a tetracycloalkane.
  • R 1 is preferably a hydrogen atom, a methyl group or an ethyl group.
  • R f1 and R f2 are each independently an alkoxy group, a siloxy group, or a fluorinated alkoxy group.
  • the alkoxy group, siloxy group, or fluorinated alkoxy group of R f1 and R f2 is preferably an alkoxy group having 3 or more carbon atoms and is partially fluorinated. Or a perfluoroalkoxy group. In the present embodiment, a partially fluorinated alkoxy group is preferable.
  • examples of the fluorinated alkoxy group for R f1 and R f2 include a group represented by —O— (CH 2 ) n f1 — (C n f2 F 2n f2 +1 ).
  • Nf1 is an integer of 0 or more
  • nf2 is an integer of 0 or more.
  • n f1 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 0 to 5.
  • nf2 is preferably from 0 to 30, more preferably from 0 to 15, and particularly preferably from 1 to 8.
  • n is an integer of 0 or more. In the present embodiment, n is preferably 1 or more, and more preferably 3 or more.
  • the above-mentioned fluorine-containing compound can be produced by the method described in WO 2015/029981.

Abstract

Provided is a transistor production method involving steps in which: a gate electrode is formed upon a target using a conductive material; an insulating film is formed upon the gate electrode; a light-responsive film is formed upon the insulating film using a material containing a compound having a light-responsive nitrobenzyl group; the light-responsive film is selectively exposed to cause the dissociation of the light-responsive group in the exposed portions and form a pattern comprising hydrophilic exposed portions and a water-repellent unexposed portion; a conductive material is disposed on the exposed portions to form a source electrode and a drain electrode; a modified layer is formed wherein the surface energy of the unexposed portion has been reduced; and a semiconductor layer is formed upon the modified layer.

Description

トランジスタの製造方法Method for manufacturing transistor
 本発明はトランジスタの製造方法に関する。
本願は、2018年8月30日に、日本に出願された特願2018-161268号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing a transistor.
Priority is claimed on Japanese Patent Application No. 2018-161268 filed on August 30, 2018, the content of which is incorporated herein by reference.
 近年、半導体素子、集積回路、有機ELディスプレイ用デバイス等の微細デバイス等の製造において、基板上に、表面特性の異なるパターンを形成し、その表面特性の違いを利用して薄膜トランジスタ等の微細デバイスを作成する方法が提案されている。表面特性の異なるパターンを形成する材料としては、例えば、特許文献1に開示された光分解性カップリング剤が知られている。トランジスタの性能を向上させる観点から、電気的特性を改善したトランジスタが求められている。 In recent years, in the production of semiconductor devices, integrated circuits, and fine devices such as organic EL display devices, patterns having different surface characteristics are formed on a substrate, and fine devices such as thin film transistors are formed by utilizing the difference in surface characteristics. A method of creating one has been proposed. As a material for forming a pattern having different surface characteristics, for example, a photodegradable coupling agent disclosed in Patent Document 1 is known. From the viewpoint of improving the performance of a transistor, a transistor with improved electric characteristics is demanded.
特開2008-50321号公報JP 2008-50321 A
 本発明の一態様は、対象物の上に導電性材料を用いてゲート電極を形成し、前記ゲート電極上に絶縁膜を形成し、前記絶縁膜上に光応答性ニトロベンジル基を有する化合物を含む材料を用いて光応答性膜を形成し、前記光応答性膜を選択的に露光して、露光部の前記光応答性基を解離させ、親水性の露光部と、撥水性の未露光部とからなるパターンを形成し、前記露光部に導電性材料を配置してソース電極とドレイン電極を形成し、前記未露光部の表面エネルギーを低下させた改質層を形成し、前記改質層の上に半導体層を形成する、ことを含むトランジスタの製造方法である。 One embodiment of the present invention is to form a gate electrode using a conductive material over an object, form an insulating film over the gate electrode, and use a compound having a photoresponsive nitrobenzyl group on the insulating film. Forming a photo-responsive film using the material containing, selectively exposing the photo-responsive film to dissociate the photo-responsive group of the exposed portion, a hydrophilic exposed portion, and a water-repellent unexposed Forming a pattern consisting of a non-exposed portion, forming a source electrode and a drain electrode by arranging a conductive material in the exposed portion, forming a modified layer having a reduced surface energy of the unexposed portion, Forming a semiconductor layer on a layer.
本実施形態のトランジスタの製造方法において好適な基板処理装置の全体構成を示す模式図。FIG. 1 is a schematic diagram illustrating an overall configuration of a substrate processing apparatus suitable for a method of manufacturing a transistor according to an embodiment. トランジスタの製造方法の概略工程の一例を示す図である。FIG. 7 is a diagram illustrating an example of a schematic process of a method for manufacturing a transistor. トランジスタの製造方法の概略工程の一例を示す図である。FIG. 7 is a diagram illustrating an example of a schematic process of a method for manufacturing a transistor. トランジスタの製造方法の概略工程の一例を示す図である。FIG. 7 is a diagram illustrating an example of a schematic process of a method for manufacturing a transistor.
<トランジスタの製造方法>
 本実施形態は、トランジスタの製造方法である。
 本実施形態は、まず、対象物の上に導電性材料を用いてゲート電極を形成し、前記ゲート電極上に絶縁膜を形成する。
 次に、前記絶縁膜上に光応答性ニトロベンジル基を有する化合物を含む材料を用いて光応答性膜を形成する。
 次に、前記光応答性膜を選択的に露光して、露光部の前記光応答性基を解離させ、親水性の露光部と、撥水性の未露光部とからなるパターンを形成する。
 次に、前記露光部に導電性材料を配置してソース電極とドレイン電極を形成する。
 さらに、前記未露光部の表面エネルギーを低下させた改質層を形成し、前記改質層の上に半導体層を形成する。
<Transistor manufacturing method>
This embodiment is a method for manufacturing a transistor.
In the present embodiment, first, a gate electrode is formed on a target using a conductive material, and an insulating film is formed on the gate electrode.
Next, a photoresponsive film is formed on the insulating film using a material containing a compound having a photoresponsive nitrobenzyl group.
Next, the photoresponsive film is selectively exposed to dissociate the photoresponsive groups in the exposed portions, thereby forming a pattern including a hydrophilic exposed portion and a water-repellent unexposed portion.
Next, a conductive material is disposed on the exposed portion to form a source electrode and a drain electrode.
Further, a modified layer in which the surface energy of the unexposed portion is reduced is formed, and a semiconductor layer is formed on the modified layer.
 トランジスタのチャネル領域に接触してカルボキシ基、アミノ基、水酸基等の親水性の基が存在すると、これらの極性基がチャネル領域を流れるキャリアを引き寄せ、キャリアの流れを妨げる「キャリアトラップ」と呼ばれる現象が起きやすい。キャリアトラップが生じると、トランジスタの挙動が安定せず、例えば、素子特性にヒステリシスを生じるというような不具合を生じやすい。
 ところで、基板表面の濡れ性を好適に改質できるため、光応答性ニトロベンジル基を有する化合物を含む材料が使用される。この化合物を用いた場合、未露光部にはニトロベンジル基が存在する。一方、露光により光分解性基が分解した部分にはアミノ基等の親水性基が存在する。
When a hydrophilic group such as a carboxy group, amino group, or hydroxyl group is present in contact with the channel region of a transistor, these polar groups attract carriers flowing through the channel region, preventing the flow of carriers. Is easy to occur. When a carrier trap is generated, the behavior of the transistor is not stable, and for example, a problem such as occurrence of hysteresis in element characteristics is likely to occur.
By the way, a material containing a compound having a photoresponsive nitrobenzyl group is used because the wettability of the substrate surface can be suitably modified. When this compound is used, a nitrobenzyl group exists in an unexposed portion. On the other hand, a hydrophilic group such as an amino group exists in a portion where the photodegradable group is decomposed by exposure.
 親水性基の中でも、アミノ基は表面自由エネルギーが高い官能基である。親水性が高いため、水分や不純物の吸着が生じ、デバイスの欠陥や劣化の原因となりうる。またこの上層に積層する材料の表面自由エネルギーと大きく異なる場合、所望の密着性や結晶性・配向性を得られない可能性がある。 ア ミ ノ Among the hydrophilic groups, the amino group is a functional group having a high surface free energy. Due to the high hydrophilicity, adsorption of moisture and impurities occurs, which can cause defects and deterioration of the device. If the surface free energy of the material to be laminated on the upper layer is significantly different from the surface free energy, desired adhesion, crystallinity and orientation may not be obtained.
 本実施形態においては、光応答性ニトロベンジル基を有する化合物を含む材料を用いた場合であっても、特性が良好なトランジスタを製造する方法を提供することを目的とする。 In the present embodiment, an object is to provide a method for manufacturing a transistor with favorable characteristics even when a material including a compound having a photoresponsive nitrobenzyl group is used.
 本実施形態のトランジスタの製造方法は、ゲート電極を作製する第1のパターン形成工程、絶縁膜形成工程、ソース電極及びドレイン電極を作製する第2のパターン形成工程、及び改質層形成工程をこの順で備えることが好ましい。
以下、本実施形態の各工程について説明する。
The method for manufacturing a transistor according to the present embodiment includes a first pattern forming step of forming a gate electrode, an insulating film forming step, a second pattern forming step of forming a source electrode and a drain electrode, and a modified layer forming step. It is preferable to provide in order.
Hereinafter, each step of the present embodiment will be described.
≪第1のパターン形成工程≫
 まず、対象物の上に親水性の露光部とからなるパターンを形成するまでの工程について説明する。
 第1のパターン形成工程は、対象物の上にパターンを形成し、このパターン上に導電性材料を配置してゲート電極を作製する工程である。
 第1のパターン形成工程は、対象物の上に光応答性膜を形成する工程、露光工程、導電性材料配置工程をこの順で備えることが好ましい。
<< First pattern formation process >>
First, steps up to the formation of a pattern including a hydrophilic exposed portion on an object will be described.
The first pattern forming step is a step of forming a pattern on an object and arranging a conductive material on the pattern to form a gate electrode.
The first pattern forming step preferably includes a step of forming a photoresponsive film on the object, an exposing step, and a conductive material arranging step in this order.
・対象物の上に光応答性膜を形成する工程
 まず、図2(a)に示すように、基板11の表面に、光応答性ニトロベンジル基を有する化合物を含む光応答性膜12を形成する。
光応答性膜12は、対象物の上に塗布することにより形成することが好ましい。光応答性膜が含む光応答性二トロベンジル基を有する化合物については後述する。
Step of Forming Photoresponsive Film on Object First, as shown in FIG. 2A, a photoresponsive film 12 containing a compound having a photoresponsive nitrobenzyl group is formed on the surface of a substrate 11. I do.
It is preferable that the photoresponsive film 12 is formed by being applied on an object. The compound having a photoresponsive ditrobenzyl group contained in the photoresponsive film will be described later.
 塗布方法としては、物理的気相成長法(PVD)や化学的気相成長法(CVD)、液相成長法等、一般的な成膜技術の何れを用いてもよい。中でも、特に液相成長法が好ましく、液相成長法としては例えば、塗布法(スピンコート、ディップコート、ダイコート、スプレーコート、ロールコート、刷毛塗り)、印刷法(フレキソ印刷、スクリーン印刷)等が挙げられる。また、SAM膜、LB膜としてもよい。 As a coating method, any of general film forming techniques such as physical vapor deposition (PVD), chemical vapor deposition (CVD), and liquid phase growth may be used. Among them, the liquid phase growth method is particularly preferable. Examples of the liquid phase growth method include a coating method (spin coating, dip coating, die coating, spray coating, roll coating, brush coating), and a printing method (flexographic printing, screen printing). No. Further, it may be a SAM film or an LB film.
 なお、本工程においては、例えば熱や減圧等によって溶剤を乾燥させる処理を加えてもよい。 In this step, a treatment for drying the solvent by, for example, heat or reduced pressure may be added.
・露光工程
 対象物の上に光応答性膜を形成したのち、所定のパターンの光を照射して選択的に露光する。この露光工程により、露光部の化合物は、撥水性を有する基(保護基)が脱離して親水性を有する基が生成し、露光部には親水領域が形成される。未露光部はこの脱離が起こらず、撥水領域のままとなる。
撥水性能を有する基が解離し、親水性能を有する残基(アミノ基)が生じるため、光照射後においては、親水領域及び撥水領域からなる潜像を生成させることができる。
-Exposure Step After forming a photo-responsive film on the object, a predetermined pattern of light is irradiated to selectively expose. By the exposure step, the compound in the exposed portion is deprived of a group having a water repellency (protective group) to form a group having a hydrophilic property, and a hydrophilic region is formed in the exposed portion. In the unexposed portion, the detachment does not occur, and the water-repellent region remains.
Since the group having water repellency is dissociated, and a residue (amino group) having hydrophilic property is generated, a latent image including a hydrophilic area and a water repellent area can be generated after light irradiation.
 具体的には、図2(b)に示すように、所定のパターンの露光領域を有するフォトマスク13を用意する。露光方法としては、フォトマスクを用いる手段に限られず、レンズやミラーなどの光学系を用いたプロジェクション露光、空間光変調素子、レーザービームなどを用いたマスクレス露光等の手段を用いることができる。なお、フォトマスク13は、光応答性膜12と接触するように設けてもよいし、非接触となるように設けてもよい。
 その後、図2(c)に示すように、フォトマスク13を介して光応答性膜12にUV光を照射する。これにより、フォトマスク13の露光領域において光応答性膜12が露光され、親水領域14が形成される。
Specifically, as shown in FIG. 2B, a photomask 13 having an exposure region of a predetermined pattern is prepared. The exposure method is not limited to a method using a photomask, but may be a method such as a projection exposure using an optical system such as a lens or a mirror, a maskless exposure using a spatial light modulator, a laser beam, or the like. Note that the photomask 13 may be provided so as to be in contact with the photoresponsive film 12 or may be provided so as not to be in contact therewith.
Thereafter, as shown in FIG. 2C, the photoresponsive film 12 is irradiated with UV light via the photomask 13. As a result, the photoresponsive film 12 is exposed in the exposed area of the photomask 13 and the hydrophilic area 14 is formed.
 なお、UV光は感光性基の構造により最適な量子効率が発揮される波長を照射することができる。例えば、365nmのi線が挙げられる。また、その露光量や露光時間は、必ずしも完全に脱保護が進行する必要はなく、一部に脱保護が発生する程度でよい。その際、後述のめっき工程において、脱保護の進行具合に応じた条件(めっき浴の活性等)を適宜変更することができる。 UV The UV light can be applied at a wavelength at which the optimum quantum efficiency is exhibited by the structure of the photosensitive group. For example, there is an i-line of 365 nm. Further, the exposure amount and the exposure time do not necessarily have to completely proceed with deprotection, but may be such that deprotection occurs partially. At this time, in the plating step described below, conditions (eg, activity of the plating bath) according to the degree of progress of deprotection can be appropriately changed.
 本工程において、照射する光は紫外線が好ましい。照射する光は、200~450nmの範囲に含まれる波長を有する光を含むことが好ましく、320~450nmの範囲に含まれる波長を有する光を含むことがより好ましい。また、波長が365nmの光を含む光を照射することも好ましい。これらの波長を有する光は、本実施形態に用いる化合物の保護基を効率よく分解することができる。光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプ;窒素等の気体レーザー、有機色素溶液の液体レーザー、無機単結晶に希土類イオンを含有させた固体レーザー等が挙げられる。 に お い て In this step, the light to be irradiated is preferably ultraviolet light. The light to be irradiated preferably contains light having a wavelength in the range of 200 to 450 nm, and more preferably contains light having a wavelength in the range of 320 to 450 nm. It is also preferable to irradiate light including light having a wavelength of 365 nm. Light having these wavelengths can efficiently decompose the protecting group of the compound used in the present embodiment. Light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, and sodium lamps; gas lasers such as nitrogen, liquid lasers of organic dye solutions, and solid-state lasers containing rare earth ions in inorganic single crystals. No.
 また、単色光が得られるレーザー以外の光源としては、広帯域の線スペクトル、連続スペクトルをバンドパスフィルター、カットオフフィルター等の光学フィルターを使用して取出した特定波長の光を使用してもよい。一度に大きな面積を照射することができることから、光源としては高圧水銀ランプまたは超高圧水銀ランプが好ましい。
 本実施形態のパターン形成工程においては、上記の範囲で任意に光を照射することができるが、特に回路パターンに対応した分布の光エネルギーを照射することが好ましい。
In addition, as a light source other than a laser that can obtain monochromatic light, light of a specific wavelength obtained by extracting a broadband line spectrum or continuous spectrum using an optical filter such as a bandpass filter or a cutoff filter may be used. Since a large area can be irradiated at one time, a high-pressure mercury lamp or an ultra-high-pressure mercury lamp is preferable as the light source.
In the pattern forming step of this embodiment, light can be arbitrarily irradiated within the above range, but it is particularly preferable to irradiate light energy having a distribution corresponding to the circuit pattern.
 露光工程は特に限定されず、1回の露光を行ってもよく、複数回の露光を行ってもよい。また、透過性のある対象物を処理する場合には、対象物側から露光を行ってもよい。露光工程をより短縮できる観点から、露光は1回行うことが好ましい。 (4) The exposure step is not particularly limited, and a single exposure may be performed or a plurality of exposures may be performed. When processing a transparent object, exposure may be performed from the object side. From the viewpoint of further shortening the exposure step, it is preferable to perform the exposure once.
[任意の露光後加熱工程]
 本実施形態においては、露光工程の後、加熱を実施してもよい。加熱方法としては、オーブン、ホットプレート、赤外線ヒーターなどが挙げられる。加熱温度は40℃~200℃としてよく、50℃~120℃としてもよい。
[Optional heating step after exposure]
In the present embodiment, heating may be performed after the exposure step. Examples of the heating method include an oven, a hot plate, and an infrared heater. The heating temperature may be from 40 ° C to 200 ° C, and may be from 50 ° C to 120 ° C.
[任意の洗浄工程]
 本実施形態においては、露光工程の後、あるいは加熱工程の後に洗浄工程を設けてもよい。洗浄方法としては、浸漬洗浄、スプレー洗浄、超音波洗浄などが挙げられる。洗浄液は水やアルコールなどの極性溶媒や、トルエンなどの非極性溶媒を用いてもよく、その混合溶液や、界面活性剤などの添加剤を含むものを用いてもよい。また、洗浄後、ガス吹付や加熱などによる乾燥工程を設けてもよい。
[Optional cleaning process]
In the present embodiment, a cleaning step may be provided after the exposure step or after the heating step. Examples of the cleaning method include immersion cleaning, spray cleaning, and ultrasonic cleaning. As the washing liquid, a polar solvent such as water or alcohol, or a non-polar solvent such as toluene may be used, or a mixed solution thereof or a solvent containing an additive such as a surfactant may be used. After the cleaning, a drying step by gas blowing, heating, or the like may be provided.
[配置工程]
 本工程は、前記露光工程で生成した親水領域に導電性材料を配置させる工程である。この工程により、ゲート電極が作製される。
[Placement process]
This step is a step of disposing a conductive material in the hydrophilic region generated in the exposure step. Through this step, a gate electrode is manufactured.
 まず、図2(d)に示すように、親水領域14に無電解めっき用触媒を付与して触媒層15を形成する。 First, as shown in FIG. 2D, a catalyst for electroless plating is applied to the hydrophilic region 14 to form a catalyst layer 15.
 無電解めっき用触媒は、無電解めっき用のめっき液に含まれる金属イオンを還元する触媒であり、銀やパラジウムが挙げられる。なお、無電解めっきとして置換めっき、自己触媒めっきを行う場合は、上記の触媒に替えて、銅、ニッケル、金などの金属微粒子を用いることができる。親水領域14の表面にはアミノ基が露出しているが、アミノ基は、上述の無電解めっき用触媒を捕捉・還元することが可能である。そのため、親水領域14上のみに無電解用めっき用触媒が補足され、触媒層15が形成される。また、無電解めっき用触媒は、保護基が分解されることにより生じるアミノ基等の親水性基が担持可能なものを用いることができる。 触媒 A catalyst for electroless plating is a catalyst for reducing metal ions contained in a plating solution for electroless plating, and includes silver and palladium. When displacement plating or self-catalytic plating is performed as electroless plating, metal fine particles such as copper, nickel, and gold can be used instead of the above catalyst. The amino group is exposed on the surface of the hydrophilic region 14, and the amino group can capture and reduce the above-described catalyst for electroless plating. Therefore, the electroless plating catalyst is supplemented only on the hydrophilic region 14 to form the catalyst layer 15. As the electroless plating catalyst, a catalyst capable of carrying a hydrophilic group such as an amino group generated by decomposition of a protective group can be used.
 次いで、図2(e)に示すように、基板11を無電解めっき浴に浸漬して触媒表面に金属イオンを還元し、めっき層16を析出させる。めっき層16の材料としては、ニッケル-リン(NiP)や、銅(Cu)が挙げられる。親水領域14表面には十分な量の触媒を担持する触媒層15が形成されているため、親水領域14上にのみ選択的にめっき層16を析出させることができる。還元が不十分な場合には、次亜リン酸ナトリウム、水素化ホウ素ナトリウムなどの還元剤溶液に浸漬してアミン上の金属イオンを積極的に還元してもよい。 Next, as shown in FIG. 2E, the substrate 11 is immersed in an electroless plating bath to reduce metal ions on the catalyst surface, thereby depositing a plating layer 16. Examples of the material of the plating layer 16 include nickel-phosphorus (NiP) and copper (Cu). Since the catalyst layer 15 supporting a sufficient amount of the catalyst is formed on the surface of the hydrophilic region 14, the plating layer 16 can be selectively deposited only on the hydrophilic region 14. If the reduction is insufficient, the metal ions on the amine may be positively reduced by immersion in a reducing agent solution such as sodium hypophosphite or sodium borohydride.
 以上の工程により、親水領域に導電性材料を配置することができる。 に よ り Through the above steps, the conductive material can be arranged in the hydrophilic region.
 また、本工程においては、導電性微粒子を分散媒に分散させた分散液からなるパターン形成材料を塗布することで親水領域に導電性材料を配置することもできる。導電性微粒子として、例えば、金、銀、銅、パラジウム、ニッケル及びITOのうちのいずれかを含有する金属微粒子の他、これらの酸化物、並びに導電性ポリマーや超電導体の微粒子などが用いられる。 In addition, in this step, the conductive material can be arranged in the hydrophilic region by applying a pattern forming material composed of a dispersion liquid in which conductive fine particles are dispersed in a dispersion medium. As the conductive fine particles, for example, metal fine particles containing any one of gold, silver, copper, palladium, nickel and ITO, oxides thereof, and fine particles of a conductive polymer or a superconductor are used.
 これらの導電性微粒子は、分散性を向上させるために表面に有機物などをコーティングして使うこともできる。 These conductive fine particles can be used by coating the surface with an organic substance or the like in order to improve dispersibility.
 分散媒としては、上記の導電性微粒子を分散できるもので、凝集を起こさないものであれば特に限定されない。例えば、水の他に、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類、n-ヘプタン、n-オクタン、デカン、ドデカン、テトラデカン、トルエン、キシレン、シメン、デュレン、インデン、ジペンテン、テトラヒドロナフタレン、デカヒドロナフタレン、シクロヘキシルベンゼンなどの炭化水素系化合物、またエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、p-ジオキサンなどのエーテル系化合物、さらにプロピレンカーボネート、γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルスルホキシド、シクロヘキサノンなどの極性化合物を例示できる。これらのうち、微粒子の分散性と分散液の安定性、また液滴吐出法(インクジェット法)への適用の容易さの点で、水、アルコール類、炭化水素系化合物、エーテル系化合物が好ましく、より好ましい分散媒としては、水、炭化水素系化合物を挙げることができる。 The dispersion medium is not particularly limited as long as it can disperse the above-mentioned conductive fine particles and does not cause aggregation. For example, in addition to water, alcohols such as methanol, ethanol, propanol and butanol, n-heptane, n-octane, decane, dodecane, tetradecane, toluene, xylene, cymene, durene, indene, dipentene, tetrahydronaphthalene, decahydro Hydrocarbon compounds such as naphthalene and cyclohexylbenzene, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, 1,2-dimethoxyethane, bis (2- (Methoxyethyl) ether, ether compounds such as p-dioxane, propylene carbonate, γ- Butyrolactone, N- methyl-2-pyrrolidone, dimethylformamide, dimethyl sulfoxide, can be exemplified polar compounds such as cyclohexanone. Of these, water, alcohols, hydrocarbon compounds, and ether compounds are preferred in view of the dispersibility of the fine particles and the stability of the dispersion, and the ease of application to the droplet discharge method (inkjet method). More preferred dispersion media include water and hydrocarbon compounds.
 液状の半導体材料としては、分散媒に分散又は溶解させた有機半導体材料を用いることができる。有機半導体材料としては、その骨格が共役二重結合から構成されるπ電子共役系の高分子材料が望ましい。代表的には、ポリチオフェン、ポリ(3-アルキルチオフェン)、ポリチオフェン誘導体、ペンタセン等の可溶性の高分子材料が挙げられる。 有機 As the liquid semiconductor material, an organic semiconductor material dispersed or dissolved in a dispersion medium can be used. As the organic semiconductor material, a π-electron conjugated polymer material whose skeleton is composed of a conjugated double bond is desirable. Typically, soluble polymer materials such as polythiophene, poly (3-alkylthiophene), polythiophene derivatives, and pentacene are given.
 パターン形成材料を配置させる方法としては、液滴吐出法、インクジェット法、スピンコート法、ロールコート法、スロットコート法等を適用することができる。 液滴 As a method of disposing the pattern forming material, a droplet discharging method, an ink jet method, a spin coating method, a roll coating method, a slot coating method, and the like can be applied.
[対象物]
 対象物としては、特に限定されない。本実施形態において、対象物の材料は、例えば、金属、結晶質材料(例えば単結晶質、多結晶質および部分結晶質材料)、非晶質材料、導体、半導体、絶縁体、繊維、ガラス、セラミックス、ゼオライト、プラスチック、熱硬化性および熱可塑性材料(例えば、場合によってドープされた:ポリアクリレート、ポリカーボネート、ポリウレタン、ポリスチレン、セルロースポリマー、ポリオレフィン、ポリアミド、ポリイミド、ポリエステル、ポリフェニレン、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレン、エチレンビニル共重合体、ポリ塩化ビニルなど)が挙げられる。また、対象物は、光学素子、塗装基板、フィルム等であってよく、これらは可撓性を有していてもよい。
[Object]
The object is not particularly limited. In the present embodiment, the material of the object is, for example, a metal, a crystalline material (for example, a monocrystalline, polycrystalline and partially crystalline material), an amorphous material, a conductor, a semiconductor, an insulator, a fiber, glass, Ceramics, zeolites, plastics, thermosetting and thermoplastic materials (eg, optionally doped: polyacrylate, polycarbonate, polyurethane, polystyrene, cellulose polymer, polyolefin, polyamide, polyimide, polyester, polyphenylene, polyethylene, polyethylene terephthalate, polypropylene , Ethylene-vinyl copolymer, polyvinyl chloride, etc.). Further, the target object may be an optical element, a painted substrate, a film, or the like, and these may have flexibility.
 ここで可撓性とは、基板に自重程度の力を加えても線断したり破断したりすることはなく、該基板を撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。また、上記可撓性は、該基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板としては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。 可 撓 Here, the term “flexible” refers to a property that the substrate can be bent without breaking or breaking even when a force of about its own weight is applied to the substrate. In addition, the property of being bent by the force of its own weight is also included in the flexibility. The flexibility varies depending on the material, size, thickness, environment such as temperature, and the like of the substrate. Note that a single band-shaped substrate may be used as the substrate, but a plurality of unit substrates may be connected to form a band.
≪絶縁膜形成工程≫
 図3(a)に示すように、上述した無電解めっきパターン形成方法により形成した無電解めっきパターンのめっき層16を、公知の方法により覆って光応答性膜12上に絶縁体層17を形成する。絶縁体層17は、例えば、紫外線硬化型のアクリル樹脂、エポキシ樹脂、エン・チオール樹脂、シリコーン樹脂、イミド樹脂等の1つ以上の樹脂を有機溶媒に溶解させた塗布液を用い、当該塗布液を塗布することにより形成してもよい。絶縁体層17を形成する領域に対応して開口部が設けられたマスクを介して塗膜に紫外線を照射することで、絶縁体層17を所望のパターンに形成することが可能である。絶縁膜材料としては、有機材料に限られず無機材料を用いてもよい。また、有機シランなどの金属酸化物前駆体などを用いてもよい。絶縁膜の形成方法としては、上記の塗布方法に限られず、物理的気相成長法(PVD)や化学的気相成長法(CVD)等の公知の成膜技術を用いてもよい。
<< Insulation film formation process >>
As shown in FIG. 3A, an insulating layer 17 is formed on the photoresponsive film 12 by covering the plating layer 16 of the electroless plating pattern formed by the above-described electroless plating pattern forming method by a known method. I do. The insulating layer 17 is made of, for example, a coating solution obtained by dissolving at least one resin such as an ultraviolet-curable acrylic resin, an epoxy resin, an en-thiol resin, a silicone resin, and an imide resin in an organic solvent. May be applied. By irradiating the coating film with ultraviolet rays through a mask provided with an opening corresponding to a region where the insulator layer 17 is formed, the insulator layer 17 can be formed in a desired pattern. The material of the insulating film is not limited to the organic material, but may be an inorganic material. Further, a metal oxide precursor such as an organic silane may be used. The method for forming the insulating film is not limited to the above coating method, and a known film forming technique such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) may be used.
≪第2のパターン形成工程≫
 ソース電極及びドレイン電極を作製する第2のパターン形成工程について説明する。
 図3(b)に示すように、上述した第1のパターン形成方法と同様にして、絶縁体層17の上にソース電極及びドレイン電極が形成される部分に親水領域14を形成する。
<< Second pattern formation process >>
A second pattern forming step for forming a source electrode and a drain electrode will be described.
As shown in FIG. 3B, the hydrophilic region 14 is formed on the insulator layer 17 at the portion where the source electrode and the drain electrode are formed in the same manner as in the first pattern forming method described above.
 図3(c)に示すように、上述した第1のパターン形成方法と同様にして、絶縁体層17の上に形成した親水領域14上に無電解めっき用触媒を担持させ、触媒層15を形成した後、無電解めっきを行うことによりめっき層18(ソース電極)及びめっき層19(ドレイン電極)を形成する。なお、めっき層18及び19の材料としてもニッケル-リン(NiP)や、銅(Cu)が挙げられるが、めっき層16(ゲート電極)と異なる材料で形成してもよい。また、第2のパターン形成工程においても、第1のパターン形成工程において説明したパターン形成材料を用いてソース電極及びドレイン電極を形成してもよい。 As shown in FIG. 3C, in the same manner as in the first pattern forming method described above, the electroless plating catalyst is supported on the hydrophilic region 14 formed on the insulator layer 17, and the catalyst layer 15 is formed. After the formation, the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) are formed by performing electroless plating. Note that nickel-phosphorus (NiP) and copper (Cu) are also examples of the material of the plating layers 18 and 19, but they may be formed of a material different from that of the plating layer 16 (gate electrode). In the second pattern forming step, the source electrode and the drain electrode may be formed using the pattern forming material described in the first pattern forming step.
≪改質層形成工程≫
 本実施形態において、第2のパターン形成工程において形成された未露光部の表面エネルギーを低下させた改質層を形成する。
 本実施形態において、「表面エネルギーを低下させる」とは、改質層の形成前後で水に対する接触角を大きい値に改質することを意味する。
≪Modified layer formation process≫
In the present embodiment, a modified layer in which the surface energy of the unexposed portion formed in the second pattern forming step is reduced is formed.
In the present embodiment, "reducing the surface energy" means that the contact angle with water before and after the formation of the modified layer is modified to a large value.
 改質層を形成する工程は、光照射工程と、光応答性表面処理剤で表面処理する表面処理工程をこの順で備えることが好ましい。
 図3(d)の撥水領域12Aは、光応答性ニトロベンジル基を有する化合物を含む層である。改質層形成工程は、この撥水領域12Aの表面エネルギーを低下させる工程である。撥水領域12Aの表面エネルギーを、改質前のニトロベンジル基が存在する状態よりも下げる。これにより、キャリアトラップを抑制でき、さらに、上層に積層する材料との密着性や結晶性・配向性を良好なものとすることができる。
The step of forming the modified layer preferably includes a light irradiation step and a surface treatment step of performing a surface treatment with a photoresponsive surface treatment agent in this order.
The water-repellent region 12A in FIG. 3D is a layer containing a compound having a photoresponsive nitrobenzyl group. The modified layer forming step is a step of reducing the surface energy of the water-repellent region 12A. The surface energy of the water-repellent region 12A is made lower than the state where the nitrobenzyl group before the modification exists. Accordingly, carrier traps can be suppressed, and further, the adhesion to the material to be laminated on the upper layer and the crystallinity and orientation can be improved.
・光照射工程
 改質層形成工程では、図3(d)に示すように、撥水領域12Aに光を照射する。撥水領域12Aに光照射を行うことにより、ニトロベンジル化合物のニトロベンジル基が分解し、アミノ基等の親水性基が露出する。これにより、図4(a)に示す親水性領域12Bが形成される。
Light Irradiation Step In the modified layer forming step, as shown in FIG. 3D, the water repellent area 12A is irradiated with light. By irradiating the water-repellent region 12A with light, the nitrobenzyl group of the nitrobenzyl compound is decomposed, and a hydrophilic group such as an amino group is exposed. Thereby, the hydrophilic region 12B shown in FIG. 4A is formed.
 本工程において、照射する光は紫外線が好ましい。照射する光は、200~450nmの範囲に含まれる波長を有する光を含むことが好ましく、320~450nmの範囲に含まれる波長を有する光を含むことがより好ましい。また、波長が365nmの光を含む光を照射することも好ましい。これらの波長を有する光は、本実施形態に用いる化合物の保護基を効率よく分解することができる。 に お い て In this step, the light to be irradiated is preferably ultraviolet light. The light to be irradiated preferably contains light having a wavelength in the range of 200 to 450 nm, and more preferably contains light having a wavelength in the range of 320 to 450 nm. It is also preferable to irradiate light including light having a wavelength of 365 nm. Light having these wavelengths can efficiently decompose the protecting group of the compound used in the present embodiment.
 光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプ;窒素等の気体レーザー、有機色素溶液の液体レーザー、無機単結晶に希土類イオンを含有させた固体レーザー等が挙げられる。なお、光照射工程では、露光領域において必ずしも完全にニトロベンジル基が分解されなくともよく、露光領域における少なくとも一部のニトロベンジル基が分解されてもよい。 Light sources include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, and sodium lamps; gas lasers such as nitrogen, liquid lasers of organic dye solutions, and solid lasers containing rare earth ions in inorganic single crystals. No. In the light irradiation step, the nitrobenzyl group does not always need to be completely decomposed in the exposed area, and at least a part of the nitrobenzyl group in the exposed area may be decomposed.
 また、単色光が得られるレーザー以外の光源としては、広帯域の線スペクトル、連続スペクトルをバンドパスフィルター、カットオフフィルター等の光学フィルターを使用して取出した特定波長の光を使用してもよい。一度に大きな面積を照射することができることから、光源としては高圧水銀ランプまたは超高圧水銀ランプが好ましい。
 本実施形態のパターン形成方法においては、上記の範囲で任意に光を照射することができるが、特に回路パターンに対応した分布の光エネルギーを照射することが好ましい。
In addition, as a light source other than a laser that can obtain monochromatic light, light of a specific wavelength obtained by extracting a broadband line spectrum or continuous spectrum using an optical filter such as a bandpass filter or a cutoff filter may be used. Since a large area can be irradiated at one time, a high-pressure mercury lamp or an ultra-high-pressure mercury lamp is preferable as the light source.
In the pattern forming method of the present embodiment, light can be arbitrarily irradiated within the above range, but it is particularly preferable to irradiate light energy having a distribution corresponding to the circuit pattern.
・表面処理工程
 本工程は、前記光照射工程により露出した親水性基を表面処理剤を用いて保護する工程である。本工程に使用する表面処理剤としては、フェニル基やフッ素原子を含むシラン系化合物、ホスホン系酸化物などの表面処理剤が使用できる。また、表面処理工程によって形成される表面処理層は、自己組織化単分子SAM膜材から形成される層であってもよい。自己組織化単分子SAM膜材を使用すると、分子配向により電子豊富なフェニル基やフッ素原子等の官能基を、絶縁膜の表面に配置することができる。これにより、絶縁膜と半導体層の界面は電子が豊富な状態となる。電子豊富な絶縁膜界面からの電荷反発によって、半導体側界面に正孔が豊富な層(正電荷)を生成させることができる。
-Surface treatment step This step is a step of protecting the hydrophilic groups exposed in the light irradiation step with a surface treatment agent. As the surface treating agent used in this step, a surface treating agent such as a silane compound containing a phenyl group or a fluorine atom, or a phosphonic oxide can be used. Further, the surface treatment layer formed by the surface treatment step may be a layer formed from a self-assembled monomolecular SAM film material. When a self-assembled monomolecular SAM film material is used, electron-rich functional groups such as phenyl groups and fluorine atoms can be arranged on the surface of the insulating film by molecular orientation. Thus, the interface between the insulating film and the semiconductor layer becomes rich in electrons. Due to charge repulsion from the electron-rich insulating film interface, a hole-rich layer (positive charge) can be generated at the semiconductor-side interface.
 なお、互いに異なる2種以上の表面処理剤を用い、2種以上の化合物を含む表面を得ることも可能である。この場合、例えば、上述の光照射工程で露光量と露光時間を制御し、露光領域における一部のニトロベンジル基を分解する。そして、露出した親水基を表面処理剤で処理した後2回目の光照射工程を行い、分解されていなかった残りのニトロベンジル基を分解する。次いで、2回目の光照射工程で露出した親水基を異なる表面処理剤で処理することにより2種以上の化合物を含む表面が得られる。 It is also possible to obtain a surface containing two or more compounds by using two or more different surface treatment agents. In this case, for example, the exposure amount and the exposure time are controlled in the above-described light irradiation step, and a part of the nitrobenzyl group in the exposure region is decomposed. Then, after the exposed hydrophilic group is treated with a surface treating agent, a second light irradiation step is performed to decompose the remaining nitrobenzyl group that has not been decomposed. Next, the surface containing two or more compounds is obtained by treating the hydrophilic group exposed in the second light irradiation step with a different surface treatment agent.
 本実施形態に用いる表面処理剤が含む化合物としては、具体的には下記(1)-1、(1)-2に示すカルボン酸系化合物、(2)-1、(2)―2に示すスクシンイミド系化合物、(3)-1、(3)-2に示すシラザン系化合物、(4)-1~(4)-3に示すクロロシラン系化合物、(5)-1、(5)-2に示すスルホン系化合物が挙げられる。 Specific examples of the compound contained in the surface treatment agent used in the present embodiment include carboxylic acid compounds shown in the following (1) -1 and (1) -2, and compounds shown in (2) -1 and (2) -2. Succinimide compounds, silazane compounds shown in (3) -1 and (3) -2, chlorosilane compounds shown in (4) -1 to (4) -3, and (5) -1 and (5) -2 Sulfone compounds shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 表面処理を行う方法としては、浸漬法、化学処理法等の公知の方法を用いることができる。なお、反応促進のための活性化剤や縮合剤などを用いてもよい。また、物理吸着による付着を回避するために適宜洗浄処理を行ってもよい。
 上記に列挙した化合物を含む表面処理剤で表面処理を行うことにより、図4(b)に示すように、表面処理部12cが形成される。
As a method for performing the surface treatment, a known method such as a dipping method and a chemical treatment method can be used. Note that an activator or a condensing agent for promoting the reaction may be used. Further, a washing process may be appropriately performed to avoid the adhesion due to physical adsorption.
By performing the surface treatment with the surface treatment agents containing the compounds listed above, the surface treatment portion 12c is formed as shown in FIG. 4B.
 表面処理部12cを形成することの効果について、p型半導体を例に説明する。
 表面処理部12cを形成することにより、絶縁膜の欠陥や親水性基によるキャリアトラップの影響を抑制又は解消できる。これにより、キャリア移動度の向上と、サブスレッショルド特性の向上を実現できる。
The effect of forming the surface treatment portion 12c will be described using a p-type semiconductor as an example.
By forming the surface treatment portion 12c, it is possible to suppress or eliminate the effect of carrier traps due to defects in the insulating film and hydrophilic groups. Thereby, it is possible to improve the carrier mobility and the sub-threshold characteristic.
 また、絶縁膜と半導体との界面において、有機半導体側に生じた正電荷の蓄積密度が向上するため、on/off比の向上が可能となる。このときの双極子、すなわち分子内の電荷分布の強さによって、ON状態にするために必要なゲート電圧が変わる。つまり、表面修飾剤の選定によって、閾値電圧を制御することも可能となる。
 表面処理により表面電荷が変化することに伴い、表面自由エネルギーも低くなることで、高分子・低分子有機半導体成膜時の分子再配向・結晶化が促進され、トランジスタ特性を向上させることができる。
Further, at the interface between the insulating film and the semiconductor, the accumulation density of positive charges generated on the organic semiconductor side is improved, so that the on / off ratio can be improved. At this time, the gate voltage required to turn on the ON state changes depending on the dipole, that is, the strength of the charge distribution in the molecule. That is, it is possible to control the threshold voltage by selecting the surface modifier.
The change in surface charge due to surface treatment also lowers the surface free energy, which promotes molecular reorientation and crystallization at the time of polymer / low molecular weight organic semiconductor film formation, thereby improving transistor characteristics. .
 図4(c)に示すように、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間に半導体層21を形成する。半導体層21は、例えば、TIPSペンタセン(6,13-Bis(triisopropylsilylethynyl)pentacene)のような有機溶媒に可溶な有機半導体材料を当該有機溶媒に溶解させた溶液を作製し、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間に塗布、乾燥させることにより形成してもよい。なお、半導体層21を形成する前に、めっき層18(ソース電極)及びめっき層19(ドレイン電極)の間の化合物層12を露光して親水化してもよい。トランジスタのチャネルに対応する部分を親水化することで、当該親水化部分に上記溶液が好適に塗布され、半導体層21を選択的に形成しやすくなる。また、半導体層21は、上記溶液にPS(ポリスチレン)やPMMA(ポリメタクリル酸メチル)などの絶縁性ポリマーを1種類以上添加し、当該絶縁性ポリマーを含む溶液を塗布、乾燥することにより形成してもよい。このようにして半導体層21を形成すると、半導体層21の下方(絶縁体層17側)に絶縁性ポリマーが集中して形成される。有機半導体と絶縁体層との界面にアミノ基などの極性基が存在する場合、トランジスタ特性の低下を生じる傾向にあるが、上述の絶縁性ポリマーを介して有機半導体を設ける構成とすることにより、トランジスタ特性の低下を抑制することができる。以上のようにして、トランジスタを製造することが可能である。 4) As shown in FIG. 4C, the semiconductor layer 21 is formed between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode). The semiconductor layer 21 is formed, for example, by preparing a solution in which an organic semiconductor material soluble in an organic solvent such as TIPS pentacene (6,13-Bis (triisopropylsilylethyl) pentacene) is dissolved in the organic solvent, and forming the plating layer 18 (source). It may be formed by coating and drying between the electrode) and the plating layer 19 (drain electrode). Before forming the semiconductor layer 21, the compound layer 12 between the plating layer 18 (source electrode) and the plating layer 19 (drain electrode) may be exposed to be hydrophilic. By making the portion corresponding to the channel of the transistor hydrophilic, the above solution is suitably applied to the hydrophilic portion, and the semiconductor layer 21 can be easily formed selectively. The semiconductor layer 21 is formed by adding at least one kind of insulating polymer such as PS (polystyrene) or PMMA (polymethyl methacrylate) to the above solution, and applying and drying a solution containing the insulating polymer. You may. When the semiconductor layer 21 is formed in this manner, the insulating polymer is concentrated below the semiconductor layer 21 (on the insulator layer 17 side). When a polar group such as an amino group is present at the interface between the organic semiconductor and the insulator layer, the transistor characteristics tend to decrease, but by providing the organic semiconductor via the insulating polymer described above, Deterioration of transistor characteristics can be suppressed. As described above, a transistor can be manufactured.
 なお、トランジスタの構造としては、特に制限はなく、目的に応じて適宜選択することができる。図2~図4の態様では、ボトムコンタクト・ボトムゲート型のトランジスタの製造方法について説明したが、トップコンタクト・ボトムゲート型、トップコンタクト・トップゲート型、ボトムコンタクト・トップゲート型のトランジスタも同様にして製造してもよい。 The structure of the transistor is not particularly limited, and can be appropriately selected depending on the purpose. 2 to 4, the method of manufacturing a bottom-contact / bottom-gate transistor has been described. However, the same applies to a top-contact / bottom-gate transistor, a top-contact / top-gate transistor, and a bottom-contact / top-gate transistor. May be manufactured.
 以下、図面を参照して、本実施形態におけるパターン形成方法の一例を説明する。 
 本実施形態のパターン形成方法において、いわゆるロール・ツー・ロールプロセスに対応する可撓性の基板を用いる場合には、図1に示すような、ロール・ツー・ロール装置である基板処理装置100を用いてパターンを形成してもよい。 
Hereinafter, an example of a pattern forming method according to the present embodiment will be described with reference to the drawings.
In the pattern forming method of the present embodiment, when a flexible substrate corresponding to a so-called roll-to-roll process is used, the substrate processing apparatus 100 which is a roll-to-roll apparatus as shown in FIG. The pattern may be formed by using the above.
 図1に示すように、基板処理装置100は、帯状の基板(例えば、帯状のフィルム部材)Sを供給する基板供給部2と、基板Sの表面(被処理面)Saに対して処理を行う基板処理部3と、基板Sを回収する基板回収部4と、光応答性ニトロベンジル基を有する化合物の塗布部6と、露光部7と、マスク8と、パターン材料塗布部9と、これらの各部を制御する制御部CONTと、を有している。基板処理部3は、基板供給部2から基板Sが送り出されてから、基板回収部4によって基板Sが回収されるまでの間に、基板Sの表面に各種処理を実行できる。
 この基板処理装置100は、基板S上に例えば有機EL素子、液晶表示素子等の表示素子(電子デバイス)を形成する場合に好適に用いることができる。
As shown in FIG. 1, the substrate processing apparatus 100 performs processing on a substrate supply unit 2 that supplies a band-shaped substrate (for example, a band-shaped film member) S and a surface (processed surface) Sa of the substrate S. A substrate processing unit 3, a substrate recovery unit 4 for recovering the substrate S, a coating unit 6 of a compound having a photoresponsive nitrobenzyl group, an exposure unit 7, a mask 8, a pattern material coating unit 9, And a control unit CONT for controlling each unit. The substrate processing unit 3 can execute various processes on the surface of the substrate S after the substrate S is sent out from the substrate supply unit 2 and before the substrate S is collected by the substrate collection unit 4.
The substrate processing apparatus 100 can be suitably used when a display element (electronic device) such as an organic EL element or a liquid crystal display element is formed on the substrate S.
 なお、図1は、所望のパターン光を生成するためにフォトマスクを用いる方式を図示したものであるが、本実施形態は、フォトマスクを用いないマスクレス露光方式にも好適に適用することができる。フォトマスクを用いずにパターン光を生成するマスクレス露光方式としては、DMD等の空間光変調素子を用いる方法、レーザービームプリンターのようにスポット光を走査する方式等が挙げられる。 Although FIG. 1 illustrates a method using a photomask to generate a desired pattern light, the present embodiment can be suitably applied to a maskless exposure method using no photomask. it can. Examples of a maskless exposure method for generating pattern light without using a photomask include a method using a spatial light modulator such as a DMD, and a method of scanning a spot light like a laser beam printer.
 本実施形態のパターン形成方法においては、図1に示すようにXYZ座標系を設定し、以下では適宜このXYZ座標系を用いて説明を行う。XYZ座標系は、例えば、水平面に沿ってX軸及びY軸が設定され、鉛直方向に沿って上向きにZ軸が設定される。また、基板処理装置100は、全体としてX軸に沿って、そのマイナス側(-側)からプラス側(+側)へ基板Sを搬送する。その際、帯状の基板Sの幅方向(短尺方向)は、Y軸方向に設定される。 In the pattern forming method according to the present embodiment, an XYZ coordinate system is set as shown in FIG. 1, and the following description will be made using the XYZ coordinate system as appropriate. In the XYZ coordinate system, for example, an X axis and a Y axis are set along a horizontal plane, and a Z axis is set upward along a vertical direction. The substrate processing apparatus 100 transports the substrate S from the minus side (−side) to the plus side (+ side) along the X axis as a whole. At that time, the width direction (short direction) of the band-shaped substrate S is set in the Y-axis direction.
 基板処理装置100において処理対象となる基板Sとしては、例えば樹脂フィルムやステンレス鋼などの箔(フォイル)を用いることができる。例えば、樹脂フィルムは、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、酢酸ビニル樹脂、などの材料を用いることができる。 (4) As the substrate S to be processed in the substrate processing apparatus 100, for example, a foil (a foil) such as a resin film or stainless steel can be used. For example, the resin film may be made of a material such as polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, vinyl acetate resin, and the like. Can be used.
基板Sは、例えば200℃程度の熱を受けても寸法が変わらないように熱膨張係数が小さい方が好ましい。例えば、フィルムをアニールすることで、寸法変化を抑制することができる。また、無機フィラーを樹脂フィルムに混合して熱膨張係数を小さくすることができる。無機フィラーの例としては、酸化チタン、酸化亜鉛、アルミナ、酸化ケイ素などが挙げられる。また、基板Sはフロート法等で製造された厚さ100μm程度の極薄ガラスの単体、或いはその極薄ガラスに上記樹脂フィルムやアルミ箔を貼り合わせた積層体であっても良い。 It is preferable that the substrate S has a small coefficient of thermal expansion so that its dimensions do not change even if it receives heat of about 200 ° C., for example. For example, dimensional changes can be suppressed by annealing the film. Further, the thermal expansion coefficient can be reduced by mixing the inorganic filler with the resin film. Examples of the inorganic filler include titanium oxide, zinc oxide, alumina, and silicon oxide. The substrate S may be a single piece of ultra-thin glass having a thickness of about 100 μm manufactured by a float method or the like, or may be a laminate in which the above-described resin film or aluminum foil is bonded to the ultra-thin glass.
 基板Sの幅方向(短尺方向)の寸法は例えば1m~2m程度に形成されており、長さ方向(長尺方向)の寸法は例えば10m以上に形成されている。勿論、この寸法は一例に過ぎず、これに限られることは無い。例えば基板SのY方向の寸法が50cm以下であっても構わないし、2m以上であっても構わない。また、基板SのX方向の寸法が10m以下であっても構わない。 The size of the substrate S in the width direction (short direction) is, for example, about 1 m to 2 m, and the size in the length direction (long direction) is, for example, 10 m or more. Of course, this dimension is only an example, and is not limited to this. For example, the dimension of the substrate S in the Y direction may be 50 cm or less, or 2 m or more. Further, the dimension of the substrate S in the X direction may be 10 m or less.
 基板Sは、可撓性を有するように形成されていることが好ましい。ここで可撓性とは、基板に自重程度の力を加えても線断したり破断したりすることはなく、該基板を撓めることが可能な性質をいう。また、自重程度の力によって屈曲する性質も可撓性に含まれる。
 また、上記可撓性は、該基板の材質、大きさ、厚さ、又は温度などの環境、等に応じて変わる。なお、基板Sとしては、1枚の帯状の基板を用いても構わないが、複数の単位基板を接続して帯状に形成される構成としても構わない。
The substrate S is preferably formed to have flexibility. Here, the term "flexible" refers to a property that the substrate can be bent without breaking or breaking even when a force of about its own weight is applied to the substrate. In addition, the property of being bent by the force of its own weight is also included in the flexibility.
The flexibility varies depending on the material, size, thickness, environment such as temperature, and the like of the substrate. Note that, as the substrate S, a single band-shaped substrate may be used, but a configuration in which a plurality of unit substrates are connected to form a band may be used.
 基板供給部2は、例えばロール状に巻かれた基板Sを基板処理部3へ送り出して供給する。この場合、基板供給部2には、基板Sを巻きつける軸部や当該軸部を回転させる回転駆動装置などが設けられる。この他、例えばロール状に巻かれた状態の基板Sを覆うカバー部などが設けられた構成であっても構わない。なお、基板供給部2は、ロール状に巻かれた基板Sを送り出す機構に限定されず、帯状の基板Sをその長さ方向に順次送り出す機構(例えばニップ式の駆動ローラ等)を含むものであればよい。 The substrate supply unit 2 sends out and supplies the substrate S wound in a roll shape to the substrate processing unit 3, for example. In this case, the substrate supply unit 2 is provided with a shaft around which the substrate S is wound, a rotation driving device for rotating the shaft, and the like. In addition, for example, a configuration in which a cover or the like that covers the substrate S wound in a roll shape may be provided. The substrate supply unit 2 is not limited to a mechanism that sends out the substrate S wound in a roll shape, but includes a mechanism (for example, a nip-type driving roller or the like) that sequentially sends out the band-like substrate S in the length direction. I just need.
 基板回収部4は、基板処理装置100を通過した基板Sを例えばロール状に巻きとって回収する。基板回収部4には、基板供給部2と同様に、基板Sを巻きつけるための軸部や当該軸部を回転させる回転駆動源、回収した基板Sを覆うカバー部などが設けられている。なお、基板処理部3において基板Sがパネル状に切断される場合などには例えば基板Sを重ねた状態に回収するなど、ロール状に巻いた状態とは異なる状態で基板Sを回収する構成であっても構わない。 The substrate recovery unit 4 recovers the substrate S that has passed through the substrate processing apparatus 100, for example, by winding it into a roll. Similar to the substrate supply unit 2, the substrate recovery unit 4 includes a shaft for winding the substrate S, a rotation drive source for rotating the shaft, a cover for covering the recovered substrate S, and the like. When the substrate S is cut into a panel in the substrate processing unit 3, the substrate S is collected in a state different from the state of being wound in a roll, for example, the substrate S is collected in a stacked state. It does not matter.
 基板処理部3は、基板供給部2から供給される基板Sを基板回収部4へ搬送すると共に、搬送の過程で基板Sの被処理面Saに対して光応答性膜を形成する工程、所定パターンの光を照射する工程、及びパターン形成材料を配置させる工程を行う。基板処理部3は、基板Sの被処理面Saに対して光応答性膜を形成するための材料を塗布する塗布部6と、光を照射する露光部7と、マスク8と、パターン材料塗布部9と、加工処理の形態に対応した条件で基板Sを送る駆動ローラR等を含む搬送装置20とを有している。 The substrate processing unit 3 transports the substrate S supplied from the substrate supply unit 2 to the substrate recovery unit 4, and forms a photoresponsive film on the processing target surface Sa of the substrate S during the transport process. A step of irradiating the pattern with light and a step of disposing a pattern forming material are performed. The substrate processing section 3 includes an application section 6 for applying a material for forming a photoresponsive film to the surface to be processed Sa of the substrate S, an exposure section 7 for irradiating light, a mask 8, and a pattern material application. It has a unit 9 and a transfer device 20 including a driving roller R for sending the substrate S under conditions corresponding to the form of processing.
 塗布部6と、パターン材料塗布部9は、液滴塗布装置(例えば、液滴吐出型塗布装置、インクジェット型塗布装置、スピンコート型塗布装置、ロールコート型塗布装置、スロットコート型塗布装置など)が挙げられる。 The coating unit 6 and the pattern material coating unit 9 are formed by a droplet coating device (for example, a droplet discharge type coating device, an inkjet type coating device, a spin coating type coating device, a roll coating type coating device, and a slot coating type coating device). Is mentioned.
 これらの各装置は、基板Sの搬送経路に沿って適宜設けられ、フレキシブル・ディスプレイのパネル等が、所謂ロール・ツー・ロール方式で生産可能となっている。本実施形態では、露光部7が設けられるものとし、その前後の工程(感光層形成工程、感光層現像工程等)を担う装置も必要に応じてインライン化して設けられる。 These devices are appropriately provided along the transport path of the substrate S, and a panel of a flexible display or the like can be produced by a so-called roll-to-roll method. In the present embodiment, it is assumed that the exposure unit 7 is provided, and an apparatus for performing the processes before and after the process (the photosensitive layer forming process, the photosensitive layer developing process, etc.) is provided inline as necessary.
≪化合物≫
 本実施形態に用いる光応答性ニトロベンジル基を有する化合物は、下記一般式(1)で表される含フッ素化合物であることが好ましい。
≪Compound≫
The compound having a photoresponsive nitrobenzyl group used in the present embodiment is preferably a fluorine-containing compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
[一般式(1)中、Xはハロゲン原子又はアルコキシ基を表し、Rは水素原子又は炭素数1~10の直鎖状、分岐鎖状又は環状のアルキル基を表し、Rf1、Rf2はそれぞれ独立にアルコキシ基、シロキシ基、またはフッ素化アルコキシ基であって、nは0以上の整数を表す。]
Figure JPOXMLDOC01-appb-C000006
[In the general formula (1), X represents a halogen atom or an alkoxy group, R 1 represents a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, and R f1 and R f2 Is each independently an alkoxy group, a siloxy group, or a fluorinated alkoxy group, and n represents an integer of 0 or more. ]
 前記一般式(1)中、Xはハロゲン原子又はアルコキシ基である。Xで表されるハロゲン原子は、フッ素原子、塩素原子、臭素原子又はヨウ素原子等を挙げることができるが、Xはハロゲン原子であるよりもアルコキシ基であることが好ましい。nは整数を表し、出発原料の入手の容易さの点から、1~20の整数であることが好ましく、2~15の整数であることがより好ましい。 In the general formula (1), X is a halogen atom or an alkoxy group. Examples of the halogen atom represented by X include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. X is preferably an alkoxy group rather than a halogen atom. n represents an integer and is preferably an integer of 1 to 20, more preferably an integer of 2 to 15, from the viewpoint of availability of starting materials.
 前記一般式(1)中、Rは水素原子、又は炭素数1~10の直鎖状、分岐鎖状又は環状のアルキル基である。
 Rのアルキル基としては、炭素数1~5の直鎖状または分岐鎖状のアルキル基が好ましく、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基等が挙げられる。
 環状のアルキル基としては、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカンなどのポリシクロアルカンから1個以上の水素原子を除いた基などが挙げられる。
 本実施形態においては、Rは水素原子、メチル基又はエチル基であることが好ましい。
In the general formula (1), R 1 is a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
The alkyl group for R 1 is preferably a straight-chain or branched-chain alkyl group having 1 to 5 carbon atoms, specifically, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl and the like. Group, tert-butyl group, pentyl group, isopentyl group, neopentyl group and the like.
Examples of the cyclic alkyl group include groups in which one or more hydrogen atoms have been removed from a polycycloalkane such as a monocycloalkane, a bicycloalkane, a tricycloalkane, and a tetracycloalkane.
In the present embodiment, R 1 is preferably a hydrogen atom, a methyl group or an ethyl group.
 前記一般式(1)中、Rf1、Rf2はそれぞれ独立にアルコキシ基、シロキシ基、またはフッ素化アルコキシ基である。
 前記一般式(1)中、Rf1、Rf2のアルコキシ基、シロキシ基、またはフッ素化アルコキシ基は、好ましくは炭素数3以上のアルコキシ基であって、部分的にフッ素化されたものであってもよく、パーフルオロアルコキシ基であってもよい。本実施形態においては、部分的にフッ素化されたフッ素化アルコキシ基であることが好ましい。
In the general formula (1), R f1 and R f2 are each independently an alkoxy group, a siloxy group, or a fluorinated alkoxy group.
In the general formula (1), the alkoxy group, siloxy group, or fluorinated alkoxy group of R f1 and R f2 is preferably an alkoxy group having 3 or more carbon atoms and is partially fluorinated. Or a perfluoroalkoxy group. In the present embodiment, a partially fluorinated alkoxy group is preferable.
 本実施形態において、Rf1、Rf2のフッ素化アルコキシ基としては、例えば、-O-(CH f1-(C f22n f2 +1)で表される基が挙げられる。前記nf1は0以上の整数であり、nf2は0以上の整数である。
 本実施形態において、nf1は0~30であることが好ましく、0~15であることがより好ましく、0~5であることが特に好ましい。
 また、本実施形態において、nf2は0~30であることが好ましく、0~15であることがより好ましく、1~8であることが特に好ましい。
In the present embodiment, examples of the fluorinated alkoxy group for R f1 and R f2 include a group represented by —O— (CH 2 ) n f1 — (C n f2 F 2n f2 +1 ). Nf1 is an integer of 0 or more, and nf2 is an integer of 0 or more.
In the present embodiment, n f1 is preferably 0 to 30, more preferably 0 to 15, and particularly preferably 0 to 5.
In the present embodiment, nf2 is preferably from 0 to 30, more preferably from 0 to 15, and particularly preferably from 1 to 8.
 前記一般式(1)中、nは0以上の整数である。本実施形態においては、nは1以上が好ましく、3以上であることがより好ましい。 NIn the general formula (1), n is an integer of 0 or more. In the present embodiment, n is preferably 1 or more, and more preferably 3 or more.
 以下に一般式(1)で表される含フッ素化合物の具体例を示す。 具体 Specific examples of the fluorine-containing compound represented by the general formula (1) are shown below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記の含フッ素化合物は、国際公開第2015/029981号公報に記載の方法により製造することができる。 The above-mentioned fluorine-containing compound can be produced by the method described in WO 2015/029981.
 本工程における化学修飾の一例を下記に示す。下記式中、X、R、Rf1、Rf2、nについての説明は前記一般式(1)中におけるR、Rf1、Rf2、nについての説明と同様である。 An example of the chemical modification in this step is shown below. In the following formula, the description of X, R 1 , R f1 , R f2 , and n is the same as the description of R 1 , R f1 , R f2 , and n in the general formula (1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
S…基板、CONT…制御部、Sa…被処理面、2…基板供給部、3…基板処理部、4…基板回収部、6…含フッ素化合物塗布部、7…露光部、8…マスク、9…パターン材料塗布部、100…基板処理装置  S: substrate, CONT: control unit, Sa: surface to be processed, 2: substrate supply unit, 3: substrate processing unit, 4: substrate recovery unit, 6: fluorine-containing compound application unit, 7: exposure unit, 8: mask, 9: pattern material application unit, 100: substrate processing device

Claims (10)

  1.  対象物の上に導電性材料を用いてゲート電極を形成し、
     前記ゲート電極上に絶縁膜を形成し、
     前記絶縁膜上に光応答性ニトロベンジル基を有する化合物を含む材料を用いて光応答性膜を形成し、
     前記光応答性膜を選択的に露光して、露光部の前記光応答性基を解離させ、 親水性の露光部と、撥水性の未露光部とからなるパターンを形成し、 前記露光部に導電性材料を配置してソース電極とドレイン電極を形成し、 前記未露光部の表面エネルギーを低下させた改質層を形成し、 前記改質層の上に半導体層を形成する、ことを含むトランジスタの製造方法。
    Form a gate electrode using a conductive material on the object,
    Forming an insulating film on the gate electrode,
    Forming a photoresponsive film using a material containing a compound having a photoresponsive nitrobenzyl group on the insulating film;
    Selectively exposing the photoresponsive film to dissociate the photoresponsive group in the exposed portion, forming a pattern comprising a hydrophilic exposed portion and a water-repellent unexposed portion, Forming a source electrode and a drain electrode by disposing a conductive material, forming a modified layer having reduced surface energy of the unexposed portion, and forming a semiconductor layer on the modified layer. A method for manufacturing a transistor.
  2.  前記改質層を形成する工程は、光照射工程と、光応答性表面処理剤で表面処理する表面処理工程をさらに含む、請求項1に記載のトランジスタの製造方法。 The method according to claim 1, wherein the step of forming the modified layer further includes a light irradiation step and a surface treatment step of performing a surface treatment with a photoresponsive surface treatment agent.
  3.  前記パターンは、電子デバイス用の回路パターンである、請求項1又は2に記載のトランジスタの製造方法。 The method according to claim 1 or 2, wherein the pattern is a circuit pattern for an electronic device.
  4.  前記化合物は、前記保護基が分解されることによりアミノ基を生じる化合物である、請求項1~3のいずれか1項に記載のトランジスタの製造方法。 (4) The method for producing a transistor according to any one of (1) to (3), wherein the compound is a compound that generates an amino group when the protective group is decomposed.
  5.  前記パターンを形成するための材料は、液状の導電材料又は液状の半導体材料を含む、請求項1~4のいずれか1項に記載のトランジスタの製造方法。 The method according to any one of claims 1 to 4, wherein the material for forming the pattern includes a liquid conductive material or a liquid semiconductor material.
  6.  前記露光の光は波長が200nm~450nmの範囲に含まれる光を含む、請求項1~5のいずれか1項に記載のトランジスタの製造方法。 6. The method of manufacturing a transistor according to claim 1, wherein the light for the exposure includes light having a wavelength in a range of 200 nm to 450 nm.
  7.  前記対象物は樹脂材料からなる基板である、請求項1~6のいずれか1項に記載のトランジスタの製造方法。 The method of manufacturing a transistor according to any one of claims 1 to 6, wherein the object is a substrate made of a resin material.
  8.  前記対象物は可撓性を有する基板である、請求項1~7のいずれか1項に記載のトランジスタの製造方法。 (8) The method of manufacturing a transistor according to any one of (1) to (7), wherein the object is a flexible substrate.
  9.  前記パターンは、親水領域及び撥水領域からなり、前記親水領域又は撥水領域に無電解めっき用触媒を配置し、無電解めっきを行う無電解めっき工程を含む、請求項1~8のいずれか1項に記載のトランジスタの製造方法。 9. The pattern according to claim 1, wherein the pattern includes a hydrophilic area and a water-repellent area, and includes an electroless plating step of arranging an electroless plating catalyst in the hydrophilic area or the water-repellent area and performing electroless plating. 2. A method for manufacturing a transistor according to claim 1.
  10.  前記無電解めっき工程において、前記親水領域に前記無電解めっき用触媒を配置する、請求項9に記載のトランジスタの製造方法。 The method according to claim 9, wherein in the electroless plating step, the electroless plating catalyst is disposed in the hydrophilic region.
PCT/JP2019/031832 2018-08-30 2019-08-13 Transistor production method WO2020045078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018161268 2018-08-30
JP2018-161268 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020045078A1 true WO2020045078A1 (en) 2020-03-05

Family

ID=69644925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031832 WO2020045078A1 (en) 2018-08-30 2019-08-13 Transistor production method

Country Status (2)

Country Link
TW (1) TW202020572A (en)
WO (1) WO2020045078A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044659A1 (en) * 2007-10-05 2009-04-09 Konica Minolta Holdings, Inc. Pattern forming method
JP2011054774A (en) * 2009-09-02 2011-03-17 Denso Corp Method of manufacturing semiconductor device
JP2011216647A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Method for manufacturing pattern-formed body, method for manufacturing functional element, and method for manufacturing semiconductor element
JP2016157111A (en) * 2015-02-25 2016-09-01 学校法人神奈川大学 Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044659A1 (en) * 2007-10-05 2009-04-09 Konica Minolta Holdings, Inc. Pattern forming method
JP2011054774A (en) * 2009-09-02 2011-03-17 Denso Corp Method of manufacturing semiconductor device
JP2011216647A (en) * 2010-03-31 2011-10-27 Dainippon Printing Co Ltd Method for manufacturing pattern-formed body, method for manufacturing functional element, and method for manufacturing semiconductor element
JP2016157111A (en) * 2015-02-25 2016-09-01 学校法人神奈川大学 Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor

Also Published As

Publication number Publication date
TW202020572A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
JP6640593B2 (en) Fluorine-containing composition, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor manufacturing method
US20160152642A1 (en) Flourine-containing compound, substrate for patterning, photodegradable coupling agent, patterning method, and compound
CN111183143B (en) Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and method for manufacturing transistor
US11398601B2 (en) Pattern forming method, method for producing transistor, and member for pattern formation
JP2022132379A (en) Manufacturing method for transistor
WO2016136817A1 (en) Fluorine-containing composition, substrate for patterning, photo-degradable coupling agent, method for patterning, and manufacturing method for transistor
WO2020045078A1 (en) Transistor production method
WO2020194588A1 (en) Pattern formation method
WO2020100710A1 (en) Pattern forming method, transistor manufacturing method, and film for pattern formation
CN110198946B (en) Compound, substrate for pattern formation, photodegradable coupling agent, pattern formation method, and method for manufacturing transistor
JP6298989B2 (en) Fluorine-containing compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, compound, organic thin film transistor
WO2019073878A1 (en) Compound, pattern forming substrate, photodegradable coupling agent, pattern forming method, and transistor production method
WO2019017386A1 (en) Compound, pattern forming substrate, coupling agent, and pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19854324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP