WO2019073830A1 - リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019073830A1
WO2019073830A1 PCT/JP2018/036513 JP2018036513W WO2019073830A1 WO 2019073830 A1 WO2019073830 A1 WO 2019073830A1 JP 2018036513 W JP2018036513 W JP 2018036513W WO 2019073830 A1 WO2019073830 A1 WO 2019073830A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
lithium ion
positive electrode
secondary battery
electrode composition
Prior art date
Application number
PCT/JP2018/036513
Other languages
English (en)
French (fr)
Inventor
真一朗 大角
達也 永井
哲哉 伊藤
盛文 鐘
軍 陳
▲チィェン▼ 張
敏 曾
Original Assignee
デンカ株式会社
江西理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710936706.2A external-priority patent/CN109659506A/zh
Application filed by デンカ株式会社, 江西理工大学 filed Critical デンカ株式会社
Priority to CN201880065331.XA priority Critical patent/CN111316476A/zh
Priority to US16/754,736 priority patent/US20200313159A1/en
Priority to EP18865988.2A priority patent/EP3686965A4/en
Priority to KR1020207013290A priority patent/KR102630117B1/ko
Priority to JP2019548129A priority patent/JP7223999B2/ja
Publication of WO2019073830A1 publication Critical patent/WO2019073830A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • One of the key devices commonly required in these technologies is a battery, and such a battery is required to have a high energy density to miniaturize the system.
  • high output characteristics are required to enable stable power supply regardless of the operating environment temperature.
  • good cycle characteristics that can withstand long-term use are also required. Therefore, there is a rapid progress in replacing conventional lead acid batteries, nickel-cadmium batteries and nickel-hydrogen batteries with lithium ion secondary batteries having higher energy density, power characteristics and cycle characteristics.
  • the basic configuration of such a lithium ion secondary battery comprises a positive electrode, a negative electrode, a separator, and an electrolyte
  • the positive electrode is generally a positive electrode containing a positive electrode active material such as a lithium composite oxide, a conductive agent, and a binder.
  • the composition comprises a metal foil current collector such as aluminum.
  • the conductive agent generally, particulate carbon materials such as carbon black are used.
  • carbon black has a structure in which primary particles close to a sphere are connected on a bead as a common structure, and such a structure is called a structure.
  • the length of the structure is generally evaluated indirectly using the DBP absorption amount measured in accordance with JIS K 6217-4. The larger the DBP absorption amount, the longer the structure and the better the conductivity.
  • Patent Document 1 it is proposed that, when the carbon nanofibers electrically bridge the active material and the carbon black, a very good conductive path is created in the electrode, and a battery excellent in cycle characteristics is obtained. ing. However, if carbon black with a small particle size and a long structure is used, which is said to be able to improve the conductivity with a smaller amount, a good conductive path can not be sufficiently formed and practically sufficient performance can not be obtained. Was an issue.
  • Patent Document 2 proposes that by using carbon black and carbon nanotubes in combination, uneven distribution of the conductive agent in the electrode is prevented, and a battery excellent in output characteristics is obtained.
  • carbon black having a small particle diameter and a short structure it is considered to be more excellent in conductivity, and in the case where carbon black having a small particle diameter and a long structure is used, entanglement of structures is caused. It is a problem that the conductive agent is unevenly distributed in the electrode due to the aggregation, and practically sufficient performance can not be obtained.
  • Patent Document 3 when the ratio of the fibrous carbon material is 1 to 20% by weight and the ratio of the granular carbon material is 99 to 80% by weight based on 100% by weight of the entire conductive agent, the conductivity in the electrode is achieved. It is proposed to improve the battery performance and to obtain a battery with excellent cycle characteristics and output characteristics. However, since a large proportion of particulate carbon material is used and carbon black having a small particle diameter and a long structure is used, which is considered to be excellent in conductivity, a good conductive path is sufficiently formed by aggregation due to entanglement of structures. The problem was that no sufficient performance could be obtained for practical use.
  • Patent Document 4 proposes that by using carbon black and a graphitized carbon fiber in combination, the conductive path in the positive electrode is stabilized, and a battery excellent in output characteristics and cycle characteristics is obtained.
  • Patent Document 5 proposes that by using carbon black and fibrous carbon in combination, it is possible to obtain a battery having low resistance and excellent discharge capacity and cycle characteristics.
  • the fiber diameter of the fibrous carbon material is large, and many fibrous carbon materials are required to create a good conductive path, so the proportion of carbon black which is considered to be excellent in the liquid retention of the electrolytic solution The problem is that the output characteristics when used in a low temperature environment are practically insufficient.
  • the present invention provides a positive electrode composition for a lithium ion secondary battery which can easily obtain a lithium ion secondary battery having a small internal resistance and excellent in output characteristics, cycle characteristics and low temperature characteristics.
  • the purpose is to
  • the present inventors have found that the above problems can be solved by using carbon black having a small particle diameter and a long structure and carbon nanotubes having a narrow fiber diameter as a conductive agent with respect to a specific active material.
  • the present invention provides a positive electrode composition for a lithium ion secondary battery including a lithium nickel cobalt manganese composite oxide as an active material, carbon black having a small particle diameter and a long structure as a conductive agent, and carbon nanotubes having a thin fiber diameter.
  • the lithium ion secondary battery manufactured by using it was found to be low in internal resistance and excellent in output characteristics, cycle characteristics and low temperature characteristics, and was completed.
  • a positive electrode composition for a lithium ion secondary battery comprising an active material capable of inserting and extracting lithium ions and a conductive agent,
  • the active material is lithium-nickel-cobalt-manganese composite oxide
  • the conductive agent is carbon black and carbon nanotubes
  • the BET specific surface area of the carbon black is 100 to 400 m 2 / g
  • the DBP absorption is 210 to 380 ml / 100 g
  • the positive electrode composition for a lithium ion secondary battery according to (1) wherein the BET specific surface area of the lithium nickel cobalt manganese composite oxide is 0.20 to 0.55 m 2 / g.
  • the content X (unit: mass%) of the carbon black in the positive electrode composition and the content Y (unit: mass%) of the carbon nanotube satisfy the following conditions (A) and (B)
  • the positive electrode composition for a lithium ion secondary battery according to (1) or (2) characterized in that (A) 1.0 ⁇ (X + Y) ⁇ 3.0 (B) 0.65 ⁇ ⁇ X / (X + Y) ⁇ ⁇ 0.75 (4)
  • a positive electrode for a lithium ion secondary battery comprising the positive electrode composition for a lithium ion secondary battery according to any one of (1) to (3).
  • a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to (4).
  • a positive electrode composition for a lithium ion secondary battery which can easily obtain a lithium ion secondary battery having a small internal resistance and excellent in output characteristics, cycle characteristics and low temperature characteristics.
  • the positive electrode composition for a lithium ion secondary battery of the present invention is a positive electrode composition for a lithium ion secondary battery containing an active material and a conductive agent, the active material is a lithium nickel cobalt manganese composite oxide, and the conductive agent Are carbon black and carbon nanotubes, the BET specific surface area of the carbon black is 100 to 400 m 2 / g, the DBP absorption amount is 210 to 380 ml / 100 g, and the average diameter of the carbon nanotubes is 7 to 15 nm It is a positive electrode composition for lithium ion secondary batteries characterized by being.
  • the active material in the present invention is a lithium-nickel-cobalt-manganese composite oxide.
  • the lithium-nickel-cobalt-manganese composite oxide is the same as the lithium-nickel-cobalt-manganese composite oxide as a general active material for a battery, LiNi 0.8 Mn 0.1 Co 0.1 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , LiNi 0.5 Mn 0.3 Co 0.2 It is selected from O 2 , LiNi 0.4 Mn 0.4 Co 0.2 O 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 and the like. Among them, LiNi 0.5 Mn 0.3 Co 0.2 O 2 which is excellent in the balance between the electrical conductivity, capacity and cycle characteristics is preferable.
  • the BET specific surface area of the lithium-nickel-cobalt-manganese composite oxide in the present invention is preferably 0.20 to 0.55 m 2 / g.
  • the BET specific surface area is preferably 0.20 to 0.55 m 2 / g.
  • the conductive agent in the present invention is carbon black and carbon nanotubes.
  • Carbon black is selected from acetylene black, furnace black, channel black and the like as carbon black as a general battery conductive agent. Among them, acetylene black excellent in crystallinity and purity is preferable.
  • the BET specific surface area of carbon black in the present invention is 100 to 400 m 2 / g.
  • the BET specific surface area of carbon black in the present invention is 100 to 400 m 2 / g.
  • the BET specific surface area of carbon black is preferably 100 to 210 m 2 / g, and more preferably 100 to 160 m 2 / g.
  • the DBP absorption amount of carbon black in the present invention is 210 to 380 ml / 100 g.
  • the DBP absorption amount is 210 ml / 100 g or more.
  • the structure when used as a conductive agent has a sufficient length, and good conductivity can be obtained.
  • the amount is preferably 240 to 280 ml / 100 g.
  • the volume resistivity of the carbon black in the present invention is not particularly limited, but it is preferably as low as possible from the viewpoint of conductivity. Specifically, the volume resistivity measured under a compression of 7.5 MPa is preferably 0.30 ⁇ ⁇ cm or less, and more preferably 0.25 ⁇ ⁇ cm or less.
  • the ash content and the water content of carbon black in the present invention are not particularly limited, but from the viewpoint of suppression of side reactions, it is preferable that the both be as small as possible.
  • the ash content is preferably 0.04% by mass or less, and the water content is preferably 0.10% by mass or less.
  • the average diameter of the carbon nanotubes in the present invention is 7 to 15 nm.
  • the average diameter of the carbon nanotubes is preferably 7 to 11 nm.
  • the content X (unit: mass%) of carbon black and the content Y (unit: mass%) of carbon nanotube are 1.0 ⁇ (X + Y) ⁇ 3.0 and 0.65 ⁇ ⁇ X / (X + Y) ) ⁇ ⁇ 0.75 is preferred.
  • 1.0 ⁇ (X + Y) ⁇ 3.0 the content of the conductive agent, which is a component not contributing to the charge and discharge capacity in the positive electrode composition, can be suppressed to a low level, and sufficient conductivity can be maintained. become.
  • 0.65 ⁇ ⁇ X / (X + Y) ⁇ ⁇ 0.75 it is possible to obtain good conductivity by bridging carbon black and carbon nanotubes in the positive electrode composition in a complex manner. Become.
  • a well-known method can be used for manufacture of the positive electrode composition for lithium ion secondary batteries of this invention.
  • it can be obtained by mixing a solvent dispersion solution of a positive electrode active material, a conductive agent, and a binder with a ball mill, sand mill, twin-screw kneader, rotation / revolution stirrer, planetary mixer, disperse mixer, etc. And used as a slurry.
  • the positive electrode active material and the conductive agent those described above may be used.
  • the carbon black and the carbon black may be separately introduced into the mixer, or may be mixed beforehand by a known method.
  • binder examples include polymers such as polyvinylidene fluoride, polytetrafluoroethylene, styrene-butadiene copolymer, polyvinyl alcohol, acrylonitrile-butadiene copolymer, carboxylic acid-modified (meth) acrylate copolymer and the like. Be Among these, polyvinylidene fluoride is preferable in terms of oxidation resistance.
  • the dispersion medium examples include water, N-methyl-2-pyrrolidone, cyclohexane, methyl ethyl ketone, methyl isobutyl ketone and the like. When polyvinylidene fluoride is used as a binder, N-methyl-2-pyrrolidone is preferable in terms of solubility.
  • the positive electrode composition for a lithium ion secondary battery of the present invention can contain components other than the positive electrode active material, the conductive agent, the binder, and the dispersion medium, as long as the effects of the present invention are not impaired.
  • components other than the positive electrode active material, the conductive agent, the binder, and the dispersion medium as long as the effects of the present invention are not impaired.
  • polyvinyl pyrrolidone, polyvinyl imidazole, polyethylene glycol, polyvinyl alcohol, polyvinyl butyral, carboxymethyl cellulose, acetyl cellulose, carboxylic acid modified (meth) acrylic acid ester copolymer, etc. may be included for the purpose of improving dispersibility.
  • the above-mentioned slurry is applied on a metal foil current collector such as aluminum, and then the solvent contained in the slurry is removed by heating, and the positive electrode active material is intervened through the binder.
  • An electrode mixture layer which is a porous body bonded to the surface of the current collector, is formed.
  • the target electrode can be obtained by pressing the current collector and the electrode mixture layer into contact with each other by a roll press or the like.
  • the lithium ion secondary battery of the present invention is not particularly limited, for example, a portable camera such as a digital camera, a video camera, a portable audio player, a portable liquid crystal television etc., a notebook computer, a smartphone, a mobile PC etc.
  • a portable camera such as a digital camera, a video camera, a portable audio player, a portable liquid crystal television etc.
  • a notebook computer such as a tablet, a notebook computer, a smartphone, a mobile PC etc.
  • it can be used in a wide range of fields such as portable game devices, electric tools, electric bicycles, hybrid cars, electric cars, and power storage systems.
  • the positive electrode composition for a lithium ion secondary battery of the present invention will be described in detail by examples and comparative examples. However, the present invention is not limited to the following examples unless the gist is exceeded.
  • Example 1 Lithium nickel cobalt manganese complex oxide LiNi 0.5 Mn 0.3 Co 0.2 O 2 (“S532", manufactured by Jiangxi Jiangte Lithium Battery Materials, as the active material) with a BET specific surface area of 0.48 m 2 / g as the active material; 133 m 2 / g, carbon black with a DBP absorption of 267 ml / 100 g (“Li-435” manufactured by Denka Co., Ltd.), and an N-methylpyrrolidone solution of carbon nanotubes with an average diameter of 9 nm (manufactured by CNano, “LB 107”) Prepared.
  • the lithium nickel cobalt manganese complex oxide 96 mass%, the carbon black 1.4 mass%, the carbon nanotube dissolved in 0.60 mass%, and a solution of polyvinylidene fluoride N-methylpyrrolidone as a binder are dissolved.
  • a solution of polyvinylidene fluoride N-methylpyrrolidone as a binder are dissolved.
  • 2.0 mass%, and N-methylpyrrolidone as a dispersion medium were further added and mixed to obtain a positive electrode composition for a lithium ion secondary battery.
  • the positive electrode composition for a lithium ion secondary battery was applied to an aluminum foil with a thickness of 20 ⁇ m using a baker-type applicator, dried, and then pressed and cut to obtain a positive electrode for a lithium ion secondary battery.
  • Negative electrode composition for lithium ion secondary battery [graphite (Shenzhen BTR company make, "AGP-2A") 95 mass%, carbon black (Denka company make, "Li-400”) 1.0%, polyvinylidene fluoride 1. 5%, styrene-butadiene copolymer 2.5%] was coated on a 20 ⁇ m thick copper foil using a baker-type applicator, dried, and then pressed and cut to obtain a negative electrode for a lithium ion secondary battery .
  • Lithium ion secondary battery Lithium ion secondary battery
  • the positive electrode, the separator (LLC, “Celgard”), and the negative electrode are stacked and laminated together, then packed and pre-sealed with an aluminum laminate film, and then electrolyte is injected, battery formatting, vacuum sealing, A laminate type lithium ion secondary battery was obtained.
  • Example 2 A positive electrode composition for a lithium ion secondary battery in the same manner as in Example 1 except that the content of carbon black in Example 1 was changed to 1.2% by mass and the content of carbon nanotubes to 0.80% by mass. A positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced, and each evaluation was carried out. The results are shown in Table 1.
  • Example 3 A positive electrode composition for a lithium ion secondary battery in the same manner as in Example 1 except that the content of carbon black in Example 1 was changed to 1.6% by mass and the content of carbon nanotubes to 0.40% by mass. A positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced, and each evaluation was carried out. The results are shown in Table 1.
  • Example 4 A positive electrode composition for a lithium ion secondary battery in the same manner as in Example 1 except that the content of carbon black in Example 1 was changed to 0.63% by mass and the content of carbon nanotubes was changed to 0.27% by mass. A positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced, and each evaluation was carried out. The results are shown in Table 1.
  • Example 5 A positive electrode composition for a lithium ion secondary battery in the same manner as in Example 1 except that the content of carbon black in Example 1 was changed to 2.2% by mass and the content of carbon nanotubes to 0.93% by mass. A positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced, and each evaluation was carried out. The results are shown in Table 1.
  • Example 6 A lithium-nickel-cobalt-manganese composite oxide of Example 1 was compared with a lithium-nickel-cobalt-manganese composite oxide LiNi 0.5 Mn 0.3 Co 0.2 O 2 having a BET specific surface area of 0.15 m 2 / g (manufactured by Jiangxi Jiangte Lithium Battery Materials, “L532”. Except having changed into "), the positive electrode composition for lithium ion secondary batteries, the positive electrode for lithium ion secondary batteries, and the lithium ion secondary battery were produced by the method similar to Example 1, and each evaluation was implemented. The results are shown in Table 1.
  • Example 7 A lithium-nickel-cobalt-manganese composite oxide of Example 1 was prepared using a lithium-nickel-cobalt-manganese composite oxide having a BET specific surface area of 0.15 m 2 / g LiNi 1/3 Mn 1/3 Co 1/3 O 2 (Jiangxi Jiangte Lithium Battery)
  • a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery are prepared in the same manner as in Example 1 except that the material is changed to "L333" manufactured by Materials. Each evaluation was carried out. The results are shown in Table 1.
  • Example 8 A lithium ion secondary was prepared in the same manner as in Example 1 except that the carbon black in Example 1 was changed to carbon black having a BET specific surface area of 382 m 2 / g and a DBP absorption of 305 ml / 100 g (manufactured by Denka).
  • a positive electrode composition for battery, a positive electrode for lithium ion secondary battery, and a lithium ion secondary battery were produced, and each evaluation was carried out. The results are shown in Table 1.
  • Example 6 is the same as Example 1 except that the carbon black in Example 1 is changed to a carbon black having a BET specific surface area of 58 m 2 / g and a DBP absorption of 200 ml / 100 g (manufactured by Denka, “Li-250”).
  • a positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery were produced by the method, and each evaluation was carried out. The results are shown in Table 2.
  • Comparative Example 4 A lithium ion secondary was prepared in the same manner as in Example 1 except that the carbon black in Example 1 was changed to a carbon black having a BET specific surface area of 877 m 2 / g and a DBP absorption of 390 ml / 100 g (manufactured by Lion Corporation).
  • a positive electrode composition for battery, a positive electrode for lithium ion secondary battery, and a lithium ion secondary battery were produced, and each evaluation was carried out. The results are shown in Table 2.
  • Comparative Example 5 A positive electrode composition for a lithium ion secondary battery, a lithium ion secondary battery, in the same manner as in Example 1, except that the carbon nanotubes of Example 1 were changed to carbon nanotubes (manufactured by Wako Chemical Co., Ltd.) having an average diameter of 5 nm. A positive electrode and a lithium ion secondary battery were produced, and each evaluation was carried out. The results are shown in Table 2.
  • Comparative Example 6 A positive electrode composition for a lithium ion secondary battery, a lithium ion secondary battery, in the same manner as in Example 1, except that the carbon nanotubes of Example 1 were changed to carbon nanotubes (manufactured by Wako Chemical Co., Ltd.) having an average diameter of 25 nm. A positive electrode and a lithium ion secondary battery were produced, and each evaluation was carried out. The results are shown in Table 2.
  • Comparative Example 7 A positive electrode composition for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery, in the same manner as in Example 1, except that the carbon nanotubes of Example 1 were changed to vapor grown carbon fibers having an average diameter of 150 nm. And the lithium ion secondary battery was produced and each evaluation was implemented. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れたリチウムイオン二次電池を簡便に得ることができるリチウムイオン二次電池用正極組成物を提供すること。リチウムイオンを吸蔵及び放出可能な活物質及び導電剤を含むリチウムイオン二次電池用正極組成物であり、前記活物質はリチウムニッケルコバルトマンガン複合酸化物であり、前記導電剤はカーボンブラック、及びカーボンナノチューブであり、前記カーボンブラックのBET比表面積が100~400m2/gであり、DBP吸収量が210~380ml/100gであり、前記カーボンナノチューブの平均直径が7~15nmであることを特徴とするリチウムイオン二次電池用正極組成物。

Description

リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池に関する。
 環境・エネルギー問題の高まりから、化石燃料への依存度を減らす低炭素社会の実現に向けた技術の開発が盛んに行われている。このような技術開発の例としては、ハイブリッド電気自動車や電気自動車等の低公害車の開発、太陽光発電や風力発電等の自然エネルギー発電・蓄電システムの開発、電力を効率よく供給し、送電ロスを減らす次世代送電網の開発等があり、多岐に渡っている。
 これらの技術に共通して必要となるキーデバイスの一つが電池であり、このような電池に対しては、システムを小型化するための高いエネルギー密度が求められる。また、使用環境温度に左右されずに安定した電力の供給を可能にするための高い出力特性が求められる。さらに、長期間の使用に耐えうる良好なサイクル特性等も求められる。そのため、従来の鉛蓄電池、ニッケル-カドミウム電池、ニッケル-水素電池から、より高いエネルギー密度、出力特性及びサイクル特性を有するリチウムイオン二次電池への置き換えが急速に進んでいる。
 このようなリチウムイオン二次電池の基本構成は、正極、負極、セパレーター、電解質からなり、正極は、一般的には、リチウム複合酸化物等の正極活物質、導電剤、結着剤を含む正極組成物、及びアルミニウム等の金属箔集電体からなる。導電剤には、一般的には、カーボンブラック等の粒子状炭素材料が用いられる。
 ところで、カーボンブラックはその共通の構造として球形に近い1次粒子が数珠上に繋がりあった構造を有しており、このような構造をストラクチャと呼ぶ。ストラクチャの長さは、一般的にJIS K6217-4に準拠して測定されるDBP吸収量を用いて間接的に評価され、DBP吸収量が大きいほどストラクチャが長く、導電性に優れるとされる。
 近年ではこのリチウムイオン二次電池のエネルギー密度及び電池性能の更なる向上が求められている。このため電極中で充放電容量に寄与しない成分である導電剤の含有量をより少なくすることが求められている。そこで、カーボンブラック等の粒子状炭素材料よりも高いアスペクト比を有し、より少ない量で導電性を向上できる繊維状炭素材料を導電剤として併用する技術が提案されている。
 特許文献1では、カーボンナノファイバが活物質とカーボンブラックとの電気的な橋渡しを行うことにより、電極中に極めて良好な導電経路が作られ、サイクル特性に優れた電池が得られることが提案されている。しかし、より少ない量で導電性を向上できるとされる、粒子径が小さくストラクチャの長いカーボンブラックを用いた場合は、良好な導電経路が十分に作られず、実用上十分な性能が得られないことが課題であった。
 特許文献2では、カーボンブラックとカーボンナノチューブを併用することで、電極中に導電剤が偏在することを防ぎ、出力特性に優れた電池が得られることが提案されている。しかし、粒子径が小さくストラクチャの短いカーボンブラックを用いることを想定しているため、より導電性に優れるとされる、粒子径が小さくストラクチャの長いカーボンブラックを用いた場合にはストラクチャ同士の絡み合いによる凝集によって、電極中に導電剤が偏在し、実用上十分な性能が得られないことが課題であった。
 特許文献3では、導電剤全体を100重量%としたときの繊維状炭素材料の割合を1~20重量%、粒状炭素材料の割合を99~80重量%とすることで、電極内での導電性が向上し、サイクル特性、出力特性に優れた電池が得られることを提案している。しかし、粒状炭素材料の割合が多いため、導電性に優れるとされる、粒子径が小さくストラクチャの長いカーボンブラックを用いた場合には、ストラクチャの絡み合いによる凝集によって、良好な導電経路が十分に作られず、実用上十分な性能が得られないことが課題であった。
 特許文献4では、カーボンブラックと黒鉛化カーボンファイバーを併用することで、正極中の導電パスを安定なものとし、出力特性、サイクル特性に優れた電池が得られることが提案されている。また、特許文献5では、カーボンブラックと繊維状炭素を併用することで、抵抗が低く、放電容量、サイクル特性に優れた電池が得られることが提案されている。しかし、いずれにおいても繊維状炭素材料の繊維径が太く、良好な導電経路を造るために多くの繊維状炭素材料を必要とするため、電解液の保液性に優れるとされるカーボンブラックの割合が少なくなり、低温環境使用時での出力特性が実用上不十分であることが課題であった。
国際公開第2013/179909号 特開2007-80652号公報 特開平11-176446号公報 特開2001-126733号公報 特開2010-238575号公報
 本発明は、上記問題と実情に鑑み、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れたリチウムイオン二次電池を簡便に得ることができるリチウムイオン二次電池用正極組成物を提供することを目的とする。
 本発明者らは鋭意研究の結果、特定の活物質に対して、粒子径が小さくストラクチャの長いカーボンブラック、繊維径が細いカーボンナノチューブを導電剤として用いることにより、上記課題を解決できることを見出した。
 具体的には、本発明は活物質としてリチウムニッケルコバルトマンガン複合酸化物、導電剤として粒子径が小さくストラクチャの長いカーボンブラックと繊維径の細いカーボンナノチューブを含むリチウムイオン二次電池用正極組成物を用いて製造したリチウムイオン二次電池は、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れることを見出して完成されたものである。
 すなわち、本願発明は以下のように特定される。
(1)リチウムイオンを吸蔵及び放出可能な活物質及び導電剤を含むリチウムイオン二次電池用正極組成物であり、
 前記活物質はリチウムニッケルコバルトマンガン複合酸化物であり、
 前記導電剤はカーボンブラック、及びカーボンナノチューブであり、
 前記カーボンブラックのBET比表面積が100~400m2/gであり、DBP吸収量が210~380ml/100gであり、
 前記カーボンナノチューブの平均直径が7~15nmであることを特徴とするリチウムイオン二次電池用正極組成物。
(2)前記リチウムニッケルコバルトマンガン複合酸化物のBET比表面積が0.20~0.55m2/gであることを特徴とする(1)に記載のリチウムイオン二次電池用正極組成物。
(3)前記正極組成物中の前記カーボンブラックの含有量X(単位:質量%)、及び前記カーボンナノチューブの含有量Y(単位:質量%)が、下記条件(A)、(B)を満たすことを特徴とする(1)又は(2)に記載のリチウムイオン二次電池用正極組成物。
 (A)1.0≦(X+Y)≦3.0
 (B)0.65≦{X/(X+Y)}≦0.75
(4)(1)から(3)のいずれか1項に記載のリチウムイオン二次電池用正極組成物を含むリチウムイオン二次電池用正極。
(5)(4)に記載のリチウムイオン二次電池用正極を備えたリチウムイオン二次電池。
 本発明によれば、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れたリチウムイオン二次電池を簡便に得ることができるリチウムイオン二次電池用正極組成物を提供することができる。
 以下、本発明を詳細に説明する。本発明のリチウムイオン二次電池用正極組成物は、活物質及び導電剤を含むリチウムイオン二次電池用正極組成物であり、前記活物質はリチウムニッケルコバルトマンガン複合酸化物であり、前記導電剤はカーボンブラック、及びカーボンナノチューブであり、前記カーボンブラックのBET比表面積が100~400m2/gであり、DBP吸収量が210~380ml/100gであり、前記カーボンナノチューブの平均直径が7~15nmであることを特徴とするリチウムイオン二次電池用正極組成物である。
 本発明における活物質は、リチウムニッケルコバルトマンガン複合酸化物である。リチウムニッケルコバルトマンガン複合酸化物は、一般の電池用活物質としてのリチウムニッケルコバルトマンガン複合酸化物同様、LiNi0.8Mn0.1Co0.12、LiNi0.6Mn0.2Co0.22、LiNi0.5Mn0.3Co0.22、LiNi0.4Mn0.4Co0.22、LiNi1/3Mn1/3Co1/32などの中から選ばれるものである。中でも、電気伝導性、容量、サイクル特性のバランスに優れるLiNi0.5Mn0.3Co0.22が好ましい。
 本発明におけるリチウムニッケルコバルトマンガン複合酸化物のBET比表面積は、0.20~0.55m2/gであることが好ましい。BET比表面積を0.20m2/g以上とすることで、集電体及び導電剤との電気的接点が多くなり、十分な活物質の利用効率が得られるようになる。また、0.55m2/g以下とすることで、粒子間の相互作用が抑制されるため、正極組成物中により均一に分散され、十分な活物質の利用効率が得られるようになる。
 本発明における導電剤は、カーボンブラック、及びカーボンナノチューブである。カーボンブラックは、一般の電池用導電剤としてのカーボンブラック同様、アセチレンブラック、ファーネスブラック、チャンネルブラックなどの中から選ばれるものである。中でも、結晶性及び純度に優れるアセチレンブラックが好ましい。
 本発明におけるカーボンブラックのBET比表面積は100~400m2/gである。BET比表面積を100m2/g以上とすることで、活物質及び集電体との電気的接点が多くなり、良好な電子伝導性が得られる。また、400m2/g以下とすることで、粒子間の相互作用が抑制されるため、正極組成物中により均一に分散され、良好な導電性が得られる。この観点から、カーボンブラックのBET比表面積は100~210m2/gであることが好ましく、100~160m2/gであることがさらに好ましい。
 本発明におけるカーボンブラックのDBP吸収量は210~380ml/100gである。DBP吸収量を210ml/100g以上とすることで、導電剤として使用される際のストラクチャが十分な長さを持ち、良好な導電性が得られる。また、380ml/100g以下とすることで、ストラクチャ同士の絡み合いによる凝集が抑えられるため、正極組成物中により均一に分散され、良好な導電性が得られる。この観点から、カーボンブラックのDBP吸収量は240~280ml/100gであることが好ましい。
 本発明におけるカーボンブラックの体積抵抗率はとくに限定されるものではないが、導電性の観点から低いほど好ましい。具体的には、7.5MPa圧縮下で測定した体積抵抗率は0.30Ω・cm以下が好ましく、0.25Ω・cm以下が好ましい。
 本発明におけるカーボンブラックの灰分及び水分はとくに限定されるものではないが、副反応の抑制の観点から、どちらも少ないほど好ましい。具体的には、灰分は0.04質量%以下が好ましく、水分は0.10質量%以下が好ましい。
 本発明におけるカーボンナノチューブの平均直径は7~15nmである。平均直径を7nm以上とすることで、絡み合いによる凝集が抑えられるため、正極組成物中により均一に分散され、良好な導電性が得られる。また、15nm以下とすることで、活物質及び集電体との電気的接点が多くなり、良好な電子伝導性が得られる。この観点から、カーボンナノチューブの平均直径は7~11nmであることが好ましい。
 本発明におけるカーボンブラックの含有量X(単位:質量%)及びカーボンナノチューブの含有量Y(単位:質量%)は1.0≦(X+Y)≦3.0かつ0.65≦{X/(X+Y)}≦0.75であることが好ましい。1.0≦(X+Y)≦3.0とすることで、正極組成物中で充放電容量に寄与しない成分である導電剤の含有量を低く抑え、かつ十分な導電性を保つことができるようになる。また、0.65≦{X/(X+Y)}≦0.75とすることで、正極組成物中でカーボンブラックとカーボンナノチューブが複雑に橋渡しをすることにより、良好な導電性が得られるようになる。
 本発明のリチウムイオン二次電池用正極組成物の製造には公知の方法を用いることができる。例えば、正極活物質、導電剤、結着剤の溶媒分散溶液をボールミル、サンドミル、二軸混練機、自転公転式攪拌機、プラネタリーミキサー、ディスパーミキサー等により混合することで得られ、一般的には、スラリーにして用いられる。正極活物質及び導電剤としては、既述したものを用いれば良い。カーボッブラックとカーボンナノチューブは別々に混合器に投入しても、あるいは公知の方法で事前に混合しておいても良い。結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、スチレン-ブタジエン共重合体、ポリビニルアルコール、アクリロニトリル-ブタジエン共重合体、カルボン酸変性(メタ)アクリル酸エステル共重合体等の高分子が挙げられる。これらの中では、耐酸化性の点でポリフッ化ビニリデンが好ましい。分散媒としては、水、N-メチル-2-ピロリドン、シクロヘキサン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。結着剤としてポリフッ化ビニリデンを使用する際は、溶解性の点でN-メチル-2-ピロリドンが好ましい。
 また、本発明のリチウムイオン二次電池用正極組成物は、本発明の効果を損なわない範囲で、正極活物質、導電剤、結着剤、及び分散媒以外の成分を含むことができる。例えば、分散性を向上させる目的でポリビニルピロリドン、ポリビニルイミダゾール、ポリエチレングリコール、ポリビニルアルコール、ポリビニルブチラール、カルボキシメチルセルロース、アセチルセルロース又はカルボン酸変性(メタ)アクリル酸エステル共重合体などを含んでも良い。
 本発明のリチウムイオン二次電池用正極は、前記スラリーをアルミニウム等の金属箔集電体上に塗布した後、加熱によりスラリーに含まれる溶剤を除去し、正極活物質が結着剤を介して集電体表面に結着された多孔質体である電極合材層を形成する。さらに集電体と電極合材層をロールプレス等により加圧して密着させることにより、目的とする電極を得ることができる。
 本発明のリチウムイオン二次電池の作製方法には、特に制限は無く、従来公知の二次電池の作製方法を用いて行えば良いが、例えば、以下の方法により作製することもできる。すなわち、正極と負極との間に絶縁層となるポリオレフィン製微多孔膜を配し、正極、負極及びポリオレフィン製微多孔膜の空隙部分に非水電解液が十分に染込むまで注液することで作製することができる。
 本発明のリチウムイオン二次電池は、特に限定されないが、例えば、デジタルカメラ、ビデオカメラ、ポータブルオーディオプレイヤー、携帯液晶テレビ等の携帯AV機器、ノート型パソコン、スマートフォン、モバイルPC等の携帯情報端末、その他、携帯ゲーム機器、電動工具、電動式自転車、ハイブリット自動車、電気自動車、電力貯蔵システム等の幅広い分野において使用することができる。
 以下、実施例及び比較例により、本発明のリチウムイオン二次電池用正極組成物を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
<実施例1>
(リチウムイオン二次電池用正極組成物)
 活物質としてBET比表面積が0.48m2/gのリチウムニッケルコバルトマンガン複合酸化物LiNi0.5Mn0.3Co0.22(Jiangxi Jiangte Lithium Battery Materials社製、「S532」)、導電剤としてBET比表面積が133m2/g、DBP吸収量が267ml/100gのカーボンブラック(デンカ社製、「Li-435」)、及び平均直径が9nmのカーボンナノチューブのN-メチルピロリドン溶液(CNano社製、「LB107」)を用意した。前記リチウムニッケルコバルトマンガン複合酸化物96質量%、前記カーボンブラック1.4質量%、前記カーボンナノチューブを溶質量で0.60質量%に、結着剤としてポリフッ化ビニリデンのN-メチルピロリドン溶液を溶質量で2.0質量%、さらに分散媒としてN-メチルピロリドンを加えて混合し、リチウムイオン二次電池用正極組成物を得た。
(リチウムイオン二次電池用正極)
 前記リチウムイオン二次電池用正極組成物を、ベーカー式アプリケーターを用いて厚さ20μmのアルミニウム箔に塗布、乾燥し、その後、プレス、裁断して、リチウムイオン二次電池用正極を得た。
(リチウムイオン二次電池用負極)
 リチウムイオン二次電池用負極組成物[黒鉛(Shenzhen BTR社製、「AGP-2A」)95質量%、カーボンブラック(デンカ社製、「Li-400」)1.0%、ポリフッ化ビニリデン1.5%、スチレン-ブタジエン共重合体2.5%]をベーカー式アプリケーターを用いて厚さ20μm銅箔に塗布、乾燥し、その後、プレス、裁断して、リチウムイオン二次電池用負極を得た。
(リチウムイオン二次電池)
  前記正極、セパレーター(LLC社製、「Celgard」)、前記負極を共に重ね、積層した後、アルミラミネートフィルムでパック、プレシーリングし、続いて電解液を注入し、バッテリーフォーマッティング、真空シーリングして、ラミネート型リチウムイオン二次電池を得た。
[内部抵抗]
 作製したリチウムイオン二次電池を、電圧範囲2.75~4.2Vで5サイクル、充電/放電した後、周波数範囲10MHz~0.001Hz、振動電圧5mVでインピーダンス解析を行った。本実施例の内部抵抗は37.5mΩであった。
[出力特性(3C放電時の容量維持率)]
 作製したリチウムイオン二次電池を、25℃において4.2V、0.2C制限の定電流定電圧充電をした後、0.2Cの定電流で2.75Vまで放電した。次いで、放電電流を0.2C、3Cと変化させ、各放電電流に対する放電容量を測定した。そして、0.2C放電時に対する3C放電時の容量維持率を計算した。本実施例の3C放電時の容量維持率は96.5%であった。
[サイクル特性(サイクル容量維持率)]
 作製したリチウムイオン電池を、25℃において4.2V、1C制限の定電流定電圧充電をした後、6Cの定電流で2.75Vまで放電した。充電及び放電のサイクルを繰り返し行い、1サイクル目の放電容量に対する800サイクル目の放電容量の比率を求めてサイクル容量維持率とした。本実施例のサイクル容量維持率は84.0%であった。
[低温出力特性(-20℃放電時の容量維持率)]
 作製したリチウムイオン二次電池を、25℃において4.2V、0.2C制限の定電流定電圧充電をした後、1Cの定電流で2.75Vまで放電した。次いで、-20℃において4.2V、0.2C制限の定電流定電圧充電をした後、1Cの定電流で2.75Vまで放電した。そして、25℃放電時に対する-20℃放電時の容量維持率を計算した。本実施例の-20℃放電時の容量維持率は63.9%であった。
<実施例2>
 実施例1のカーボンブラックの含有量を1.2質量%、カーボンナノチューブの含有量を0.80質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例3>
 実施例1のカーボンブラックの含有量を1.6質量%、カーボンナノチューブの含有量を0.40質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例4>
 実施例1のカーボンブラックの含有量を0.63質量%、カーボンナノチューブの含有量を0.27質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例5>
 実施例1のカーボンブラックの含有量を2.2質量%、カーボンナノチューブの含有量を0.93質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例6>
 実施例1のリチウムニッケルコバルトマンガン複合酸化物を、BET比表面積が0.15m2/gのリチウムニッケルコバルトマンガン複合酸化物LiNi0.5Mn0.3Co0.22(Jiangxi Jiangte Lithium Battery Materials社製、「L532」)に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例7>
 実施例1のリチウムニッケルコバルトマンガン複合酸化物を、BET比表面積が0.15m2/gのリチウムニッケルコバルトマンガン複合酸化物LiNi1/3Mn1/3Co1/32(Jiangxi Jiangte Lithium Battery Materials社製、「L333」)に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<実施例8>
 実施例1のカーボンブラックを、BET比表面積が382m2/g、DBP吸収量が305ml/100gのカーボンブラック(デンカ社製)に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表1に示す。
<比較例1>
 実施例1のカーボンブラックの含有量を0質量%、カーボンナノチューブの含有量を2.0質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
<比較例2>
 実施例1のカーボンブラックの含有量を2.0質量%、カーボンナノチューブの含有量を0質量%に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
<比較例3>
 実施例1のカーボンブラックを、BET比表面積が58m2/g、DBP吸収量が200ml/100gのカーボンブラック(デンカ社製、「Li-250」)に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
<比較例4>
 実施例1のカーボンブラックを、BET比表面積が877m2/g、DBP吸収量が390ml/100gのカーボンブラック(ライオン社製)に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
<比較例5>
 実施例1のカーボンナノチューブを、平均直径が5nmのカーボンナノチューブ(ワコーケミカル社製)に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
<比較例6>
 実施例1のカーボンナノチューブを、平均直径が25nmのカーボンナノチューブ(ワコーケミカル社製)に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
<比較例7>
 実施例1のカーボンナノチューブを、平均直径が150nmの気相成長炭素繊維に変更した以外は、実施例1と同様な方法でリチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池を作製し、各評価を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び2の結果から、本発明のリチウムイオン二次電池用正極組成物を用いて作製したリチウムイオン二次電池は、内部抵抗が小さく、出力特性、サイクル特性、低温特性に優れることがわかった。

Claims (5)

  1.  リチウムイオンを吸蔵及び放出可能な活物質及び導電剤を含むリチウムイオン二次電池用正極組成物であり、
     前記活物質はリチウムニッケルコバルトマンガン複合酸化物であり、
     前記導電剤はカーボンブラック、及びカーボンナノチューブであり、
     前記カーボンブラックのBET比表面積が100~400m2/gであり、DBP吸収量が210~380ml/100gであり、
     前記カーボンナノチューブの平均直径が7~15nmであることを特徴とするリチウムイオン二次電池用正極組成物。
  2.  前記リチウムニッケルコバルトマンガン複合酸化物のBET比表面積が0.20~0.55m2/gであることを特徴とする請求項1に記載のリチウムイオン二次電池用正極組成物。
  3.  前記正極組成物中の前記カーボンブラックの含有量X(単位:質量%)、及び前記カーボンナノチューブの含有量Y(単位:質量%)が、下記条件(A)、(B)を満たすことを特徴とする請求項1又は2に記載のリチウムイオン二次電池用正極組成物。
     (A)1.0≦(X+Y)≦3.0
     (B)0.65≦{X/(X+Y)}≦0.75
  4.  請求項1から3のいずれか1項に記載のリチウムイオン二次電池用正極組成物を含むリチウムイオン二次電池用正極。
  5.  請求項4に記載のリチウムイオン二次電池用正極を備えたリチウムイオン二次電池。
PCT/JP2018/036513 2017-10-10 2018-09-28 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池 WO2019073830A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880065331.XA CN111316476A (zh) 2017-10-10 2018-09-28 锂离子二次电池用正极组合物、锂离子二次电池用正极和锂离子二次电池
US16/754,736 US20200313159A1 (en) 2017-10-10 2018-09-28 Positive electrode composition for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
EP18865988.2A EP3686965A4 (en) 2017-10-10 2018-09-28 COMPOSITION OF POSITIVE ELECTRODE FOR SECONDARY LITHIUM-ION BATTERIES, POSITIVE ELECTRODE FOR SECONDARY LITHIUM-ION BATTERIES, AND SECONDARY LITHIUM-ION BATTERY
KR1020207013290A KR102630117B1 (ko) 2017-10-10 2018-09-28 리튬이온 이차전지용 양극 조성물, 리튬이온 이차전지용 양극, 및 리튬이온 이차전지
JP2019548129A JP7223999B2 (ja) 2017-10-10 2018-09-28 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710936706.2A CN109659506A (zh) 2017-10-10 2017-10-10 锂离子二次电池用正极组合物、锂离子二次电池用正极和锂离子二次电池
CN201710936706.2 2017-10-10
CN201811068266.4 2018-09-13
CN201811068266 2018-09-13

Publications (1)

Publication Number Publication Date
WO2019073830A1 true WO2019073830A1 (ja) 2019-04-18

Family

ID=66101542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036513 WO2019073830A1 (ja) 2017-10-10 2018-09-28 リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20200313159A1 (ja)
EP (1) EP3686965A4 (ja)
JP (1) JP7223999B2 (ja)
KR (1) KR102630117B1 (ja)
CN (1) CN111316476A (ja)
WO (1) WO2019073830A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200397A1 (ja) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 二次電池用正極及び二次電池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (ja) 1997-12-15 1999-07-02 Hitachi Ltd リチウム二次電池
JP2001126733A (ja) 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2007080652A (ja) 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2010238575A (ja) 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
WO2012114590A1 (ja) * 2011-02-23 2012-08-30 三洋電機株式会社 非水電解質二次電池用電極及びその製造方法並びに非水電解質二次電池
WO2013179909A1 (ja) 2012-05-31 2013-12-05 三菱マテリアル株式会社 リチウムイオン二次電池の電極及びその電極用ペーストの調製方法並びにその電極の作製方法
JP2015115106A (ja) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 導電組成物、正極、およびリチウムイオン二次電池。
JP2017182989A (ja) * 2016-03-29 2017-10-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極合剤スラリー、非水電解質二次電池用正極、及び非水電解質二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519685B2 (ja) * 2005-03-14 2010-08-04 株式会社東芝 非水電解質電池
JP5345300B2 (ja) * 2006-06-27 2013-11-20 花王株式会社 リチウムイオン電池用複合正極材料およびこれを用いた電池
CN104603992B (zh) * 2012-08-28 2018-08-21 电化株式会社 锂离子二次电池用电极材料、其制造方法及锂离子二次电池
KR101666871B1 (ko) * 2013-04-23 2016-10-24 삼성에스디아이 주식회사 양극 활물질 및 이의 제조 방법, 그리고 상기 양극 활물질을 포함하는 리튬 이차 전지
JP6436094B2 (ja) * 2013-12-04 2018-12-12 日本電気株式会社 二次電池用正極活物質、その製造方法および二次電池
CN109417167B (zh) * 2016-03-31 2022-05-03 通用汽车环球科技运作有限责任公司 用于锂离子电池的包覆钛酸锂

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176446A (ja) 1997-12-15 1999-07-02 Hitachi Ltd リチウム二次電池
JP2001126733A (ja) 1999-10-27 2001-05-11 Sony Corp 非水電解質電池
JP2007080652A (ja) 2005-09-14 2007-03-29 Sumitomo Osaka Cement Co Ltd リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
JP2010238575A (ja) 2009-03-31 2010-10-21 Ube Ind Ltd リチウムイオン電池用電極およびその製造方法
WO2012114590A1 (ja) * 2011-02-23 2012-08-30 三洋電機株式会社 非水電解質二次電池用電極及びその製造方法並びに非水電解質二次電池
WO2013179909A1 (ja) 2012-05-31 2013-12-05 三菱マテリアル株式会社 リチウムイオン二次電池の電極及びその電極用ペーストの調製方法並びにその電極の作製方法
JP2015115106A (ja) * 2013-12-09 2015-06-22 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 導電組成物、正極、およびリチウムイオン二次電池。
JP2017182989A (ja) * 2016-03-29 2017-10-05 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極合剤スラリー、非水電解質二次電池用正極、及び非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3686965A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200397A1 (ja) * 2020-03-31 2021-10-07 パナソニックIpマネジメント株式会社 二次電池用正極及び二次電池

Also Published As

Publication number Publication date
EP3686965A4 (en) 2020-10-28
CN111316476A (zh) 2020-06-19
JP7223999B2 (ja) 2023-02-17
EP3686965A1 (en) 2020-07-29
KR102630117B1 (ko) 2024-01-25
JPWO2019073830A1 (ja) 2020-10-22
KR20200073241A (ko) 2020-06-23
US20200313159A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7337049B2 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP5462445B2 (ja) リチウムイオン二次電池
JP7490567B2 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
WO2012144177A1 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP2007173134A (ja) リチウムイオン電池の電極用材料、リチウムイオン電池の電極形成用スラリーおよびリチウムイオン電池
CN112820869B (zh) 负极活性材料、电化学装置和电子装置
JP2011216272A (ja) 電極材料組成物及びリチウムイオン電池
WO2018179934A1 (ja) 負極材料および非水電解質二次電池
JP2010225366A (ja) 非水電解質二次電池
CN111554902B (zh) 负极材料、负极极片、电化学装置和电子装置
JPH04162357A (ja) 非水系二次電池
KR102630117B1 (ko) 리튬이온 이차전지용 양극 조성물, 리튬이온 이차전지용 양극, 및 리튬이온 이차전지
JP4120439B2 (ja) リチウムイオン2次電池
JP4430778B2 (ja) リチウムイオン二次電池とその製造方法
CN105513814A (zh) 一种能量型电容电池
JP2006344395A (ja) リチウム二次電池用正極及びその利用と製造
US20220393148A1 (en) Negative electrode and nonaqueous electrolyte secondary battery including the same
CN116031384A (zh) 锂离子二次电池用正极组合物、锂离子二次电池用正极和锂离子二次电池
JP2016201228A (ja) 活物質およびそれを用いた電池
WO2024026615A1 (zh) 负极活性材料、电化学装置和电子装置
KR20150142735A (ko) 리튬 이온 이차 전지용 음극활물질로서 카본이 코팅된 NbO₂의 제조 방법
CN116565119A (zh) 正极极片、二次电池及其制备方法和含有二次电池的装置
JP2014078341A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019548129

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018865988

Country of ref document: EP

Effective date: 20200420

ENP Entry into the national phase

Ref document number: 20207013290

Country of ref document: KR

Kind code of ref document: A