WO2019072457A1 - Gas- und flüssigkraftstoffeinspritzung mit einem zweistoffeinspritzventil - Google Patents

Gas- und flüssigkraftstoffeinspritzung mit einem zweistoffeinspritzventil Download PDF

Info

Publication number
WO2019072457A1
WO2019072457A1 PCT/EP2018/073765 EP2018073765W WO2019072457A1 WO 2019072457 A1 WO2019072457 A1 WO 2019072457A1 EP 2018073765 W EP2018073765 W EP 2018073765W WO 2019072457 A1 WO2019072457 A1 WO 2019072457A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve needle
dual
fuel
injection
fuel injector
Prior art date
Application number
PCT/EP2018/073765
Other languages
English (en)
French (fr)
Inventor
Andreas Koeninger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2019072457A1 publication Critical patent/WO2019072457A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M43/00Fuel-injection apparatus operating simultaneously on two or more fuels, or on a liquid fuel and another liquid, e.g. the other liquid being an anti-knock additive
    • F02M43/04Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0694Injectors operating with a plurality of fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0257Details of the valve closing elements, e.g. valve seats, stems or arrangement of flow passages
    • F02M21/026Lift valves, i.e. stem operated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/46Valves, e.g. injectors, with concentric valve bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to a method for operating an internal combustion engine with the features of the preamble of claim 1.
  • a gaseous fuel is injected via a plurality of circularly arranged injection openings under high pressure in a combustion chamber of the internal combustion engine, wherein gas jets are generated by means of a previously injected diesel pilot injection ignited and burned difffusively.
  • the gaseous fuel may be, in particular, natural gas ("natural gas”, abbreviated "NG").
  • natural gas abbreviated "NG”
  • the invention further relates to a dual-fuel injector for carrying out the method according to the invention.
  • natural gas is injected directly into a combustion chamber of an internal combustion engine, ignited by means of a previously injected diesel pilot injection and then burned in a diffusive manner.
  • Natural gas has a diesel-like combustion and thus torque characteristic, so that the degree of integration into existing diesel propulsion systems is high, which means that there are generally only minor changes to the internal combustion engine, cooling system and / or exhaust aftertreatment system are required.
  • dual-fuel injectors which have two coaxially arranged, one inside another guided valve needles. Such a dual-fuel injector is exemplified in DE 10 2014 225 167 AI.
  • the fuel or fuels are processed via so-called multi-hole nozzles. These have several circular arranged Einblas sec. Injection openings, wherein an outer hole circle for injecting the gaseous fuel via the outer valve needle and an inner hole circle for injecting the diesel pilot injection via the inner valve needle is controlled. Per hole, a full jet is generated in this way (diesel or gas jet).
  • the present invention has the object to optimize the combustion of gaseous fuels.
  • a gaseous fuel is injected via a plurality of circularly arranged injection openings under high pressure into a combustion chamber of the internal combustion engine.
  • This gas jets are generated, which are ignited and burned by means of a previously injected liquid fuel, in particular diesel fuel pilot injection.
  • a hollow cone jet is generated during the injection of the pilot injection, by means of which the gas jets are ignited.
  • the proposed method thus differs from the prior art mentioned above by an alternative preparation of the liquid fuel or diesel fuel. Instead of several solid jets, a hollow cone jet is generated.
  • the hollow cone jet has the advantage, compared to a plurality of solid jets, that a distribution of the liquid fuel which is uniform over the circumference is achieved, so that the gas jets subsequently generated are reliably ignited independently of their respective angular position.
  • a targeted alignment of the plurality of circularly arranged injection openings in relation to the injection opening for the liquid fuel can thus be dispensed with.
  • the penetration depth of the liquid fuel or diesel fuel can be reduced via the hollow cone jet so that the high temperatures required for igniting the gas jets are already achieved close to the nozzle.
  • the gas jets are ignited as early as possible.
  • the early ignition in turn promotes complete burnout, so that as a result a fast combustion with high gas content is achieved.
  • optimization of the penetration behavior of the liquid fuel or diesel fuel does not have to be accompanied by a change in the pressure of the liquid fuel. That is, a liquid fuel pressure that is above the gas pressure level may still be selected to counteract internal leakage or meet leakage requirements.
  • the proposed alternative treatment of the liquid fuel, in particular of the diesel fuel allows new application parameters and / or design degrees of freedom both with regard to the preparation (beam shaping) and with regard to the metering (rate shaping) of the liquid fuel or diesel fuel.
  • a dual-fuel injector with two coaxially arranged and nested valve needles for injecting the gaseous fuel and for injecting the liquid fuel, in particular the diesel fuel pilot injection is used.
  • the coaxial nozzle concept requires only minor structural changes to allow the formation of a hollow cone jet. The changes also lead to a cost savings, since alignment elements for aligning the valve pins to each other can be omitted. Furthermore, only one injection opening for the liquid fuel must be provided, so that expensive erosion processes are reduced to a minimum.
  • the hollow cone jet is generated by means of a swirl nozzle, a throttle pin nozzle or by means of a screen jet nozzle.
  • nozzle shapes are structurally relatively simple to implement and can also be integrated into a coaxial nozzle concept.
  • the swirl nozzle is characterized by a valve member having at least one swirl channel, so that the liquid fuel is placed in a spin or in a rotating movement when exiting via the swirl nozzle.
  • the throttle pin nozzle has a valve member with a peg-shaped geometry which limits the free opening cross-section to an annular gap.
  • the screen jet nozzle which also causes a flow control radially outward.
  • the swirl nozzle, the throttle gap nozzle or the screen jet nozzle are preferably formed by the two coaxially arranged and guided into each other valve needles. This means that the corresponding nozzle shape is integrated into the coaxial nozzle concept.
  • dual-fuel injector comprises two coaxially arranged and nested valve needles, wherein the outer valve needle controls a plurality of circularly arranged injection openings for injecting a gaseous fuel.
  • a central injection opening is formed in the outer valve needle, which is controllable via the inner valve needle, the inner valve needle and the outer valve needle cooperating forming a hollow cone jet.
  • the proposed dual-fuel injector allows an alternative treatment of the liquid fuel or diesel fuel by a hollow cone jet is generated instead of multiple solid jets in the injection of the liquid fuel, in particular the diesel fuel pilot injection.
  • the hollow cone jet makes alignment of the gas jets dispensable, since a maximum overlap of the gas jets with the ignition area is ensured, regardless of the respective angular position.
  • the premix is optimized at the ignition point, which is also closer to the nozzle.
  • the gas Accordingly, radiation is ignited earlier, so that rapid combustion with a high proportion of gas can be achieved. This means that the unburned gas content is reduced to a minimum.
  • the inner valve needle to form the hollow cone jet on a dipping into the injection opening peg-shaped geometry effects a flow control of the liquid fuel or of the diesel fuel, which leads to the formation of the hollow cone jet.
  • the fuel quantity can also be controlled and at the same time the penetration behavior modulated temporally and locally.
  • the inner and the outer valve needle together form a throttle pin nozzle.
  • the peg-shaped geometry of the inner valve needle is at least partially cylindrical and / or conically shaped, so that an equally wide annular gap between the outer and the inner valve needle remains over the circumference. In this way, a uniform distribution of the liquid fuel in the circumferential direction of the hollow cone jet is ensured. If the peg-shaped geometry is conically shaped at least in sections, preferably the outer diameter of the peg-shaped geometry increases toward the end. The conically shaped portion thus directs the liquid fuel radially outward.
  • the pin-shaped geometry of the inner valve needle in the closed position projects beyond the outer valve needle.
  • a flow control of the liquid fuel is ensured in this way, independently of the stroke of the valve needle.
  • the pin-shaped geometry of the inner valve needle end has a radially outwardly extending annular collar.
  • the beam shaping can be further optimized.
  • a particularly flat hollow cone jet can be formed.
  • the inner and the outer valve needle together form a screen jet.
  • the inner valve needle for forming the hollow cone jet having a conically shaped portion with at least one parallel or obliquely guided to a radial groove, which leads to the formation of a swirl channel.
  • About the swirl passage of the liquid fuel jet is set in a rotation, which in turn leads to the formation of the hollow cone jet.
  • FIG. 1 shows a schematic longitudinal section through a nozzle of a dual-fuel injector according to the invention
  • FIG. 2 shows a schematic longitudinal section through a combustion chamber of an internal combustion engine with the dual-fuel injector of Fig. 1,
  • FIG. 3 is a plan view of the spray pattern of the dual-fuel injector of FIG. 1
  • FIG. 4 is an enlarged detail of FIG. 1
  • FIG. 5 shows a schematic longitudinal section through a nozzle of a dual-fuel injector according to a second preferred embodiment
  • Fig. 6 is a schematic longitudinal section through a nozzle of a dual-fuel injector according to a third preferred embodiment
  • FIG. 7 shows a schematic longitudinal section through a nozzle of a dual-fuel injector according to a fourth preferred embodiment.
  • the dual-fuel injector 5 shown in detail in FIG. 1 comprises a nozzle body 16 which delimits a gas space 17.
  • a nozzle body 16 designed as a hollow needle liftable valve needle 6 is added, on the lifting movement a plurality of circularly arranged injection ports 1 are releasable, so that a 17 received in the gas space gaseous fuel via the injection ports 1 in a combustion chamber 2 of an internal combustion engine is blown (see FIG ).
  • gas jets 3 are generated, which are distributed uniformly in the combustion chamber 2.
  • the ignition of the gas jets 3 takes place by means of a previously injected liquid fuel, in particular diesel fuel pilot injection, which is controlled via a further valve needle 7.
  • the further valve needle 7 is arranged coaxially with the first valve needle 6 and accommodated in the first valve needle 6, so that the two valve needles 6, 7 guided one inside the other limit a diesel space 18 together.
  • a central injection port 11 is formed for the diesel fuel, wherein the inner valve needle 7 cooperates with the outer valve needle 6 in such a way that when released injection port 11, a hollow cone beam 4 is generated instead of a plurality of individual beams. That is, the diesel fuel is uniformly distributed in the circumferential direction when injecting the pilot injection, so that a maximum overlapping area with the gas jets 3 is achieved regardless of the respective angular position of the gas jets 3 (see FIG. 3). An alignment of the gas jets 3 is therefore not required, whereby the design effort is reduced (omission of alignment elements).
  • FIG. 4 A detailed representation of the nozzle of the dual-fuel injector 5 of FIG. 1 is shown in FIG. 4. Accordingly, the inner and the outer valve needle 7, 6 together form a throttle pin nozzle 9.
  • the inner valve needle 7 has a peg-shaped geometry 12 immersed in the injection opening 11 in the form of a cylinder.
  • the throttle pin nozzle 9 of the hollow cone beam 4 shown in FIG. 1 is generated.
  • FIG. 5 An alternative embodiment of a throttle pin nozzle 9 is shown in FIG. 5.
  • the peg-shaped geometry 12 in the form of a cone, which is the End widens.
  • the cone causes a flow control of the diesel fuel radially outward.
  • the two valve needles 6, 7 guided into one another can also form an umbrella jet nozzle 10.
  • FIG. 7 A further preferred embodiment of a nozzle for a dual-fuel injector according to the invention is shown in FIG. 7.
  • the two valve needles 6, 7 guided into one another together form a swirl nozzle 8.
  • the inner valve needle 7 has for this purpose in a conically shaped portion 14 a plurality of evenly distributed over the circumference of grooves 15 which are offset parallel or obliquely to a radial.
  • the diesel fuel is thus set in rotation during injection of the pilot injection, resulting in that a hollow cone jet 4 is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine, bei dem mit einem Dual-Fuel-Injektor ein gasförmiger Brennstoff über mehrere kreisförmig angeordnete Einblasöffnungen (1) unter Hochdruck in einen Brennraum (2) der Brennkraftmaschine eingeblasen wird, wobei Gasstrahlen (3) erzeugt werden, die mittels einer zuvor eingespritzten Flüssigkraftstoff-, insbesondere Dieselkraftstoff-Piloteinspritzung gezündet und verbrannt werden. Durch den Dual-Fuel-Injektor wird beim Einspritzen der Flüssigkraftstoff-Piloteinspritzung ein Hohlkegelstrahl (4) erzeugt, mittels dessen die Gasstrahlen (3) gezündet werden.

Description

GAS- UND FLÜSSIGKRAFTSTOFFEINSPRITZUNG MIT EINEM
ZWEISTOFFEINSPRITZVENTIL
Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine mit den Merkmalen des Oberbegriffs des Anspruchs 1. Bei dem Verfahren wird ein gasförmiger Brennstoff über mehrere kreisförmig angeordnete Einblasöffnungen unter Hochdruck in einen Brennraum der Brennkraftmaschine eingeblasen, wobei Gasstrahlen erzeugt werden, die mittels einer zuvor eingespritzten Dieselpiloteinspritzung gezündet und dif- fusiv verbrannt werden.
Bei dem gasförmigen Kraftstoff kann es sich insbesondere um Erdgas (englisch:„Natural Gas", abgekürzt„NG") handeln.
Die Erfindung betrifft ferner einen Dual-Fuel-Injektor zur Durchführung des erfindungsgemäßen Verfahrens.
Stand der Technik
Beim sogenannten NGDI-Einspritzverfahren (englisch:„Natural Gas Direct Injection") wird Erdgas direkt in einen Brennraum einer Brennkraftmaschine eingeblasen, mittels einer zuvor eingespritzten Dieselpiloteinspritzung gezündet und anschließend diffusiv verbrannt. Die Verbrennung von Erdgas weist gegenüber der konventionellen Dieselverbrennung insbesondere den Vorteil auf, dass die C02-Emissionen um bis zu 25% reduziert werden können. Dabei weist Erdgas eine dieselähnliche Verbrennungs- und damit Drehmomentscharakteristik auf, so dass der Integrationsgrad in bestehende Dieselantriebssysteme hoch ist. Das heißt, dass in der Regel nur geringe Änderungen an Brennkraftmaschine, Kühlsystem und/oder Abgasnachbehandlungssystem erforderlich sind. Zum Einbringen von Erdgas und Dieselkraftstoff sind sogenannte Dual-Fuel-Injektoren bekannt, die zwei koaxial angeordnete, ineinander geführte Ventilnadeln aufweisen. Ein derartiger Dual-Fuel-Injektor geht beispielhaft aus der DE 10 2014 225 167 AI hervor.
Bei einem Dual-Fuel-Injektor erfolgt die Aufbereitung der Brenn- bzw. Kraftstoffe über sogenannte Mehrlochdüsen. Diese weisen mehrere kreisförmig angeordnete Einblasbzw. Einspritzöffnungen auf, wobei ein äußerer Lochkreis zum Einblasen des gasförmigen Brennstoffs über die äußere Ventilnadel und ein innerer Lochkreis zum Einspritzen der Dieselpiloteinspritzung über die innere Ventilnadel gesteuert wird. Pro Loch wird auf diese Weise ein Vollstrahl erzeugt (Diesel- bzw. Gasjet).
Ausgehend von dem vorstehend genannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, die Verbrennung gasförmiger Brennstoffe zu optimieren. Insbesondere soll durch eine schnelle Verbrennung mit hohem Gasanteil eine Effizienzsteigerung bewirkt werden.
Zur Lösung der Aufgabe werden das Verfahren mit den Merkmalen des Anspruchs 1 sowie der Dual-Fuel-Injektor mit den Merkmalen des Anspruchs 4 vorgeschlagen. Vorteilhafte Weiterbildungen der Erfindung sind den jeweiligen Unteransprüchen zu entnehmen.
Offenbarung der Erfindung
Bei dem vorgeschlagenen Verfahren zum Betreiben einer Brennkraftmaschine wird ein gasförmiger Brennstoff über mehrere kreisförmig angeordnete Einblasöffnungen unter Hochdruck in einen Brennraum der Brennkraftmaschine eingeblasen. Dabei werden Gasstrahlen erzeugt, die mittels einer zuvor eingespritzten Flüssigkraftstoff-, insbesondere Dieselkraftstoff-Piloteinspritzung gezündet und verbrannt werden. Erfindungsgemäß wird beim Einspritzen der Piloteinspritzung ein Hohlkegelstrahl erzeugt, mittels dessen die Gasstrahlen gezündet werden. Das vorgeschlagene Verfahren unterscheidet sich demnach vom eingangs genannten Stand der Technik durch eine alternative Aufbereitung des Flüssigkraftstoffs bzw. Dieselkraftstoffs. Anstelle mehrerer Vollstrahlen wird ein Hohlkegelstrahl erzeugt. Der Hohlkegelstrahl besitzt gegenüber mehreren Vollstrahlen den Vorteil, dass eine über den Umfang gleichmäßige Verteilung des Flüssigkraftstoffs erreicht wird, so dass die anschließend erzeugten Gasstrahlen unabhängig von ihrer jeweiligen Winkellage sicher gezündet werden. Eine gezielte Ausrichtung der mehreren kreisförmig angeordneten Einblasöffnungen in Bezug auf die Einspritzöffnung für den Flüssigkraftstoff kann somit entfallen.
Ferner kann über den Hohlkegelstrahl die Eindringtiefe des Flüssigkraftstoffs bzw. Dieselkraftstoffs verringert werden, so dass bereits düsennah die zum Zünden der Gasstrahlen erforderlichen hohen Temperaturen erreicht werden. Das heißt, dass die Gasstrahlen möglichst früh gezündet werden. Das frühe Zünden wiederum fördert den vollständigen Ausbrand, so dass im Ergebnis eine schnelle Verbrennung mit hohem Gasanteil erzielt wird.
Eine Optimierung des Eindringverhaltens des Flüssigkraftstoffs bzw. Dieselkraftstoffs muss zudem nicht mit einer Änderung des Drucks des Flüssigkraftstoffs einhergehen. Das heißt, dass weiterhin ein Flüssigkraftstoffdruck gewählt werden kann, der oberhalb des Gasdruckniveaus liegt, um einer internen Leckage entgegenzuwirken bzw. den Leckageanforderungen zu genügen.
Das vorgeschlagene alternative Aufbereitung des Flüssigkraftstoffs, insbesondere des Dieselkraftstoffs, ermöglicht neue Applikationsparameter und/oder Auslegungsfrei- heitsgrade sowohl hinsichtlich der Aufbereitung (Strahlformung) als auch hinsichtlich der Zumessung (Ratenformung) des Flüssigkraftstoffs bzw. Dieselkraftstoffs.
Vorteilhafterweise wird ein Dual-Fuel-Injektor mit zwei koaxial angeordneten und ineinander geführten Ventilnadeln zum Einblasen des gasförmigen Brennstoffs und zum Einspritzen der Flüssigkraftstoff-, insbesondere der Dieselkraftstoff-Piloteinspritzung verwendet. Das koaxiale Düsenkonzept erfordert nur geringe konstruktive Änderungen, um die Ausbildung eines Hohlkegelstrahls zu ermöglichen. Die Änderungen führen zudem zu einer Kostenersparnis, da Ausrichtelemente zum Ausrichten der Ventilnadeln zueinander entfallen können. Ferner muss nur eine Einspritzöffnung für den Flüssigkraftstoff vorgesehen werden, so dass aufwendige Erodiervorgänge auf ein Minimum reduziert werden.
In Weiterbildung der Erfindung wird vorgeschlagen, dass der Hohlkegelstrahl mittels einer Dralldüse, einer Drosselzapfendüse oder mittels einer Schirmstrahldüse erzeugt wird. Diese Düsenformen sind konstruktiv vergleichsweise einfach umzusetzen und lassen sich zudem in ein koaxiales Düsenkonzept integrieren.
Die Dralldüse zeichnet sich durch ein Ventilglied mit mindestens einem Drallkanal aus, so dass der Flüssigkraftstoff bei Austritt über die Dralldüse in einen Drall bzw. in eine rotierende Bewegung versetzt wird. Die Drosselzapfendüse weist ein Ventilglied mit einer zapfenförmigen Geometrie auf, die den freien Öffnungsquerschnitt auf einen Ringspalt beschränkt. Auf dem gleichen Prinzip beruht die Schirmstrahldüse, die darüber hinaus eine Strömungslenkung nach radial außen bewirkt. Die Dralldüse, die Drosselspaltdüse oder die Schirmstrahldüse werden dabei vorzugsweise durch die beiden koaxial angeordneten und ineinander geführten Ventilnadeln gebildet. Das heißt, dass die entsprechende Düsenform in das koaxiale Düsenkonzept integriert wird.
Der darüber hinaus zur Durchführung des erfindungsgemäßen Verfahrens vorgeschlagene Dual-Fuel-Injektor umfasst zwei koaxial angeordnete und ineinander geführte Ventilnadeln, wobei die äußere Ventilnadel mehrere kreisförmig angeordnete Einblasöffnungen zum Einblasen eines gasförmigen Brennstoffs steuert. Erfindungsgemäß ist in der äußeren Ventilnadel eine zentrale Einspritzöffnung ausgebildet, die über die innere Ventilnadel steuerbar ist, wobei die innere Ventilnadel und die äußere Ventilnadel einen Hohlkegelstrahl ausbildend zusammenwirken.
Der vorgeschlagene Dual-Fuel-Injektor ermöglicht eine alternative Aufbereitung des Flüssigkraftstoffs bzw. Dieselkraftstoffs, indem ein Hohlkegelstrahl anstelle mehrerer Vollstrahlen beim Einspritzen der Flüssigkraftstoff-, insbesondere der Dieselkraftstoff- Piloteinspritzung erzeugt wird. Der Hohlkegelstrahl macht ein Ausrichten der Gasstrahlen entbehrlich, da unabhängig von der jeweiligen Winkellage eine maximale Überlappung der Gasstrahlen mit dem Zündbereich gewährleistet ist. Zugleich wird der Vor- mischgrad an der Zündstelle optimiert, die zudem näher an der Düse liegt. Die Gas- strahlen werden demnach früher gezündet, so dass eine schnelle Verbrennung mit hohem Gasanteil erreichbar ist. Das heißt, dass der unverbrannte Gasanteil auf ein Minimum reduziert wird.
Gemäß einer bevorzugten Ausführungsform der Erfindung weist die innere Ventilnadel zur Ausbildung des Hohlkegelstrahls eine in die Einspritzöffnung eintauchende zapfenförmige Geometrie auf. Die zapfenförmige Geometrie bewirkt zusammen mit der äußeren Ventilnadel eine Strömungslenkung des Flüssigkraftstoffs bzw. des Dieselkraftstoffs, die zur Ausbildung des Hohlkegelstrahls führt. Über die konkrete Ausformung des Zapfens kann ferner die Kraftstoffmengenzumessung gesteuert und zugleich das Eindringverhalten zeitlich und örtlich moduliert werden.
Bevorzugt bilden die innere und die äußere Ventilnadel gemeinsam eine Drosselzapfendüse aus.
Des Weiteren bevorzugt ist die zapfenförmige Geometrie der inneren Ventilnadel zumindest abschnittsweise zylindrisch und/oder konisch geformt, so dass ein über den Umfang gleich breiter Ringspalt zwischen der äußeren und der inneren Ventilnadel verbleibt. Auf diese Weise ist eine in Umfangsrichtung des Hohlkegelstrahls gleichmäßige Verteilung des Flüssigkraftstoffs gewährleistet. Sofern die zapfenförmige Geometrie zumindest abschnittsweise konisch geformt ist, nimmt vorzugsweise der Außendurchmesser der zapfenförmigen Geometrie zum Ende hin zu. Der konisch geformte Abschnitt lenkt somit den Flüssigkraftstoff nach radial außen.
Ferner wird vorgeschlagen, dass die zapfenförmige Geometrie der inneren Ventilnadel in Schließstellung die äußere Ventilnadel überragt. Bei nach innen öffnender Ventilnadel ist auf diese Weise eine Strömungslenkung des Flüssigkraftstoffs unabhängig vom Hub der Ventilnadel sichergestellt.
In Weiterbildung der Erfindung wird vorgeschlagen, dass die zapfenförmige Geometrie der inneren Ventilnadel endseitig einen sich nach radial außen erstreckenden Ringbund aufweist. Durch den Ringbund kann die Strahlformung weiter optimiert werden. Insbesondere kann ein besonders flacher Hohlkegelstrahl geformt werden. In diesem Fall bilden vorzugsweise die innere und die äußere Ventilnadel gemeinsam eine Schirmstrahldüse aus.
Alternativ oder ergänzend kann die innere Ventilnadel zur Ausbildung des Hohlkegelstrahls einen konisch geformten Abschnitt mit mindestens einer parallel oder schräg zu einer Radialen geführten Nut aufweisen, die zur Ausbildung eines Drallkanals führt. Über den Drallkanal wird der Flüssigkraftstoffstrahl in eine Rotation versetzt, die wiederum zur Ausbildung des Hohlkegelstrahls führt.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der beigefügten Zeichnungen näher erläutert. Diese zeigen:
Fig. 1 einen schematischen Längsschnitt durch eine Düse eines erfindungsgemäßen Dual-Fuel-Injektors,
Fig. 2 einen schematischen Längsschnitt durch einen Brennraum einer Brennkraftmaschine mit dem Dual-Fuel-Injektor der Fig. 1,
Fig. 3 eine Draufsicht auf das Spritzbild des Dual-Fuel-Injektors der Fig. 1, Fig. 4 einen vergrößerten Ausschnitt der Fig. 1,
Fig. 5 einen schematischen Längsschnitt durch eine Düse eines Dual-Fuel-Injektors gemäß einer zweiten bevorzugten Ausführungsform,
Fig. 6 einen schematischen Längsschnitt durch eine Düse eines Dual-Fuel-Injektors gemäß einer dritten bevorzugten Ausführungsform und
Fig. 7 einen schematischen Längsschnitt durch eine Düse eines Dual-Fuel-Injektors gemäß einer vierten bevorzugten Ausführungsform. Ausführliche Beschreibung der Zeichnungen
Der in der Fig. 1 ausschnittsweise dargestellte Dual-Fuel-Injektor 5 umfasst einen Düsenkörper 16, der einen Gasraum 17 begrenzt. Im Düsenkörper 16 ist eine als Hohlnadel ausgeführte hubbewegliche Ventilnadel 6 aufgenommen, über deren Hubbewegung mehrere kreisförmig angeordnete Einblasöffnungen 1 freigebbar sind, so dass ein im Gasraum 17 aufgenommener gasförmiger Brennstoff über die Einblasöffnungen 1 in einen Brennraum 2 einer Brennkraftmaschine einblasbar ist (siehe Fig. 2). Dabei werden Gasstrahlen 3 erzeugt, die sich gleichmäßig im Brennraum 2 verteilen. Das Zünden der Gasstrahlen 3 erfolgt mittels einer zuvor eingespritzten Flüssigkraftstoff-, insbesondere Dieselkraftstoff-Piloteinspritzung, die über eine weitere Ventilnadel 7 gesteuert wird. Die weitere Ventilnadel 7 ist koaxial zur ersten Ventilnadel 6 angeordnet und in der ersten Ventilnadel 6 aufgenommen, so dass die beiden ineinander geführten Ventilnadeln 6, 7 gemeinsam einen Dieselraum 18 begrenzen. In der äußeren Ventilnadel 6 ist eine zentrale Einspritzöffnung 11 für den Dieselkraftstoff ausgebildet, wobei die innerer Ventilnadel 7 mit der äußeren Ventilnadel 6 in der Weise zusammenwirkt, dass bei freigegebener Einspritzöffnung 11 ein Hohlkegelstrahl 4 anstelle mehrerer Einzelstrahlen erzeugt wird. Das heißt, dass der Dieselkraftstoff beim Einspritzen der Piloteinspritzung in Umfangsrichtung gleichmäßig verteilt wird, so dass ein maximaler Überlappungsbereich mit den Gasstrahlen 3 erreicht wird, und zwar unabhängig von der jeweiligen Winkellage der Gasstrahlen 3 (siehe Fig. 3). Ein Ausrichten der Gasstrahlen 3 ist demnach nicht erforderlich, wodurch der konstruktive Aufwand verringert wird (Wegfall von Ausrichtelementen).
Eine detaillierte Darstellung der Düse des Dual-Fuel-Injektors 5 der Fig. 1 ist der Fig. 4 zu entnehmen. Demnach bilden die innere und die äußere Ventilnadel 7, 6 gemeinsam eine Drosselzapfendüse 9 aus. Die innere Ventilnadel 7 weist hierzu eine in die Einspritzöffnung 11 eintauchende zapfenförmige Geometrie 12 in Form eines Zylinders auf. Mittels der Drosselzapfendüse 9 wird der in der Fig. 1 dargestellte Hohlkegelstrahl 4 erzeugt.
Eine alternative Ausgestaltung einer Drosselzapfendüse 9 ist in der Fig. 5 dargestellt. Hier weist die zapfenförmige Geometrie 12 die Form eines Konus auf, der sich zum Ende hin weitet. Der Konus bewirkt eine Strömungslenkung des Dieselkraftstoffs nach radial außen.
Wie beispielhaft in der Fig. 6 dargestellt können die beiden ineinander geführten Ventilnadeln 6, 7 auch eine Schirmstrahldüse 10 ausbilden. Diese führt zur Ausbildung eines besonders flachen Hohlkegelstrahls 4, da ein endseitig ausgebildeter Ringbund 13 eine Umlenkung des Dieselkraftstoffs bewirkt.
Eine weitere bevorzugte Ausführungsform einer Düse für einen erfindungsgemäßen Dual-Fuel-Injektor ist in der Fig. 7 dargestellt. Hier bilden die beiden ineinander geführten Ventilnadeln 6, 7 gemeinsam eine Dralldüse 8 aus. Die innere Ventilnadel 7 weist hierzu in einem konisch geformten Abschnitt 14 mehrere über den Umfang gleichmäßig verteilte Nuten 15 auf, die parallel versetzt bzw. schräg zu einer Radialen verlaufen. Der Dieselkraftstoff wird auf diese Weise beim Einspritzen der Piloteinspritzung in eine Rotation versetzt, was dazu führt, dass ein Hohlkegelstrahl 4 erzeugt wird.

Claims

Ansprüche
1. Verfahren zum Betreiben einer Brennkraftmaschine, bei dem ein gasförmiger Brennstoff über mehrere, vorzugsweise kreisförmig angeordnete Einblasöffnungen (1) unter Hochdruck in einen Brennraum (2) der Brennkraftmaschine eingeblasen wird, wobei Gasstrahlen (3) erzeugt werden, die mittels einer zuvor eingespritzten Flüssig- kraftstoff-, insbesondere Dieselkraftstoff- Piloteinspritzung gezündet und verbrannt wer den,
dadurch gekennzeichnet, dass beim Einspritzen der Flüssigkraftstoff- Piloteinspritzung ein Hohlkegelstrahl (4) erzeugt wird, mittels dessen die Gasstrahlen (3) gezündet werden.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass ein Dual-Fuel-Injektor (5) mit zwei koaxial angeordne ten und ineinander geführten Ventilnadeln (6, 7) zum Einblasen des gasförmigen Brennstoffs und zum Einspritzen der Flüssigkraftstoff-Piloteinspritzung verwendet wird
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass der Hohlkegelstrahl (4) mittels einer Dralldüse (8), einer Drosselzapfendüse (9) oder mittels einer Schirmstrahldüse (10) erzeugt wird, die vorzugsweise durch die beiden koaxial angeordneten und ineinander geführten Ventilnadeln (6, 7) gebildet wird.
4. Dual-Fuel-Injektor (5) zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, umfassend zwei koaxial angeordnete und ineinander geführte Ventilnadeln (6, 7), wobei die äußere Ventilnadel (6) mehrere kreisförmig angeordnete Einblasöffnungen (1) zum Einblasen eines gasförmigen Brennstoffs steuert,
dadurch gekennzeichnet, dass in der äußeren Ventilnadel (6) eine zentrale Einspritzöffnung (11) ausgebildet ist, die über die innere Ventilnadel (7) steuerbar ist, wobei die innere Ventilnadel (7) und die äußere Ventilnadel (6) einen Hohlkegelstrahl (4) ausbildend zusammenwirken.
5. Dual-Fuel-Injektor nach Anspruch 4,
dadurch gekennzeichnet, dass die innere Ventilnadel (7) zur Ausbildung des Hohlkegelstrahls (4) eine in die Einspritzöffnung (11) eintauchende zapfenförmige Geometrie (12) aufweist.
6. Dual-Fuel-Injektor nach Anspruch 5,
dadurch gekennzeichnet, dass die zapfenförmige Geometrie (12) der inneren Ventilnadel (7) zumindest abschnittsweise zylindrisch und/oder konisch geformt ist, wobei vorzugsweise der Außendurchmesser der zapfenförmigen Geometrie (12) zum Ende hin zunimmt.
7. Dual-Fuel-Injektor nach Anspruch 5 oder 6,
dadurch gekennzeichnet, dass die zapfenförmige Geometrie (12) der inneren Ventilnadel (7) in Schließstellung die äußere Ventilnadel (6) überragt.
8. Dual-Fuel-Injektor nach einem der Ansprüche 5 bis 7,
dadurch gekennzeichnet, dass die zapfenförmige Geometrie (12) der inneren Ventilnadel (7) endseitig einen sich nach radial außen erstreckenden Ringbund (13) aufweist.
9. Dual-Fuel-Injektor nach einem der Ansprüche 4 bis 8,
dadurch gekennzeichnet, dass die innere Ventilnadel (7) zur Ausbildung des Hohlkegelstrahls (4) einen konisch geformten Abschnitt (14) mit mindestens einer parallel o- der schräg zu einer Radialen geführten Nut (15) zur Ausbildung eines Drallkanals aufweist.
PCT/EP2018/073765 2017-10-11 2018-09-04 Gas- und flüssigkraftstoffeinspritzung mit einem zweistoffeinspritzventil WO2019072457A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017218069.2 2017-10-11
DE102017218069.2A DE102017218069A1 (de) 2017-10-11 2017-10-11 Verfahren zum Betreiben einer Brennkraftmaschine, Dual-Fuel-Injektor

Publications (1)

Publication Number Publication Date
WO2019072457A1 true WO2019072457A1 (de) 2019-04-18

Family

ID=63586664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/073765 WO2019072457A1 (de) 2017-10-11 2018-09-04 Gas- und flüssigkraftstoffeinspritzung mit einem zweistoffeinspritzventil

Country Status (2)

Country Link
DE (1) DE102017218069A1 (de)
WO (1) WO2019072457A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111535955A (zh) * 2020-05-29 2020-08-14 一汽解放汽车有限公司 一种快速响应的双燃料喷射阀
CN111535957A (zh) * 2020-05-29 2020-08-14 一汽解放汽车有限公司 一种集成式双燃料喷射器及其喷射方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079622A1 (de) * 2001-03-29 2002-10-10 Robert Bosch Gmbh Verfahren zum betreiben einer selbszündenden brennkraftmaschine
US20040020457A1 (en) * 2002-03-05 2004-02-05 Regueiro Jose Francisco Energy-cell combustion system
EP2065590A1 (de) * 2007-11-29 2009-06-03 Delphi Technologies, Inc. Zweimodale Verbrennungsvorrichtung und Verfahren
DE102012012450A1 (de) * 2011-06-24 2012-12-27 Caterpillar Inc. Zweikraftstoffinjektor für ein Common-Rail-System
DE102013021242A1 (de) * 2013-12-13 2015-06-18 Daimler Ag Ottomotor für einen Kraftwagen sowie Verfahren zum Betreiben eines solchen Ottomotors
US20160010610A1 (en) * 2014-07-11 2016-01-14 Denso Corporation Fuel injection device
DE102014225167A1 (de) 2014-12-08 2016-06-09 Robert Bosch Gmbh Kraftstoffzumessventil für eine Brennkraftmaschine und Verfahren zum Betreiben desselben
GB2540532A (en) * 2015-06-05 2017-01-25 Delphi Int Operations Luxembourg Sarl Injector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002079622A1 (de) * 2001-03-29 2002-10-10 Robert Bosch Gmbh Verfahren zum betreiben einer selbszündenden brennkraftmaschine
US20040020457A1 (en) * 2002-03-05 2004-02-05 Regueiro Jose Francisco Energy-cell combustion system
EP2065590A1 (de) * 2007-11-29 2009-06-03 Delphi Technologies, Inc. Zweimodale Verbrennungsvorrichtung und Verfahren
DE102012012450A1 (de) * 2011-06-24 2012-12-27 Caterpillar Inc. Zweikraftstoffinjektor für ein Common-Rail-System
DE102013021242A1 (de) * 2013-12-13 2015-06-18 Daimler Ag Ottomotor für einen Kraftwagen sowie Verfahren zum Betreiben eines solchen Ottomotors
US20160010610A1 (en) * 2014-07-11 2016-01-14 Denso Corporation Fuel injection device
DE102014225167A1 (de) 2014-12-08 2016-06-09 Robert Bosch Gmbh Kraftstoffzumessventil für eine Brennkraftmaschine und Verfahren zum Betreiben desselben
GB2540532A (en) * 2015-06-05 2017-01-25 Delphi Int Operations Luxembourg Sarl Injector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111535955A (zh) * 2020-05-29 2020-08-14 一汽解放汽车有限公司 一种快速响应的双燃料喷射阀
CN111535957A (zh) * 2020-05-29 2020-08-14 一汽解放汽车有限公司 一种集成式双燃料喷射器及其喷射方法
CN111535957B (zh) * 2020-05-29 2021-04-20 一汽解放汽车有限公司 一种集成式双燃料喷射器及其喷射方法
CN111535955B (zh) * 2020-05-29 2021-04-27 一汽解放汽车有限公司 一种快速响应的双燃料喷射阀

Also Published As

Publication number Publication date
DE102017218069A1 (de) 2019-04-11

Similar Documents

Publication Publication Date Title
EP3173614B1 (de) Düsenbaugruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
EP1492953A1 (de) Brennstoffeinspritzventil-zündkerze-kombination
EP1387951B1 (de) Brennstoffeinspritzsystem
DE102013014329B4 (de) Brennverfahren für eine Brennkraftmaschine
DE102006014071B3 (de) Brennverfahren einer Brennkraftmaschine und Brennkraftmaschine
EP2652310B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2016119993A1 (de) Kraftstoffinjektor für den betrieb mit brenngas
DE19757299A1 (de) Kraftstoffeinspritzventil
WO2019072457A1 (de) Gas- und flüssigkraftstoffeinspritzung mit einem zweistoffeinspritzventil
EP2615296A1 (de) Verfahren und Vorrichtung zum Einspritzen von Kraftstoff in eine Brennkammer eines Verbrennungsmotors
DE4200709A1 (de) Kraftstoffeinspritzduese fuer brennkraftmaschinen
EP2898214B1 (de) Kraftstoff-einspritzsystem einer brennkraftmaschine
WO2018103917A1 (de) Kraftstoffinjektor
EP1408231A1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
WO2019201532A1 (de) Düsenbaugruppe für einen kraftstoffinjektor, kraftstoffinjektor
EP1423602A1 (de) Brennstoffeinspritzsystem
DE102018208869A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
WO2018141589A1 (de) Verfahren zum betreiben eines monovalenten verbrennungsmotors mit diffusionsverbrennung nach dem dieselprinzip sowie vorrichtung zur durchführung des verfahrens
DE102019209756A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
EP3014104B1 (de) Düsenbaugruppe für einen kraftstoffinjektor sowie kraftstoffinjektor
WO2019057387A1 (de) Düsenbaugruppe für einen kraftstoffinjektor, kraftstoffinjektor
DE102018005113A1 (de) Muldenkolben für eine Verbrennungskraftmaschine
DE102018207828A1 (de) Selbstzündende Brennkraftmaschine
DE102019209742A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor
DE102019209748A1 (de) Düsenbaugruppe für einen Kraftstoffinjektor, Kraftstoffinjektor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18769611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18769611

Country of ref document: EP

Kind code of ref document: A1