WO2019071844A1 - 测温电路及其检测方法 - Google Patents

测温电路及其检测方法 Download PDF

Info

Publication number
WO2019071844A1
WO2019071844A1 PCT/CN2017/118938 CN2017118938W WO2019071844A1 WO 2019071844 A1 WO2019071844 A1 WO 2019071844A1 CN 2017118938 W CN2017118938 W CN 2017118938W WO 2019071844 A1 WO2019071844 A1 WO 2019071844A1
Authority
WO
WIPO (PCT)
Prior art keywords
output interface
input
interface
control unit
temperature
Prior art date
Application number
PCT/CN2017/118938
Other languages
English (en)
French (fr)
Inventor
钱沛
祝先涛
柳文波
周葆林
陈万兴
郭双林
刘海彬
梁紫锋
胡国辉
钟路平
彭延君
Original Assignee
格力电器(武汉)有限公司
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格力电器(武汉)有限公司, 珠海格力电器股份有限公司 filed Critical 格力电器(武汉)有限公司
Priority to EP17928269.4A priority Critical patent/EP3647749B1/en
Priority to US16/652,332 priority patent/US11604101B2/en
Publication of WO2019071844A1 publication Critical patent/WO2019071844A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/34Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using capacitative elements

Definitions

  • the present disclosure relates to the field of electronic circuits, and in particular to a temperature measuring circuit capable of being compatible with a two-wire and three-wire interface temperature sensor and a detecting method thereof.
  • PT100 temperature sensor Compared with other temperature sensors, PT100 temperature sensor has the advantages of high precision, good stability and strong anti-interference ability in the range of -50 °C ⁇ 600 °C.
  • the temperature measuring circuit of the PT100 temperature sensor is mostly a constant current source type or a bridge type.
  • PT100 temperature sensors for different wiring methods such as two-wire and three-wire systems
  • One technical problem to be solved by the embodiments of the present disclosure is the compatibility problem of the temperature measuring circuit of the temperature sensor of the two-wire and three-wire interface.
  • a temperature measurement circuit including: a control unit, wherein the control unit includes a first current output interface, a second current output interface, a first input output interface, a second input output interface, and a third input/output interface; and the first current output interface and the first input/output interface of the control unit are electrically connected to the first interface of the temperature sensor, respectively, the second current output interface and the second input and output of the control unit
  • the interface is electrically connected to the second interface of the temperature sensor, and the third input/output interface of the control unit is electrically connected to the third interface of the temperature sensor.
  • control unit further includes an output interface for outputting a differential signal sample value between the first input/output interface and the third input/output interface;
  • temperature measuring circuit further includes the ability to convert the electrical signal sample value into a temperature a temperature conversion unit electrically connected to an output interface of the control unit.
  • control unit further includes a positive internal reference output interface and a negative internal reference output interface, and the negative internal reference output interface is grounded;
  • temperature measuring circuit further includes a serial connection between the positive internal reference output interface and the negative internal reference output interface. Capacitance between.
  • control unit further includes a positive external reference input interface and a negative external reference input interface, wherein the positive external reference input interface is electrically connected to the third current output interface; and the temperature measuring circuit further includes an accuracy higher than a preset value.
  • a resistor network that is disposed on a connection line between the external reference input interface and the negative external reference input interface.
  • the first current output interface and the second current output interface of the control unit are constant current source interfaces.
  • control unit further includes a constant current source and a configurable register; the first current output interface and the second current output interface of the control unit are respectively electrically connected to the constant current source, and the constant current source and the configurable register are electrically connected Connected, the configurable register outputs different control signals to the constant current source to excite the constant current source to output different levels of current.
  • the temperature measuring circuit further includes a filter capacitor; the first input/output interface, the second input/output interface, and the third input/output interface of the control unit are electrically connected to a filter capacitor respectively, and A filter capacitor is electrically connected between an input/output interface and a second input/output interface, and a filter capacitor is electrically connected between the first input/output interface and the third input/output interface.
  • the temperature measurement circuit further includes a first filter circuit and a second filter circuit, wherein the first filter circuit and the second filter circuit are both formed by a resistor and a capacitor; and the capacitor in the first filter circuit is disposed in the control unit On the line between the positive external reference input interface and the ground, the resistance in the first filter circuit is set on the line between the capacitance in the first filter circuit and the resistance network; the capacitance in the second filter circuit is set in On the line between the negative external reference input interface of the control unit and ground, the resistance in the second filter circuit is placed on the line between the capacitance in the second filter circuit and the resistor network.
  • control unit further includes a plurality of other input and output interfaces other than the first input/output interface, the second input/output interface, and the third input/output interface, the other input and output interfaces and the temperature sensor Other temperature sensors are electrically connected.
  • the temperature sensor is a platinum thermal resistance temperature sensor.
  • a temperature measuring circuit detecting method comprising: controlling a first current output interface and a second current output interface of the control unit to respectively output currents having the same level; and detecting a second input of the control unit a differential signal between the output interface and the third input/output interface; in the case where the differential signal is high, the temperature sensor through which the current flows is determined to be a two-wire temperature sensor; the differential signal is low In the case, it is determined that the temperature sensor through which the current flows is a three-wire temperature sensor.
  • the first current output interface of the control unit provides an excitation current for the two-wire temperature sensor; and the first current output interface and the second current output interface of the control unit provide two temperature sensors for the three-wire connection.
  • the present disclosure proposes a temperature measurement circuit that is compatible with temperature sensors of two-wire and three-wire interfaces.
  • a temperature measurement circuit that is compatible with temperature sensors of two-wire and three-wire interfaces.
  • it can be determined whether the current temperature sensor uses a two-wire or three-wire wiring method.
  • FIG. 1 is a schematic diagram of some embodiments of a temperature measuring circuit of the present disclosure.
  • FIG. 2 is a schematic flow chart of a method for detecting a temperature measuring circuit of the present disclosure.
  • FIG. 3 is a schematic diagram of some embodiments of a temperature measuring circuit detecting apparatus of the present disclosure.
  • FIG. 4 is a schematic diagram of still another embodiment of the temperature measuring circuit detecting apparatus of the present disclosure.
  • the present disclosure proposes a temperature measuring circuit that is compatible with temperature sensors of two-wire and three-wire interfaces.
  • the temperature measurement circuit includes, for example, a current source output function, a temperature sensor sampling function, a reference function (including an internal reference and an external reference), a filtering function, a communication function, and the like.
  • a current source output function for example, a current source output function, a temperature sensor sampling function, a reference function (including an internal reference and an external reference), a filtering function, a communication function, and the like.
  • FIG. 1 is a schematic diagram of some embodiments of a temperature measuring circuit of the present disclosure.
  • the temperature measurement circuit of this embodiment includes: a control unit U1 for implementing temperature sensor temperature acquisition and transmission control functions.
  • the control unit U1 can be implemented, for example, by a logic chip having a sampling function, a current source output function, a reference output function, and a communication function, such as ADS1128, ADS1146, ADS1148, etc., but is not limited to the illustrated example.
  • the interface of the control unit U1 includes, for example, a first current output interface IEXC1 (20 interface) and a second current output interface IEXC2 (19 interface).
  • the interface of the control unit U1 further includes a plurality of input and output interfaces (such as 11 to 18 interfaces). In this embodiment, three interfaces having analog and digital conversion functions are selected, and the first input/output interface AIN3 (18 interfaces) and the second input and output are set.
  • Interface AIN2 (17 interface) and third input and output interface AIN7 (16 interface), these interfaces are used to connect with temperature sensor CN1 to achieve temperature detection of temperature sensor CN1, other input and output interfaces AIN6, AIN5, AIN4, AIN1, AIN0 (11-15 interface) can be vacant or can be electrically connected to other temperature sensors for temperature detection of other temperature sensors.
  • These input and output interfaces (such as 11 to 18 interfaces) can work in parallel, and the collected temperature information can be transmitted to the temperature conversion unit T1 for temperature conversion, thereby alleviating the strain condition of the analog-to-digital conversion interface of the temperature conversion unit T1.
  • the interface of control unit U1 also includes a positive internal reference output interface VREFOUT (9 interface) and a negative internal reference output interface VREFCOM (10 interface), and a positive external reference input interface REFP0 (5 interface) and a negative external reference input interface REFN0 (6). Interface), can be used with other electronic components to provide a stable internal reference or external reference for the temperature measurement circuit.
  • the interface of the control unit U1 further comprises a communication interface (such as 23-28 interface) for communicating with the temperature conversion unit T1, wherein the output interface DOUT (26 interface) is connected with the SSP_MISO interface of the temperature conversion unit T1 for temperature conversion.
  • the unit T1 outputs a differential signal sample value between the first input/output interface AIN3 (18 interface) and the third input/output interface AIN7 (16 interface) so that the temperature conversion unit T1 converts it into temperature.
  • the input interface DIN (27 interface) is connected to the SSP_MOSI interface of the temperature conversion unit T1, and is used for the temperature conversion unit T1 to input a configuration command to the control unit U1, so that the control unit U1 can output different levels of excitation current.
  • the communication interface includes, for example, a clock interface SCLK (28 interface), a data preparation output interface DRDY (25 interface), an enable interface CS (24 interface), a start control interface START (23 interface), etc., respectively, and the SSP_CLK of the temperature conversion unit T1.
  • the ADS_DRDY, ADS_CS, and ADS_START interface connections are used by the temperature conversion unit T1 to issue corresponding control commands to the control unit U1.
  • the interface of the control unit U1 also includes a power interface such as an analog power supply AVDD (22 interface), an analog ground AVSS (21 interface), a digital power supply DVDD (1 interface), and a digital ground DGND (2 interface).
  • the interface of the control unit U1 further includes a clock interface CLK (3 interface), a reset interface RESET (4 interface), and an idle positive external reference input interface REFP1 (7 interface) and a negative external reference input interface REFN1 (8 interface).
  • the interface CN1-1 is electrically connected respectively
  • the second current output interface IEXC2 (19 interface) of the control unit U1 and the second input/output interface AIN2 (17 interface) are electrically connected to the second interface CN1-2 of the temperature sensor CN1, respectively
  • the third input/output interface AIN7 (16 interface) of U1 is electrically connected to the third interface CN1-3 of the temperature sensor CN1.
  • a resistor R2 can also be provided between the first input/output interface AIN3 (18 interface) of the control unit U1 and the first interface CN1-1 of the temperature sensor CN1, at the second input of the control unit U1.
  • a resistor R1 is provided between the output interface AIN2 (17 interface) and the second interface CN1-2 of the temperature sensor CN1, and a third input/output interface AIN7 (16 interface) of the control unit U1 and a third interface CN1-3 of the temperature sensor CN1
  • a resistor R7 is provided between.
  • the three-wire connection temperature sensor requires two current sources, which are respectively provided by the first current output interface IEXC1 (20 interface) and the second current output interface IEXC2 (19 interface).
  • the advantage of the three-wire connection method is that The current is applied to the wires of the same length CN1-1 of the temperature sensor CN1 and the second interface CN1-2, respectively, to eliminate the influence of the wire resistance.
  • the two-wire temperature sensor requires a current source and is provided by the first current output interface IEXC1 (20 interface).
  • the hardware will lead to another current source, which is provided by the second current output interface IEXC2 (19 interface), connected to the second interface CN1-2 of the temperature sensor CN1, and returned to the second input and output interface of the control unit U1 through R1.
  • AIN2 (17 interface).
  • the temperature measuring circuit detecting method 200 is as shown in FIG. 2, and the details are as follows:
  • step S210 the first current output interface IEXC1 (20 interface) and the second current output interface IEXC2 (19 interface) of the control unit U1 respectively output currents of the same level, for example, both are 1 mA.
  • Step S220 detecting a differential signal between the second input/output interface AIN2 (17 interface) of the control unit U1 and the third input/output interface AIN7 (16 interface). If the differential signal is high level, step S230 is performed, if the differential signal It is low level, and step S240 is performed.
  • Step S230 in the case that the differential signal is a high level, determining that the temperature sensor through which the current flows is a two-wire temperature sensor;
  • step S240 when the differential signal is low level, it is determined that the temperature sensor through which the current flows is a three-wire temperature sensor.
  • the temperature measurement circuit is software compatible with temperature sensors for two-wire and three-wire interfaces. And the temperature measurement circuit detects the differential signal, so the anti-interference ability is relatively strong.
  • the temperature measuring circuit After determining that the temperature sensor is connected by two wires or three wires, the temperature measuring circuit can perform temperature detection by the following methods:
  • the first current output interface IEXC1 (20 interface) of the control unit U1 provides an excitation current for the two-wire temperature sensor; if the temperature sensor adopts the three-wire connection method, the control unit U1's first current output interface IEXC1 (20 interface) provides two identical excitation currents for the three-wire temperature sensor.
  • the excitation current flows through the temperature sensor CN1, it passes through the first input/output interface AIN3 (18 interface) of the control unit U1 and the third input/output interface AIN7 (16 interface) to form a loop.
  • the differential signal between the first input/output interface AIN3 (18 interface) of the control unit U1 and the third input/output interface AIN7 (16 interface) is sampled, and the differential signal sample value is output to the temperature conversion unit T1.
  • the temperature conversion unit T1 can convert the differential signal sample value into temperature, for example, according to a comparison table of temperature and voltage signals.
  • the above temperature measurement process detects a differential signal, so the temperature measurement circuit has a strong anti-interference ability.
  • the current source output function of the temperature measuring circuit is realized by the first current output interface IEXC1 (20 interface) of the control unit U1 and the second current output interface IEXC2 (19 interface).
  • its first current output interface IEXC1 (20 interface) and the second current output interface IEXC2 (19 interface) may be constant current source interfaces.
  • the control unit U1 further includes a constant current source and a configurable register, and the first current output interface IEXC1 (20 interface) of the control unit and the second current output interface IEXC2 (19 interface) are electrically connected to the constant current source respectively.
  • the stream source is electrically coupled to a configurable register that can output different control signals to the constant current source to excite the constant current source to output different levels of current.
  • the internal reference function of the temperature measurement circuit is built by the positive internal reference output interface VREFOUT (9 interface) and the negative internal reference output interface VREFCOM (10 interface) in the control unit U1, combined with the capacitance C6 in the temperature measurement circuit. Provides a stable internal reference for the temperature measurement circuit. As shown in Figure 1, the negative internal reference output interface VREFCOM (10 interface) is grounded, and a capacitor C6 is placed between the positive internal reference output interface VREFOUT (9 interface) and the negative internal reference output interface VREFCOM (10 interface).
  • the temperature measuring circuit uses a stable internal reference as a reference, and is not easily affected by the influence of the external environment, which is advantageous for improving the detection accuracy.
  • the external reference function of the temperature measurement circuit the external external reference input interface REFP0 (5 interface) and the negative external reference input interface REFN0 (6 interface) in the control unit U1, combined with the high precision resistance network in the temperature measurement circuit, to construct the external The reference function provides an external reference for the temperature measurement circuit.
  • the positive external reference input interface REFP0 (5 interface) is electrically connected to the third input/output interface AIN7 (16 interface), at the positive external reference input interface REFP0 (5 interface) and the negative external reference input interface REFN0 (6).
  • a resistor network is placed on the connection line between the interfaces).
  • a resistor network with a higher accuracy than the preset value can be selected, for example, with an accuracy of 0.1%.
  • the resistor network can be realized, for example, by the parallel resistors R5 and R6 shown in FIG.
  • the excitation current is 1000 ⁇ A
  • the external reference voltage value V ref (1000 ⁇ R5 ⁇ R6) / (R5 + R6).
  • the filtering function of the temperature measuring circuit is realized by a filtering circuit to suppress interference.
  • the filter circuit can be logically divided into three parts, a power supply filter circuit for filtering the power supply, a sample input filter circuit for filtering the differential signal, and a reference filter circuit for filtering the external reference.
  • the power supply filter circuit is filtered by the filter capacitors C4 and C7 in Figure 1, respectively, for the analog power supply and the digital power supply.
  • the filter capacitor C4 is placed on the line between the analog power supply AVDD (22 interface) and ground, and the filter capacitor C7 is placed on the line between the digital power supply DVDD (1 interface) and ground.
  • the sampling input filter circuit is as shown in FIG. 1 as filter capacitors C1, C2, C3, C5, and C11, wherein the first input/output interface AIN3 (18 interface) of the control unit, the second input/output interface AIN2 (17 interface), and the third
  • the input/output interface AIN7 (16 interface) is electrically connected to a filter capacitor C3, C5, and C11, and is electrically connected between the first input/output interface AIN3 (18 interface) and the second input/output interface AIN2 (17 interface).
  • a filter capacitor C2 is connected, and a filter capacitor C1 is electrically connected between the first input/output interface AIN3 (18 interface) and the third input/output interface AIN7 (16 interface).
  • the reference filter circuit is a first filter circuit composed of R3 and C9 in FIG. 1, and a second filter circuit composed of R4 and C8.
  • a capacitor C9 in the first filter circuit is disposed on a line between the positive external reference input interface of the control unit and the ground, and the resistor R3 in the first filter circuit is disposed in the capacitor C9 and the resistor network in the first filter circuit ( R5 and R6 are connected in parallel between the circuits).
  • the capacitor C8 in the second filter circuit is disposed on the line between the negative external reference input interface of the control unit and the ground, and the resistor R4 in the second filter circuit is disposed in the capacitor C8 and the resistor network in the second filter circuit (R5 and R6 parallel circuit) on the line.
  • FIG. 3 is a schematic diagram of some embodiments of a temperature measuring circuit detecting apparatus of the present disclosure.
  • the temperature measurement circuit detecting apparatus 300 of this embodiment includes:
  • processor 320 is configured to perform the temperature measurement circuit detection method of any of the preceding embodiments based on instructions stored in memory 310.
  • memory 310 can include, for example, system memory, a fixed non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application, a boot loader, and other programs.
  • FIG. 4 is a schematic diagram of still another embodiment of the temperature measuring circuit detecting apparatus of the present disclosure.
  • the temperature measurement circuit detecting apparatus 400 of this embodiment includes:
  • the control module 410 is configured to control the first current output interface and the second current output interface of the control unit to respectively output currents of the same level;
  • a detecting module 420 configured to detect a differential signal between the second input/output interface and the third input/output interface of the control unit;
  • the determining module 430 is configured to determine, when the differential signal is a high level, that the temperature sensor through which the current flows is a two-wire temperature sensor; and in the case that the differential signal is a low level, determine the current flowing through The temperature sensor is a three-wire temperature sensor.
  • the temperature measurement circuit detecting apparatus 400 of this embodiment further includes:
  • a temperature conversion module 440 configured to perform temperature conversion based on a differential signal sample value between the first input output interface and the third input/output interface output by the control unit;
  • the control module 410 is configured to control the first current output interface of the control unit to provide an excitation current for the two-wire connection temperature sensor; the first current output interface and the second current output interface of the control control unit are three-wire connection
  • the temperature sensor of the method provides two identical excitation currents.
  • the present disclosure also proposes a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the temperature measurement circuit detection method of any of the foregoing embodiments.
  • embodiments of the present disclosure can be provided as a method, system, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

一种测温电路及其检测方法,涉及电子电路领域。其中的测温电路包括:控制单元(U1),其中,控制单元(U1)包括第一电流输出接口(IEXC1)、第二电流输出接口(IEXC2)、第一输入输出接口(AIN3)、第二输入输出接口(AIN2)和第三输入输出接口(AIN7);并且,控制单元(U1)的第一电流输出接口(IEXC1)和第一输入输出接口(AIN3)与温度传感器(CN1)的第一接口(CN1-1)分别电连接,控制单元(U1)的第二电流输出接口(IEXC2)和第二输入输出接口(AIN2)与温度传感器(CN1)的第二接口(CN1-2)分别电连接,控制单元(U1)的第三输入输出接口(AIN7)与温度传感器(CN1)的第三接口(CN1-3)电连接。从而实现了能够兼容两线制和三线制接口的温度传感器(CN1)的测温电路。

Description

测温电路及其检测方法
本申请主张CN申请号为201710940980.7,申请日为2017年10月11日的申请的优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电子电路领域,特别涉及一种能够兼容两线制和三线制接口的温度传感器的测温电路及其检测方法。
背景技术
PT100温度传感器相对于其他温度传感器来说,在-50℃~600℃范围内具有精度高、稳定性好、抗干扰能力强等优点。目前PT100温度传感器的测温电路多为恒流源式或电桥式。
发明人发现,针对不同接线方法的PT100温度传感器,例如两线制、三线制,硬件所使用的测温电路不一样,不能对两线制、三线制接口的PT100温度传感器进行兼容。
发明内容
本公开实施例所要解决的一个技术问题是:两线制和三线制接口的温度传感器的测温电路的兼容问题。
根据本公开的一个方面,提出一种测温电路,包括:控制单元,其中,所述控制单元包括第一电流输出接口、第二电流输出接口、第一输入输出接口、第二输入输出接口和第三输入输出接口;并且,所述控制单元的第一电流输出接口和第一输入输出接口与温度传感器的第一接口分别电连接,所述控制单元的第二电流输出接口和第二输入输出接口与温度传感器的第二接口分别电连接,所述控制单元的第三输入输出接口与温度传感器的第三接口电连接。
可选地,所述控制单元还包括用来输出第一输入输出接口和第三输入输出接口间的差分信号采样值的输出接口;所述测温电路还包括能够将电信号采样值转换为温度的温度转换单元,所述温度转换单元与所述控制单元的输出接口电连接。
可选地,所述控制单元还包括正内部基准输出接口和负内部基准输出接口,负内 部基准输出接口接地;所述测温电路还包括串联在正内部基准输出接口和负内部基准输出接口之间的电容。
可选地,所述控制单元还包括正外部基准输入接口和负外部基准输入接口,正外部基准输入接口与第三电流输出接口电连接;所述测温电路还包括精度高于预设值的电阻网络,所述电阻网络设置在外部基准输入接口和负外部基准输入接口之间的连接线路上。
可选地,所述控制单元的第一电流输出接口和第二电流输出接口为恒流源接口。
可选地,所述控制单元还包括恒流源和可配置寄存器;所述控制单元的第一电流输出接口和第二电流输出接口与恒流源分别电连接,恒流源与可配置寄存器电连接,可配置寄存器向恒流源输出不同的控制信号,以激励恒流源输出不同电平的电流。
可选地,所述测温电路还包括滤波电容;所述控制单元的第一输入输出接口、第二输入输出接口和第三输入输出接口与地之间分别与一个滤波电容电连接,在第一输入输出接口和第二输入输出接口之间电连接一个滤波电容,在第一输入输出接口和第三输入输出接口之间电连接一个滤波电容。
可选地,所述测温电路还包括第一滤波电路和第二滤波电路,第一滤波电路和第二滤波电路均由电阻和电容构成;第一滤波电路中的电容设置在所述控制单元的正外部基准输入接口和地之间的线路上,第一滤波电路中的电阻设置在第一滤波电路中的电容和所述电阻网络之间的线路上;第二滤波电路中的电容设置在所述控制单元的负外部基准输入接口和地之间的线路上,第二滤波电路中的电阻设置在第二滤波电路中的电容和所述电阻网络之间的线路上。
可选地,控制单元还包括除第一输入输出接口、第二输入输出接口和第三输入输出接口之外的若干其他输入输出接口,所述其他输入输出接口与除所述温度传感器之外的其他温度传感器电连接。
可选地,所述温度传感器是铂热电阻温度传感器。
根据本公开的另一个方面,还提出一种测温电路检测方法,包括:控制控制单元的第一电流输出接口和第二电流输出接口分别输出电平相同的电流;检测控制单元的第二输入输出接口和第三输入输出接口之间的差分信号;在差分信号是高电平的情况下,确定电流流经的温度传感器是两线制接法的温度传感器;在差分信号是低电平的情况下,确定电流流经的温度传感器是三线制接法的温度传感器。
可选地,由控制单元的第一电流输出接口为两线制温度传感器提供一个激励电 流;由控制单元的第一电流输出接口和第二电流输出接口为三线制接法的温度传感器提供两个相同的激励电流;以及基于控制单元输出的第一输入输出接口和第三输入输出接口间的差分信号采样值进行温度转换。
本公开提出一种能够兼容两线制和三线制接口的温度传感器的测温电路。此外,通过检测设定接口的差分信号的高低电压,就能够确定目前温度传感器采用的是两线制还是三线制接线方法。
附图说明
下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍。根据下面参照附图的详细描述,可以更加清楚地理解本公开,
显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开测温电路一些实施例的示意图。
图2为本公开测温电路检测方法的流程示意图。
图3为本公开测温电路检测装置一些实施例的示意图。
图4为本公开测温电路检测装置另一些实施例的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。
如前所述,一些温度传感器有不同的接线方法。例如,铂热电阻温度传感器中的PT100,PT1000等有两线制和三线制的接线方法。这些温度传感器在不同接线方法下所使用的测温电路也不同,存在兼容性的问题。为此,本公开提出一种能够兼容两线制和三线制接口的温度传感器的测温电路。
从逻辑上划分,测温电路例如包括电流源输出功能、温度传感器采样功能、基准功能(包括内部基准和外部基准)、滤波功能、通讯功能等。下面结合图1具体描述测温电路及其各个逻辑功能。
图1为本公开测温电路一些实施例的示意图。
如图1所示,该实施例的测温电路包括:控制单元U1,用来实现温度传感器温度的采集和传输控制功能。控制单元U1例如可以选用具有采样功能、电流源输出功能、基准输 出功能和通讯功能的逻辑芯片实现,例如ADS1128、ADS1146、ADS1148等,但不限于所举示例。
控制单元U1的接口,如图1所示,例如包括第一电流输出接口IEXC1(20接口)、第二电流输出接口IEXC2(19接口)。控制单元U1的接口还包括若干输入输出接口(如11~18接口),本实施例选用具有模拟数字转换功能的三个接口,设为第一输入输出接口AIN3(18接口)、第二输入输出接口AIN2(17接口)和第三输入输出接口AIN7(16接口),这些接口用来与温度传感器CN1连接,以实现对温度传感器CN1的温度检测,其他输入输出接口AIN6,AIN5,AIN4,AIN1,AIN0(11~15接口)可以空置,也可以与其他温度传感器电连接,以实现对其他温度传感器的温度检测。这些输入输出接口(如11~18接口)可以并行工作,所采集的温度信息均可以传输给温度转换单元T1进行温度转换,从而缓解温度转换单元T1的模拟数字转换接口资源紧张的状况。控制单元U1的接口还包括正内部基准输出接口VREFOUT(9接口)和负内部基准输出接口VREFCOM(10接口),以及,正外部基准输入接口REFP0(5接口)和负外部基准输入接口REFN0(6接口),可以配合其他电子元器件为测温电路提供稳定的内部基准或外部基准。控制单元U1的接口还包括用来与温度转换单元T1通讯的通讯接口(如23~28接口),其中的输出接口DOUT(26接口)与温度转换单元T1的SSP_MISO接口连接,用来向温度转换单元T1输出第一输入输出接口AIN3(18接口)和第三输入输出接口AIN7(16接口)间的差分信号采样值,以便温度转换单元T1将其转换为温度。其中的输入接口DIN(27接口)与温度转换单元T1的SSP_MOSI接口连接,用来温度转换单元T1向控制单元U1输入配置指令,可以使控制单元U1输出不同电平的激励电流。通讯接口例如还包括时钟接口SCLK(28接口)、数据准备输出接口DRDY(25接口)、使能接口CS(24接口)、开始控制接口START(23接口)等,分别与温度转换单元T1的SSP_CLK、ADS_DRDY、ADS_CS、ADS_START接口连接,用于温度转换单元T1向控制单元U1发出相应的控制指令。控制单元U1的接口还包括电源接口,例如模拟电源AVDD(22接口)、模拟地AVSS(21接口),数字电源DVDD(1接口)、数字地DGND(2接口)。控制单元U1的接口还包括时钟接口CLK(3接口)、复位接口RESET(4接口),以及,闲置的正外部基准输入接口REFP1(7接口)和负外部基准输入接口REFN1(8接口)。
控制单元U1与温度传感器CN1的线路连接关系,如图1所示:控制单元U1的第一电流输出接口IEXC1(20接口)和第一输入输出接口AIN3(18接口)与温度传感器CN1的第一接口CN1-1分别电连接,控制单元U1的第二电流输出接口IEXC2(19 接口)和第二输入输出接口AIN2(17接口)与温度传感器CN1的第二接口CN1-2分别电连接,控制单元U1的第三输入输出接口AIN7(16接口)与温度传感器CN1的第三接口CN1-3电连接。可选地,为了保护电路,还可以在控制单元U1的第一输入输出接口AIN3(18接口)和温度传感器CN1的第一接口CN1-1之间设置电阻R2,在控制单元U1的第二输入输出接口AIN2(17接口)和温度传感器CN1的第二接口CN1-2之间设置电阻R1,在控制单元U1的第三输入输出接口AIN7(16接口)和温度传感器CN1的第三接口CN1-3之间设置电阻R7。
由此可见,三线制接法的温度传感器需要两个电流源,分别由第一电流输出接口IEXC1(20接口)和第二电流输出接口IEXC2(19接口)提供,三线制接法的优点是将电流分别加在温度传感器CN1的第一接口CN1-1和第二接口CN1-2相等长度的导线上,可以消除导线电阻的影响。两线制接法的温度传感器需要一个电流源,由第一电流输出接口IEXC1(20接口)提供。但硬件会引出另一个电流源,由第二电流输出接口IEXC2(19接口)提供,连接到温度传感器CN1的第二接口CN1-2,同时通过R1返回连接到控制单元U1的第二输入输出接口AIN2(17接口)。从而,测温电路实现了对两线制和三线制接口的温度传感器的硬件兼容。
在前述硬件兼容的基础上,通过逻辑判断即可确定温度传感器CN1采用的是两线制接线法还是三线制接线法。测温电路检测方法200,如图2所示,具体如下:
步骤S210,控制控制单元U1的第一电流输出接口IEXC1(20接口)和第二电流输出接口IEXC2(19接口)分别输出电平相同的电流,例如,都是1mA。
步骤S220,检测控制单元U1的第二输入输出接口AIN2(17接口)和第三输入输出接口AIN7(16接口)之间的差分信号,若差分信号是高电平,执行步骤S230,若差分信号是低电平,执行步骤S240。
步骤S230,在差分信号是高电平的情况下,确定电流流经的温度传感器是两线制接法的温度传感器;
步骤S240,在差分信号是低电平的情况下,确定电流流经的温度传感器是三线制接法的温度传感器。
从而,测温电路实现了对两线制和三线制接口的温度传感器的软件兼容。并且测温电路检测的是差分信号,因此抗干扰能力比较强。
在确定温度传感器采用两线制或三线制接法后,测温电路可以采用以下方法进行温度检测:
首先,若温度传感器采用两线制接法,由控制单元U1的第一电流输出接口IEXC1(20接口)为两线制温度传感器提供一个激励电流;若温度传感器采用三线制接法,由控制单元U1的第一电流输出接口IEXC1(20接口)为三线制温度传感器提供两个相同的激励电流。
接着,激励电流流经温度传感器CN1后,经过控制单元U1的第一输入输出接口AIN3(18接口)和第三输入输出接口AIN7(16接口),形成回路。对控制单元U1的第一输入输出接口AIN3(18接口)和第三输入输出接口AIN7(16接口)间的差分信号进行采样,并将差分信号采样值输出给温度转换单元T1。
最后,温度转换单元T1例如可以根据温度与电压信号的对照表,将差分信号采样值转换为温度。
上述测温过程检测的是差分信号,因此测温电路抗干扰能力比较强。
测温电路的电流源输出功能:通过控制单元U1的第一电流输出接口IEXC1(20接口)和第二电流输出接口IEXC2(19接口)实现。在控制单元U1中,其第一电流输出接口IEXC1(20接口)和第二电流输出接口IEXC2(19接口)可以为恒流源接口。为此,控制单元U1中还包括恒流源和可配置寄存器,控制单元的第一电流输出接口IEXC1(20接口)和第二电流输出接口IEXC2(19接口)与恒流源分别电连接,恒流源与可配置寄存器电连接,可配置寄存器可以向恒流源输出不同的控制信号,以激励恒流源输出不同电平的电流。可配置寄存器输出与恒流源电平的对应关系例如为000=off,001=50μA,110=1000μA,111=1500μA,但不限于该示例。
从而,由控制单元内部产生稳定的激励电流,使得测温电路不容易受到外部环境的影响而波动,有利于提高检测精度。
测温电路的内部基准功能:通过控制单元U1中的正内部基准输出接口VREFOUT(9接口)和负内部基准输出接口VREFCOM(10接口),并结合测温电路中的电容C6,构建内部基准功能,为测温电路提供稳定的内部基准。如图1所示,负内部基准输出接口VREFCOM(10接口)接地,在正内部基准输出接口VREFOUT(9接口)和负内部基准输出接口VREFCOM(10接口)之间设置一电容C6。
从而,测温电路利用稳定的内部基准作为参考,不容易受到外部环境的影响而波动,有利于提高检测精度。
测温电路的外部基准功能:通过控制单元U1中的正外部基准输入接口REFP0(5接口)和负外部基准输入接口REFN0(6接口),并结合测温电路中的高精度电阻网 络,构建外部基准功能,为测温电路提供外部基准。如图1所示,正外部基准输入接口REFP0(5接口)与第三输入输出接口AIN7(16接口)电连接,在正外部基准输入接口REFP0(5接口)和负外部基准输入接口REFN0(6接口)之间的连接线路上设置电阻网络。可以选用精度高于预设值的电阻网络,例如,精度为0.1%。电阻网络例如可以通过图1中所示的并联电阻R5和R6实现。当激励电流是1000μA时,外部基准电压值V ref=(1000×R5×R6)/(R5+R6)。
测温电路的滤波功能:通过滤波电路实现,从而抑制干扰。滤波电路从逻辑上可以分为三部分,用来对电源进行滤波的电源滤波电路,对差分信号进行滤波的采样输入滤波电路,对外部基准进行滤波的基准滤波电路。
电源滤波电路如图1中的滤波电容C4和C7,分别对模拟电源和数字电源进行滤波。滤波电容C4设置在模拟电源AVDD(22接口)与地之间的线路上,滤波电容C7设置在数字电源DVDD(1接口)与地之间的线路上。
采样输入滤波电路如图1中的滤波电容C1、C2、C3、C5、C11,其中,控制单元的第一输入输出接口AIN3(18接口)、第二输入输出接口AIN2(17接口)和第三输入输出接口AIN7(16接口)与地之间分别与一个滤波电容C3、C5、C11电连接,在第一输入输出接口AIN3(18接口)和第二输入输出接口AIN2(17接口)之间电连接一个滤波电容C2,在第一输入输出接口AIN3(18接口)和第三输入输出接口AIN7(16接口)之间电连接一个滤波电容C1。
基准滤波电路如图1中的R3和C9构成的第一滤波电路,及,R4和C8构成的第二滤波电路。第一滤波电路中的电容C9设置在所述控制单元的正外部基准输入接口和地之间的线路上,第一滤波电路中的电阻R3设置在第一滤波电路中的电容C9和电阻网络(R5和R6并联电路)之间的线路上。第二滤波电路中的电容C8设置在控制单元的负外部基准输入接口和地之间的线路上,第二滤波电路中的电阻R4设置在第二滤波电路中的电容C8和电阻网络(R5和R6并联电路)之间的线路上。
图3为本公开测温电路检测装置一些实施例的示意图。
如图3所示,该实施例的测温电路检测装置300包括:
存储器310;以及
耦接至存储器310的处理器320,处理器320被配置为基于存储在存储器310中的指令,执行前述任一个实施例的测温电路检测方法。
在一些实施例中,存储器310例如可以包括系统存储器、固定非易失性存储介质 等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。
图4为本公开测温电路检测装置另一些实施例的示意图。
如图4所示,该实施例的测温电路检测装置400包括:
控制模块410,用于控制控制单元的第一电流输出接口和第二电流输出接口分别输出电平相同的电流;
检测模块420,用于检测控制单元的第二输入输出接口和第三输入输出接口之间的差分信号;
确定模块430,用于在差分信号是高电平的情况下,确定电流流经的温度传感器是两线制接法的温度传感器;在差分信号是低电平的情况下,确定电流流经的温度传感器是三线制接法的温度传感器。
如图4所示,该实施例的测温电路检测装置400还包括:
温度转换模块440,用于基于控制单元输出的第一输入输出接口和第三输入输出接口间的差分信号采样值进行温度转换;
其中,控制模块410,用于控制控制单元的第一电流输出接口为两线制接法的温度传感器提供一个激励电流;控制控制单元的第一电流输出接口和第二电流输出接口为三线制接法的温度传感器提供两个相同的激励电流。
本公开还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述任一个实施例的测温电路检测方法。
本领域内的技术人员应当明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (16)

  1. 一种测温电路,包括:
    控制单元,
    其中,所述控制单元包括第一电流输出接口、第二电流输出接口、第一输入输出接口、第二输入输出接口和第三输入输出接口;
    并且,
    所述控制单元的第一电流输出接口和第一输入输出接口与温度传感器的第一接口分别电连接,所述控制单元的第二电流输出接口和第二输入输出接口与温度传感器的第二接口分别电连接,所述控制单元的第三输入输出接口与温度传感器的第三接口电连接。
  2. 如权利要求1所述的测温电路,其中,
    所述控制单元还包括用来输出第一输入输出接口和第三输入输出接口间的差分信号采样值的输出接口;
    所述测温电路还包括能够将电信号采样值转换为温度的温度转换单元,所述温度转换单元与所述控制单元的输出接口电连接。
  3. 如权利要求1所述的测温电路,其中,
    所述控制单元还包括正内部基准输出接口和负内部基准输出接口,负内部基准输出接口接地;
    所述测温电路还包括串联在正内部基准输出接口和负内部基准输出接口之间的电容。
  4. 如权利要求1所述的测温电路,其中,
    所述控制单元还包括正外部基准输入接口和负外部基准输入接口,正外部基准输入接口与第三电流输出接口电连接;
    所述测温电路还包括精度高于预设值的电阻网络,所述电阻网络设置在外部基准输入接口和负外部基准输入接口之间的连接线路上。
  5. 如权利要求1所述的测温电路,其中,
    所述控制单元的第一电流输出接口和第二电流输出接口为恒流源接口。
  6. 如权利要求5所述的测温电路,其中,
    所述控制单元还包括恒流源和可配置寄存器;
    所述控制单元的第一电流输出接口和第二电流输出接口与恒流源分别电连接,恒流源与可配置寄存器电连接,可配置寄存器向恒流源输出不同的控制信号,以激励恒流源输出不同电平的电流。
  7. 如权利要求1所述的测温电路,其中,
    所述测温电路还包括滤波电容;
    所述控制单元的第一输入输出接口、第二输入输出接口和第三输入输出接口与地之间分别与一个滤波电容电连接,在第一输入输出接口和第二输入输出接口之间电连接一个滤波电容,在第一输入输出接口和第三输入输出接口之间电连接一个滤波电容。
  8. 如权利要求4所述的测温电路,其中,
    所述测温电路还包括第一滤波电路和第二滤波电路,第一滤波电路和第二滤波电路均由电阻和电容构成;
    第一滤波电路中的电容设置在所述控制单元的正外部基准输入接口和地之间的线路上,第一滤波电路中的电阻设置在第一滤波电路中的电容和所述电阻网络之间的线路上;
    第二滤波电路中的电容设置在所述控制单元的负外部基准输入接口和地之间的线路上,第二滤波电路中的电阻设置在第二滤波电路中的电容和所述电阻网络之间的线路上。
  9. 如权利要求1所述的测温电路,其中,
    控制单元还包括除第一输入输出接口、第二输入输出接口和第三输入输出接口之外的若干其他输入输出接口,所述其他输入输出接口与除所述温度传感器之外的其他温度传感器电连接。
  10. 如权利要求1-9任一项所述的测温电路,其中,
    所述温度传感器是铂热电阻温度传感器。
  11. 一种测温电路检测方法,包括:
    控制控制单元的第一电流输出接口和第二电流输出接口分别输出电平相同的电流;
    检测控制单元的第二输入输出接口和第三输入输出接口之间的差分信号;
    在差分信号是高电平的情况下,确定电流流经的温度传感器是两线制接法的温度传感器;
    在差分信号是低电平的情况下,确定电流流经的温度传感器是三线制接法的温度传感器。
  12. 如权利要求11所述的方法,其中,
    由控制单元的第一电流输出接口为两线制接法的温度传感器提供一个激励电流;
    由控制单元的第一电流输出接口和第二电流输出接口为三线制接法的温度传感器提供两个相同的激励电流;
    以及
    基于控制单元输出的第一输入输出接口和第三输入输出接口间的差分信号采样值进行温度转换。
  13. 一种测温电路检测装置,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器中的指令,执行权利要求11或12所述的测温电路检测方法。
  14. 一种测温电路检测装置,包括:
    控制模块,用于控制控制单元的第一电流输出接口和第二电流输出接口分别输出电平相同的电流;
    检测模块,用于检测控制单元的第二输入输出接口和第三输入输出接口之间的差分信号;
    确定模块,用于在差分信号是高电平的情况下,确定电流流经的温度传感器是两线制接法的温度传感器;在差分信号是低电平的情况下,确定电流流经的温度传感器是三线制接法的温度传感器。
  15. 如权利要求14所述的装置,还包括:
    温度转换模块,用于基于控制单元输出的第一输入输出接口和第三输入输出接口间的差分信号采样值进行温度转换;
    其中,所述控制模块,用于控制控制单元的第一电流输出接口为两线制接法的温度传感器提供一个激励电流;控制控制单元的第一电流输出接口和第二电流输出接口为三线制接法的温度传感器提供两个相同的激励电流。
  16. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现权利要求11或12所述的测温电路检测方法。
PCT/CN2017/118938 2017-10-11 2017-12-27 测温电路及其检测方法 WO2019071844A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17928269.4A EP3647749B1 (en) 2017-10-11 2017-12-27 Temperature measuring circuit and measuring method thereof
US16/652,332 US11604101B2 (en) 2017-10-11 2017-12-27 Temperature measuring circuit and measuring method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710940980.7 2017-10-11
CN201710940980.7A CN107655586B (zh) 2017-10-11 2017-10-11 测温电路及其检测方法

Publications (1)

Publication Number Publication Date
WO2019071844A1 true WO2019071844A1 (zh) 2019-04-18

Family

ID=61117842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118938 WO2019071844A1 (zh) 2017-10-11 2017-12-27 测温电路及其检测方法

Country Status (4)

Country Link
US (1) US11604101B2 (zh)
EP (1) EP3647749B1 (zh)
CN (1) CN107655586B (zh)
WO (1) WO2019071844A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806640A (zh) * 2010-04-20 2010-08-18 杭州和利时自动化有限公司 一种热电阻信号的测量系统
CN102012279A (zh) * 2010-10-19 2011-04-13 上海微程电气设备有限公司 一种双恒流源的热电阻温度测量系统
CN202928712U (zh) * 2012-07-30 2013-05-08 北京维盛新仪科技有限公司 一种全功能温度变送器
KR20130104747A (ko) * 2012-03-15 2013-09-25 엘에스산전 주식회사 측온저항체를 이용한 온도 측정 장치
CN204694370U (zh) * 2015-04-20 2015-10-07 山东创恒科技发展有限公司 基于双恒流源的多路三线制热电阻温度检测系统
US20160076928A1 (en) * 2011-09-13 2016-03-17 Zodiac Aerotechnics Liquid sensor using temperature compensation
CN207231660U (zh) * 2017-10-11 2018-04-13 珠海格力电器股份有限公司 测温电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623266A (en) * 1985-09-24 1986-11-18 Rosemount Inc. Cold junction compensation for thermocouple
JP3715752B2 (ja) * 1997-07-23 2005-11-16 株式会社チノー 抵抗式測温装置
DE10258366A1 (de) * 2002-12-12 2004-07-08 Endress + Hauser Wetzer Gmbh + Co Kg Verfahren und Vorrichtung zur Widerstandsmessung eines temperaturabhängigen Widerstandselements
DE10359988A1 (de) * 2003-12-19 2005-07-14 Siemens Ag Messeinrichtung, insbesondere Temperaturmessumformer
TW201143513A (en) * 2010-05-24 2011-12-01 Delta Electronics Inc Light source module
US9228905B2 (en) * 2012-08-21 2016-01-05 General Electric Company RTD measurement device
CN102879124A (zh) * 2012-10-10 2013-01-16 成都阜特科技股份有限公司 一种温度采集模块
JP6092129B2 (ja) * 2014-01-16 2017-03-08 アズビル株式会社 温度計測システムおよび温度計測器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806640A (zh) * 2010-04-20 2010-08-18 杭州和利时自动化有限公司 一种热电阻信号的测量系统
CN102012279A (zh) * 2010-10-19 2011-04-13 上海微程电气设备有限公司 一种双恒流源的热电阻温度测量系统
US20160076928A1 (en) * 2011-09-13 2016-03-17 Zodiac Aerotechnics Liquid sensor using temperature compensation
KR20130104747A (ko) * 2012-03-15 2013-09-25 엘에스산전 주식회사 측온저항체를 이용한 온도 측정 장치
CN202928712U (zh) * 2012-07-30 2013-05-08 北京维盛新仪科技有限公司 一种全功能温度变送器
CN204694370U (zh) * 2015-04-20 2015-10-07 山东创恒科技发展有限公司 基于双恒流源的多路三线制热电阻温度检测系统
CN207231660U (zh) * 2017-10-11 2018-04-13 珠海格力电器股份有限公司 测温电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647749A4 *

Also Published As

Publication number Publication date
US20200355561A1 (en) 2020-11-12
US11604101B2 (en) 2023-03-14
CN107655586B (zh) 2024-03-29
CN107655586A (zh) 2018-02-02
EP3647749B1 (en) 2023-11-22
EP3647749A1 (en) 2020-05-06
EP3647749A4 (en) 2020-10-21

Similar Documents

Publication Publication Date Title
US10190919B2 (en) Differential thermistor circuit
JP6228865B2 (ja) センサ装置の検査方法及びそのセンサ装置
CN105092075A (zh) 一种高精度多路温度信号采集装置
CN110895177A (zh) 面向智能发动机分布式控制的智能压力传感器系统
CN207816478U (zh) 测温电路
CN104390718A (zh) 一种温度检测方法
WO2019071844A1 (zh) 测温电路及其检测方法
CN207231660U (zh) 测温电路
CN108254096B (zh) 测温电路及其检测装置和检测方法及计算机可读存储介质
CN116054826A (zh) 一种数字式低成本高精度电流频率转换系统
CN206281870U (zh) 加速度传感器
CN115219781A (zh) 正负电压采样电路及具有其的采样系统
RU2699303C1 (ru) Преобразователь напряжения разбаланса мостовой схемы в частоту или скважность
US10585539B2 (en) High sensitivity readout circuit for touch panel
TWI583979B (zh) 檢測裝置、檢測方法及包含其之電子設備
CN112147399A (zh) 一种模拟量采集模块及其类型自动识别电路
CN214538341U (zh) 一种压力传感电路
WO2021035617A1 (zh) 电容式传感系统以及电容式触摸屏的传感电路和传感方法
CN217505012U (zh) 一种直流充电枪枪温隔离检测电路
CN209149109U (zh) 一种能够滤波和放大的信号转换装置
CN219302491U (zh) 转速传感器电路
CN102904575A (zh) Adc前端电路及利用其测量电阻的方法
CN106771353A (zh) 加速度传感器
KR102435495B1 (ko) 센싱 정확도를 향상시키는 캐패시턴스 센싱 디바이스
CN218003548U (zh) 正负电压采样电路及具有其的采样系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928269

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017928269

Country of ref document: EP

Effective date: 20200131

NENP Non-entry into the national phase

Ref country code: DE