WO2019071708A1 - 一种感知显示系统 - Google Patents

一种感知显示系统 Download PDF

Info

Publication number
WO2019071708A1
WO2019071708A1 PCT/CN2017/111411 CN2017111411W WO2019071708A1 WO 2019071708 A1 WO2019071708 A1 WO 2019071708A1 CN 2017111411 W CN2017111411 W CN 2017111411W WO 2019071708 A1 WO2019071708 A1 WO 2019071708A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
point
sensing
central control
setting
Prior art date
Application number
PCT/CN2017/111411
Other languages
English (en)
French (fr)
Inventor
吕良
Original Assignee
深圳共分享网络科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳共分享网络科技有限公司 filed Critical 深圳共分享网络科技有限公司
Publication of WO2019071708A1 publication Critical patent/WO2019071708A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/38Telescopic sights specially adapted for smallarms or ordnance; Supports or mountings therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41AFUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
    • F41A27/00Gun mountings permitting traversing or elevating movement, e.g. gun carriages
    • F41A27/06Mechanical systems
    • F41A27/18Mechanical systems for gun turrets
    • F41A27/20Drives for turret movements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G11/00Details of sighting or aiming apparatus; Accessories
    • F41G11/001Means for mounting tubular or beam shaped sighting or aiming devices on firearms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/004Manual alignment, e.g. micromanipulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/54Devices for testing or checking ; Tools for adjustment of sights
    • F41G1/545Tools for adjustment of sights

Definitions

  • the present invention relates to a perceptual display system, and more particularly to a perceptual display system for a scope.
  • the present invention proposes a perceptual display system capable of improving the shooting efficiency of a scope.
  • a perceptual display system for a scope including a plurality of adjustment knobs and a body.
  • the sensing display system includes a plurality of sensing portions, a plurality of fixing portions, a central control portion, a setting portion, and a display portion.
  • Each of the sensing portions is fixed to the corresponding adjustment knob and includes a first transmission module and a first gravity sensing module.
  • the first gravity sensing module is configured to sense a first three-dimensional spatial direction of the sensing portion and transmit the first three-dimensional spatial direction data.
  • the fixing portion is configured to fix the sensing portion to the corresponding adjustment knob and fix the central control portion to the main body;
  • the central control portion includes a second gravity sensing module, a second transmission module, and a control a processing module, the second gravity sensing module is configured to sense a second three-dimensional spatial direction of the central control unit and transmit the second three-dimensional spatial direction data to the second transmission module, and the second transmission module receives The first three-dimensional spatial direction data from the first transmission module transmits the first three-dimensional spatial direction data and the second three-dimensional spatial direction data to the control processing module;
  • the setting portion is connected to the central control portion, and the setting portion is configured
  • the setting data of the first gravity sensing module is transmitted to the central control unit;
  • the display unit is connected to the central control unit; wherein the control processing module is configured according to the setting data, the second three-dimensional spatial direction and the first three-dimensional spatial direction Calculating the adjustment amount of the adjustment knob to change the adjustment amount of the adjustment knob from the physical value to the digital value, the central control unit
  • the reference value is: setting a certain point between one adjustment point of the adjustment knob and another adjustment point as a reference point, and the central control unit places the adjustment knob at a reference point
  • the adjustment amount at the time is used as a reference amount when calculating the adjustment amount of the adjustment knob between one adjustment point and another adjustment point, which is a reference value between one adjustment point and another adjustment point.
  • the first gravity sensing module is provided with a first gravity sensing chip for sensing a first three-dimensional spatial direction in which the sensing portion is located according to the earth's gravity
  • the second gravity sensing module is provided with a second gravity sensing chip. And for sensing the second three-dimensional spatial direction in which the central control unit is located according to the gravity of the earth.
  • the central control unit may cooperate with at least one of the sensing portions to acquire an adjustment amount of the adjustment knob corresponding to the sensing portion.
  • the fixing portion includes a fixing cap, one end of the fixing cap is in the shape of a round cap and is mounted on the corresponding adjusting knob, and the other end is provided with a first protruding portion, and at least one sensing portion is mounted on the first convex portion. Out.
  • the fixing portion includes a fixing ring, the fixing portion is an annular fixing ring and is provided with a second protruding portion, the central control portion is mounted on the second protruding portion, and at least one sensing portion is installed in the The second projection is described.
  • the setting part includes a third transmission module, a setting program, and a display module, and the setting part runs a setting program, and is connected through the third transmission module and the second transmission module during setting, and operates on a setting interface of the display module.
  • the setting data of the sensing unit is set to the central control unit by the setting step, and the central control unit calculates the adjustment amount of the adjustment knob by setting data.
  • the setting step includes setting a lowest point within a certain adjustment range of the adjustment knob, setting a highest point within a certain adjustment range, adjusting an input adjustment range, selecting an adjustment unit, and setting a starting point of the adjustment knob within the adjustment range.
  • the setting step includes setting the N-1th point of the scale value of the adjustment knob, reading the scale value of the N-1th point, setting the Nth point of the scale value of the adjustment knob, and reading the scale value of the Nth point. And causing the central control unit to obtain and save all the calibration scale points of the adjustment knob, and use the N-1 point of the calibration scale as the starting point of the calculation range of the sensing portion, and set the Nth point of the calibration scale The end point of the range is calculated as the sensing portion; wherein N is an integer greater than or equal to 2.
  • the sensing display system of the invention can use the control processing module to digitize the adjustment amount of each adjustment knob of the scope in time, and can be displayed by the display part in time, and the user can quickly see the scope through the display part when using the scope to aim at the target.
  • the instantaneous continuous adjustment of the adjustment knob greatly improves the shooting efficiency.
  • FIG. 1 is a schematic view showing the assembly of a perceptual display system and a scope according to the present invention.
  • FIG. 2 is an exploded perspective view of the sensing display system and the scope of FIG. 1.
  • Fig. 3 is a flow chart showing the arrangement of the setting portion of the present invention.
  • FIG. 4 is a schematic block diagram of a setting portion, a central control portion, and a sensing portion of the present invention.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of “plurality” is two or more, Unless otherwise specifically defined.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or connected integrally; may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • installation shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise.
  • , or connected integrally may be mechanical connection or electrical connection; may be directly connected, or may be indirectly connected through an intermediate medium, and may be internal communication between the two elements.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • FIG. 1 for a perceptual display system for a scope, which includes a plurality of adjustment knobs and a main body 60.
  • the adjustment knobs are a height adjustment knob 601, a left and right adjustment knob 602, a focus adjustment knob 603, and a magnification adjustment knob 604, respectively.
  • the sensing display system is configured to sense the adjustment amount of the adjustment knob of the scope and change the adjustment amount from a physical value to a digital value that can be displayed, that is, digitize, and include a plurality of sensing portions 10,
  • Each of the sensing portions 10 is fixed to the corresponding adjustment knob and includes a first transmission module 1011 and a first gravity sensing module 1012.
  • the first gravity sensing module 1012 is configured to sense the first three-dimensional spatial direction of the sensing portion and the first three-dimensional direction.
  • the spatial direction data is transmitted to the first transmission module 1011; the fixing portion is for fixing the sensing portion 10 to the corresponding adjustment knob and fixing the central control portion 30 to the main body 60; the central control portion 30 includes the second gravity
  • the sensing module 3013, the second transmission module 3011, and the control processing module 3012, the second gravity sensing module 3013 is configured to sense the second three-dimensional spatial direction of the central control unit 30 and transmit the second three-dimensional spatial direction data to the second transmission module.
  • the second transmission module 3011 receives the first three-dimensional spatial direction data from the first transmission module 1011 and transmits the first three-dimensional spatial direction data and the second three-dimensional spatial direction data to the control processing module 3012.
  • the setting unit 20 and the The central control unit 30 is connected, and the setting unit 20 sets the setting data of the first gravity sensing module 1012 and transmits it to the central control unit 30;
  • the display unit 40 is connected to the central control unit 30; wherein the control processing module 3012 calculates the adjustment amount of the adjustment knob according to the relative change angles of the setting data, the second three-dimensional spatial direction and the first three-dimensional spatial direction, thereby adjusting The adjustment amount of the knob is changed from a physical value to a digital value, that is, digitized, and the central control portion 30 transmits the adjustment amount of the digitized adjustment knob to the display portion 40 for display or/and for use by other devices.
  • the setting unit 20 is a handheld terminal device such as a mobile phone or a computer that can install and run programs.
  • the adjustment amount of each adjustment knob of the scope can be digitized by the control processing module 3012 in time, and displayed by the display unit 40 in time.
  • the display unit 40 can quickly see the adjustment knobs of the scope.
  • the continuous adjustment amount greatly improves the shooting efficiency.
  • the digitized adjustment amount of each adjustment knob of the scope outputted by the sensing display system of the present invention can be used as a digital quantity by other intelligent equipment and subsequently processed, so that the data of other intelligent equipment and the adjustment amount of the scope are directly linked.
  • the shooting efficiency is further improved.
  • the sensing unit 10 is four, respectively, the sensing portions 10A, 10B, 10C, 10D; the fixing portion is five, respectively, the high and low adjustment knob fixing cap 501, the left and right adjustment knob fixing cap 502, the focus adjustment knob The fixing cap 503, the magnification adjusting knob fixing ring 504 and the central control portion fixing ring 505; the sensing portion 10A is fixed to the height adjusting knob 601 by the height adjusting knob fixing cap 501, and the sensing portion 10B is fixed to the left and right adjusting knob by the left and right adjusting knob fixing cap 502 602, the sensing portion 10C is fixed to the focus adjustment knob 603 by the focus adjustment knob fixing cap 503, and the sensing portion 10D is fixed to the magnification adjustment knob 604 by the magnification adjustment knob fixing ring 504, and the central control portion 30 is fixed by the central control portion fixing ring 505 On the body 60 of the scope.
  • the first gravity sensing module 1012 is provided with a first gravity sensing chip for sensing the first three-dimensional spatial direction in which the corresponding adjusting knob is located according to the earth's gravity, and the second gravity sensing module 3013 is configured. There is a second gravity sensing chip for sensing the second three-dimensional spatial direction in which the central control unit 30 is located according to the earth's gravity.
  • the adjustment amount of the adjustment knob of the present invention is calculated by the following formula:
  • E is the instantaneous digital adjustment of the adjustment knob
  • et is the unit adjustment amount of the adjustment knob
  • S is the reference value
  • X is the spatial axis on which the second three-dimensional spatial direction and the first three-dimensional spatial direction are constant at the same relative position.
  • the relative change angle that is, the rotation angle of the adjustment knob
  • a is the relative angular change amount of the second three-dimensional space direction and the first three-dimensional space direction at the same relative position on the spatial axis when the adjustment knob is turned from one adjustment point to another adjustment point
  • e is an adjustment knob The range of adjustment between the two adjustment points read.
  • the reference value is a point L between an adjustment point M of the adjustment knob and another adjustment point N
  • the central control unit 30 will The adjustment amount when the adjustment knob is at the reference point L is used as a reference amount when calculating the adjustment amount of the adjustment knob between the adjustment point M and the adjustment point N, and the reference amount is between the adjustment point M and the adjustment point N Reference value.
  • the respective sensing portions 10A, 10B, 10C, 10D are respectively opposite to the The relative angular change amount of the central control unit 30 on the spatial axis unchanged at the same relative position, that is, the first three-dimensional spatial directions of the respective sensing portions 10A, 10B, 10C, and 10D are respectively in the same relative direction as the second three-dimensional spatial direction.
  • the relative angular change amounts a1, a2, a3, and a4 on the spatial axis whose position is constant are the rotation angles of the adjustment knobs 601, 602, 603, and 604 respectively corresponding thereto, and the corresponding adjustment knobs 601, 602, 603, 604, the adjustment ranges e1, e2, e3, e4 between the two adjustment points read on the respective scales are respectively divided by the corresponding rotation angles a1, a2, a3, a4, and the corresponding said
  • the adjustment knobs 601, 602, 603, 604 are respectively transferred from one adjustment point to another adjustment point, and the corresponding sensing portions 10A, 10B, 10C, 10D are opposite to the central control unit 30.
  • the relative angles on the spatial axes whose relative positions are unchanged are also changed, that is, the first three-dimensional spatial directions of the respective sensing portions 10A, 10B, 10C, and 10D are respectively in the same relative position as the second three-dimensional spatial direction.
  • the relative angles on the shaft are also changed.
  • the set point 20 sets each point of the rotation of the adjustment knobs 601, 602, 603, and 604 as a respective reference point, and the adjustment knobs 601, 602, and 603 are respectively adjusted.
  • the adjustment amount at the respective reference point timings of 604 is set as the reference values S1, S2, S3, and S4, and one direction in which the adjustment knobs 601, 602, 603, and 604 are respectively rotated is set as the adjustment knob.
  • the adjustment amount is increased, and the other rotation direction is set to decrease the adjustment amount of the adjustment knob.
  • the central control unit 30 adds or subtracts the corresponding reference values S1, S2, S3, and S4 to the corresponding sensing portions 10A, 10B, 10C, and 10D with respect to the central control unit 30.
  • the relative change angles X1, X2, X3, X4 on the spatial axis of the relative position are multiplied by the unit adjustment amount et1 of the respective adjustment knobs 601, 602, 603, 604 between the respective two adjustment points.
  • 71A with respect to Xs, Ys, and Zs (as shown in FIG. 75A) are In the same manner, when the height adjustment knob 601 is rotated by an angle, the first three-dimensional space built by the first gravity sensing module 1012 of the sensing portion 10A is perceived by the first control unit 30 with respect to the second three-dimensional space.
  • the space has two directions Xat and Zat moved, so that the Yat direction (71A shown in FIG. 1) is obtained, and the height adjustment knob 601 is rotated regardless of the spatial position of the scope, and the sensing portion 10A senses The Yat direction in the first three-dimensional space (71B shown in FIG.
  • the sensing unit 10A senses the other two spatial directions Xar, Zar directions in the three-dimensional space with the Yat direction as the Y axis (eg 71B) shown in FIG. 1 is invariable with respect to the other two spatial directions Xar and Zar directions (75B shown in FIG.
  • the central control unit 30 may be first built in from the sensing portion 10A acquired through the first transmission module 1011 and the second transmission module 3011.
  • the Xar and Zar directions (71B shown in FIG. 1) in the first three-dimensional space sensed by the gravity sensing module 1012 are relative to the Xar and Zar directions (75B shown in FIG. 1) in the second three-dimensional space perceived by the gravity sensing module 1012.
  • the direction of the axis Yat (such as 71B shown in Figure 1) after the rotation of the Xart, Zart direction (shown as 71B in Figure 1) calculates the value of the angle a (71B shown in Figure 1), angle a (as shown in Figure 1
  • the value of 71B) is read on the scale of the adjustment knob 601 except that the height adjustment knob 601 is rotated by an angle a.
  • the adjustment amount is increased, the zero point of the height adjustment knob 601 is set as a reference point, and the zero point is a shooting term, and the height adjustment knob 601 of the scope does not need further adjustment.
  • the bullet can be at a set distance.
  • the point at which the center of the scope is located is called the high and low adjustment knob 601. At the zero point of this set distance, people are accustomed to zero the value when returning to zero, then the reference point is zero.
  • the central control unit 30 can cooperate with any one of the sensing portions 10A, 10B, 10C, and 10D to obtain the adjustment amount of the adjustment knob where the sensing portions 10A, 10B, 10C, and 10D are located.
  • the adjustment amount of the adjustment knob in which each of the sensing portions 10A, 10B, 10C, and 10D is located may be acquired by a plurality of or all of the sensing portions 10A, 10B, 10C, and 10D. That is, the central control unit 30 can cooperate with at least one of the sensing portions 10 to obtain the adjustment amount of the adjustment knob where the sensing portion 10 is located.
  • the fixing portion includes a fixing cap 501, 502, 503.
  • One end of the fixing caps 501, 502, 503 has a round cap shape and is fixed to a corresponding adjusting knob, and the other end is provided with a first
  • the protruding portion 509 is attached to the first protruding portion 509 by at least one sensing portion 10.
  • one end of the height adjustment knob fixing cap 501, the left and right adjustment knob fixing cap 502, and the focus adjustment knob fixing cap 503 are in the shape of a round cap, and can be fixed on the height adjustment knob 601, the left and right adjustment knob 602, and the focus adjustment knob 603.
  • the other end is provided with a first protruding portion 509, and the sensing portions 10A, 10B, and 10C are fixed to the corresponding first protruding portions 509.
  • the fixing portion includes a fixing ring 504, 505, and the fixing ring 504, 505 is an annular fixing ring and is provided with a second protruding portion 508, and the central control portion 30 is mounted on the second protruding portion 508.
  • At least one sensing portion 10 is mounted to the second projection.
  • the magnification adjustment knob fixing ring 504 and the central control portion fixing ring 505 are annular fixing rings, which can be respectively fixed on the magnification adjustment knob 604 of the scope and the main body 60 of the scope.
  • a second protruding portion 508 is disposed on a side surface of the fixing ring 504, 505.
  • the sensing portion 10D is fixed to the second protruding portion 508 of the magnification adjusting knob fixing ring 504, and the central control portion 30 is fixed to the central control portion.
  • the setting unit 20 includes a third transmission module 201 , a setting program 202 , and a display module 203 .
  • the setting unit 20 runs a setting program 202 , and is configured to pass through the third transmission module 201 and
  • the second transmission module 3011 of the central control unit 30 is connected, and the setting step is operated on the setting interface of the display module 203, and the setting data of the sensing unit 10 is provided to the central control unit 30 through the setting step, so that the central control unit is provided.
  • 30 Calculate the adjustment amount of the adjustment knob from these setting data.
  • the setting data includes the associated data of the sensing unit 10 and the respective adjustment knobs of the scope, including the starting angle data vB, the ending angle data vE, the reference angle data vR, the angle data vX, the reference value S, and the The unit of adjustment of the sensing unit 10, the unit adjustment amount et of the sensing unit 10 between the starting point of the calculation range and the end point of the calculation range.
  • the setting unit 20 can set several identical sensing portions 10A, 10B, 10C, and 10D through the setting program 202 so that they become the height adjusting knob 601, the left and right adjusting knob 602, the focus adjusting knob 603, and
  • the sensing unit corresponding to the magnification adjustment knob 604 sets the setting data of the sensing portions 10A, 10B, 10C, and 10D respectively through the setting step, and transmits the setting data to the central control portion 30 through the third transmission module 201,
  • the central control unit 30 stores the setting data after the setting is completed, so that the central control unit 30 can also operate normally after the setting unit 20 is disconnected.
  • the setting portion 20 when it is necessary to provide the sensing portion 10A corresponding to the height adjustment knob 601, the setting portion 20, the central control portion 30, and the sensing portion 10 are connected, the power switch of the sensing portion 10A is turned on, and the setting program 202 is set.
  • a new device is sensed, that is, the sensing unit 10A, enters the setting step, and first selects a new device on the display interface of the display module 203.
  • the setting is a high-low adjustment knob 601.
  • This step causes the central control unit 30 to treat the data transmitted from the sensing unit 10A as the data of the high-low adjustment knob 601, and causes the central control unit 30 to save the sensing unit 10A and the The relationship between the height adjustment knob 601, that is, the correlation sensor portion 10A and the height adjustment knob 601, see step 901A; after completion, click the setting interface to enter the next step, the interface prompts to adjust the height adjustment knob 601 to the lowest point, this step enables The central control unit 30 obtains and stores a starting point of the calculation range of the sensing unit 10A, which is the first three-dimensional spatial direction sensed by the first gravity sensing module 1012 built in the sensing unit 10A relative to the central control unit.
  • the built-in second gravity sensing module 3013 senses a starting angle data vB of the second three-dimensional spatial direction on the spatial axis with the relative position unchanged, see step 902A; after completion, click the setting interface to enter the next step, and the interface prompts
  • the height adjustment knob 601 is adjusted to the highest point, and this step causes the central control unit 30 to obtain and save the end point of the calculation range of the sensing portion 10A, which is
  • the first three-dimensional spatial direction sensed by the first gravity sensing module 1012 built in the sensing unit 10A is constant with respect to the second three-dimensional spatial direction sensed by the second gravity sensing module 3013 built in the central control unit 30.
  • a termination angle data vE on the space axis see step 903A; after completion, click the setting interface to enter the next step, the interface prompts to input the adjustment range e1 of the high and low adjustment knob 601, that is, the lowest point of the height adjustment knob 601 read on the adjustment knob 601 scale
  • the total adjustment amount between the highest point and the prompt point, and the selection is in units of arc angle (also called MRAD or Mildot) or angle division (MOA).
  • This step causes the central control unit 30 to obtain and save the sensing portion 10A.
  • vB and the adjustment range e1 read on the scale between the start and end points of the high and low adjustment knob 601, the sensing portion 10A can be obtained between the start point of the calculation range and the end point of the calculation range.
  • the bit adjustment amount et1, ie et1 e1/a1; after completion, click the setting interface to enter the next step, the interface prompts to adjust the high and low adjustment knob 601 to the zero point, the zero point is the shooting term, the height adjustment knob 601 of the scope does not need further adjustment
  • the point where the center of the scope is located is called the zero point of the height adjustment knob 601 at this set distance.
  • the zero point is used as a reference point, which is built in the sensing part 10A.
  • the first three-dimensional spatial direction sensed by the first gravity sensing module 1012 is opposite to the second three-dimensional spatial direction sensed by the second gravity sensing module 3013 built in the central control unit 30 on a spatial axis unchanged by the relative position
  • the value of the return to zero is regarded as 0, and the central control unit 30 automatically sets the reference value S1 to zero when the height adjustment knob 601 is at the reference point, so no input reference is required.
  • the central control unit 30 obtains and saves the starting angle of the sensing portion 10A.
  • vB end angle data vE, units between the end and the starting point of calculation range adjustment amount calculation range et1, reference angle data vR, the reference value S1.
  • the central control unit 30 can obtain the second three-dimensional spatial direction that the first gravity sensing module 1012 built in the sensing unit 10A senses with respect to the second gravity built in the central control unit 30.
  • the setting step of the sensing portion 10B corresponding to the left and right adjustment knobs 602 and the setting step of the sensing portion 10A corresponding to the height adjustment knob 601 are set, and the relationship between the left and right adjustment knobs 602 and the sensing portion 10B is first associated. And being saved by the central control unit 30, see step 901B; and then adjusting the left and right adjustment knobs 602 to the lowest point, so that the central control unit 30 obtains and saves the starting point of the calculation range of the sensing unit 10B, see step 902B.
  • the left and right adjustment knobs 602 are adjusted to the highest point, and the central control unit 30 obtains and saves the end point of the calculation range of the sensing portion 10B, see step 903B; then inputs the adjustment range of the left and right adjustment knobs 602 and selects the arc angle. Or the angle of the unit, see step 904B; after completing steps 902B, 903B, and 904B, the central control unit 30 obtains the rotation angle a2 between the starting point of the calculation range and the end point of the calculation range, and the starting point of the sensing portion 10B.
  • the adjustment range e2 between the end point and the end point, thereby obtaining the unit adjustment amount et2 between the start point of the calculation range and the end point of the calculation range, that is, et2 e2/a2;
  • the left and right adjustment knobs 602 are adjusted to the zero point, so that the central control unit 30 automatically sets the reference value S1 to zero when the left and right adjustment knobs 602 are at the reference point, see step 905B; click the setting interface to complete the setting, after completing this step
  • the central control unit 30 obtains and stores the unit adjustment amount et2 between the start point of the calculation range of the sensing unit 10B and the end point of the calculation range, and refers to the value S2.
  • the center control unit 30 is adjusted by adjusting the left and right adjustment knobs 602.
  • the power switch of the sensing portion 10C is turned on, and the setting program 202 is set.
  • a new device is sensed, that is, the sensing unit 10C enters the setting step.
  • the new device is selected as the focus adjustment knob 603 option on the display interface of the display module 203.
  • This step causes the central control unit 30 to sense the portion 10C.
  • the transmitted data is taken as the data of the focus adjustment knob 603, and the central control unit 30 saves the relationship between the sensing portion 10C and the focus adjustment knob 603, that is, the correlation sensing portion 10C and the focus adjustment knob 603.
  • step 901C after completion, click the setting interface to enter the next step, the interface prompts to adjust the focus adjustment knob 603 to the first point of the target value scale and input the value of the first point of the target value scale read by the focus adjustment knob 603.
  • This step causes the central control unit 30 to obtain and save a first point of the calculation range of the sensing portion 10C, which is that the first gravity sensing module 1012 built in the sensing portion 10C senses
  • the angle of the first three-dimensional space relative to the second three-dimensional spatial direction of the second gravity sensing module 3013 built in the central control unit 30 is an angle data v1 on a spatial axis whose relative position is constant, and the first of the calculation ranges Point value p1, see step 902C; after completion, click the setting interface to enter the next step, the interface prompts to adjust the focus adjustment knob 603 to the second point of the target value scale and input the value of the second point of the target value scale read on the focus adjustment knob 603, this step makes the The central control unit 30 obtains and stores
  • the built-in second gravity sensing module 3013 senses an angle data v2 of the second three-dimensional spatial direction on the spatial axis whose relative position is unchanged, and a value p2 of the second point of the calculation range, see step 903C;
  • the setting interface proceeds to the next step, and the interface prompts to adjust the focus adjustment knob 603 to the third point of the target value scale and input the value of the third point of the target value scale read on the focus adjustment knob 603.
  • This step enables the central control unit 30 to obtain And storing a third point of the calculation range of the sensing portion 10C, which is the first three-dimensional spatial direction perceived by the first gravity sensing module 1012 built in the sensing portion 10C relative to the center
  • the second gravity sensing module 3013 built in the system 30 senses an angle data v3 of the second three-dimensional spatial direction on the spatial axis whose relative position is unchanged, and a value p3 of the third point of the calculation range, see step 904C;
  • the interface prompts to adjust the focus adjustment knob 603 to the Nth point of the scale value and input the focus adjustment knob 603.
  • This step causes the central control unit 30 to obtain and save the Nth point of the calculation range of the sensing unit 10C.
  • the first three-dimensional spatial direction sensed by the first gravity sensing module 1012 built in the sensing portion 10C is opposite to the second three-dimensional spatial direction sensed by the second gravity sensing module 3013 built in the central control portion 30.
  • the central control unit 30 can obtain the first three-dimensional spatial direction perceived by the first gravity sensing module 1012 built in the sensing portion 10C relative to the middle
  • the second gravity sensing module 3013 built in the central control unit 30 senses an angle data vX(1) on the spatial axis whose relative position is unchanged in the second three-dimensional spatial direction, thereby obtaining the focus adjustment knob 603 relative to the reference point.
  • the central control unit 30 can calculate the focus adjustment knob 603 between the first point and the second point of the scale.
  • the perceived angle of the second three-dimensional space on the spatial axis of the relative position is vX(2)
  • the rotation angle of the focus adjustment knob 603 relative to the reference point is obtained X3(2)
  • X3(2) vX(2)-vR(2)
  • the central control unit 30 can obtain the calculation range of the sensing portion 10C.
  • the central control unit 30 can obtain the first gravity sensing module built in the sensing part 10C.
  • the setting step of the sensing portion 10D corresponding to the magnification adjusting knob 604 and the setting step of the sensing portion 10C corresponding to the focus adjusting knob 603 are set, and the relationship between the magnification adjusting knob 604 and the sensing portion 10D is first associated. And saved by the central control unit 30, see step 901D; then adjust the magnification adjustment knob 604 to the scale At the very least, the scale value of the first point is input, so that the central control unit 30 obtains and saves the first point of the calculation range of the sensing portion 10D, see step 902D; then adjusts the magnification adjustment knob 604 to the scale value.
  • the scale value of the second point is input, so that the central control unit 30 obtains and saves the second point of the calculation range of the sensing portion 10D, see step 903D; then adjusts the magnification adjustment knob 604 to the scale value.
  • the central control unit 30 obtains and saves the third point of the calculation range of the sensing unit 10D, see step 904D; and so on, and then adjusts the magnification adjustment knob 604 Go to the last three points of the scale and read the scale value of the Nth point, so that the central control unit 30 obtains and saves the Nth point of the calculation range of the sensing unit 10D, see step 905D;
  • the magnification adjustment knob 604 is adjusted between the points, and the central control unit 30 can obtain the first three-dimensional spatial direction sensed by the first gravity sensing module 1012 built in the sensing unit 10D with respect to the built-in central control unit 30.
  • the sensing unit 10 can be connected to the central control unit 30 by wire or wirelessly.
  • the setting portion 20 can be connected to the central control unit 30 by wire or wirelessly.
  • the sensing portion 10 includes a circuit board 101 , a battery 102 , a first external socket 103 , and a sensing portion housing 104 .
  • the socket 103 is mounted in the sensing portion housing 104.
  • the circuit board 101 has a first gravity sensing module 1012 and a first transmission module 1011 built therein.
  • the central control unit 30 includes a main control circuit board 301, a main control power supply 302, a second external power outlet 303, and a main housing 304.
  • the main control circuit board 301, the main control power supply 302, and the second external power socket 303 are installed in the main housing 304.
  • the main control circuit board 301 has a second gravity sensing module 3013, a second transmission module 3011, and a control processing module 3012.
  • the central control unit 30, the sensing unit 10, and the setting unit 20 can adjust the scopes.
  • the adjustment amount of the knob is digitized, that is, the calculation result of other shooting intelligent equipment can be directly linked with the scope adjustment, and the sensing display system of the invention makes countless new intelligent equipment possible, such as the automatic calculation and aiming of the scope fast ranging.
  • the mirror can quickly adjust the equipment, etc., so that the novice shooter can catch up even beyond the shooter.
  • the low-end sight can also be used to obtain the functions of the previous high-end sights, such as the quick return zero function and the height and low adjustment knob of the display range.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mechanical Control Devices (AREA)
  • Position Input By Displaying (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种感知显示系统,用于瞄准镜,其包括多个感应部(10)、多个固定部、中央控制部(30)、设置部(20)和显示部(40)。每一个感应部(10)用于感知对应的瞄准镜调节旋钮的第一三维空间方向并传给中央控制部(30);固定部用于将感应部(10)固定于对应的瞄准镜调节旋钮并将中央控制部(30)固定于瞄准镜的主体(60);中央控制部(30)感知第二三维空间方向,并根据设置部(20)的设置数据、第二三维空间方向和第一三维空间方向的相对角度变化计算出调节旋钮的调节量并数字化且传送给显示部(40)显示。该感知显示系统可以感知瞄准镜各调节旋钮的即时调节量并将其数字化,且可以被显示部(40)显示,使用者瞄准目标时可以通过显示部(40)快速看到瞄准镜各个调节旋钮即时连续的调节量,大大提高了射击效率。

Description

一种感知显示系统 技术领域
本发明涉及一种感知显示系统,特别涉及一种用于瞄准镜的感知显示系统。
背景技术
瞄准镜,尤其是望远镜式瞄准镜自发明以来就因为它可以清晰准确地命中目标在比赛、狩猎和军事活动中得到广泛运用。由于子弹的飞行线路是抛物线轨迹,再由于环境比如风等对飞行线路的影响,命中远距离的目标,是相当不容易的,射手需要测出目标的距离,计算出弹道,需要对瞄准镜的调节旋钮进行必要调节才能做到。然而,射手做这些动作时都必须将眼睛从瞄准镜里看见的目标移开,看着调节旋钮一点一点调节,整个调节过程耗时耗力。射击已经进入了智能时代,有了智能测距、智能弹道计算APP等许多智能装备,但是这些智能装备和瞄准镜都是相互独立的,无论智能多么先进,和瞄准镜始终都没直接联系起来。在实践中,目标往往是移动的,射击机会可能稍纵即逝,没有一种装置,能使射手快速从显示屏幕里直接看到即时连续的瞄准镜各调节旋钮的调节量,没有一种装置,能使智能装备的数据和瞄准镜的调节量直接联系起来,以使智能计算结果直接体现为数字化的瞄准镜各调节旋钮的的当前调节量和所需调节量,极大地降低了射击效率。
发明内容
为了解决上述问题,本发明提出一种能提高瞄准镜射击效率的感知显示系统。
本发明通过以下技术方案实现的:
一种感知显示系统,用于瞄准镜,所述瞄准镜包括多个调节旋钮和主体。所述感知显示系统包括多个感应部、多个固定部、中央控制部、设置部和显示部。每一个感应部固定于对应的调节旋钮并包括第一传输模块和第一重力感应模块,第一重力感应模块用于感知其所在感应部的第一三维空间方向并将第一三维空间方向数据传送给第一传输模块;所述固定部用于将感应部固定于对应的调节旋钮并将中央控制部固定于所述主体;所述中央控制部包括第二重力感应模块、第二传输模块和控制处理模块,所述第二重力感应模块用于感知中央控制部的第二三维空间方向并将第二三维空间方向数据传送给第二传输模块,第二传输模块接收 来自第一传输模块的第一三维空间方向数据并将第一三维空间方向数据和第二三维空间方向数据传送给控制处理模块;所述设置部与所述中央控制部连接,所述设置部设置第一重力感应模块的设置数据并传给中央控制部;所述显示部与所述中央控制部连接;其中,所述控制处理模块根据设置数据、第二三维空间方向和第一三维空间方向的相对变化角度计算出调节旋钮的调节量,从而使调节旋钮的调节量从物理值变成数字值,所述中央控制部将数字化的调节旋钮的调节量传送给所述显示部显示或/和提供给其它设备使用。
其中,调节旋钮的调节量通过如下公式计算:E=et*X+S,其中,E为调节旋钮即时的数字化的调节量,et为调节旋钮的单位调节量,S为参照值,X为第二三维空间方向和第一三维空间方向在同一相对位置不变的空间轴上的相对变化角度;其中,单位调节量通过如下公式计算:et=e/a,其中,a为调节旋钮从一个调节点转到另一个调节点时,第二三维空间方向和第一三维空间方向在同一相对位置不变的空间轴上的相对角度变化量,e为调节旋钮刻度上读到的这两个调节点之间的调节范围。
其中,所述参照值为:将所述调节旋钮的一个调节点和另一个调节点的之间的某一个点设定为参照点,所述中央控制部将所述调节旋钮处在参照点上时的调节量作为计算所述调节旋钮在一个调节点和另一个调节点之间的调节量时的参照量,所述参照量就是一个调节点和另一个调节点之间的参照值。
其中,所述第一重力感应模块设有第一重力感应芯片,用于根据地球重力感知其所在感应部所处的第一三维空间方向,所述第二重力感应模块设有第二重力感应芯片,用于根据地球重力感知中央控制部所处的第二三维空间方向。
其中,所述中央控制部可以和其中至少一个感应部配合,获取与感应部对应的调节旋钮的调节量。
其中,所述固定部包括固定帽,所述固定帽的一端为圆帽形状并安装于对应的调节旋钮,另一端为设有第一凸出部,至少一个感应部安装于所述第一凸出部。
其中,所述固定部包括固定环,所述固定部为环状固定圈并设有第二凸出部,所述中央控制部安装于所述第二凸出部,至少一个感应部安装于所述第二凸出部。
其中,所述设置部包括第三传输模块、设置程序和显示模块,所述设置部运行设置程序,设置时通过第三传输模块和所述第二传输模块连接,在显示模块的设置界面上操作设置步骤,通过设置步骤给所述中央控制部设定感应部的设置数据,使所述中央控制部通过设置数据计算调节旋钮的调节量。
其中,所述设置步骤包括设置调节旋钮的一定调节范围内的最低点、设置一定调节范围内的最高点、输入调节范围的调节值、选择调节单位及设置调节范围内调节旋钮的起始点。
其中,所述设置步骤包括设置调节旋钮的刻度值的第N-1点并读出第N-1点的刻度值、设置调节旋钮的刻度值的第N点并读出第N点的刻度值,使所述中央控制部获得并保存所述调节旋钮所有的标值刻度点,将标值刻度的第N-1点当作所述感应部计算范围的起点,将标值刻度的第N点当作所述感应部计算范围的终点;其中N为大于等于2的整数。
本发明的感知显示系统,利用控制处理模块可以将瞄准镜各调节旋钮的调节量及时数字化,且可以被显示部及时显示,使用者使用瞄准镜瞄准目标时可以通过显示部快速看到瞄准镜各个调节旋钮的即时连续的调节量,大大提高了射击效率。
附图说明
图1为本发明的感知显示系统和瞄准镜的组装示意图。
图2为图1中的感知显示系统和瞄准镜的分解示意图。
图3为本发明的设置部的设置流程示意图。
图4为本发明的设置部、中央控制部和感应部的模块示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上, 除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
请参考图1为本发明的一种感知显示系统,用于瞄准镜,所述瞄准镜包括多个调节旋钮和主体60。
在本实施方式中,调节旋钮分别为高低调节旋钮601、左右调节旋钮602、聚焦调节旋钮603和倍率调节旋钮604。
请参考图1和图4,所述感知显示系统用于感知瞄准镜的调节旋钮的调节量并使调节量从物理值变成可被显示的数字值即数字化,并包括多个感应部10、设置部20、中央控制部30、显示部40和多个固定部。每一个感应部10固定于对应的调节旋钮并包括第一传输模块1011和第一重力感应模块1012,第一重力感应模块1012用于感知其所在感应部的第一三维空间方向并将第一三维空间方向数据传送给第一传输模块1011;所述固定部用于将感应部10固定于对应的调节旋钮并将中央控制部30固定于所述主体60;所述中央控制部30包括第二重力感应模块3013、第二传输模块3011和控制处理模块3012,所述第二重力感应模块3013用于感知中央控制部30的第二三维空间方向并将第二三维空间方向数据传送给第二传输模块3011,第二传输模块3011接收来自第一传输模块1011的第一三维空间方向数据并将第一三维空间方向数据和第二三维空间方向数据传送给控制处理模块3012;所述设置部20与所述中央控制部30连接,所述设置部20设置第一重力感应模块1012的设置数据并传给中央控制部30;所述显示部40与所述中央控制部30连接;其中,所述控制处理模块3012根据设置数据、第二三维空间方向和第一三维空间方向的相对变化角度计算出调节旋钮的调节量,从而使调节旋钮的调节量从物理值变成数字值,即数字化,所述中央控制部30将数字化的调节旋钮的调节量传输给显示部40显示或/和提供给其它设备使用。
在本实施方式中,所述设置部20是手持终端设备,如手机、电脑等可以安装及运行程序的设备。
因瞄准镜各调节旋钮的调节量可以被控制处理模块3012及时数字化,且被显示部40及时显示,使用者使用瞄准镜瞄准目标时可以通过显示部40快速看到瞄准镜各个调节旋钮即时 连续的调节量,大大提高了射击效率。
进一步,本发明的感知显示系统输出的瞄准镜各个调节旋钮的数字化的调节量可以作为数字量被其它智能装备使用并加以后续处理,使其它智能装备的数据和瞄准镜的调节量直接联系起来,以使智能计算结果直接体现为数字化的瞄准镜各调节旋钮的的当前调节量和所需调节量,进一步提高了射击效率。
在本实施方式中,感应部10为4个,分别为感应部10A、10B、10C、10D;固定部为5个,分别为高低调节旋钮固定帽501、左右调节旋钮固定帽502、聚焦调节旋钮固定帽503、倍率调节旋钮固定环504及中央控制部固定环505;感应部10A通过高低调节旋钮固定帽501固定于高低调节旋钮601,感应部10B通过左右调节旋钮固定帽502固定于左右调节旋钮602,感应部10C通过聚焦调节旋钮固定帽503固定于聚焦调节旋钮603,感应部10D通过倍率调节旋钮固定环504固定于倍率调节旋钮604,中央控制部30通过所述中央控制部固定环505固定于所述瞄准镜的主体60上。
在本实施方式中,所述第一重力感应模块1012设有第一重力感应芯片,用于根据地球重力感知对应的调节旋钮所处的第一三维空间方向,所述第二重力感应模块3013设有第二重力感应芯片,用于根据地球重力感知中央控制部30所处的第二三维空间方向。
进一步,本发明的调节旋钮的调节量通过如下公式计算:
E=et*X+S
其中,E为调节旋钮即时的数字化的调节量,et为调节旋钮的单位调节量,S为参照值,X为第二三维空间方向和第一三维空间方向在同一相对位置不变的空间轴上的相对变化角度,即调节旋钮的旋转角度;
其中,单位调节量通过如下公式计算:et=e/a
其中,a为调节旋钮从一个调节点转到另一个调节点时,第二三维空间方向和第一三维空间方向在同一相对位置不变的空间轴上的相对角度变化量,e为调节旋钮上读到的这两个调节点之间的调节范围。
在本实施方式中,所述参照值为将所述调节旋钮的一个调节点M和另一个调节点N的之间的某一个点L设定为参照点,所述中央控制部30将所述调节旋钮处在参照点L上时的调节量作为计算所述调节旋钮在调节点M和调节点N之间的调节量时的参照量,所述参照量就是调节点M和调节点N之间的参照值。
请参考图1,具体地,当所述调节旋钮601、602、603、604分别从一个调节点转到另一个调节点时,所述相应感应部10A、10B、10C、10D分别相对于所述中央控制部30在同一相对位置不变的空间轴上的相对角度变化量,即所述相应感应部10A、10B、10C、10D各自的第一三维空间方向分别和第二三维空间方向在同一相对位置不变的空间轴上的相对角度变化量a1、a2、a3、a4,就是它们分别对应的所述调节旋钮601、602、603、604的转动角度,相应的所述调节旋钮601、602、603、604在各自的刻度上读到的两个调节点之间的调节范围e1、e2、e3、e4分别除以相对应的转动角度a1、a2、a3、a4,就可以得到相应的所述感应部10A、10B、10C、10D相对于所述中央控制部30在同一相对位置不变的空间轴上的相对角度变化时的各自单位调节量et1、et2、et3、et4,即et1=e1/a1、et2=e2/a2、et3=e3/a3、et4=e4/a4,即相应的所述感应部10A、10B、10C、10D对应的所述调节旋钮601、602、603、604的单位调节量。
其中,所述调节旋钮601、602、603、604分别从一个调节点转到另一个调节点的过程中,相应的所述感应部10A、10B、10C、10D相对于所述中央控制部30在相对位置不变的空间轴上的相对角度也跟着变化,即所述相应感应部10A、10B、10C、10D各自的第一三维空间方向分别和第二三维空间方向在同一相对位置不变的空间轴上的相对角度也跟着变化,通过所述设置部20将所述调节旋钮601、602、603、604各自转动过程的某一个点分别设为各自的参照点,将调节旋钮601、602、603、604处在各自的参照点时刻度上的调节量设为参照值S1、S2、S3、S4,并分别将所述调节旋钮601、602、603、604各自转动的一个方向设置为该调节旋钮的调节量的增加,另一个转动方向设置为该调节旋钮的调节量的减少,当所述调节旋钮601、602、603、604分别从各自参照值的点开始转动一定角度X1、X2、X3、X4时,所述中央控制部30将相应的参照值S1、S2、S3、S4加上或减去相对应的所述的感应部10A、10B、10C、10D相对于所述中央控制部30在相对位置不变的空间轴上的相对变化的角度X1、X2、X3、X4乘以相应的所述调节旋钮601、602、603、604在各自的两个调节点之间的单位调节量et1、et2、et3、et4,就是相对应的调节旋钮601、602、603、604的即时的数字化的调节量E1、E2、E3、E4,即E1=et1*X1+S1、E2=et2*X2+S2、E3=et3*X3+S3、E4=et4*X4+S4。
具体地,如图1所示,以所述感应部10A为例,所述感应部10A内置的第一重力感应模块1012能感知到一个重力的方向Ga和自身的三个方向Xa、Ya和Za(如图1所示71A),即第一三维空间方向,所述中央控制部30内置的第二重力感应芯片能感知到一个重力的方向Gs和自身的三个方向Xs、Ys和Zs(如图1所示75A),即第二三维空间方向,Ga=Gs,无论 所述瞄准镜所处的空间位置如何变化,只要所述高低调节旋钮601不调节,Xa、Ya和Za(如图示71A)相对于Xs、Ys和Zs(如图示75A)的空间方向是不变的,当所述高低调节旋钮601转动一个角度时,所述感应部10A内置的第一重力感应模块1012感知到的第一三维空间相对于所述中央控制部30感知到的第二三维空间有两个方向Xat和Zat移动了,因此得到Yat方向(如图1所示71A),无论所述瞄准镜的空间位置如何变化,所述高低调节旋钮601如何旋转,感应部10A感知到的第一三维空间里的Yat方向(如图1所示71B)相对于所述中央控制部30感知到的第二三维空间里的Yat方向是不变的,因此Yat方向是感应部10A感知到的第一三维空间和所述中央控制部30感知到的第二三维空间的同一相对位置不变的空间轴。无论所述瞄准镜的空间位置如何变化,当所述高低调节旋钮601没有转动时,感应部10A感知到的以Yat方向作为Y轴的三维空间里的另外两个空间方向Xar、Zar方向(如图1所示71B)相对于所述中央控制部30感知到的以Yat方向作为Y轴的三维空间里的另外两个空间方向Xar、Zar方向(如图1所示75B)是不变的,当所述高低调节旋钮601转动了一个角度a(如图1所示71B),所述中央控制部30可以从通过第一传输模块1011和第二传输模块3011获取的感应部10A内置的第一重力感应模块1012感知到的第一三维空间里的Xar、Zar方向(如图1所示71B)相对于自己感知到的第二三维空间里的Xar、Zar方向(如图1所示75B)沿轴Yat方向(如图1所示71B)转动后的方向Xart、Zart方向(如图1所示71B)计算出角度a(如图1所示71B)的值,角度a(如图1所示71B)的值除所述高低调节旋钮601转动了一个角度a时调节旋钮601刻度上读到的调节范围e,即可知道所述高低调节旋钮601在角度a范围内转动时的单位调节量et,即et=e/a。将所述高低调节旋钮601逆时针转动时定为调节量增加,将所述高低调节旋钮601的归零点设为参照点,归零点是射击术语,瞄准镜的高低调节旋钮601不需要进一步调节时,子弹可以在一个设定的距离正中瞄准镜中心所在的点称为高低调节旋钮601在这个设定距离的归零点,人们习惯将归零点时的值定为零,那么参照点为归零点时参照值S=0,当所述高低调节旋钮601从归零点逆时针转动角度X的时候,所述高低调节旋钮601数字化的调节量为E,则E=et*X+S。
进一步,所述中央控制部30可以和所述感应部10A、10B、10C、10D之间的任何一个单独配合,获取所述感应部10A、10B、10C、10D所在的调节旋钮的调节量,也可以和所述感应部10A、10B、10C、10D之间的多个或全部配合,获取各个所述感应部10A、10B、10C、10D所在的调节旋钮的调节量。也就是说,所述中央控制部30可以与其中至少一个感应部10配合,以获取感应部10所在的调节旋钮的调节量。
请参考图1和图2,所述固定部包括固定帽501、502、503,所述固定帽501、502、503的一端为圆帽形状并固定于对应的调节旋钮,另一端设有第一凸出部509,至少一个感应部10安装于所述第一凸出部509。具体地,高低调节旋钮固定帽501、左右调节旋钮固定帽502和聚焦调节旋钮固定帽503的一端是圆帽形状,可以被固定在高低调节旋钮601、左右调节旋钮602和聚焦调节旋钮603上,另一端设有第一凸出部509,感应部10A、10B、10C固定于对应的第一凸出部509。
所述固定部包括固定环504、505,所述固定环504、505为环状固定圈并设有第二凸出部508,所述中央控制部30安装于所述第二凸出部508,至少一个感应部10安装于所述第二凸出部。具体地,所述倍率调节旋钮固定环504和中央控制部固定环505为环状固定圈,可以分别被固定在所述瞄准镜的所述倍率调节旋钮604和所述瞄准镜的主体60上,固定环504、505侧面设有第二凸出部508,所述感应部10D固定于所述倍率调节旋钮固定环504的第二凸出部508,所述中央控制部30固定于所述中央控制部固定环505的第二凸出部508。
请参考图1、图3和图4,所述设置部20包括第三传输模块201、设置程序202和显示模块203,所述设置部20运行设置程序202,设置时通过第三传输模块201和所述中央控制部30的第二传输模块3011连接,在显示模块203的设置界面上操作设置步骤,通过设置步骤给所述中央控制部30提供感应部10的设置数据,使所述中央控制部30通过这些设置数据计算调节旋钮的调节量。
在本实施方式中,设置数据包括感应部10和瞄准镜的各个调节旋钮的相关联数据,包括起始角度数据vB、终止角度数据vE、参照角度数据vR、角度数据vX、参照值S、所述感应部10的调节单位、所述感应部10在计算范围的起点和计算范围的终点之间的单位调节量et。
所述设置部20可以通过设置程序202对几个相同的所述感应部10A、10B、10C、10D进行设置,使它们分别成为所述高低调节旋钮601、左右调节旋钮602、聚焦调节旋钮603和倍率调节旋钮604对应的感应单元,通过设置步骤分别设置所述感应部10A、10B、10C、10D的设置数据,且通过第三传输模块201将设置数据传送给所述中央控制部30,所述中央控制部30在设置完成后保存设置数据,以使所述中央控制部30在所述设置部20断开连接后也能正常工作。
具体地,如图3所示,当需要设置与高低调节旋钮601对应的感应部10A时,使设置部20、中央控制部30和感应部10连接,打开感应部10A的电源开关,设置程序202感知到新的设备,即感应部10A,进入设置步骤,首先在显示模块203的显示界面上选择将新的设备 设置为高低调节旋钮601选项,此步骤使所述中央控制部30将感应部10A传输来的数据当作高低调节旋钮601的数据,并使所述中央控制部30保存所述感应部10A和所述高低调节旋钮601之间的关联关系,即关联感应部10A和高低调节旋钮601,见步骤901A;完成后点击设置界面进入下一步,界面提示将高低调节旋钮601调到最低点,此步骤使所述中央控制部30获得并保存所述感应部10A的计算范围的起点,它是所述感应部10A内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个起始角度数据vB,见步骤902A;完成后点击设置界面进入下一步,界面提示将高低调节旋钮601调到最高点,此步骤使所述中央控制部30获得并保存所述感应部10A的计算范围的终点,它是所述感应部10A内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个终止角度数据vE,见步骤903A;完成后点击设置界面进入下一步,界面提示输入高低调节旋钮601的调节范围e1,即调节旋钮601刻度上读到的高低调节旋钮601最低点和最高点之间的总调节量,并提示选择用弧角(又称MRAD或Mildot)或分角(MOA)为单位,此步骤使所述中央控制部30获得并保存所述感应部10A的调节单位,见步骤904A;完成步骤902A、903A、904A后所述中央控制部30还能获得所述感应部10A在计算范围的起点和计算范围的终点之间的转动角度a1,a1=vE-vB,和高低调节旋钮601起点和终点之间刻度上读到的调节范围e1,就可以得到所述感应部10A在计算范围的起点和计算范围的终点之间的单位调节量et1,即et1=e1/a1;完成后点击设置界面进入下一步,界面提示将高低调节旋钮601调到归零点,归零点是射击术语,瞄准镜的高低调节旋钮601不需要进一步调节时,子弹可以在一个设定的距离正中瞄准镜中心所在的点称为高低调节旋钮601在这个设定距离的归零点,在这里将归零点当作参照点,它是所述感应部10A内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个参照角度数据vR,由于使用习惯,实践中人们将归零点的值当作0,所述中央控制部30将高低调节旋钮601处在参照点上时参照值S1自动设为零,所以无需输入参照值,见步骤905A;点击设置界面完成设置,完成此步骤后所述中央控制部30得到并保存了所述感应部10A的起始角度数据vB,终止角度数据vE,计算范围的起点和计算范围的终点之间的单位调节量et1,参照角度数据vR,参照值S1。只要调节高低调节旋钮601,所述中央控制部30即可获得所述感应部10A内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间 方向在相对位置不变的空间轴上的一个角度数据vX,即可获得高低调节旋钮601相对于参照点的转动角度X1,X1=vX-vR,所述中央控制部30即可计算出调节旋钮601在计算范围的起点和计算范围的终点之间的即时的数字化的调节量E1,即E1=et1*X1+S1。
请参考图3,设置与左右调节旋钮602对应的感应部10B的设置步骤和设置与高低调节旋钮601对应的感应部10A的设置步骤相同,先关联左右调节旋钮602和感应部10B之间的关系,并被所述中央控制部30保存,见步骤901B;再将左右调节旋钮602调到最低点,使所述中央控制部30获得并保存所述感应部10B的计算范围的起点,见步骤902B;接着将左右调节旋钮602调到最高点,所述中央控制部30获得并保存所述感应部10B的计算范围的终点,见步骤903B;接着输入左右调节旋钮602的调节范围并选择用弧角或分角为单位,见步骤904B;完成步骤902B、903B、904B后,所述中央控制部30获得所述感应部10B在计算范围的起点和计算范围的终点之间的转动角度a2,和起点和终点之间的调节范围e2,从而得到感应部10B在计算范围的起点和计算范围的终点之间的单位调节量et2,即et2=e2/a2;最后,左右调节旋钮602调到归零点,从而将中央控制部30将左右调节旋钮602处在参照点上时参照值S1自动设为零,见步骤905B;点击设置界面完成设置,完成此步骤后所述中央控制部30得到并保存了所述感应部10B的计算范围的起点和计算范围的终点之间的单位调节量et2,参照值S2,只要调节左右调节旋钮602,所述中央控制部30即可获得左右调节旋钮602相对于参照点的转动角度X2,从而中央控制部30即可计算出左右调节旋钮602在计算范围的起点和计算范围的终点之间的即时的数字化的调节量E2,即E2=et2*X2+S2。
具体地,如图3所示,当需要设置与聚焦调节旋钮603对应的感应部10C时,使设置部20、中央控制部30和感应部10连接,打开感应部10C的电源开关,设置程序202感知到新的设备,即感应部10C,进入设置步骤,首先在显示模块203的显示界面上选择将新的设备设置为聚焦调节旋钮603选项,此步骤使所述中央控制部30将感应部10C传输来的数据当作聚焦调节旋钮603的数据,并使所述中央控制部30保存所述感应部10C和所述聚焦调节旋钮603之间的关联关系,即关联感应部10C和聚焦调节旋钮603,见步骤901C;完成后点击设置界面进入下一步,界面提示将聚焦调节旋钮603调到标值刻度的第一点并输入聚焦调节旋钮603上读到的标值刻度的第一点的值,此步骤使所述中央控制部30获得并保存所述感应部10C的计算范围的第一点,它是所述感应部10C内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个角度数据v1,和计算范围的第一点的值p1,见步骤 902C;完成后点击设置界面进入下一步,界面提示将聚焦调节旋钮603调到标值刻度第二点并输入聚焦调节旋钮603上读到的标值刻度第二点的值,此步骤使所述中央控制部30获得并保存所述感应部10C的计算范围的第二点,它是所述感应部10C内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个角度数据v2,和计算范围的第二点的值p2,见步骤903C;完成后点击设置界面进入下一步,界面提示将聚焦调节旋钮603调到标值刻度第三点并输入聚焦调节旋钮603上读到的标值刻度第三点的值,此步骤使所述中央控制部30获得并保存所述感应部10C的计算范围的第三点,它是所述感应部10C内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个角度数据v3,和计算范围的第三点的值p3,见步骤904C;依此类推…,一直到聚焦调节旋钮603调到标值刻度的最后一点,设为第N点,界面提示将聚焦调节旋钮603调到标值刻度第N点并输入聚焦调节旋钮603上读到的标值刻度第N点的值,最后一点的刻度值如果为无穷大则用一个比较大的数值代替,此步骤使所述中央控制部30获得并保存所述感应部10C的计算范围的第N点,它是所述感应部10C内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个角度数据vN,和计算范围的第N点的值pN,见步骤905C。在聚焦调节旋钮603标值刻度的第一点和第二点之间,将标值刻度的第一点当作所述感应部10C计算范围的起点,则起始角度数据vB=v1,将标值刻度的第二点当作所述感应部10C计算范围的终点,则终止角度数据vE=v2,所述中央控制部30就能获得所述感应部10C在计算范围的起点和计算范围的终点之间的转动角度a3(1),a3(1)=vE-vB=v2-v1,和这两点之间的调节范围e3(1),e3(1)=p2-p1,就可以得到所述感应部10C在计算范围的起点和计算范围的终点之间的单位调节量et3(1),即et3(1)=e3(1)/a3(1);将聚焦调节旋钮603标值刻度的第一点当作参照点,则参照角度数据vR(1)=v1,参照值S3(1)=p1,只要在聚焦调节旋钮603标值刻度的第一点和第二点之间调节聚焦调节旋钮603,所述中央控制部30即可获得所述感应部10C内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个角度数据vX(1),即可获得聚焦调节旋钮603相对于参照点的转动角度X3(1),X3(1)=vX(1)-vR(1),所述中央控制部30即可计算出聚焦调节旋钮603在标值刻度的第一点和第二点之间的即时的数字化的调节量E3(1),即E3(1)=et3(1)*X3(1)+S3(1);在聚焦调节旋钮603标值刻度的第二点和 第三点之间,将标值刻度的第二点当作所述感应部10C计算范围的起点,则起始角度数据vB=v2,将标值刻度的第三点当作所述感应部10C计算范围的终点,则终止角度数据vE=v3,所述中央控制部30就能获得所述感应部10C在计算范围的起点和计算范围的终点之间的转动角度a3(2),a3(2)=vE-vB=v3-v2,和这两点之间的调节范围e3(2),e3(2)=p3-p2,就可以得到所述感应部10C在计算范围的起点和计算范围的终点之间的单位调节量et3(2),即et3(2)=e3(2)/a3(2);将聚焦调节旋钮603标值刻度的第二点当作参照点,则参照角度数据vR(2)=v2,参照值S3(2)=p2,只要在聚焦调节旋钮603标值刻度的第二点和第三点之间调节聚焦调节旋钮603,所述中央控制部30即可获得所述感应部10C内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个角度数据vX(2),即可获得聚焦调节旋钮603相对于参照点的转动角度X3(2),X3(2)=vX(2)-vR(2),所述中央控制部30即可计算出聚焦调节旋钮603在标值刻度的第二点和第三点之间的即时的数字化的调节量E3(2),即E3(2)=et3(2)*X3(2)+S3(2);依此类推…,一直到聚焦调节旋钮603调到标值刻度的最后一点,设为第N点,在聚焦调节旋钮603标值刻度的第N-1点和第N点之间,将标值刻度的第N-1点当作所述感应部10C计算范围的起点,则起始角度数据vB=v(N-1),将标值刻度的第N点当作所述感应部10C计算范围的终点,则终止角度数据vE=vN,所述中央控制部30就能获得所述感应部10C在计算范围的起点和计算范围的终点之间的转动角度a3(N-1),a3(N-1)=vE-vB=vN-v(N-1),和这两点之间的调节范围e3(N-1),e3(N-1)=pN-p(N-1),就可以得到所述感应部10C在计算范围的起点和计算范围的终点之间的单位调节量et3(N-1),即et3(N-1)=e3(N-1)/a3(N-1);将聚焦调节旋钮603标值刻度的第N-1点当作参照点,则参照角度数据vR(N-1)=v(N-1),参照值S3(N-1)=p(N-1),只要在聚焦调节旋钮603标值刻度的第N-1点和第N点之间调节聚焦调节旋钮603,所述中央控制部30即可获得所述感应部10C内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个角度数据vX(N-1),即可获得聚焦调节旋钮603相对于参照点的转动角度X3(N-1),X3(N-1)=vX(N-1)-vR(N-1),所述中央控制部30即可计算出聚焦调节旋钮603在标值刻度的第N-1点和第N点之间的即时的数字化的调节量E3(N-1),即E3(N-1)=et3(N-1)*X3(N-1)+S3(N-1);
请参考图3,设置与倍率调节旋钮604对应的感应部10D的设置步骤和设置与聚焦调节旋钮603对应的感应部10C的设置步骤相同,先关联倍率调节旋钮604和感应部10D之间的关系,并被所述中央控制部30保存,见步骤901D;再将倍率调节旋钮604调到标值刻度的 最一点并输入第一点的刻度值,使所述中央控制部30获得并保存所述感应部10D的计算范围的第一点,见步骤902D;接着将倍率调节旋钮604调到标值刻度的最二点并输入第二点的刻度值,使所述中央控制部30获得并保存所述感应部10D的计算范围的第二点,见步骤903D;接着将倍率调节旋钮604调到标值刻度的最三点并输入第三点的刻度值,使所述中央控制部30获得并保存所述感应部10D的计算范围的第三点,见步骤904D;依次类推,接着将倍率调节旋钮604调到标值刻度的最三点并读出第N点的刻度值,使所述中央控制部30获得并保存所述感应部10D的计算范围的第N点,见步骤905D;最后将标值刻度的第N-1点当作所述感应部10D计算范围的起点,则起始角度数据vB=v(N-1),将标值刻度的第N点当作所述感应部10D计算范围的终点,则终止角度数据vE=vN,所述中央控制部30就能获得所述感应部10D在计算范围的起点和计算范围的终点之间的转动角度a4(N-1),a4(N-1)=vN-v(N-1),和这两点之间的调节范围e4(N-1),e4(N-1)=pN-p(N-1),就可以得到所述感应部10D在计算范围的起点和计算范围的终点之间的单位调节量et4(N-1),即et4(N-1)=e4(N-1)/a4(N-1);将倍率调节旋钮604标值刻度的第N-1点当作参照点,则参照角度数据vR(N-1)=v(N-1),参照值S4(N-1)=p(N-1),只要在倍率调节旋钮604标值刻度的第N-1点和第N点之间调节倍率调节旋钮604,所述中央控制部30即可获得所述感应部10D内置的第一重力感应模块1012感知到的第一三维空间方向相对于所述中央控制部30内置的第二重力感应模块3013感知到的第二三维空间方向在相对位置不变的空间轴上的一个角度数据vX(N-1),即可获得倍率调节旋钮604相对于参照点的转动角度X4(N-1),X4(N-1)=vX(N-1)-vR(N-1),所述中央控制部30即可计算出倍率调节旋钮604在标值刻度的第N-1点和第N点之间的即时的数字化的调节量E4(N-1),即E4(N-1)=et4(N-1)*X4(N-1)+S4(N-1)。
在本实施方式中,所述感应部10可以通过有线或无线的方式跟所述中央控制部30连接。所述设置部20可以通过有线或无线的方式跟所述中央控制部30连接。
请参考图2和图4,在本实施方式中,所述感应部10包括线路板101、电池102、第一外接插口103和感应部外壳104,所述线路板101、电池102、第一外接插口103安装于所述感应部外壳104内。所述线路板101内置有第一重力感应模块1012和第一传输模块1011。
所述中央控制部30包括主控线路板301、主控电源302、第二外接插口303和主外壳304,主控线路板301、主控电源302和第二外接插口303安装于主外壳304内。所述主控线路板301内置有第二重力感应模块3013、第二传输模块3011和控制处理模块3012。
本发明的感知显示系统,利用中央控制部30、感应部10和设置部20可以将瞄准镜各调 节旋钮的调节量数字化,即可以使得其它射击智能装备的计算结果直接和瞄准镜调节联系起来,本发明的感知显示系统使得无数新的智能装备成为可能,如瞄准镜快速测距智能计算及瞄准镜快速调节装备等,可以让射击新手赶上甚至超越射击老手。同时也可以让低端的瞄准镜获得以往高端的瞄准镜才有的功能,如快速回归零点功能和显示距离的瞄准镜高低调节旋钮等。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种感知显示系统,用于瞄准镜,所述瞄准镜包括多个调节旋钮和主体,其特征在于:所述感知显示系统包括多个感应部、多个固定部、中央控制部、设置部和显示部,
    每一个感应部固定于对应的调节旋钮并包括第一传输模块和第一重力感应模块,第一重力感应模块用于感知其所在感应部的第一三维空间方向并将第一三维空间方向数据传送给第一传输模块;
    所述固定部用于将感应部固定于对应的调节旋钮并将中央控制部固定于所述主体;
    所述中央控制部包括第二重力感应模块、第二传输模块和控制处理模块,所述第二重力感应模块用于感知中央控制部的第二三维空间方向并将第二三维空间方向数据传送给第二传输模块,第二传输模块接收来自第一传输模块的第一三维空间方向数据并将第一三维空间方向数据和第二三维空间方向数据传送给控制处理模块;
    所述设置部与所述中央控制部连接,所述设置部设置第一重力感应模块的设置数据并传给中央控制部;
    所述显示部与所述中央控制部连接;
    其中,所述控制处理模块根据设置数据、第二三维空间方向和第一三维空间方向的相对变化角度计算出调节旋钮的调节量,从而使调节旋钮的调节量从物理值变成数字值,所述中央控制部将数字化的调节旋钮的调节量传送给所述显示部显示或/和提供给其它设备使用。
  2. 根据权利要求1所述的感知显示系统,其特征在于,调节旋钮的调节量通过如下公式计算:
    E=et*X+S
    其中,E为调节旋钮即时的数字化的调节量,et为调节旋钮的单位调节量,S为参照值,X为第二三维空间方向和第一三维空间方向在同一相对位置不变的空间轴上的相对变化角度;
    其中,单位调节量通过如下公式计算:et=e/a
    其中,a为调节旋钮从一个调节点转到另一个调节点时,第二三维空间方向和第一三维空间方向在同一相对位置不变的空间轴上的相对角度变化量,e为调节旋钮刻度上读到的这两个调节点之间的调节范围。
  3. 根据权利要求2所述的感知显示系统,其特征在于,所述参照值为:将所述调节旋钮的一个调节点和另一个调节点的之间的某一个点设定为参照点,所述中央控制部将所述调节旋钮处在参照点上时的调节量作为计算所述调节旋钮在一个调节点和另一个调节点之间的调 节量时的参照量,所述参照量就是一个调节点和另一个调节点之间的参照值。
  4. 根据权利要求1所述的感知显示系统,其特征在于,所述第一重力感应模块设有第一重力感应芯片,用于根据地球重力感知其所在感应部所处的第一三维空间方向,所述第二重力感应模块设有第二重力感应芯片,用于根据地球重力感知中央控制部所处的第二三维空间方向。
  5. 根据权利要求1所述的感知显示系统,其特征在于,所述中央控制部可以和其中至少一个感应部配合,获取与感应部对应的调节旋钮的调节量。
  6. 根据权利要求1所述的感知显示系统,其特征在于,所述固定部包括固定帽,所述固定帽的一端为圆帽形状并安装于对应的调节旋钮,另一端为设有第一凸出部,至少一个感应部安装于所述第一凸出部。
  7. 根据权利要求1所述的感知显示系统,其特征在于,所述固定部包括固定环,所述固定部为环状固定圈并设有第二凸出部,所述中央控制部安装于所述第二凸出部,至少一个感应部安装于所述第二凸出部。
  8. 根据权利要求1所述的感知显示系统,其特征在于,所述设置部包括第三传输模块、设置程序和显示模块,所述设置部运行设置程序,设置时通过第三传输模块和所述第二传输模块连接,在显示模块的设置界面上操作设置步骤,通过设置步骤给所述中央控制部设定感应部的设置数据,使所述中央控制部通过设置数据计算调节旋钮的调节量。
  9. 根据权利要求8所述的感知显示系统,其特征在于,所述设置步骤包括设置调节旋钮的一定调节范围内的最低点、设置一定调节范围内的最高点、输入调节范围的调节值、选择调节单位及设置调节范围内调节旋钮的起始点。
  10. 根据权利要求8所述的感知显示系统,其特征在于,所述设置步骤包括设置调节旋钮的刻度值的第N-1点并读出第N-1点的刻度值、设置调节旋钮的刻度值的第N点并读出第N点的刻度值,使所述中央控制部获得并保存所述调节旋钮所有的标值刻度点,将标值刻度的第N-1点当作所述感应部计算范围的起点,将标值刻度的第N点当作所述感应部计算范围的终点;其中N为大于等于2的整数。
PCT/CN2017/111411 2017-10-13 2017-11-16 一种感知显示系统 WO2019071708A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710957510.1 2017-10-13
CN201710957510 2017-10-13
CN201711108105.9A CN107894782B (zh) 2017-10-13 2017-11-10 一种感知显示系统
CN201711108105.9 2017-11-10

Publications (1)

Publication Number Publication Date
WO2019071708A1 true WO2019071708A1 (zh) 2019-04-18

Family

ID=61535892

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2017/111411 WO2019071708A1 (zh) 2017-10-13 2017-11-16 一种感知显示系统
PCT/CN2017/111417 WO2019071709A1 (zh) 2017-10-13 2017-11-16 一种感知调节系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111417 WO2019071709A1 (zh) 2017-10-13 2017-11-16 一种感知调节系统

Country Status (4)

Country Link
US (1) US10712128B2 (zh)
EP (1) EP3470766A1 (zh)
CN (2) CN107797571B (zh)
WO (2) WO2019071708A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488645B2 (en) * 2017-11-24 2019-11-26 Sintai Optical (Shenzhen) Co., Ltd. Magnification apparatus
CN109357570A (zh) * 2018-11-12 2019-02-19 深圳共分享网络科技有限公司 一种辅助计算显示系统
CN109341417A (zh) * 2018-11-12 2019-02-15 深圳共分享网络科技有限公司 一种辅助计算转换系统
WO2020097964A1 (zh) * 2018-11-12 2020-05-22 深圳共分享网络科技有限公司 一种辅助计算转换系统
CN111258369B (zh) * 2018-11-30 2022-04-19 宁波方太厨具有限公司 一种旋钮及旋钮的控制方法
CN110254733A (zh) * 2019-05-31 2019-09-20 沈阳无距科技有限公司 瞄准系统及无人机
CN112180990B (zh) * 2019-07-01 2024-02-06 河南翔宇医疗设备股份有限公司 一种电控旋钮的调节方法及调节系统
DE102020100858B3 (de) * 2020-01-15 2021-06-17 Schmidt & Bender Gmbh & Co. Kg Stellvorrichtung sowie Umkehrsystem und Zielfernrohr hiermit
US11733000B2 (en) * 2020-08-25 2023-08-22 Lightforce Usa, Inc. Riflescope with turret encoder controlled laser rangefinder
CN112179209B (zh) * 2020-09-28 2022-07-19 深圳共分享网络科技有限公司 一种辅助光学系统
CN112762763B (zh) * 2020-12-28 2022-08-05 深圳共分享网络科技有限公司 一种视觉感知系统
CN113551558A (zh) * 2021-08-26 2021-10-26 成都星宇融科电力电子股份有限公司 数字化瞄准镜
USD1000577S1 (en) * 2023-07-07 2023-10-03 Peng Wang Optical sight for day and night use
US20240167788A1 (en) * 2024-01-30 2024-05-23 Nantong Yilong Machinery Manufacturing Co., Ltd. Portable scope magnification quick-adjustment device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145505A1 (en) * 2002-02-04 2003-08-07 Kenton Mark Victor Tuned trajectory compensator
CN202928455U (zh) * 2012-12-05 2013-05-08 中国人民武装警察部队工程大学 一种射击智能瞄准装置
US20140290113A1 (en) * 2012-11-20 2014-10-02 Kruger Optical, Inc. Rifle Scope Having Elevation and Windage Ocular Display
CN104457421A (zh) * 2014-11-06 2015-03-25 江苏北方湖光光电有限公司 瞄准镜环境参量快速修正装置
CN105300183A (zh) * 2015-10-30 2016-02-03 北京艾克利特光电科技有限公司 一种可实现自动追踪瞄准的瞄准器组件
CN105300182A (zh) * 2015-10-30 2016-02-03 北京艾克利特光电科技有限公司 一种信息实时交互的电子瞄准器
CN105953652A (zh) * 2015-02-11 2016-09-21 贵州景浩科技有限公司 电子瞄准装置对运动物体的瞄准调整方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT394457B (de) * 1985-12-18 1992-04-10 Basta Walter Zielfernrohr mit automatischer elevationseinrichtung fuer scharfschuetzengewehre
FR2760831B1 (fr) * 1997-03-12 1999-05-28 Marie Christine Bricard Lunette de tir pour arme individuelle a pointage et mise au point automatique
US6354010B1 (en) * 1998-04-23 2002-03-12 Asahi Kogaku Kogyo Kabushiki Kaisha Surveying instrument
US20040231220A1 (en) * 2003-05-23 2004-11-25 Mccormick Patrick Trajectory compensating riflescope
US7219370B1 (en) * 2003-10-06 2007-05-22 Wilcox Industries Corp. Helmet mounting systems
WO2006060489A2 (en) * 2004-11-30 2006-06-08 Bernard Thomas Windauer Optical sighting system
CN201116942Y (zh) * 2007-09-04 2008-09-17 上海神猎光机电科技有限公司 望远镜自动变焦装置
CN101561234B (zh) * 2008-04-17 2013-01-02 董豪 一种射击用瞄准器
CN201407959Y (zh) * 2009-03-03 2010-02-17 杨宏 数显弹道和风向调节量瞄准镜
CN102419137A (zh) * 2011-12-01 2012-04-18 西安华科光电有限公司 一种激光辅助照明的火控弹道自动调整平台
US8807430B2 (en) * 2012-03-05 2014-08-19 James Allen Millett Dscope aiming device
FR2994732B1 (fr) * 2012-08-27 2014-08-08 Patrick Arachequesne Arme a feu sur laquelle est montee une lunette de visee
CN103673767A (zh) * 2013-11-21 2014-03-26 南通环球光学仪器有限公司 一种能快速校准的瞄准镜
EP2980526B1 (de) * 2014-07-30 2019-01-16 Leica Geosystems AG Koordinatenmessgerät und Verfahren zum Messen von Koordinaten
CN104360479A (zh) * 2014-11-27 2015-02-18 天津天地伟业数码科技有限公司 激光出射角与方向自动调节装置
CN104613816B (zh) * 2015-01-30 2016-08-24 浙江工商大学 数字瞄准器及使用其对目标跟踪、锁定和精确射击的方法
CN106017216B (zh) * 2015-02-11 2018-09-18 贵州景浩科技有限公司 一种可自动瞄准的电子瞄准器
CN105953654B (zh) * 2015-02-11 2019-01-04 贵州景浩科技有限公司 一种高集成化的电子瞄准器及分划精确的调校方法
CN205607258U (zh) * 2016-04-05 2016-09-28 宁波舜宇电子有限公司 一种瞄准调节装置
CN106767158B (zh) * 2017-02-14 2018-05-18 江苏雷华防务科技有限公司 一种基于fpga的数字枪瞄系统
CN206546128U (zh) * 2017-03-10 2017-10-10 福建永信香业有限公司 一种瞄准镜内红点视差检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030145505A1 (en) * 2002-02-04 2003-08-07 Kenton Mark Victor Tuned trajectory compensator
US20140290113A1 (en) * 2012-11-20 2014-10-02 Kruger Optical, Inc. Rifle Scope Having Elevation and Windage Ocular Display
CN202928455U (zh) * 2012-12-05 2013-05-08 中国人民武装警察部队工程大学 一种射击智能瞄准装置
CN104457421A (zh) * 2014-11-06 2015-03-25 江苏北方湖光光电有限公司 瞄准镜环境参量快速修正装置
CN105953652A (zh) * 2015-02-11 2016-09-21 贵州景浩科技有限公司 电子瞄准装置对运动物体的瞄准调整方法
CN105300183A (zh) * 2015-10-30 2016-02-03 北京艾克利特光电科技有限公司 一种可实现自动追踪瞄准的瞄准器组件
CN105300182A (zh) * 2015-10-30 2016-02-03 北京艾克利特光电科技有限公司 一种信息实时交互的电子瞄准器

Also Published As

Publication number Publication date
CN107797571B (zh) 2020-06-23
EP3470766A1 (en) 2019-04-17
US10712128B2 (en) 2020-07-14
WO2019071709A1 (zh) 2019-04-18
US20190113307A1 (en) 2019-04-18
CN107894782B (zh) 2020-06-16
CN107797571A (zh) 2018-03-13
CN107894782A (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
WO2019071708A1 (zh) 一种感知显示系统
US9151570B2 (en) Synchronized elevation trajectory riflescope
US9062961B2 (en) Systems and methods for calculating ballistic solutions
US9482516B2 (en) Magnification compensating sighting systems and methods
US9766042B2 (en) Integrated precise photoelectric sighting system
US20150247702A1 (en) Feedback display for riflescope
EP1804017A1 (en) Telescopic sight and method for compensating for bullett trajectory deviations
CN106062501B (zh) 利用弹道缩放的光学装置和用于瞄准目标的方法
CN114867982A (zh) 弹道计算器中心
CN106568346B (zh) 一种用于一体化精准光电瞄准系统的俯仰角拟合方法
TWI647421B (zh) 目標獲取裝置及其系統
US20190301836A1 (en) Kit and Method for Aligning a Scope on a Shooting Weapon
US20170241744A1 (en) Sighting device
US11391545B2 (en) Devices and methods of rapidly zeroing a riflescope using a turret display
CN115103997A (zh) 带有多个弹道计算器的激光测距仪
CN109341417A (zh) 一种辅助计算转换系统
CN109357570A (zh) 一种辅助计算显示系统
US11280584B2 (en) Ballistic correction device for the sight members of weapons
CN106546129B (zh) 一种用于一体化精准光电瞄准系统的射向角拟合方法
RU2779412C2 (ru) Устройство баллистической коррекции для прицельных приспособлений оружия
US11680773B2 (en) Devices and methods of rapidly zeroing a riflescope using a turret display
US20240011742A1 (en) Devices and Methods of Rapidly Zeroing a Riflescope Using a Turret Display
WO2020097964A1 (zh) 一种辅助计算转换系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17928794

Country of ref document: EP

Kind code of ref document: A1