WO2019071644A1 - 一种基于种养结合的畜禽养殖场污染生态治理系统及方法 - Google Patents

一种基于种养结合的畜禽养殖场污染生态治理系统及方法 Download PDF

Info

Publication number
WO2019071644A1
WO2019071644A1 PCT/CN2017/106630 CN2017106630W WO2019071644A1 WO 2019071644 A1 WO2019071644 A1 WO 2019071644A1 CN 2017106630 W CN2017106630 W CN 2017106630W WO 2019071644 A1 WO2019071644 A1 WO 2019071644A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
temperature
cracking
water
liquid
Prior art date
Application number
PCT/CN2017/106630
Other languages
English (en)
French (fr)
Inventor
汪深
Original Assignee
汪深
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汪深 filed Critical 汪深
Publication of WO2019071644A1 publication Critical patent/WO2019071644A1/zh
Priority to US16/529,304 priority Critical patent/US20200078840A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • C05F3/06Apparatus for the manufacture
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G17/00Cultivation of hops, vines, fruit trees, or like trees
    • A01G17/005Cultivation methods
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/02Breeding vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • A23K20/30Oligoelements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/90Feeding-stuffs specially adapted for particular animals for insects, e.g. bees or silkworms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/05Treatments involving invertebrates, e.g. worms, flies or maggots
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/50Treatments combining two or more different biological or biochemical treatments, e.g. anaerobic and aerobic treatment or vermicomposting and aerobic treatment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • A01K67/0332Earthworms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/10Temperature conditions for biological treatment
    • C02F2301/106Thermophilic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the invention belongs to the field of environmental protection technology, and particularly relates to a pollution ecological management system and method for livestock and poultry farms based on planting and breeding.
  • Aerobic fermentation can degrade organic matter by microorganisms, so that organic waste can be reduced, harmless and resource-treated.
  • the aerobic fermentation mode of the reactor has the advantages of high fermentation efficiency, complete harmlessness, high product quality and stability, small occupied site area, no environmental factors, and less secondary pollution. It is increasingly welcomed by customers.
  • exogenous heating materials are often used to establish suitable conditions for the efficient propagation and decomposition of organic matter by thermophilic microorganisms.
  • problems such as slow heating, long heating time and high heating energy consumption are often encountered.
  • the biogas slurry should be harmless, requiring anaerobic fermentation under normal temperature conditions for more than 30 days, and in winter, due to The low ambient temperature requires longer anaerobic fermentation, which requires that the biogas tanks supported by the farms are large enough and the biogas pool infrastructure costs are high.
  • the research results show that in a certain temperature range, biogas production in biogas digesters is positively correlated with temperature. The higher the temperature, the higher the gas production rate. Therefore, appropriately increasing the temperature of biogas digesters can shorten the time of detoxification of biogas slurry and increase the gas production rate. Have an important role.
  • the animal carcasses are dug and landfilled in the wild or in the place where the epidemic occurred.
  • the cost of landfill is high, and the subsidy for sick and dead livestock is much lower than the cost of landfill.
  • Equipment cleaning will increase the processing cost, the operator will be prone to cross infection during the process of sick and dead livestock, equipment cleaning, and replacement of wearing parts, increasing the risk of epidemic spread, and composting a large area, long time, easy Affected by climatic conditions, sick and dead livestock and poultry carry a large number of pathogenic microorganisms.
  • the chemical production method is in a closed container.
  • the high-temperature and high-pressure method is adopted to realize the complete harmless method of dead animals and poultry.
  • a large amount of condensed water and lysate are generated, and the condensed water still needs to be discharged after being subjected to environmental protection treatment, and the lysate is generally dried to form a powder.
  • the disadvantage is that the drying process consumes a lot of energy and generates a large amount of condensed water, which greatly increases the cost.
  • CN 105689364A discloses a method for harmless treatment of dead pigs, which firstly disintegrates the dead pig animal body, and then directly sterilizes, dries or carbonizes the hot gas at 120-320 ° C, and sterilizes the dried meat and hair. And the bone material is pressed; the oil obtained during the pressing process flows into the collecting tank, and the remaining meat, hair and bone materials after pressing are made into animal feed or carbonized and then landfilled.
  • the disadvantages of this method are as follows: (1) The treatment process of sick and dead pigs increases the processing cost, is prone to cross infection, and increases the risk of epidemic transmission; (2) high energy consumption for drying or carbonization, long processing time, high cost, and a large number of Waste water and waste gas have high treatment costs and are prone to secondary pollution: (3) Dead pigs are rich in organic matter such as protein and fat, as well as large, medium and trace elements and inorganic salts. Landfill disposal wastes resources and resource utilization rate. low.
  • Commodity feed is one of the main costs of livestock and poultry farming.
  • the cost of feeding only commercial feed is high.
  • feeding with commercial feed alone will cause problems such as over-fat affecting development and meat quality.
  • the technical problem to be solved by the present invention is to solve the problems of the above background art and provide a livestock and poultry breeding based on planting and breeding.
  • the field pollution ecological management system and method will make the pollution of livestock and poultry farms ecologically controlled and achieve the goal of “zero emission, zero pollution and resource utilization”.
  • the technical scheme of the invention is: a pollution ecological management system for livestock and poultry farms based on planting and breeding, comprising a source separation water-saving type fence, a pollution control factory, a feed factory and supporting planting land; the pollution control factory and The feed factory is specialized in the disposal of livestock and poultry manure by a professional team.
  • the livestock and poultry manure is used at the source to transform the pollution and produce the fertilizer needed to improve the soil.
  • the waste is at the source, using the supporting planting land and feed production workshop to convert the pollution and produce animal-derived feed and plant-derived feed, which is the feed factory;
  • the pollution control plant consists of solid high-temperature aerobic fermentation system, liquid Medium temperature anaerobic fermentation system, cracking and expansion system, heating and heat balance system, exhaust gas treatment system and detection control system;
  • the source separation water-saving type fence is to separate rain and sewage, rain, drinking The remaining water is discharged to the outdoor ditch instead of being mixed into the excrement, and the water-saving column and mechanical scraping or artificial drying of the dung are used.
  • the rainwater and drinking water are not mixed into the excrement, so that the maximum reduction of the excrement and urine, and the use of high-pressure water guns or even high-pressure air for the water-saving type of barn, mechanical and livestock
  • the manure cleaned by scraping manure or artificial dry manure is piled up in the dry manure shed, and then the manure is transported to the solid high-temperature aerobic fermentation system and the feed factory by the dry manure shed.
  • the worm-derived manure produced by the feed factory is sent to the solid high-temperature aerobic fermentation.
  • the adjusting tank is connected to the feed port of the liquid medium temperature anaerobic fermentation system, and the inlet port of the cracking and expanding system; the fermentation produced by the solid high temperature aerobic fermentation system
  • the odor exhaust port, and the fermentation odor exhaust port of the cracking and expansion system are connected to the exhaust gas treatment system through the exhaust pipe;
  • the heating and heat balance system respectively connect the heating jacket or coil of the solid high temperature aerobic fermentation system through the pipeline
  • the heating coil of the liquid medium temperature anaerobic fermentation system, and the water jacket and coil of the cracking and expansion system; the sensors of the detection control system are disposed in the above systems, Each key parameters setting, detection and control.
  • the feed factory is specialized in the disposal of livestock and poultry manure by a professional team, the livestock and poultry manure is at the source, the supporting planting land is used to grow grain and pasture, and the plant source feed is used while the livestock is used.
  • the poultry manure and the lysate of the carcass and placenta of the livestock and poultry and the placenta are used to prepare insects to produce insects and eggs, which are used as animal-derived feeds;
  • the food and pastures planted include and are not limited to: royal bamboo grass, grassy grass, alfalfa, One or more species such as valerian, ryegrass, pennisetum, mulberry, corn, soybean, etc.;
  • the insects raised include and are not limited to: one or several kinds of black leeches, crickets, etc.;
  • the harvested plant-derived feed and animal-derived feed are further supplemented with appropriate food, trace elements and other formulas to produce full-price nutrient feed for raising livestock and poultry.
  • the solid high-temperature aerobic fermentation system comprises M solid high-temperature aerobic fermentation reactors, M is a positive integer; the dry manure shed is respectively connected with the feed port of each solid high-temperature aerobic fermentation reactor through a conveying device, each solid The outlet of the high-temperature aerobic fermentation reactor is provided with an aging chamber connected thereto.
  • the liquid medium temperature anaerobic fermentation system comprises a regulating tank connected in sequence, N liquid medium temperature anaerobic fermentation reactors, an outlet tank, a sludge pump and a liquid storage tank, wherein N is a positive integer;
  • the liquid medium temperature anaerobic fermentation reactor is a soft anaerobic fermentation bag
  • the liquid outlet of the regulating tank is connected to the inlet of the first soft anaerobic fermentation bag through a pipeline, and the anaerobic fermentation bag row of the soft body
  • the feed port is connected to the feed port of the second soft anaerobic fermentation bag through a pipe, and so on, until it is connected to the feed port of the Nth soft anaerobic fermentation bag, and the discharge port is connected to the liquid outlet tank through the pipe.
  • the liquid pool is connected to the reservoir by a sludge pump.
  • the liquid medium temperature anaerobic fermentation reactor comprises a reaction tank having a rectangular bottom, and the reaction tank is disposed on an inclined surface with an inclination angle of 0.3 to 1% along the length of the reaction tank, and a drainage ditch is formed around the inclined surface.
  • the drainage ditch is connected to the collecting well with lower ground potential through the pipeline.
  • the water collected at the bottom of the reaction pool is collected and discharged to the collecting well through the drainage ditch.
  • the bottom of the reaction tank and the slope of the bottom of the tank are provided with an insulating layer, and the insulating layer is composed of an insulating material.
  • the surface of the thermal insulation layer at the bottom of the pool is provided with a heat radiation plate, and the heating coil is uniformly fixed on the heat radiation plate, and the heating coil is covered with a soft anaerobic fermentation bag, and the soft anaerobic fermentation bag is disposed along the side with the high longitudinal position.
  • the feeding port has a discharge port on the lower side.
  • a polarizer is arranged in the middle of the longitudinal direction of the rectangular reactor, and a biogas pipe is arranged on the top of the soft anaerobic fermentation bag.
  • a pressure sensor is provided, and the soft anaerobic fermentation bag is covered with an insulation layer and a waterproof cover.
  • the height of the feed port of the latter liquid medium temperature anaerobic fermentation reactor is lower than the height of the discharge port of the previous liquid medium temperature anaerobic fermentation reactor by 0.2 m or more.
  • the bottom of the feed port side is higher than the bottom of the discharge port, and the inclination thereof is Range It is 0.3 ⁇ 1% to reduce the number of times the liquid medium temperature anaerobic fermentation reactor cleans the sludge.
  • the cracking and expansion system consists of Y cracking and expansion reactors (Y ⁇ 2), X cleavage reactors (X ⁇ 1), Z expansion reactors (Z ⁇ 1), steam generators, An aeration fan, an air filter, a solenoid valve, and a connecting pipe, the liquid in the regulating tank is sent to the cracking and expanding reactor through the transfer pump, and the cracking reactor is connected, and the discharging pipe of the cracking reactor is connected to the expansion reaction
  • the splitting and expanding reactor and the discharge pipe of the expanding reactor are respectively connected to the liquid storage tank through a pipeline.
  • the cracking and expanding reactor comprises a support, a tank body, a cover and a conveying device, the tank body is fixed on the base, one side of the tank body is sealed by a sealing cover, and the other side of the tank body is sealed.
  • the door is closed by a hinge between the door and the can body. When the door is closed, a plurality of locking bolts are used to lock and seal, so that a closed cracking and expansion between the cover and the can body and the door are formed.
  • the space is arranged; the tank body is placed in the tank body, and the tank body is provided with a guide rail parallel to the tank body axis and fixed along the radial direction of the tank body, and is used for carrying and transporting the net cage carrying the dead pig and the placenta, and the lower part of the guide rail is installed with the exposure
  • the air pipe and the plurality of aeration heads are sealed at one end of the aeration tube, and the other end is extended to the outside of the tank through the cover, and sequentially with an electromagnetic valve, a check valve, an air filter, an air outlet of the aeration fan, and a solenoid valve,
  • the steam outlet of the one-way valve and the steam generator is connected; the exhaust pipe and the feed pipe are arranged on the upper side of the cover, the pressure sensor and the safety valve are also mounted on the upper side of the cover, and the temperature sensor is installed on the lower side of the cover, Discharge pipe; water jacket, water outside the lying tank It is used to cool the cracking tank,
  • a cracking reactor is also provided, and the cracking reactor is supported by the support body, the cover, and the transport.
  • the device is composed of a tank body fixed on the base, one side of the tank body is sealed tightly by a cover, the other side of the tank body is provided with a cover door, and the cover door and the tank body are hingedly connected, and the cover door is closed.
  • a plurality of lock bolts are used for locking and sealing, a closed cracking and expansion space is formed between the cover and the tank body and the cover door.
  • the tank body is placed horizontally, and the tank body is arranged parallel to the tank.
  • the body axis is fixed along the radial direction of the tank body, and is used for carrying and transporting the net cage carrying the dead pig and the placenta.
  • the aeration pipe and the plurality of aeration heads are installed at the lower part of the track, and the other end of the aeration pipe is sealed by the seal.
  • the cover extends to the outside of the tank, and is sequentially connected with the solenoid valve, the check valve, and the steam outlet of the steam generator; the upper part of the cover is arranged with an exhaust pipe and a feed pipe, and a pressure sensor and a safety valve are also installed on the upper part of the cover.
  • a temperature sensor is mounted on the lower part of the cover, a water pipe is arranged outside the horizontal tank, the water jacket is used for cooling the cracking tank, the circulating water inlet pipe of the water jacket is arranged at the lower part of the tank, and the circulating water drain pipe of the water jacket is arranged at the upper part of the tank
  • the outer layer of the water jacket is covered with an insulation layer, and the insulation layer is composed of a thermal insulation material.
  • the conveying device comprises a cart and a net cage
  • the upper part of the cart is provided with a guide rail
  • the net cage is placed on the guide rail.
  • the net cage is a rectangular cage composed of a cage body and a steel mesh, and the surrounding and bottom steel mesh are welded on the cage.
  • the top of the cage is provided with a movable cage cover, and the cage cover is hingedly connected with the cage body.
  • the outside of the cage cover is also provided with a handle, and a plurality of rollers are fixed at the bottom of the cage body, and the roller is in contact with the guide rail.
  • the direction of the guide rail on the cart is the same as that of the guide rail in the tank, and is flush with the guide rail of the tank.
  • a special expansion reactor is arranged, and the expansion reactor is composed of a vertical and closed heat preservation tank body, a coil pipe and an aeration device, and the tank
  • the top of the body is provided with an aeration port, a coil circulating water outlet, a coil circulating water inlet and an exhaust port, and a discharge port is arranged at the bottom, the coil is fixed in the tank body, and is immersed in the lysing liquid, and the bottom of the tank body is arranged
  • the aeration device connects the aeration pipe to the aeration port, and the aeration pipe is connected with the air outlet of the electromagnetic valve, the air filter and the aeration fan in sequence; the outer surface of the heat preservation tank is covered with an insulation layer, and the insulation layer is composed of the thermal insulation material. composition.
  • the heating and heat balance system consists of a normal pressure hot water boiler, E high temperature insulation water tanks (E ⁇ 1), F low temperature insulation water tanks (F ⁇ 1), circulating water pumps, solenoid valves and connecting pipes;
  • the heating and heat balance system also includes a solar heating system; the high temperature water tank is used to supply water for the atmospheric hot water boiler, the solar heating system and the steam generator, and the outlet pipes of the high temperature water tank are respectively heated with the atmospheric hot water boiler and the solar energy.
  • the system and the steam generator inlet are connected.
  • the high temperature insulated water tank is covered with an insulation layer, and the heat insulation layer is composed of thermal insulation material; the outlet of the atmospheric pressure hot water boiler and the solar heating system passes through the respective pipeline and the high temperature water tank.
  • the inlet pipe is connected; the other outlet pipe of the high temperature water tank is connected to the water pump, respectively, to the solid high temperature aerobic fermentation reactor, the liquid medium temperature anaerobic fermentation reactor, the cracking and expanding reactor, the water jacket of the cracking reactor, and the expansion reaction.
  • the coil of the vessel delivers hot water, and the return water of each reactor passes through its respective return pipe.
  • the road is sent back to the high temperature water tank; the low temperature water tank provides the water source for the high temperature water tank, the low temperature water tank is placed above the high temperature water tank, and the high temperature water tank is automatically replenished under the control of the detection control system, and the other outlet water pipeline of the low temperature water tank is separately pumped It is connected with the water jacket of the cracking and expanding reactor and the cracking reactor, and the water jackets are sent back to the low temperature water tank through the respective water return pipes to realize circulation.
  • the outer surface of the low temperature insulated water tank is covered with a heat insulating layer, and the heat insulating layer is composed of a heat insulating material.
  • the energy sources of steam generators and atmospheric hot water boilers include electricity, biogas, diesel, biomass fuel, coal, and solar energy.
  • the exhaust gas treatment system comprises a solid high temperature aerobic fermentation system odor treatment system and a cracking and expansion system exhaust gas treatment system;
  • the structural connection of the solid high temperature aerobic fermentation system odor treatment system is as follows: solid high temperature aerobic fermentation reaction
  • the exhaust ports of the device are respectively connected to the exhaust gas inlets of the heat exchange condenser through respective exhaust pipes, and the exhaust gas exhaust ports of the respective heat exchange condensers are respectively connected to the input end of the induced draft fan through the pipeline, and the air of the heat exchange condenser enters
  • the air outlets communicate with the atmosphere, and the air outlets of the heat exchange condensers are respectively connected to the inlets of the solid high-temperature aerobic fermentation reactor through the pipelines, and the output ends of the induced draft fans are respectively connected to the intake ports of the biological deodorizing filter tower through the pipelines.
  • the exhaust port of the biological deodorizing filter tower is connected to the atmosphere through a vertical pipeline;
  • the structural connection of the cracking and expanding system exhaust gas treatment system is as follows: the aeration ports of the cracking and expanding reactor are respectively connected to the air filter through the pipeline and exposed
  • the air blower, the cracking and expanding reactor, the cracking reactor and the exhaust pipe of the expanding reactor are respectively connected to the input end of the induced draft fan, and the output ends of the induced draft fans Biological deodorization filter through the column connecting duct intake port, biological deodorization filter column vertical duct through the exhaust port Unicom atmosphere.
  • the supporting planting land area is determined by the comprehensive livestock raising quantity and the pollution receiving capacity of the feed crop.
  • livestock and poultry include pigs, chickens, ducks and geese, and also ruminants such as cows and sheep.
  • the present invention also provides a pollution ecological management method for a livestock and poultry farm based on the above-mentioned breeding and combining, comprising:
  • Feed insect breeding first adjust the moisture content of the feces to the appropriate range, as the feed of insects, carry out insect breeding, obtain the insect body and eggs, as animal-derived feed, mix with plant-derived feed in a certain proportion, and then add appropriate Formulated with grain, trace elements, etc., to produce full-price nutrient feed for raising livestock and poultry; the worm and feces are transported to a solid high-temperature aerobic fermentation reactor through a transport device for high-temperature aerobic fermentation to obtain a solid organic fertilizer;
  • tape water automatically replenishes the low temperature insulation water tank, and the low temperature insulation water tank uses the height difference under the control of the detection control system to automatically replenish the water to the high temperature insulation water tank, start the circulation pump of the atmospheric pressure hot water boiler and the solar heating system, and the circulation pump will be high temperature.
  • the water in the insulated water tank is heated to the normal pressure hot water boiler and the solar heating system, and then sent to the high temperature insulated water tank for energy storage, and the heating water jacket of the solid high temperature aerobic fermentation reactor or the electromagnetic valve at the front end of the coil is turned on to turn on the heat.
  • the water circulation water pump and the hot water are sent to the heating water jacket or the coil of the solid high-temperature aerobic fermentation reactor through the circulating water pump and the pipeline, so that the material in the fermented solid high-temperature aerobic fermentation reactor is heated;
  • thermophilic decomposing bacteria (1) The feces, insect feces and excipients separated from the bar, and the thermophilic decomposing bacteria are sent into the solid high-temperature aerobic fermentation reactor through the conveying equipment, and the moisture content of the mixture is controlled to be between 55 and 65%.
  • the detection control system simultaneously starts the driving device of the solid high-temperature aerobic fermentation reactor, so that the reactor is fed and stirred;
  • the detection control system controls the solid high-temperature aerobic fermentation reactor to stop stirring for T1 time, then stir the T2 time, then stop the T1 time, then stir the T2 time, stop-mix-stop-mix-stop- Stirring, recurring is a timed mixing procedure.
  • the detection and control system automatically activates the induced draft fan to supply the fermented material in the solid high temperature aerobic fermentation reactor.
  • the detection control system detects that the temperature of the material in the solid high-temperature aerobic fermentation reactor is lower than the set temperature H1 of the material, the hot water enters the heating jacket or coil, so that the temperature of the material in the reactor rises;
  • the procedure of stopping the timing stirring is changed to the temperature-controlled mixing procedure: starting the induced draft fan, driving the solid high-temperature aerobic fermentation
  • the device is stirred until the temperature of the material in the solid high-temperature aerobic fermentation reactor is lower than H2, and then the timing stirring process is started, so that the temperature of the material in the solid high-temperature aerobic fermentation reactor is maintained between H1 and H2, and the high-temperature aerobic reactor is maintained.
  • the timed agitation program and the temperature controlled agitation program establish a suitable fermentation temperature for the material in the solid high temperature aerobic fermentation reactor and provide sufficient oxygen for high temperature aerobic fermentation of the fecal solids to establish a suitable environment;
  • the fermentation is completed after T3 time, and the fermentation is completed.
  • the detection and control system controls the solid high-temperature fermentation reactor to stop, and then the partial material is discharged first, and then the same amount of material is immediately injected, and then every T3 time, Part of the material, and then immediately into the same amount of material, and so on, the discharge machine is started first, and the detection and control system controls the solid high-temperature aerobic fermentation reactor to stir and guide the discharge;
  • the detection control system detects the temperature of the materials in each solid high-temperature aerobic fermentation reactor, so that the temperature of the materials in each solid high-temperature aerobic fermentation reactor is maintained at H1 ⁇ Between H2;
  • the detection control system detects and controls the water temperature in the high temperature insulation water tank to make it constant in H3 ⁇ H4: 1 When the temperature in the high temperature insulation water tank is lower than H3, start the circulation pump and the atmospheric pressure hot water boiler, and heat the high temperature insulation water tank. Hot water, when the temperature of the hot water in the hot water tank of the solar heating system is greater than H3, start the circulating pump of the solar heating system to heat the hot water of the high temperature insulated water tank; 2 when the temperature in the high temperature insulated water tank reaches H4, close the atmospheric heat Water boiler
  • the detection control system controls to open the electromagnetic valve at the front end of the heating coil of the first liquid medium temperature anaerobic fermentation reactor, opens the circulating water pump, and the hot water enters the heating coil to circulate, so that the soft body anaerobic fermentation bag
  • the temperature of the internal material rapidly rises to the set temperature, and the material begins to undergo a medium temperature anaerobic fermentation reaction;
  • the detection control system controls the opening and closing of the solenoid valves in front of the heating coils of the liquid intermediate anaerobic reactor, respectively, and controls the temperature of the materials in the anaerobic fermentation bags of each soft body to make them constant within the set temperature range.
  • the sewage liquid flows through the N soft anaerobic fermentation bags in turn, and the fermentation liquid in the Nth soft anaerobic fermentation bag naturally flows into the liquid discharge tank along the pipeline due to the height difference, thereby preparing the biogas slurry;
  • the detection control system starts the sludge pump to control the liquid level of the liquid outlet according to the set anaerobic fermentation time T, and ensures that the residence time of the sewage liquid in the anaerobic medium temperature fermentation reactor reaches T, and is tired.
  • the sludge pump is used to pump the biogas in the liquid storage tank into the liquid storage tank, so that the liquid level in the liquid discharge tank is lowered, and when the detection control system detects that the liquid level of the liquid pool reaches the lower limit liquid level After closing the sludge pump;
  • the biogas generated by the N soft anaerobic fermentation bags is transported to the biogas pretreatment unit through the pipeline, and then supplied as a combustion fuel to the atmospheric hot water boiler and the steam generator.
  • the atmospheric hot water is Boilers and steam generators also use electricity, diesel, and biomass as supplementary fuels;
  • the conveying device pushes the cage into the cracking and expanding reactor, and puts the smaller dead animals and placenta into the cage.
  • the conveying device pushes the net cage into the cracking reactor, closes the sealing door, and transports the manure liquid in the regulating tank to the cracking and expanding reactor and the cracking reactor through the sludge pump, so that the net cage is semi-immersed in the liquid. in;
  • High-pressure cracking, detection and control system detects and controls the temperature and pressure in the cracking and expansion reactor and the cracking reactor, and keeps it within the range of legal temperature and pressure, and maintains the legal time, so that the dead animals and animals are completely harmless. Disintegration, disintegration, dissolved in liquid;
  • the electromagnetic valves on the steaming pipeline of the cracking and expanding reactor and the cracking reactor are respectively closed, and each reactor is closed after the high temperature and high pressure cracking, and the steam generator is turned off to open the battery valve on the hot water pipeline respectively.
  • the battery valve on the water inflow and expansion reactor and the water inlet pipe of the cracking reactor start the circulating water pump on the water outlet pipe of the high temperature insulated water tank, and the hot water enters the water jacket cycle of the cracking and expanding reactor and the cracking reactor respectively.
  • the water jacket is circulated to lower the temperature of the lysate to a set temperature H6, and the circulating water pump is turned off;
  • the solenoid valve on the discharge pipe of the cracking reactor and transfer the lysate in the cracking reactor to the expansion reactor.
  • the pre-cultured microbial seed liquid is separately subjected to the cracking and expansion reactor and the expansion reactor inlet. It is transported into the reactor, and the electromagnetic valve on the aeration pipeline of the cracking and expansion reactor and the expansion reactor is respectively opened, and the aeration fan is started.
  • the fresh air is filtered by the air filter, and then split and expanded by the one-way valve.
  • the reactor and the expansion reactor are periodically aerated to supply oxygen.
  • the detection control system detects and controls the temperature inside the reactor to maintain the temperature between H5 and H6.
  • the detection and control method is as follows: when the detection control system detects the When the temperature in the cracking and expanding reactor and the expanding reactor is lower than the lower limit value H5, the detection control system controls the high temperature insulated water tank to close the cracking and expanding reactor and the expanding reactor to H6;
  • the concentration of the culture solution reaches the requirement, that is, the expansion process is completed, and the microbial culture solution is discharged to the liquid storage tank through the discharge valve, and then the microorganism culture solution is separated by the oil water separator. And grease, and oil as an industrial raw material;
  • the detection and control system detects and controls the temperature and pressure of the materials in each reactor according to different cracking and expansion stages, so that the temperature and pressure in each reactor are maintained within the set range;
  • the growth demand is to add an appropriate amount of NPK fertilizer to the biogas slurry to prepare a liquid organic-inorganic compound fertilizer;
  • the planting land is planted.
  • bio-organic fertilizer, liquid microbial fertilizer and liquid are applied according to the growth demand of the feed crop.
  • Solid-state high-temperature aerobic fermentation system fermentation odor treatment respectively open the electromagnetic valve on the exhaust pipe of the solid high-temperature aerobic fermentation reactor, and the odor generated in the fermentation process of the solid high-temperature aerobic fermentation reactor is respectively condensed by heat exchange
  • the bio-deodorization filter tower is introduced into the biological deodorization filter tower through the induced air blower, and the bio-filler is absorbed and converted to the standard and discharged.
  • the fresh air heated by the heat exchange condenser is respectively introduced into the solid high-temperature aerobic Inside the fermentation reactor;
  • the invention manages the pollution of large-scale farm farming according to the principles of sustainable development governance, the principles of ecological recycling economic governance, and the principles of automation and equipment management:
  • the principle of sustainable development governance is an economic growth model that focuses on long-term development. It requires the ability to meet the needs of the present generation without compromising the ability of future generations to meet their needs.
  • the present invention manages farms such as feces, urine, All the pollutants such as rushing water, sick and dead poultry carcasses and placenta, antibiotics, and exhaust gas, while solving the problem of pollution of aquaculture waste, transform the aquaculture waste into a beneficial resource for human beings and sustainable development of ecology. Build and repair the environment so that the large-scale aquaculture industry will not endanger the sustainable development of civilization;
  • Eco-circulation economic governance is a management model for the whole process of reducing the quality of materials entering the production process, repeatedly using certain articles and recycling resources in different ways, to meet the needs of ecological cycle and economic development.
  • the principle of waste treatment is mainly reflected in three aspects of reduction, reuse and recycling.
  • the invention separates rain and sewage through the separation of the source of the bar and the water-saving column, and reduces the sewage at the source of the bar. The amount of excrement is minimized, which lays a foundation for the utilization of manure resources.
  • the present invention utilizes feces, manure, and dead bodies and placenta resources produced by livestock and poultry farming to form solids.
  • the feed is used to raise livestock and poultry, the feces are used for feed insect breeding, and the resulting worms are processed into feed for feeding livestock and poultry. Breeding and combining, the biogas produced by anaerobic fermentation of manure is reused as a fuel for treatment; and the hot odor generated during the treatment process is recovered by heat exchange.
  • the recovered heat is used to heat the reactor, and the biogas generated by the anaerobic fermentation of the sewage is used as a fuel for the treatment to realize resource recovery, and the heat of the cracking and expansion system is recovered and reused by heat exchange, thereby All the governance links have formed a circular ecological closed loop, which promotes the harmonious development of the aquaculture industry and the ecological environment;
  • the principle of automation and equipment management is to use automation technology, remote monitoring technology, use of automated equipment to complete waste management, avoid projectization and engineering of governance work, reduce the interference and influence of human factors and environmental factors, and make the treatment effect highly Consistent, the principle that the quality of the finished product is highly consistent
  • the invention passes the solid high-temperature aerobic fermentation reactor, the liquid medium-temperature anaerobic fermentation reactor, the cracking and expanding reactor and the biological deodorizing filter tower, respectively, to the feces and the feces And diseases such as sick and dead livestock, placenta, odorous flue gas, etc., to make the treatment process equipment and standardization, reduce the degree of human participation, improve the stability and continuity of the governance process, and at the same time, the present invention utilizes an automatic detection and control system Realize remote real-time monitoring of equipment technology, raw materials and products, record the destination of pollutants, do not need expert management on site, fully automatic operation of equipment, remote warning and diagnosis of equipment, and obtain the running status of field equipment in the cloud to facilitate advance maintenance.
  • the feces pass through two stages of high-temperature aerobic fermentation and aging, and quickly realize the harmlessness and stabilization of the material, and obtain a solid organic fertilizer
  • the innovation is as follows: designing a plurality of high-temperature heat preservation water tanks, when the solid is high-temperature aerobic
  • the high temperature insulated water tank provides a heat source for the material in the solid high temperature aerobic fermentation reactor, so that the temperature of the material rises, the heat of the material is absorbed by the heat exchange condenser, and the heat exchange condenser absorbs
  • the heat is used to heat the fresh air, and then the fresh air is introduced into the solid high-temperature aerobic fermentation reactor to provide fresh and warm air to the fermented material, which not only improves the heating efficiency, but also reduces the energy consumption of the system.
  • the present invention innovatively designs a novel liquid medium temperature anaerobic fermentation.
  • the reactor and a plurality of liquid medium temperature anaerobic fermentation reactors are connected in series for medium temperature anaerobic fermentation, and the innovations are as follows: (1) The medium temperature anaerobic fermentation is adopted to greatly improve the fermentation efficiency, shorten the fermentation time, and the residence time of the materials in the biogas tank is short.
  • the scheme can greatly reduce the energy consumption; (2) using the soft anaerobic fermentation bag as the anaerobic fermentation vessel, the construction is simple, the amount of infrastructure construction is greatly reduced, and the capital cost is greatly reduced; (3) each liquid The bottom of the medium-temperature anaerobic fermentation reactor is provided with a slope along the length direction, and the lowest position of the slope of the plurality of liquid medium-temperature anaerobic fermentation reactors is sequentially decreased along the flow direction of the sewage liquid, forming a height difference, and the fecal liquid flows naturally due to the height difference.
  • a liquid medium-temperature anaerobic fermentation reactor performs multi-stage fermentation to avoid the energy consumption caused by liquid transport in each reaction tank in the conventional treatment mode.
  • the liquid in the liquid intermediate temperature anaerobic fermentation reactor continuously flows, and the liquid is in a single reaction.
  • the residence time of the reactor is relatively short, the deposition of biogas residue is slow, and the biogas residue is carried out with the continuously flowing biogas slurry.
  • the polarizer is arranged in the liquid medium temperature anaerobic fermentation reactor to avoid the problem of liquid surface crusting of the biogas digester during the conventional biogas fermentation, and improve the gas production efficiency;
  • the heating coil is designed at the bottom of each reaction tank, and the circulating hot water is injected into the heating coil of each liquid medium temperature anaerobic fermentation reactor during the fermentation process, and the temperature of the material in the medium temperature anaerobic fermentation reactor is controlled to be stable within a limited range.
  • the fermentation efficiency is greatly improved, and the material stays in the multi-stage liquid medium temperature anaerobic fermentation reactor for more than 15 days, fully maturized and stabilized, thus reaching the biogas liquid agricultural standard; (6) feces
  • the sewage liquid is first-in-first-out in the soft anaerobic fermentation bag in series, and there is no case of unfermented anaerobic fermentation bag flowing out of the software; (7) the time during which the septic liquid stays in the soft anaerobic fermentation bag can be controlled
  • the liquid level of the liquid pool is adjusted to ensure the residence time of the anaerobic fermentation of the faecal liquid in the soft anaerobic fermentation bag, which meets the statutory time requirement.
  • the cracking and expanding system designed by the invention soaks the dead animal and the placenta in the sewage liquid in the closed reactor, firstly sterilizes the dead livestock and the placenta by high temperature and high pressure, and dissolves the dead animal and the placenta into the feces.
  • the lysate is prepared, and the lysate is used as a culture medium to expand the medium of the functional microorganism, and the microorganism culture medium is expanded by expansion, or as a food for feeding insects, and the innovations are as follows: (1) Inventing innovative pollution control methods, using the lysate produced by sterilizing dead animals and placenta and the placenta as a medium for microbial culture, cultivating functional microorganisms, respectively adding them to solid organic fertilizers and biogas liquids, and preparing bio-organic fertilizers and liquid microbial fertilizers.
  • the dead animals and the placenta are rich in nutrients such as protein, fat and inorganic salts.
  • the present invention is provided with a plurality of cracking reactors and expansion reactors to separate the cracking process from the expansion process, thereby solving the problem that the amount of diseased livestock and poultry is not matched with the processing capacity; 3)
  • the agglomeration and expansion reactor and the cracking reactor are uniformly arranged with a plurality of aeration heads, and the high temperature and high pressure steam generated by the steam generator is used to aerate the liquid and the dead animals from the bottom of the reactor, so as to crack and expand.
  • the system is warmed up and pressurized, and it is quickly rendered harmless. At the same time, a large amount of bubbles are generated during the aeration process, and the dead animals and poultry are promoted to promote the rapid disintegration of the dead bodies of the dead animals and poultry, dissolved in the fecal liquid, and the nutrient content of the fecal liquid is increased.
  • the present invention respectively heats the hot water in the high temperature insulated water tank and low
  • the cold water in the insulated water tank is transported to the water jacket of the cracking and expanding reactor, and the high temperature cracking liquid is cooled, and suitable temperature conditions are created for the next step of microbial expansion, and then the hot water is used to heat the microbial culture liquid.
  • the invention improves the efficiency of microbial expansion, and the invention fully utilizes the residual heat of the lysing liquid, avoids waste of heat, improves the heating efficiency, and reduces the energy consumption of the system; (5) reuses the residue of the diseased livestock and poultry, and the dead animal The oil produced by cracking is recovered and reused to maximize the resource conversion rate.
  • the lysate is used as the food for feeding insects, and the feed insects are cultured to produce animal-derived feed.
  • the dead animals and the placenta are rich in nutrients.
  • Substances, such as proteins, fats and inorganic salts are used to raise the growth and reproduction of insects, so that the corpses and placenta of livestock and poultry are resourced and utilized, and the efficiency of breeding insects and product quality are improved.
  • the invention uses the organic fertilizer and bio-organic fertilizer of the pollution control factory to improve the soil of the feed base of the feed factory, and the liquid organic-inorganic compound fertilizer and liquid micro-fertilizer of the finished product of the pollution control factory are used for the irrigation and drip irrigation.
  • Crops such as grain and pasture grown on land, and crops such as grain and pasture, as well as insects raised in feed factories, as raw materials for feed factories, reduce costs for breeding, improve nutrient levels of feed, and promote aquaculture and ecological environment. Harmonious development!
  • the present invention ecologically treats feces, urine, flushing water, dead bodies and placentas, and waste gas generated during livestock breeding, and treats feces, urine, sick animals and placenta and placenta.
  • the invention not only controls all pollutants in the breeding process of large-scale livestock and poultry farms, but also converts organic wastes and discarded materials into usable resources, which is beneficial to rural environmental protection and animal husbandry. Development and the implementation of energy sustainable development strategies are all important.
  • FIG. 1 is a schematic diagram of a pollution ecological management system of a livestock and poultry farm based on planting and breeding according to the present invention
  • FIG. 2 is a schematic view showing the breeding of feed insects according to the present invention.
  • FIG. 3 is a schematic view of a solid high temperature aerobic fermentation system according to the present invention.
  • FIG. 4 is a schematic cross-sectional view showing the connection relationship of a liquid medium temperature anaerobic fermentation system according to the present invention
  • Figure 5 is a schematic cross-sectional view showing the structure of a liquid medium temperature anaerobic fermentation reactor according to the present invention.
  • Figure 6 is a top plan view showing the connection relationship of the liquid medium temperature anaerobic fermentation system according to the present invention.
  • Figure 7 is a schematic view showing the cultivation of a feed crop according to the present invention.
  • Figure 8 is a schematic view of a cracking and expanding system according to the present invention.
  • Figure 9 is a schematic view showing the connection of the aeration (steam) device of the cracking and expanding reactor according to the present invention.
  • Figure 10 is a schematic cross-sectional structural view of a cracking and expanding reactor according to the present invention.
  • Figure 11 is a schematic view showing the longitudinal section of the cracking and expanding reactor according to the present invention.
  • Figure 12 is a schematic cross-sectional structural view of a sick and dead poultry conveying device according to the present invention.
  • Figure 13 is a schematic view showing the longitudinal section of the diseased dead animal conveying device according to the present invention.
  • Figure 14 is a schematic structural view of a propagation reactor according to the present invention.
  • Figure 15 is a schematic view of a heating and heat balance system according to the present invention.
  • Figure 16 is a schematic diagram of an exhaust gas treatment system of a solid high temperature aerobic fermentation system according to the present invention.
  • Figure 17 is a schematic view of an exhaust gas treatment system of a cracking and expansion system according to the present invention.
  • Figure 18 is a schematic view showing the insects of the lysate culture feed according to the present invention.
  • 19 is a schematic diagram of a pollution ecological management system for cattle and sheep breeding according to the present invention.
  • 501-reaction cell 502-insulation layer, 503-heat reflecting plate, 504-heating coil, 505-soft anaerobic fermentation bag, 506-drainage groove, 507-feed port, 508-discharge port, 509-set Well, 510-biogas exhaust pipe, 511-insulation layer, 512-pressure sensor, 513-polarizer;
  • 601-biogas slurry 602-fertilizer, 603-solid organic fertilizer, 604-liquid organic-inorganic compound fertilizer, 605-liquid microbial fertilizer, 606-bio-organic fertilizer, 607-supporting planting land, 608-plant-derived feed;
  • 813-circulating water drain pipe 814-electromagnetic valve, 815-aeration head; 816-rail, 817-temperature sensor, 818-pressure sensor, 819-safety valve, 820-insulation layer;
  • FIG. 1 A schematic diagram of a pollution-based ecological management system based on breeding and breeding of livestock and poultry farms according to the present invention is shown in Fig. 1.
  • the system includes a source separation water-saving type bar 101, a pollution control factory 102, a feed factory 103, and supporting planting land. 607, etc.; the pollution control factory 102 and the feed factory 103 are professionally disposed of by the professional team for livestock and poultry manure, and the livestock and poultry manure is converted and produced into improved soil by using the associated pollution control workshop at the source.
  • the required fertilizer is for the pollution control factory 102, the livestock and poultry manure is at the source, the supporting planting land 607 and the feed production workshop are used to convert the pollution and produce the animal-derived feed 203 and the plant-derived feed 608, which is the feed factory.
  • the pollution control plant 102 is comprised of a solid high temperature aerobic fermentation system 104, a liquid intermediate temperature anaerobic fermentation system 105, a cracking and expansion system 106, a heating and heat balance system 107, an exhaust gas treatment system 108, and a detection control system 109;
  • the source of the water-saving fence 1 is to separate the rain and the sewage, and the rainwater and the drinking water are discharged to the outdoor ditches instead of being mixed into the excrement.
  • the water-saving column and the mechanical scraping manure or the artificial dry-cleaning manure are used, so that the rainwater and the drinking residual water are not mixed into the excrement and urine at the source of the barn, so that the manure and urine are minimized, and the livestock and poultry are slaughtered or turned.
  • the column is filled with high-pressure water gun or even with high-pressure air, and the manure cleaned by mechanical scraping or artificial dry cleaning is stacked in the dry manure 301, and the manure is separately transported by the dry manure 301 to the solid high-temperature aerobic fermentation system 104.
  • the animal-derived feed factory 103, the worm feces 201 produced by the feed factory 103 is sent to the solid high-temperature aerobic fermentation system 104, and the effluent liquid and the rushing water are transported to the conditioning tank 404, and the regulating tank 401 is connected to the liquid medium-temperature anaerobic fermentation.
  • the feed port of system 105, and the liquid inlet of cracking and expansion system 106; the fermentation odor gas vent produced by solid high temperature aerobic fermentation system 104, and the exhaust gas exhaust pipe of cracking and expansion system 106 are connected to the exhaust gas.
  • the treatment system 108; the heating and heat balance system 107 respectively connect the heating jacket or coil of the solid high temperature aerobic fermentation system 104, the heating coil of the liquid medium temperature anaerobic fermentation system 105, and the cracking and expansion system through pipes.
  • the water jacket and the coil of the system 106; the sensors of the detection control system 109 are disposed in each of the above systems, and each key parameter is detected, and the detection control system 109 performs connection control on the above components.
  • the schematic diagram of feed insect breeding according to the present invention is shown in Fig. 2.
  • the solid manure in the dry manure 301 is transported to the feed factory 103 via the conveying device, and the moisture content of the manure is first adjusted to a suitable range to be used as a feed for feed insects for insect breeding.
  • worm body and egg 202 as animal-derived feed 203, mixed with plant-derived feed 608 in a certain ratio, and then adding appropriate food, trace elements and other formulas to produce full-price nutrient feed for raising livestock and poultry;
  • the worm feces 201 is transported to a solid high-temperature aerobic fermentation reactor (304A, 304B and ....304M) through a conveying device for high-temperature aerobic fermentation to obtain a solid organic fertilizer 603;
  • FIG. 3 A schematic diagram of a solid high temperature aerobic fermentation system according to the present invention is shown in Figure 3.
  • the solid high temperature aerobic fermentation system 104 comprises M solid high temperature aerobic fermentation reactors (304A, 304B and . . . 304M), dry manure shed
  • the solid feces, worm feces 201, excipients 302 and decomposing bacteria 303 in the 301 are respectively transported to the solid high-temperature aerobic fermentation reactors (304A, 304B and . . . 304M) through a conveying device, and the solid high-temperature aerobic fermentation reactor ( The 304A, 304B, and ....304M) discharge ports are connected to the aging chamber 305 via a conveyor.
  • the schematic diagram of the liquid medium temperature anaerobic fermentation system according to the present invention is shown in FIG. 4 and FIG. 6.
  • the liquid medium temperature anaerobic fermentation system 105 is composed of a regulating tank 401 and a liquid medium temperature anaerobic fermentation reactor (402A, 402B and . . . 402N).
  • the liquid outlet tank 403, the sludge pump 404 and the liquid storage tank 405 the liquid outlet of the regulating tank 401 is connected to the first liquid medium temperature anaerobic fermentation reactor 402A feed port through a pipeline, and the discharge port is connected by a pipeline.
  • the liquid medium temperature anaerobic fermentation reactor 402B feed port, and so on, is connected to the Nth liquid intermediate temperature anaerobic fermentation reactor 402N feed port, and the discharge port is connected to the liquid outlet tank 403 via a pipe, and the liquid discharge tank 403
  • the sludge pump 404 is connected to the liquid storage tank 405, the N liquid medium temperature anaerobic fermentation reactors (402A, 402B and . . . 402N), and the bottom of the liquid medium temperature anaerobic fermentation reactor 402B inlet is lower than the liquid.
  • the inlet of the medium temperature anaerobic fermentation reactor 402B is 0.2 m, and so on.
  • the bottom of the inlet of the 402N inlet of the Nth liquid medium temperature anaerobic fermentation reactor is lower than the outlet of the front liquid intermediate temperature anaerobic fermentation reactor by 0.2 m.
  • each liquid medium temperature anaerobic fermentation reactor (402A, 402B and . . . 402N)
  • the bottom of the feed port side is higher than the bottom of the discharge port, and the inclination is in the range of 0.5% to reduce the liquid medium temperature anaerobic fermentation reactor (402A, 402B and . . . 402N) to clean the sludge. frequency.
  • FIG. 5 The schematic diagram of the medium temperature anaerobic fermentation reaction tank involved in the present invention is shown in FIG. 5, and the liquid medium temperature anaerobic fermentation reactors (402A, 402B and . . . 402N) are constructed from the bottom of the rectangular reaction tank 501.
  • the inclined surface inclined to the discharge opening has a slope of 0.5%, and a drainage ditch 506 is formed around the inclined surface.
  • the drainage ditch 506 is connected to the collecting well 509 at a lower ground potential through the pipeline, and the water collected by the bottom 501 of the reaction tank passes through the water.
  • the ditch is collected and discharged into the collecting well 509.
  • the bottom of the bottom of the cell of the reaction cell 501 and the inclined surface of the bottom of the cell are provided with a heat insulating layer 502.
  • the heat insulating layer 502 is composed of a heat insulating material, and a heat radiating plate 503 is disposed on the surface of the heat insulating layer 502 of the bottom of the reaction cell 501.
  • the heating coil 504 is uniformly fixed on the heat radiating plate 503, and the soft anaerobic fermentation bag 505 is covered on the heating coil 504.
  • the soft anaerobic fermentation bag 505 is provided with a feeding port 507 on the side where the longitudinal direction is high, and the lower one is The side is provided with a discharge port 508.
  • a polarizer 513 is disposed in the middle of the longitudinal direction of the rectangular reactor, and the top of the soft anaerobic fermentation bag 505 is provided with a biogas exhaust pipe. 510, the biogas exhaust pipe 510 is provided A pressure sensor 512 is disposed, and the soft anaerobic fermentation bag 505 is also covered with a heat insulating layer 502 and a waterproof cover.
  • the schematic diagram of the planting of the feed crops according to the present invention is shown in Fig. 7.
  • the appropriate amount of fertilizer 602 and the microorganism culture solution 702 are respectively added to the biogas slurry 601 to prepare a liquid organic-inorganic compound fertilizer 604 and a liquid microbial fertilizer 605, and the appropriate amount of microorganisms are obtained.
  • the culture liquid 702 is sprayed into the solid organic fertilizer 603, and the biological organic fertilizer 606 is prepared by stirring uniformly.
  • the liquid organic-inorganic compound fertilizer 604, the liquid microbial fertilizer 605 and the biological organic fertilizer 606 are respectively applied to the supporting planting land 607, and the supporting planting is carried out.
  • the land 607 grows the forage crop, and the harvested feed material is sent to the feed factory 103, and the plant-derived feed 608 is processed to feed the livestock and poultry.
  • FIG. 8 A schematic diagram of a cracking and expansion system according to the present invention is shown in Fig. 8.
  • the cracking and expansion system 106 is mainly composed of a cracking and expanding reactor 701, a cracking reactor (703A and 703B), a reactor 704, and steam generation.
  • the reactor 1102, the aeration fan 1301, the air filter 1302, and the connecting pipe are composed, and the regulating tank 401 is respectively connected to the feeding pipe 812 of the cracking and expanding reactor 701 and the cracking reactors (703A and 703B) via the conveying device, and is cracked.
  • the discharge tubes of the reactors (703A and 703B) are connected to the feed port 905 of the expansion reactor 704 via a transfer device, the discharge pipe 809 of the cracking and expansion reactor 701, and the discharge port 910 of the expansion reactor 704. They are connected to the liquid storage tank through pipes.
  • FIG. 9 The schematic diagram of the connection of the aeration (steam) device of the cracking and expansion system according to the present invention is shown in FIG. 9.
  • the exhaust port of the steam generator 1102 is respectively connected to one of the three-way 1308 via the check valve 1307b and the steam pipe 1110, respectively.
  • the inlet port, and the steam inlet ports of the cracking reactors (703A and 703B), the front ends of the inlet pipes of the cracking reactors (703A and 703B) are respectively provided with solenoid valves (1304b and 1304c), and the inlet end of the aeration fan 1301
  • the outlet end is connected to the other input port of the three-way 1308 through the air filter 1302, the check valve 1307a and the gas pipeline, and the inlet of the expansion reactor 704, and the expansion reactor 704 is introduced.
  • a solenoid valve 1304d is disposed on the pipeline, and an output end of the tee 1308 is connected to the aeration tube 808 of the cracking and expansion reactor 701 via a pipeline, and a solenoid valve 1304e is disposed on the intake (vapor) pipeline of the cracking and expansion reactor 701. .
  • the cracking and expanding reactor 701 is composed of a support 801, a tank body 802, a cover 803, and a conveying device.
  • the hull 802 is fixed on the support 801, one side of the can 802 is hermetically sealed by a cover 803, and the other side of the can 802 is provided with a cover door, and the cover door and the can 802
  • a hinge 804 is connected between the cover door and the can body 802, and a sealing ring 805 is disposed between the cover door and the can body 802.
  • a plurality of lock 806 bolts are used to lock and seal, so that the cover 803 and the can body 802 and the cover door are closed.
  • a closed cracking and expansion space is formed between the tank 802 and a guide rail 816 disposed parallel to the axis of the tank 802 and radially fixed along the tank 802 for carrying and transporting the net carrying the dead animal and the placenta.
  • the cage 1002 is provided with an aeration pipe 808 and a plurality of aeration heads 815 at the lower portion of the guide rail 816; an exhaust pipe 811 and a feed pipe 812 are disposed on the upper side of the cover 803, and pressure transmission is also installed on the upper side of the cover 803.
  • the sensor 818 and the safety valve 819 are provided with a temperature sensor 817 and a discharge tube 809 on the lower side of the cover; a water jacket 807 is disposed outside the horizontal tank 802, and the water jacket 807 is used for the cracking and expanding reactor 701.
  • the circulating water inlet pipe 810 of the water jacket 807 is arranged at the lower portion of the tank body 802, and the circulating water drain pipe 813 of the water jacket 807 is arranged at the upper portion of the tank body 802.
  • the outer surface of the water jacket 807 is covered with the heat insulating layer 820, and the heat insulating layer 820 is composed of thermal insulation material;
  • FIG. 12 and FIG. 13 show a schematic diagram of a cross-section and a longitudinal section of a sick and avian transport device according to the present invention.
  • the transport device 702 is composed of a cart 1001 and a cage 1002.
  • the upper portion of the cart 1001 is fixed with a guide rail 1003, and the guide rail 1003
  • a cage 1002 is placed thereon.
  • the cage 1002 is a rectangular cage composed of a cage 1004 and a wire mesh 1005.
  • the surrounding and bottom wire mesh 1005 is welded to the cage 1004.
  • the top of the cage 1004 is provided with a movable cage cover 1006.
  • 1006 is connected with the cage 1004 by a chain 1007.
  • the outside of the cage 1006 is further provided with a handle 1008.
  • the bottom of the cage 1004 is fixed with a plurality of rollers 1009.
  • the roller 1009 is in contact with the guide rail 1003, and the guide rail 1003 on the cart 1001 is oriented.
  • the inner rails 816 of the tank body 802 are butt jointed and flush with the inner rails 816 of the tank body 802.
  • the schematic diagram of the structure of the expansion reactor according to the present invention is shown in FIG. 14.
  • the expansion reactor 704 is composed of a vertical and closed heat preservation tank body 907, a coil 906 and an aeration device 909, and the top of the tank body 907 is exposed.
  • the gas port 902, the coil circulating water outlet 903, the coil circulating water inlet 904 and the exhaust port 908 are provided with a discharge port 910 at the bottom, and the coil 906 is fixed in the tank 907 and immersed in the lysate, the tank body
  • An aeration device 909 is disposed at the bottom of the 907, and the aeration pipe extends through the tank wall to the outside of the tank body 907, and is sequentially connected with the air outlet of the electromagnetic valve, the air filter and the aeration fan; the outer surface of the tank body 907 is covered with the heat insulation layer.
  • the insulation layer is composed of thermal insulation material.
  • the heating and heat balance system 107 is mainly composed of a normal pressure hot water boiler 1101, a high temperature heat preservation water tank 1104, a low temperature heat preservation water tank 1105, a circulating water pump (1106a to 1106e), The electromagnetic valve (1107a to 1107y), and the connecting pipe and the like are further composed. Further, for a region with abundant solar energy resources, the heating and heat balance system 107 further includes a solar heating system 1103, which is an atmospheric pressure hot water boiler 1101, solar energy.
  • the heating system 1103 and the water source of the steam generator 1102, the high temperature insulated water tank 1104 respectively delivers hot water to the atmospheric hot water boiler 1101, the solar heating system 1103 and the steam generator 1102 via the water outlet pipe 1108; and the atmospheric pressure hot water boiler 1101
  • the water heated by the solar heating system 1103 is sent back to the high temperature insulated water tank 1104 through the respective pipes to realize energy storage; the other water outlet pipe 1111 of the high temperature insulated water tank 1104 is connected to the circulating water pump 1106e, respectively, to the solid high temperature aerobic fermentation reactor (304A) , 304B and ....304M), liquid medium temperature anaerobic fermentation reactors (402A, 402B and . . .
  • the expansion reactor 701, the cleavage reactors (703A and 703B), and the expansion reactor 704 deliver hot water, and the return water of each reactor is sent back to the high temperature insulated water tank 1104 through the respective return water pipes; the low temperature heat preservation water tank 1105 is high temperature.
  • the water source of the insulated water tank 1104, the low temperature insulated water tank 1105 is placed above the high temperature insulated water tank 1104, and the high temperature insulated water tank 1104 is automatically replenished by the detection control system 109, and the other outlet water of the low temperature insulated water tank 1105 is connected and lysed by the circulating water pump 1106e, respectively.
  • the water jacket 807 of the expansion reactor 701 and the cracking reactors (703A and 703B), and the coil 906 of the expansion reactor 704 are returned to the low temperature insulated water tank 1105 through respective return pipes to realize circulation;
  • the biogas exhaust pipe 510 at the top of each soft biogas bag of the oxygen fermentation reactor (402A, 402B and . . . 402N) is connected to the biogas pretreatment device 1112 via the exhaust pipe, and the biogas in the biogas pretreatment device 1112 is processed by the pretreatment device. After purification, it is sent to an atmospheric hot water boiler 1101 for combustion and heat supply, and solenoid valves (1107v, 1107w, and 1107x) are disposed on each exhaust pipe.
  • the schematic diagram of the exhaust gas treatment system 108 of the solid high temperature aerobic fermentation system 104 of the present invention is shown in Figure 16, and its structure is connected as follows: exhaust of solid high temperature aerobic fermentation reactors (304A, 304B and . . . 304M)
  • the ports are connected to the exhaust gas inlets of the heat exchange condensers (1201a, 1201b and ....1201m) respectively, and the exhaust gas exhaust ports of the heat exchange condensers (1201a, 1201b and ....1201m) are connected by pipes.
  • the air inlets of the heat exchangers (1201a, 1201b and . . . 1201m) are connected to the air inlets of the heat exchangers (1201a, 1202b and 1202b).
  • the air outlets of ...1201m are connected to the inlets of the solid high-temperature aerobic fermentation reactors (304A, 304B and ....304M), respectively, and the solid high-temperature aerobic fermentation reactors (304A, 304B and.. ..304M)
  • the intake and exhaust pipes are respectively provided with solenoid valves (1204a, 1204b and ....1204m) and (1205a, 1205b and ....1205m), induced draft fans (1202a, 1202b and.
  • the output end of the ...1202m) is connected to the air inlet of the biological deodorizing filter tower 1203 via a pipeline, and the exhaust port of the biological deodorizing filter tower 1203 is connected to the atmosphere through a vertical pipeline.
  • the exhaust gas treatment system 108 of the cracking and expansion system 106 of the present invention is shown in Figure 17, and its structure is connected as follows: cracking and expansion
  • the reactor 701, the cracking reactors (703A and 703B), and the expansion reactor 704 exhaust pipes are respectively connected to the input ends of the induced draft fan 1305, and the respective reactor exhaust pipes are respectively provided with solenoid valves (1303a, 1303b, 1303c and 1303d).
  • the output end of the induced draft fan 1305 is connected to the intake port of the biological deodorizing filter tower 1306 via a pipeline, and the exhaust port of the biological deodorizing filter tower 1306 is connected to the atmosphere through a vertical pipeline.
  • the schematic diagram of the lysate culture feed insects according to the present invention is shown in Fig. 18.
  • the livestock manure is added to the lysate and uniformly mixed, and the mixture is used as an insect feed for insect breeding to obtain the worm body and the egg 202 as Animal-derived feed 203, mixed with plant-derived feed 608 in a certain ratio, and then added appropriate food, trace elements and other formulas to produce full-price nutrient feed for raising livestock and poultry; 2 residual lysate and livestock manure
  • the mixture and insect feces are transported to a solid high-temperature aerobic fermentation reactor (304A, 304B and . . . 304M) through a conveying device for high-temperature aerobic fermentation to obtain a solid organic fertilizer 603.
  • a method for ecological management of pig farm pollution based on combination of breeding and breeding including:
  • the source and the water-saving bar are separated from the rain and the sewage.
  • the rainwater and drinking water are discharged to the ditch outside the house instead of being mixed into the excrement.
  • mechanical scraping of manure or artificial dry manure so that the rainwater and drinking water are not mixed into the pig manure and urine at the source of the barn, so that the maximum reduction of manure and urine, the use of high-pressure water guns and even high-pressure air in the cleaning bar, machinery
  • the pig manure cleaned by scraping manure or artificial dry manure is piled up in the dry manure 301, and then the manure is transported by the dry manure 301 to the solid high-temperature aerobic fermentation system 104 and the animal-derived feed factory 103, pig manure and rushing.
  • the column water is transported to the conditioning tank 401;
  • black water carp culture first adjust the moisture content of pig manure to the appropriate range, and then inoculate the appropriate amount of black sputum larvae on the feces, after a period of growth, reproduction, get a mixture of worm feces 201 and black water locust eggs 202
  • Blackwater locust body egg 202 is processed by drying and pulverizing to obtain black leeches feed 203, mixed with plant-derived feed 608 in a certain ratio, and then added appropriate food, trace elements and other formulas to produce full-price nutrition.
  • worm feces 201 is transported to a solid high-temperature aerobic fermentation reactor (304A, 304B and ....304M) through a transport device for high-temperature aerobic fermentation to obtain a solid organic fertilizer 603;
  • the water of the high temperature insulated water tank 1104 is sent to the atmospheric hot water boiler 1101 and the solar heating system 1103 for heating, and then the electromagnetic valve (1107c and 1107e), restart the circulating water pump (1106a and 1106b), send the hot water to the high temperature insulated water tank 1104 for energy storage, open the solenoid valve 1107i, and turn on the solid high temperature aerobic fermentation reactor (304A, 304B or 304M) to heat the jacket or tray.
  • the solenoid valve (1107j, 1107k or 1107l) at the front end of the tube starts the hot water circulating water pump 1106e, and the hot water is heated by the material in the high temperature aerobic fermentation reactor (304A, 304B or 304M) for conveying the fermentation solid;
  • the solid manure and excipient 302 of the dry manure 301 and the decomposing agent 303 are sent to the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) by the conveying device, and the moisture content of the mixture is controlled to be 55-65.
  • the detection control system 109 simultaneously starts the driving device of the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) to realize feeding and stirring;
  • the detection control system 109 controls the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) to stop stirring for 50 minutes, stir for another 10 minutes, then stop for 50 minutes, then stir for another 10 minutes, and stop - Stirring-stop-stirring-stop-stirring, and repeating is a timed stirring process.
  • the detection control system 109 automatically activates the induced draft fan ( 1202a, 1202b or 1202m), supplying oxygen to the fermented material in the high temperature aerobic fermentation reactor (304A, 304B or 304M); 1 when the detection control system 109 detects the solid high temperature aerobic fermentation reactor (304A, 304B or 304M)
  • the temperature of the material is lower than the set temperature of the material at 60 °C, the hot water enters the heating jacket or coil, so that the temperature of the material in the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) rises;
  • the procedure of stopping the timed stirring is changed to the temperature control mixing program: the induced draft fan (1202a, 1202b or 1202m) is driven to drive the solid high temperature.
  • Oxygen fermentation (304A, 304B or 304M) is stirred until the temperature of the material in the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) is lower than 70 °C, and then the timed stirring procedure is started to make the solid high-temperature aerobic fermentation reactor (304A). , 304B or 304M)
  • the internal material temperature is maintained between 60 and 70 ° C.
  • the solid high temperature aerobic reactor (304A, 304B or 304M) has a timed stirring procedure and a temperature controlled stirring procedure. It is a solid high temperature aerobic fermentation reactor (304A, 304B or 304M).
  • the internal material establishes a suitable fermentation temperature and provides sufficient oxygen for high-temperature aerobic fermentation of fecal solids to establish a suitable environment;
  • the detection control system 109 controls the solid high-temperature fermentation reactor (304A, 304B or 304M) to stop, and then discharges 50% first, and then immediately feeds 50%, after which Every 24h, 50% is discharged, and then 50% is fed immediately, and so on.
  • the screw discharge machine is started first when discharging, and the detection control system 109 controls the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M). Stirring, guiding the discharge;
  • the detection control system 109 detects the temperature of the materials in each solid high-temperature aerobic fermentation reactor (304A, 304B, and 304M) to make each solid.
  • the temperature of the material in the high temperature aerobic fermentation reactor (304A, 304B and 304M) is maintained between 60 and 70 ° C;
  • the detection control system 109 detects and controls the water temperature in the high temperature insulated water tank 1104 to be constant between 70 and 85 ° C: 1 when the temperature in the high temperature insulated water tank 1104 is lower than 70 ° C, the atmospheric pressure hot water boiler 1101 is started.
  • the circulating pump 1106e at the output end of the solar heating system 1103 is activated, and the hot water is sent to the hot water of the high temperature insulated water tank 1104; 2 when the temperature reaches the temperature in the high temperature insulated water tank 1104 At 85 ° C, the atmospheric hot water boiler is turned off.
  • the excrement and the flushing water are transported into the regulating tank 401, so that the liquid level of the fecal liquid in the adjusting tank 401 is continuously increased.
  • the fecal liquid is affected by the height difference.
  • the connecting pipe naturally flows into the first liquid intermediate temperature anaerobic fermentation reactor 402A, and the detection control system 109 controls the opening of the solenoid valve 1107s at the front end of the heating coil of the first liquid medium temperature anaerobic fermentation reactor 402A, and the hot water enters the first liquid.
  • the medium temperature anaerobic fermentation reactor 402A heats the coil 504 to circulate, so that the temperature of the material in the first liquid medium temperature anaerobic fermentation reactor 402A rapidly rises to 35 ° C, and the material starts the intermediate temperature anaerobic fermentation reaction;
  • the detection control system 109 controls the opening of the solenoid valve 1107u at the front end of the Nth liquid intermediate temperature anaerobic fermentation reactor 402N heating coil 504, and the hot water enters the Nth liquid medium temperature anaerobic fermentation.
  • the reactor 402N is circulated in the heating coil 504, so that the temperature of the material is rapidly raised to 35 ° C, and the material is continuously subjected to a medium temperature anaerobic fermentation reaction;
  • the polarizer 513 in the liquid medium temperature anaerobic fermentation reactors (402A, 402B, and . . . 402N) is activated in a time-sharing manner to prevent the liquid level from “crusting” and slow down the deposition rate of the liquid deposit;
  • the detection control system 109 respectively detects and controls the temperature of the materials in the liquid medium temperature anaerobic fermentation reactors (402A, 402B, and . . . 402N) to maintain a constant temperature in the range of 35 to 50 ° C, and the sewage liquid flows sequentially.
  • the N liquid medium temperature anaerobic fermentation reactors (402A, 402B and ....402N) the fermentation liquid in the Nth liquid medium temperature anaerobic fermentation reactor 402N naturally flows into the liquid outlet tank 403 along the pipeline due to the height difference.
  • the detection control system 109 periodically starts the sludge pump 404 according to the set anaerobic fermentation time to control the liquid level of the liquid outlet tank 403, and ensures that the sewage liquid is in the liquid anaerobic medium temperature fermentation reactor (402A, 402B and.
  • the residence time in the ...402N) reaches 15 days or more, and after the intermediate anaerobic fermentation time reaches 15 days, the biogas slurry in the liquid outlet tank 403 is pumped into the liquid storage tank 405 by the sludge pump 404, so that the liquid discharge tank 403
  • the liquid level is lowered, and when the detection control system 109 detects that the liquid level of the liquid pool reaches the lower limit liquid level, the sludge pump 404 is closed;
  • the biogas generated by the liquid medium temperature anaerobic fermentation reactor (402A, 402B and ....402N) is transported through the biogas exhaust pipe 510 and the pipeline. After being sent to the biogas pretreatment device 1112 for treatment, the steam generator 1102 burns fuel. When the winter temperature is low, the steam generator 1102 also burns electricity, diesel, and biomass as supplementary fuels;
  • the transport device pushes the cage 1002 into the cracking and expanding reactor 701, and puts the sick pig and placenta into the net with a forklift or other transfer equipment.
  • the conveying device pushes the cage 1002 into the cracking reactor (703A or 703B), closes the closing door, and transports the liquid in the conditioning tank 401 to the cracking and expanding reactor 701 and the cracking reactor through the transfer pump. (703A or 703B), the net cage 1002 is half soaked in the fecal liquid;
  • the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) exhaust valves are respectively closed, and the temperature and pressure in the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) are respectively 130 ° C and At 0.25 MPa, the dead pigs and the placenta start high temperature and high pressure cracking, and the detection control system 109 detects and controls the temperature and pressure in the cracking and expanding reactor 701 and the cleavage reactor (703A or 703B) to maintain the temperature at 130-140 ° C and 0.25.
  • the App completely harmless, the disintegration of the bodies, dissolved in the liquid, resulting lysate;
  • the steam generator 1102 is turned off, the electromagnetic valve 1107y is turned on, and the electromagnetic valve (1107m, 1107n or 1107o) on the circulating water inlet pipe of the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) is turned on. ), the solenoid valve 1107i is opened, the circulating water pump 1106e is started, and the hot water enters the water jacket circulation of the cracking and expanding reactor 701 and the cracking reactor (703A or 703B), so that the temperature of the cracking liquid and the hot water temperature of the high temperature insulating water tank 1104 are reached.
  • the feed pipe 812 of the expansion reactor 701 and the feed port 905 of the expansion reactor 704 are sent to the cracking and expansion reactor 701 and the expansion reactor 704, and the aeration fan 1301 is activated, and the detection control system 109 respectively
  • the solenoid valve 1304d and the solenoid valve 1304e are opened or closed, and the sterile air filtered by the air filter 1302 is separately sent to the cracking and expansion reactor 701 and the expansion reactor 704, and at the same time, the detection control system 109 detects,
  • the temperature in the cracking and expansion reactor 701 and the expansion reactor 704 are controlled so that the temperature is maintained between 25 and 35 ° C, respectively.
  • the detection control method is as follows: 1) When the detection control system 109 detects the cracking and expanding reactor 701 Or when the temperature in the expansion reactor 704 is lower than 25 ° C, the detection control system 109 controls to open the circulating water pump 1106e on the water outlet pipe of the high temperature insulated water tank 1104, opens the electromagnetic valve 1107i, opens the electromagnetic valve (1107m or 1107p), and raises the cracking and expansion.
  • the circulation water pump 1106e is stopped, the electromagnetic valve 1107i is closed, the electromagnetic valve is closed (1107m or 1107p); 2) when the detection control system 109 detects cracking and expansion
  • the detection control system 109 controls the activation of the aeration fan 1301, opens the solenoid valve (1304d or 1304e), and proceeds to the cracking and expansion reactor 701 or the expansion reactor 704.
  • the concentration of the culture solution reaches the requirement, that is, the expansion process is completed, and the discharge pipe 910 at the bottom of the heat transfer expansion reactor 704 of the cracking and expansion reactor 701 discharge pipe 809 is opened, respectively, and discharged.
  • the culture solution is stored in a liquid storage tank, and then separated by a water separator to obtain a microorganism culture solution 702 and a fat 705, and the fat 705 is used as an industrial raw material;
  • the detection control system 109 detects and controls each reactor separately according to different cracking and fermentation stages.
  • the temperature and pressure of the material maintain the temperature and pressure in each reactor reactor within a set range;
  • Solid high temperature aerobic fermentation system 104 fermentation odor treatment respectively open the solid high temperature aerobic fermentation reactor (304A, 304B or ....304M) on the exhaust pipe solenoid valve (1205a, 1205b or... .1205m), the odor generated during the fermentation process is respectively exchanged by the heat exchange condenser (1201a, 1201b or ....1201m), and then introduced into the organism by the induced draft fan (1202a, 1202b or ... 1202m) respectively.
  • the deodorizing filter tower 1203 is discharged after the biological filler in the biological deodorizing filter tower 1203 is absorbed and converted, and at the same time, the fresh air heated by the heat exchange condenser (1201a, 1201b or ... 1201m) is respectively introduced into the solid high temperature.
  • Oxygen fermentation reactor (304A, 304B or ....304M) respectively open the solid high temperature aerobic fermentation reactor (304A, 304B or ....304M) on the exhaust pipe solenoid valve (1205a, 1205b or...
  • a method for ecological management of pig farm pollution based on combination of breeding and breeding including:
  • the source and the water-saving bar are separated from the rain and the sewage.
  • the rainwater and drinking water are discharged to the ditch outside the house instead of being mixed into the excrement.
  • mechanical scraping of manure or artificial dry manure so that the rainwater and drinking water are not mixed into the pig manure and urine at the source of the barn, so that the maximum reduction of manure and urine, the use of high-pressure water guns and even high-pressure air in the cleaning bar, machinery
  • the pig manure cleaned by scraping manure or artificial dry manure is piled up in the dry manure 301, and then the manure is transported by the dry manure 301 to the solid high-temperature aerobic fermentation system 104 and the animal-derived feed factory 103, pig manure and rushing.
  • the column water is transported to the conditioning tank 401;
  • black water carp culture first adjust the moisture content of pig manure to the appropriate range, and then inoculate the appropriate amount of black sputum larvae on the feces, after a period of growth, reproduction, get a mixture of worm feces 201 and black water locust eggs 202
  • Blackwater locust body egg 202 is processed by drying and pulverizing to obtain black leeches feed 203, mixed with plant-derived feed 608 in a certain ratio, and then added appropriate food, trace elements and other formulas to produce full-price nutrition.
  • worm feces 201 is transported to a solid high-temperature aerobic fermentation reactor (304A, 304B and ....304M) through a transport device for high-temperature aerobic fermentation to obtain a solid organic fertilizer 603;
  • the water of the high temperature insulated water tank 1104 is sent to the atmospheric hot water boiler 1101 and the solar heating system 1103 for heating, and then the electromagnetic valve (1107c and 1107e), restart the circulating water pump (1106a and 1106b), send the hot water to the high temperature insulated water tank 1104 for energy storage, open the solenoid valve 1107i, and turn on the solid high temperature aerobic fermentation reactor (304A, 304B or 304M) to heat the jacket or tray.
  • the solenoid valve (1107j, 1107k or 1107l) at the front end of the tube starts the hot water circulating water pump 1106e, and the hot water is heated by the material in the high temperature aerobic fermentation reactor (304A, 304B or 304M) for conveying the fermentation solid;
  • the solid manure and excipient 302 of the dry manure 301 and the decomposing agent 303 are sent to the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) by the conveying device, and the moisture content of the mixture is controlled to be 55-65.
  • the detection control system 109 simultaneously starts the driving device of the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) to realize feeding and stirring;
  • the detection control system 109 controls the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) to stop stirring for 50 minutes, stir for another 10 minutes, then stop for 50 minutes, then stir for another 10 minutes, and stop - Stirring-stop-stirring-stop-stirring, and repeating is a timed stirring process.
  • the detection control system 109 automatically activates the induced draft fan ( 1202a, 1202b or 1202m), supplying oxygen to the fermented material in the high temperature aerobic fermentation reactor (304A, 304B or 304M); 1 when the detection control system 109 detects the solid high temperature aerobic fermentation reactor (304A, 304B or 304M)
  • the temperature of the material is lower than the set temperature of the material at 60 °C, the hot water enters the heating jacket or coil, so that the temperature of the material in the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) rises;
  • the procedure of stopping the timed stirring is changed to the temperature control mixing program: the induced draft fan (1202a, 1202b or 1202m) is driven to drive the solid high temperature.
  • Oxygen fermentation (304A, 304B or 304M) is stirred until the temperature of the material in the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) is lower than 70 °C, and then the timed stirring procedure is started to make the solid high-temperature aerobic fermentation reactor (304A). , 304B or 304M) The temperature of the material is maintained between 60 °C and 70 °C.
  • the solid high temperature aerobic reactor (304A, 304B or 304M) has a timed stirring procedure and a temperature controlled stirring procedure. It is a solid high temperature aerobic fermentation reactor (304A).
  • the material in 304B or 304M) establishes a suitable fermentation temperature and provides sufficient oxygen for the high temperature aerobic fermentation of the fecal solids to establish a suitable environment;
  • the detection control system 109 controls the solid high-temperature fermentation reactor (304A, 304B or 304M) to stop, and then discharges 50% first, and then immediately feeds 50%, after which Every 24h, 50% is discharged, and then 50% is fed immediately, and so on.
  • the screw discharge machine is started first when discharging, and the detection control system 109 controls the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M). Stirring, guiding the discharge;
  • the detection control system 109 detects the temperature of the materials in each solid high-temperature aerobic fermentation reactor (304A, 304B, and 304M) to make each solid.
  • the temperature of the material in the high temperature aerobic fermentation reactor (304A, 304B and 304M) is maintained between 60 and 70 ° C;
  • the detection control system 109 detects and controls the water temperature in the high temperature insulated water tank 1104 to be constant between 70 and 85 ° C: 1 when the temperature in the high temperature insulated water tank 1104 is lower than 70 ° C, the atmospheric pressure hot water boiler 1101 is started.
  • the circulating pump 1106e at the output end of the solar heating system 1103 is activated, and the hot water is sent to the hot water of the high temperature insulated water tank 1104; 2 when the temperature reaches the temperature in the high temperature insulated water tank 1104 At 85 ° C, the atmospheric hot water boiler is turned off;
  • the excrement and the flushing water are transported into the regulating tank 401, so that the liquid level of the fecal liquid in the adjusting tank 401 is continuously increased.
  • the fecal liquid is affected by the height difference.
  • the connecting pipe naturally flows into the first liquid intermediate temperature anaerobic fermentation reactor 402A, and the detection control system 109 controls the opening of the solenoid valve 1107s at the front end of the heating coil of the first liquid medium temperature anaerobic fermentation reactor 402A, and the hot water enters the first liquid.
  • the medium temperature anaerobic fermentation reactor 402A heats the coil 504 to circulate, so that the temperature of the material in the first liquid medium temperature anaerobic fermentation reactor 402A rapidly rises to 35 ° C, and the material starts the intermediate temperature anaerobic fermentation reaction;
  • the polarizer 513 in the liquid medium temperature anaerobic fermentation reactors (402A, 402B, and . . . 402N) is activated in a time-sharing manner to prevent the liquid level from “crusting” and slow down the deposition rate of the liquid deposit;
  • the detection control system 109 respectively detects and controls the temperature of the materials in the liquid medium temperature anaerobic fermentation reactors (402A, 402B, and . . . 402N) to maintain a constant temperature in the range of 35 to 50 ° C, and the sewage liquid flows sequentially.
  • the N liquid medium temperature anaerobic fermentation reactors (402A, 402B and ....402N) the fermentation liquid in the Nth liquid medium temperature anaerobic fermentation reactor 402N naturally flows into the liquid outlet tank 403 along the pipeline due to the height difference.
  • the detection control system 109 periodically starts the sludge pump 404 according to the set anaerobic fermentation time to control the liquid level of the liquid outlet tank 403, and ensures that the sewage liquid is in the liquid anaerobic medium temperature fermentation reactor (402A, 402B and.
  • the residence time in the ...402N) reaches 15 days or more, and after the intermediate anaerobic fermentation time reaches 15 days, the biogas slurry in the liquid outlet tank 403 is pumped into the liquid storage tank 405 by the sludge pump 404, so that the liquid discharge tank 403
  • the liquid level is lowered, and when the detection control system 109 detects that the liquid level of the liquid pool reaches the lower limit liquid level, the sludge pump 404 is closed;
  • the biogas generated by the liquid medium temperature anaerobic fermentation reactors (402A, 402B and ....402N) is sent to the biogas pretreatment device 1112 via the biogas exhaust pipe 510 and the delivery pipe, and then burned as the steam generator 1102.
  • the steam generator 1102 also burns electricity, diesel, and biomass as supplementary fuels;
  • the transport device pushes the cage 1002 into the cracking and expanding reactor 701, and puts the sick pig and placenta into the net with a forklift or other transfer equipment.
  • the conveying device pushes the cage 1002 into the cracking reactor (703A or 703B), closes the closing door, and transports the liquid in the conditioning tank 401 to the cracking and expanding reactor 701 and the cracking reactor through the transfer pump. (703A or 703B), the net cage 1002 is half soaked in the fecal liquid;
  • the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) exhaust valves are respectively closed, and the temperature and pressure in the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) are respectively 130 ° C and At 0.25 MPa, the dead pigs and the placenta start high temperature and high pressure cracking, and the detection control system 109 detects and controls the temperature and pressure in the cracking and expanding reactor 701 and the cleavage reactor (703A or 703B) to maintain the temperature at 130-140 ° C and 0.25.
  • the App completely harmless, the disintegration of the bodies, dissolved in the liquid, resulting lysate;
  • the steam generator 1102 is turned off, the electromagnetic valve 1107y is turned on, and the electromagnetic valve (1107m, 1107n or 1107o) on the circulating water inlet pipe of the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) is turned on. ), the solenoid valve 1107i is opened, the circulating water pump 1106e is started, and the hot water enters the water jacket circulation of the cracking and expanding reactor 701 and the cracking reactor (703A or 703B), so that the temperature of the cracking liquid and the hot water temperature of the high temperature insulating water tank 1104 are reached.
  • Fertilizer 604 harvest sweet grass, transport to plant-derived feed processing plant 103, processed to produce plant-derived feed 608, mixed with black water mash feed 203 in a certain proportion, and then add appropriate food, trace elements and other formulas, Production of full-price nutrient feed for pigs;
  • Solid high temperature aerobic fermentation system 104 fermentation odor treatment respectively open the solid high temperature aerobic fermentation reactor (304A, 304B or ....304M) on the exhaust pipe solenoid valve (1205a, 1205b or... .1205m), the odor generated during the fermentation process is respectively exchanged by the heat exchange condenser (1201a, 1201b or ....1201m), and then introduced into the organism by the induced draft fan (1202a, 1202b or ... 1202m) respectively.
  • the deodorizing filter tower 1203 is discharged after the biological filler in the biological deodorizing filter tower 1203 is absorbed and converted, and at the same time, the fresh air heated by the heat exchange condenser (1201a, 1201b or ... 1201m) is respectively introduced into the solid high temperature.
  • Oxygen fermentation reactor (304A, 304B or ....304M) respectively open the solid high temperature aerobic fermentation reactor (304A, 304B or ....304M) on the exhaust pipe solenoid valve (1205a, 1205b or...
  • a method for ecological management of chicken farm pollution based on combination of breeding and breeding comprising:
  • the source and the water-saving bar are separated from the rainwater and drinking water.
  • the rainwater and drinking water are discharged to the ditch outside the house instead of being mixed into the manure, so that the feces are reduced to the maximum extent.
  • the chicken manure cleaned by mechanical scraping or artificial dry manure is stacked in the dry manure 301, and then the manure is transported by the dry manure 301 to the solid high-temperature aerobic fermentation system 104 and the animal-derived feed factory 103;
  • black water carp culture first adjust the moisture content of pig manure to the appropriate range, and then inoculate the appropriate amount of black sputum larvae on the feces, after a period of growth, reproduction, get a mixture of worm feces 201 and black water locust eggs 202
  • Blackwater locust body egg 202 is processed by drying and pulverizing to obtain black leeches feed 203, mixed with plant-derived feed 608 in a certain ratio, and then added appropriate food, trace elements and other formulas to produce full-price nutrition.
  • worm feces 201 is transported to a solid high-temperature aerobic fermentation reactor (304A, 304B and ....304M) through a transport device for high-temperature aerobic fermentation to obtain a solid organic fertilizer 603;
  • the hot water boiler 1101 and the solar heating system 1103, the water of the high temperature insulated water tank 1104 is sent to the normal pressure hot water boiler 1101 and the solar heating system 1103 for heating, and then the solenoid valves (1107c and 1107e) are turned on to start the circulating water pump (1106a and 1106b), the hot water is sent to the high temperature insulated water tank 1104 for energy storage, the electromagnetic valve 1107i is opened, and the solid high temperature aerobic fermentation reactor (304A, 304B or 304M) to be fermented is heated to open the electromagnetic valve of the jacket or the front end of the coil (1107j) , 1107k or 1107l), start the hot water circulating water pump 1106e, the hot water conveying fermentation solid high temperature aerobic fermentation reactor (304A, 304B or 304M) material temperature;
  • the solid manure and excipient 302 of the dry manure 301 and the decomposing agent 303 are sent to the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) by the conveying device, and the moisture content of the mixture is controlled to be 55-65.
  • the detection control system 109 simultaneously starts the driving device of the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) to realize feeding and stirring;
  • the detection control system 109 controls the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) to stop stirring. 50 minutes, stirring for another 10 minutes, then stopping for 50 minutes, stirring for another 10 minutes, stop-stirring-stop-stirring-stop-stirring, and repeating is a timed stirring process, while at the same time, when the solid high-temperature fermentation reactor ( 304A, 304B or 304M)
  • the detection control system 109 automatically activates the induced draft fan (1202a, 1202b or 1202m) to supply oxygen to the fermented material in the high temperature aerobic fermentation reactor (304A, 304B or 304M);
  • the detection control system 109 detects that the temperature of the material in the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) is lower than the set temperature of the material by 60 ° C, the hot water enters the heating jacket or coil, so that the solid temperature is good.
  • the temperature of the material in the oxygen fermentation reactor (304A, 304B or 304M) rises; 2 when the temperature of the material in the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) is greater than or equal to 70 °C, the procedure of stopping the timing stirring is changed.
  • the solid high temperature aerobic reactor (304A, 304B or 304M) timed agitation procedure and temperature controlled agitation procedure to establish a suitable fermentation temperature for the material in the solid high temperature aerobic fermentation reactor (304A, 304B or 304M) and provide sufficient oxygen for high temperature aerobic fermentation of fecal solids , established a suitable environment;
  • the detection control system 109 controls the solid high-temperature fermentation reactor (304A, 304B or 304M) to stop, and then discharges 50% first, and then immediately feeds 50%, after which Every 24h, 50% is discharged, and then 50% is fed immediately, and so on.
  • the screw discharge machine is started first when discharging, and the detection control system 109 controls the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M). Stirring, guiding the discharge;
  • the detection control system 109 detects and controls the temperature of the materials in the solid high-temperature aerobic fermentation reactors (304A, 304B, and 304M), respectively.
  • the temperature of the materials in each solid high temperature aerobic fermentation reactor (304A, 304B and 304M) is maintained between 60 and 70 ° C;
  • the detection control system 109 detects and controls the water temperature in the high temperature insulated water tank 1104 to be constant between 70 and 85 ° C: 1 when the temperature in the high temperature insulated water tank 1104 is lower than 70 ° C, the atmospheric pressure hot water boiler 1101 is started.
  • the circulating pump 1106e at the output end of the solar heating system 1103 is activated, and the hot water is sent to the hot water of the high temperature insulated water tank 1104; 2 when the temperature reaches the temperature in the high temperature insulated water tank 1104 At 85 ° C, the atmospheric hot water boiler is turned off;
  • NPK fertilizer 602 is added to the solid organic fertilizer to prepare a solid organic-inorganic compound fertilizer
  • Planting land 607 according to the number of chicken farms and corn soil pollution capacity. Before corn planting and planting, according to the different nutrient requirements of different growth stages of corn, apply appropriate amount of solid organic fertilizer 603 and organic-inorganic compound fertilizer.
  • the harvested corn is transported to the plant-derived feed processing plant 103, and the plant-derived feed 608 is processed to be mixed with the animal-derived feed in a certain ratio, and then the appropriate food, trace elements and other formulas are added to produce the full-price nutritional feed.
  • corn stalks are transported as an auxiliary material to a solid high-temperature aerobic fermentation reactor, and mixed with chicken manure for high-temperature fermentation to obtain a solid organic fertilizer;
  • An ecological management method based on planting and breeding combined with cattle breeding including:
  • the source and the water-saving bar are separated from the rain and the sewage.
  • the rainwater and drinking water are discharged to the ditch outside the house instead of being mixed into the excrement.
  • mechanical scraping of manure or artificial dry manure so that the rainwater and drinking water are not mixed into the cow dung and urine at the source of the barn, so that the maximum reduction of manure and urine, the use of high-pressure water guns and even high-pressure air in the cleaning bar, machinery
  • the manure stored by the scraping manure or the artificial dry manure is piled up in the dry manure 301, and the manure is separately transported by the dry manure 301 to the solid high-temperature aerobic fermentation system 104, and the cow dung and the flushing water are transported to the regulating tank 401. ;
  • the water of the high temperature insulated water tank 1104 is sent to the atmospheric hot water boiler 1101 and the solar heating system 1103 for heating, and then the electromagnetic valve (1107c and 1107e), restart the circulating water pump (1106a and 1106b), send the hot water to the high temperature insulated water tank 1104 for energy storage, open the solenoid valve 1107i, and turn on the solid high temperature aerobic fermentation reactor (304A, 304B or 304M) to heat the jacket or tray.
  • the solenoid valve (1107j, 1107k or 1107l) at the front end of the tube starts the hot water circulating water pump 1106e, and the hot water is heated by the material in the high temperature aerobic fermentation reactor (304A, 304B or 304M) for conveying the fermentation solid;
  • the solid manure and excipient 302 of the dry manure 301 and the decomposing agent 303 are sent to the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) by the conveying device, and the moisture content of the mixture is controlled to be 55-65.
  • the detection control system 109 simultaneously starts the driving device of the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) to realize feeding and stirring;
  • the detection control system 109 controls the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) to stop stirring for 50 minutes, stir for another 10 minutes, then stop for 50 minutes, then stir for another 10 minutes, and stop - Stirring-stop-stirring-stop-stirring, and repeating is a timed stirring process.
  • the detection control system 109 automatically activates the induced draft fan ( 1202a, 1202b or 1202m), supplying oxygen to the fermented material in the high temperature aerobic fermentation reactor (304A, 304B or 304M); 1 when the detection control system 109 detects the solid high temperature aerobic fermentation reactor (304A, 304B or 304M)
  • the temperature of the material is lower than the set temperature of the material at 60 °C, the hot water enters the heating jacket or coil, so that the temperature of the material in the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) rises;
  • the procedure of stopping the timed stirring is changed to the temperature control mixing program: the induced draft fan (1202a, 1202b or 1202m) is driven to drive the solid high temperature.
  • Oxygen fermentation (304A, 304B or 304M) is stirred until the temperature of the material in the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M) is lower than 70 °C, and then the timed stirring procedure is started to make the solid high-temperature aerobic fermentation reactor (304A). , 304B or 304M) The temperature of the material is maintained between 60 °C and 70 °C.
  • the solid high temperature aerobic reactor (304A, 304B or 304M) has a timed stirring procedure and a temperature controlled stirring procedure. It is a solid high temperature aerobic fermentation reactor (304A).
  • the material in 304B or 304M) establishes a suitable fermentation temperature and provides sufficient oxygen for the high temperature aerobic fermentation of the fecal solids to establish a suitable environment;
  • the detection control system 109 controls the solid high-temperature fermentation reactor (304A, 304B or 304M) to stop, and then discharges 50% first, and then immediately feeds 50%, after which Every 24h, 50% is discharged, and then 50% is fed immediately, and so on.
  • the screw discharge machine is started first when discharging, and the detection control system 109 controls the solid high-temperature aerobic fermentation reactor (304A, 304B or 304M). Stirring, guiding the discharge;
  • the detection control system 109 detects the temperature of the materials in each solid high-temperature aerobic fermentation reactor (304A, 304B, and 304M) to make each solid.
  • the temperature of the material in the high temperature aerobic fermentation reactor (304A, 304B and 304M) is maintained between 60 and 70 ° C;
  • the detection control system 109 detects and controls the water temperature in the high temperature insulated water tank 1104 to be constant between 70 and 85 ° C: 1 when the temperature in the high temperature insulated water tank 1104 is lower than 70 ° C, the atmospheric pressure hot water boiler 1101 is started.
  • the hot water temperature of the solar heating system 1103 collecting hot water tank is greater than 70 ° C
  • the circulating pump 1106e at the output end of the solar heating system 1103 is activated, and the hot water is sent to the high temperature insulated water tank 1104 hot water;
  • the atmospheric hot water boiler is turned off.
  • the excrement and the flushing water are transported into the regulating tank 401, so that the liquid level of the fecal liquid in the adjusting tank 401 is continuously increased.
  • the fecal liquid is affected by the height difference.
  • the connecting pipe naturally flows into the first liquid intermediate temperature anaerobic fermentation reactor 402A, and the detection control system 109 controls the opening of the solenoid valve 1107s at the front end of the heating coil of the first liquid medium temperature anaerobic fermentation reactor 402A, and the hot water enters the first liquid.
  • the medium temperature anaerobic fermentation reactor 402A heats the coil 504 to circulate, so that the temperature of the material in the first liquid medium temperature anaerobic fermentation reactor 402A rapidly rises to 35 ° C, and the material starts the intermediate temperature anaerobic fermentation reaction;
  • the detection control system 109 controls the opening of the solenoid valve 1107u at the front end of the Nth liquid intermediate temperature anaerobic fermentation reactor 402N heating coil 504, and the hot water enters the Nth liquid medium temperature anaerobic fermentation.
  • the reactor 402N is circulated in the heating coil 504, so that the temperature of the material is rapidly raised to 35 ° C, and the material is continuously subjected to a medium temperature anaerobic fermentation reaction;
  • the polarizer 513 in the liquid medium temperature anaerobic fermentation reactors (402A, 402B, and . . . 402N) is activated in a time-sharing manner to prevent the liquid level from “crusting” and slow down the deposition rate of the liquid deposit;
  • the detection control system 109 respectively detects and controls the temperature of the materials in the liquid medium temperature anaerobic fermentation reactors (402A, 402B, and . . . 402N) to maintain a constant temperature in the range of 35 to 50 ° C, and the sewage liquid flows sequentially.
  • the N liquid medium temperature anaerobic fermentation reactors (402A, 402B and ....402N) the fermentation liquid in the Nth liquid medium temperature anaerobic fermentation reactor 402N naturally flows into the liquid outlet tank 403 along the pipeline due to the height difference.
  • the detection control system 109 periodically starts the sludge pump 404 according to the set anaerobic fermentation time to control the liquid level of the liquid outlet tank 403, and ensures that the sewage liquid is in the liquid anaerobic medium temperature fermentation reactor (402A, 402B and.
  • the residence time in the ...402N) reaches 15 days or more, and after the intermediate anaerobic fermentation time reaches 15 days, the biogas slurry in the liquid outlet tank 403 is pumped into the liquid storage tank 405 by the sludge pump 404, so that the liquid discharge tank 403
  • the liquid level is lowered, and when the detection control system 109 detects that the liquid level of the liquid pool reaches the lower limit liquid level, the sludge pump 404 is closed;
  • the biogas generated by the liquid medium temperature anaerobic fermentation reactors (402A, 402B and ....402N) is sent to the biogas pretreatment device 1112 via the biogas exhaust pipe 510 and the delivery pipe, and then burned as the steam generator 1102.
  • the steam generator 1102 also burns electricity, diesel, and biomass as supplementary fuels;
  • the conveying device pushes the cage 1002 into the cracking and expanding reactor 701, and puts the sick calf and placenta into the net with a forklift or other transfer device.
  • the conveying device pushes the cage 1002 into the cracking reactor (703A or 703B), closes the closing door, and transports the liquid in the conditioning tank 401 to the cracking and expanding reactor 701 and the cracking reactor through the transfer pump. (703A or 703B), the net cage 1002 is half soaked in the fecal liquid;
  • the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) exhaust valves are respectively closed, and the temperature and pressure in the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) are respectively 130 ° C and 0.25Mpa, the dead cow and the placenta begin to crack at high temperature and pressure, and the detection control system 109 detects Control the temperature and pressure in the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) to maintain the temperature in the range of 130-140 ° C and 0.25-0.35 Mpa, and keep it for more than 30 min, so that the dead cows are completely harmless.
  • the body is disintegrated and dissolved in a liquid to obtain a lysate;
  • the steam generator 1102 is turned off, the electromagnetic valve 1107y is turned on, and the electromagnetic valve (1107m, 1107n or 1107o) on the circulating water inlet pipe of the cracking and expanding reactor 701 and the cracking reactor (703A or 703B) is turned on. ), the solenoid valve 1107i is opened, the circulating water pump 1106e is started, and the hot water enters the water jacket circulation of the cracking and expanding reactor 701 and the cracking reactor (703A or 703B), so that the temperature of the cracking liquid and the hot water temperature of the high temperature insulating water tank 1104 are reached.
  • the pre-cultured microbial seed liquid is separately sent to the cracking and expansion reactor 701 and the expansion reactor 704 through the feed pipe 812 of the cracking and expansion reactor 701 and the feed port 905 of the expansion reactor 704.
  • the aeration fan 1301 is activated, and the detection control system 109 controls the opening or closing of the solenoid valve 1304d and the solenoid valve 1304e, respectively, and delivers the sterile air filtered by the air filter 1302 to the cracking and expanding reactor 701 and the expansion reaction, respectively.
  • the detection control system 109 detects and controls the temperature in the cracking and expanding reactor 701 and the expanding reactor 704 to maintain the temperature between 25 and 35 ° C, respectively.
  • the detection and control method is as follows: 1) When detecting When the control system 109 detects that the temperature in the cracking and expanding reactor 701 or the expanding reactor 704 is lower than 25 ° C, the detecting control system 109 controls to open the circulating water pump 1106e on the water outlet pipe of the high temperature insulated water tank 1104, opens the electromagnetic valve 1107i, and opens the electromagnetic Valve (1107m or 1107p), when the temperature of the culture solution in the cracking and expansion reactor 701 and the expansion reactor 704 is raised to 35 ° C, the circulating water pump 1106e is stopped, the solenoid valve 1107i is closed, and the solenoid valve is closed (1107m or 1107p); 2) When the detection control system 109 detects that the temperature in the cracking and expansion reactor 701 or the expansion reactor 704 exceeds 35 ° C, the detection control system 109 controls the activation of the aeration fan 1301 to open the solenoid valve (1304d or 1304e).
  • aeration is performed in the cracking and expanding reactor 701 or the expanding reactor 704, so that the temperature of the material in the cracking and expanding reactor 701 or the expanding reactor 704 is reduced to between 25 and 35 ° C, and the exposure is closed.
  • the concentration of the culture solution reaches the requirement, that is, the expansion process is completed, and the discharge pipe 910 at the bottom of the heat transfer expansion reactor 704 of the cracking and expansion reactor 701 discharge pipe 809 is opened, respectively, and discharged.
  • the culture solution is stored in a liquid storage tank, and then separated by a water separator to obtain a microorganism culture solution 702 and a fat 705, and the fat 705 is used as an industrial raw material;
  • the detection control system 109 detects and controls each reactor separately according to different cracking and fermentation stages.
  • the temperature and pressure of the material maintain the temperature and pressure in each reactor reactor within a set range;
  • Solid high temperature aerobic fermentation system 104 fermentation odor treatment respectively open the solid high temperature aerobic fermentation reactor (304A, 304B or ....304M) on the exhaust pipe solenoid valve (1205a, 1205b or... .1205m), the odor generated during the fermentation process is respectively passed through the heat exchange condenser (1201a, 1201b or ....1201m), after heat exchange, is introduced into the biological deodorizing filter 1203 via the induced draft fan (1202a, 1202b or .... 1202m), and absorbed by the biological filler in the biological deodorizing filter 1203. After the conversion reaches the standard, the fresh air heated by the heat exchange condenser (1201a, 1201b or ... 1201m) is respectively introduced into the solid high-temperature aerobic fermentation reactor (304A, 304B or ....304M);

Abstract

一种基于种养结合的畜禽养殖场污染生态治理系统,包括源头分离节水型栏舍(101)、污染治理工厂(102)、饲料工厂(103)以及配套种植土地;污染治理工厂(102)和饲料工厂(103)由专业的团队对畜禽粪污进行专业化处置;污染治理工厂(102)由固体高温好氧发酵系统(104)、液体中温厌氧发酵系统(105)、裂解与扩繁系统(106)、加热及热量平衡系统(107)、废气处理系统(108)和检测控制系统(109)组成;检测控制系统(109)的各传感器设置在上述各系统内,对各关键参数进行设置、检测和控制。对规模化养猪场养殖过程中产生的粪便、尿液等废弃物及废气进行综合处理,实现资源化利用,对农村环境保护、畜牧业良性发展,以及实施能源可持续发展战略都有着重要意义。

Description

一种基于种养结合的畜禽养殖场污染生态治理系统及方法 技术领域
本发明属于环保技术领域,具体涉及一种基于种养结合的畜禽养殖场污染生态治理系统及方法。
背景技术
近年来,养殖业向集约化、规模化快速发展,为市场提供了丰富而优质畜禽产品的同时,也带来粪尿、病死畜禽等大量的污染物,若不得到及时、有效处置,将对农村环境造成严重的污染。近年来,国家在大力支持和推广规模化、集约化畜禽养殖的同时,也出台了一系列标准和政策,如《沼肥施用技术规范》(NT/T2065-2011)。
好氧发酵(堆肥)可以通过微生物降解有机物,使有机废弃物实现减量化,无害化、资源化处理。目前,反应器好氧发酵方式,相较于传统场地堆肥,具有发酵效率高、无害化彻底、产品质量高且稳定、占用场地面积小、不受环境因素影响、不易产生二次污染等优势,正日益受到广大客户的欢迎。在反应器好氧发酵伊始,常采用外源加热物料,建立嗜热微生物高效繁殖、分解有机质的适宜条件,但在实际生产中,常遇到升温缓慢、加热时间长和加热能耗高等问题。
目前,按照农业部标准NY/T2374-2013《沼气工程沼液沼渣后处理技术规范》,沼液要达到无害化,要求常温条件下厌氧发酵要持续30天以上,而且在冬季,由于环境温度低,要求厌氧发酵持续时间更长,这就要求养殖场配套的沼气池足够大,沼气池基建成本高昂。研究结果表明,在一定温度范围内,沼气池产沼气与温度正相关,温度越高,产气率越高,因此,适当提高沼气池温度对缩短沼液无害化时间,以及提高产气率都有重要作用。
据估计,成年生猪死亡率每年达到2%~3%,中猪死亡率达到7%~8%,而乳猪死亡率更高达l0%,一旦遇到疫情比例还会更大,这部分携带有害病菌的病死猪处理问题亟待解决。目前,病死畜禽无害化处理的方法主要有焚烧、填埋、高温堆肥和化制法等,畜禽含水率超过70%,焚烧较为困难、且能耗高,由于水分高、燃烧不充分等原因导致易产生严重的二次污染,目前应用较多是填埋方式,将动物尸体在野外或疫情发生地当地挖坑填埋,填埋成本高,病死畜禽补贴远低于填埋成本,且大部分养殖场员工由于卫生安全知识缺乏,并未做到卫生填埋,造成严重的二次污染;高温堆肥法缺点是病死畜禽打碎等预处理过程中,机械损耗、能耗和设备清洁都将增加处理成本,操作者在病死畜禽打碎,设备清洁,以及更换易损件等过程中易产生交叉感染,增加疫情传播的风险,而且堆肥占地面积大、时间长、易受气候条件的影响,病死畜禽中携带大量致病微生物,传统发酵方式难以将这些致病微生物彻底杀死;化制法是在密闭容器内,采用高温高压实现病死畜禽的彻底无害化方法,传统方法处理过程中产生大量的冷凝水和裂解液,冷凝水仍需通过环保处理达标后才能排放,裂解液一般采用烘干制成粉末,弊端是烘干过程能耗高、产生大量的冷凝水,处理大幅增加成本。
CN 105689364A公开了一种病死猪无害化处理方法,首先对病死猪动物体进行碎解,然后采用120~320℃的热气体直接杀菌、烘干或炭化,经杀菌烘干后的肉、毛和骨头类物质进行压榨处理;压榨处理过程中得到的油脂流入收集槽,压榨后剩余的肉、毛和骨头类物质制作动物饲料或炭化后进行填埋处理。该方法的缺点是:(1)病死猪破碎过程增加处理成本,易产生交叉感染,增加疫情传播的风险;(2)烘干或炭化能耗高,处理时间长,成本高,同时产生大量的废水和废气,处理成本高,易产生二次污染:(3)病死猪含有丰富的蛋白质和脂肪等有机质,以及大、中和微量元素及无机盐,填埋处理浪费了资源,资源化利用率低。
商品饲料是畜禽养殖的主要成本之一,只用商品饲料喂养成本高昂,在养殖的某些阶段中,只用商品饲料喂养会造成畜禽过胖影响发育、肉质下降等问题。
发明内容
本发明所要解决的技术问题是:解决上述背景技术存在的问题,而提供一种基于种养结合的畜禽养殖 场污染生态治理系统及方法,使畜禽养殖场污染得到生态治理,达到“零排放、零污染、资源化利用”目的。
本发明的技术方案为:一种基于种养结合的畜禽养殖场污染生态治理系统,包括源头分离节水型栏舍、污染治理工厂、饲料工厂以及配套种植土地;所述的污染治理工厂和饲料工厂是由专业的团队对畜禽粪便进行专业化处置,把畜禽粪污在源头利用配套的污染治理车间将污染转化并生产为改良土壤所需的肥料是为污染治理工厂,把畜禽粪污在源头,利用配套的种植土地和饲料生产车间,将污染转化并生产动物源性饲料和植物源性饲料,是为饲料工厂;所述的污染治理工厂由固体高温好氧发酵系统、液体中温厌氧发酵系统、裂解与扩繁系统、加热及热量平衡系统、废气处理系统和检测控制系统组成;所述的源头分离节水型栏舍是将雨污、饮污进行分离,雨水、饮用余水排往室外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,而且畜禽出栏或转栏时采用高压水枪甚至采用高压空气进行冲栏的节水型栏舍,机械刮粪或人工干清粪清理出来的粪便堆放在干粪棚,再由干粪棚将粪便分别输往固体高温好氧发酵系统和饲料工厂,饲料工厂产生的虫粪输送往固体高温好氧发酵系统,而粪尿液体和冲栏水输送往调节池,调节池连接液体中温厌氧发酵系统的进料口,以及裂解与扩繁系统的进液口;固体高温好氧发酵系统产生的发酵臭气排气口,以及裂解与扩繁系统的发酵臭气排气口通过排气管道连接废气处理系统;加热及热量平衡系统分别通过管道连接固体高温好氧发酵系统的加热夹套或盘管、液体中温厌氧发酵系统的加热盘管,以及裂解与扩繁系统的水套和盘管;检测控制系统的各传感器设置在上述各系统内,对各关键参数进行设置、检测和控制。
上述技术方案中,饲料工厂是由专业的团队对畜禽粪污进行专业化处置,把畜禽粪污在源头,利用配套的种植土地种植粮食和牧草,在生产植物源饲料的同时,用畜禽粪便以及畜禽尸体和胎盘的裂解液调配畜禽粪便饲养昆虫,生产虫体虫卵,作为动物源性饲料;种植的粮食和牧草包含且不限定:皇竹草、象草、苜蓿草、苋草、黑麦草、狼尾草、构树、玉米、大豆等在内一种或几种;饲养的昆虫包含且不限定:黑水虻、蚯蚓等在内一种或几种;饲料工厂是将收获的植物源性饲料、动物源性饲料再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽。
所述固体高温好氧发酵系统包括M个固体高温好氧发酵反应器,M为正整数;所述干粪棚通过输送装置分别与各固体高温好氧发酵反应器的进料口连通,各固体高温好氧发酵反应器的出料口处设有与之连通的陈化间。
液体中温厌氧发酵系统包括依次连通的调节池、N个液体中温厌氧发酵反应器、出液池、污泥泵和贮液池,其中,N为正整数;
进一步的,所述液体中温厌氧发酵反应器为软体厌氧发酵袋,调节池的出液口经管道连接第一个软体厌氧发酵袋的进料口,其该软体厌氧发酵袋的排料口经管道连接第二个软体厌氧发酵袋的进料口,以此类推,直至连接到第N个软体厌氧发酵袋的进料口,其排料口经管道连接出液池,出液池再经污泥泵连接贮液池。
进一步地,所述液体中温厌氧发酵反应器包括底部为矩形的反应池,所反应池设置于沿反应池长度方向倾斜角为0.3~1%的斜面上,该斜面的四周建有排水沟,排水沟通过管道连接地势更低处的集水井,反应池底收集的水份经排水沟汇集到集水井排出,反应池的底部四周及池底斜面设置有保温层,该保温层由保温材料组成,池底部保温层表面设有热辐射板,热辐射板上均匀固定有加热盘管,加热盘管上覆盖有软体厌氧发酵袋,软体厌氧发酵袋沿长度方向位置高的一侧设置有进料口,低的一侧设置有排料口,为防止沼气袋内液面结壳,矩形反应器长度方向的中部设置有偏振器,软体厌氧发酵袋的顶部设置有沼气管道,管道上设置有压力传感器,软体厌氧发酵袋上方还覆盖有保温层和防水盖。
进一步地,彼此串联的液体中温厌氧发酵反应器中,后一个液体中温厌氧发酵反应器进料口的高度比前一个液体中温厌氧发酵反应器出料口的高度低0.2米以上,以防止后面反应器中的沉淀物,回流到前面的反应器中去,而每个液体中温厌氧发酵反应器,其进料口侧的池底都高于出料口的池底,其倾斜度的范围 为0.3~1%,以减少液体中温厌氧发酵反应器清理污泥的次数。
进一步地,裂解与扩繁系统由Y个裂解与扩繁反应器(Y≥2)、X个裂解反应器(X≥1)、Z个扩繁反应器(Z≥1)、蒸汽发生器、曝气风机、空气过滤器、电磁阀,以及连接管道组成,调节池中液体经输送泵输送到裂解与扩繁反应器,以及裂解反应器内,裂解反应器的出料管接至扩繁反应器,裂解与扩繁反应器以及扩繁反应器的出料管分别经管道连接到储液罐。
进一步地,裂解与扩繁反应器包括支座、罐体、封盖以及输送装置,罐体固定在底座上,罐体的一侧用封盖密闭封死,罐体的另一侧装有封盖门,封盖门与罐体之间采用铰链连接,封盖门关闭时采用多个锁扣螺栓锁紧、密封,使封盖与罐体及封盖门之间构成一个密闭的裂解及扩繁空间;所述罐体卧置,罐体内设置有平行于罐体轴线并沿罐体径向固定的导轨,用来承载并输送装载病死猪及胎盘的网笼,所述导轨下部安装有曝气管和多个曝气头,曝气管的一端密封,另一端通过封盖延伸到罐体外,并依次与电磁阀、单向阀、空气过滤器、曝气风机的出风口以及电磁阀、单向阀、蒸汽发生器的蒸汽出口连通;封盖的上侧布置有排气管和进料管,封盖上侧还安装有压力传感器、安全阀,封盖的下侧安装有温度传感器、出料管;在卧置罐体外部装有水套,水套用来对裂解罐进行降温,水套的循环水进水管安排在罐体的下部,水套的循环水排水管安排在罐体的上部,水套的外面包裹有由保温隔热材料制成的保温层。
上述技术方案中,为及时对病死畜禽(尤其是体积较小的畜禽)和胎盘进行无害化处理,还设置了裂解反应器,裂解反应器均由支座体、封盖,以及输送装置组成,罐体固定在底座上,罐体的一侧用封盖密闭封死,罐体的另一侧装有封盖门,封盖门与罐体之间采用铰链连接,封盖门关闭时采用多个锁扣螺栓锁紧、密封,使封盖与罐体及封盖门之间构成一个密闭的裂解及扩繁空间,进一步的,罐体卧置,在罐体内设置有平行于罐体轴线并沿罐体径向固定的轨道,用来承载并输送装载病死猪及胎盘的网笼,在轨道下部安装有曝气管和多个曝气头,曝气管道的另一端密封通过封盖延伸到罐外,依次与电磁阀、单向阀、蒸汽发生器的蒸汽出口相连接;封盖的上部布置有排气管和进料管,封盖上部还安装有压力传感器、安全阀,封盖的下部安装有温度传感器、出料管;在卧置罐体外部装有水套,水套用来对裂解罐进行降温,水套的循环水进水管安排在罐体的下部,水套的循环水排水管安排在罐体的上部,水套的外面包裹有保温层,保温层由保温隔热材料组成。
进一步地,输送装置包括推车和网笼,推车上部设有导轨,导轨上放置网笼,网笼是由笼体和钢丝网组成的长方形笼体,四周及底部钢丝网焊接在笼体上,笼体顶部设置有活动笼盖,笼盖与笼体之间采用铰链连接,笼盖外侧还设置有拉手,笼体底部固定有多个滚轮,滚轮与导轨接触连接。
推车上的导轨方向与罐体内导轨对接一致,并与罐体内导轨齐平,当输送病死猪时,首先将病死猪放置到网笼内,再网笼沿推车和罐体内导轨输送到罐体内的规定位置。
上述技术方案中,为将多个小型裂解反应器输出的裂解液进行处理,特设置扩繁反应器,扩繁反应器由立式、密闭的保温罐体、盘管和曝气装置组成,罐体顶部设置有曝气口、盘管循环水出口、盘管循环水进口和排气口,底部设置有出料口,盘管固定在罐体内,并沉浸在裂解液中,罐体底部设置有曝气装置,曝气管道与曝气口连接,曝气管道依次与电磁阀、空气过滤器、曝气风机的出风口连接;保温罐体的外面包裹有保温层,保温层由保温隔热材料组成。
进一步地,加热及热量平衡系统由常压热水锅炉、E个高温保温水箱(E≥1)、F个低温保温水箱(F≥1)、循环水泵、电磁阀以及连接管道;对于太阳能资源充裕的地区,加热及热量平衡系统还包括太阳能加热系统;高温水箱用于为常压热水锅炉、太阳能加热系统以及蒸汽发生器提供水源,高温水箱的出水管分别与常压热水锅炉、太阳能加热系统及蒸汽发生器进水口连通,优选地,高温保温水箱的外面包裹有保温层,保温层由保温隔热材料组成;常压热水锅炉、太阳能加热系统的出水口通过各自的管道与高温水箱的进水管连通;高温水箱的另一个出水管连接水泵,分别向固体高温好氧发酵反应器、液体中温厌氧发酵反应器及裂解与扩繁反应器、裂解反应器的水套、扩繁反应器的盘管输送热水,各反应器的回水经各自的回水管 道,送回到高温水箱;低温水箱为高温水箱提供水源,低温水箱设置于高温水箱的上方,在检测控制系统的控制下自动的对高温水箱进行补水,低温水箱的另一个出水管道经泵分别与裂解与扩繁反应器和裂解反应器的水套连接,同时各水套通过各自的回水管道,将水送回到低温水箱实现循环。优选地,低温保温水箱的外面包裹有保温层,保温层由保温隔热材料组成。
其中,蒸汽发生器和常压热水锅炉的能量来源包括电、沼气、柴油、生物质燃料、煤,以及太阳能等。
进一步地,废气处理系统包括固体高温好氧发酵系统臭气处理系统和裂解与扩繁系统废气处理系统;所述固体高温好氧发酵系统臭气处理系统的结构连接如下:固体高温好氧发酵反应器的排气口分别经各自的排气管道连接换热冷凝器的废气进气口,各换热冷凝器的废气排气口分别经管道连接引风机的输入端,换热冷凝器的空气进气口联通大气,各换热冷凝器的空气出气口经管道分别连接固体高温好氧发酵反应器的进气口,各引风机的输出端分别经管道并联到生物除臭滤塔的进气口,生物除臭滤塔的排气口经竖直管道联通大气;裂解与扩繁系统废气处理系统的结构连接如下:裂解与扩繁反应器的曝气口分别经管道依次连接空气过滤器和曝气风机,裂解与扩繁反应器、裂解反应器和扩繁反应器的排气管道分别连接到引风机的输入端,各引风机的输出端通过管道连接生物除臭滤塔的进气口,生物除臭滤塔的排气口经竖直管道联通大气。
上述技术方案中,配套的种植土地面积是综合养畜禽数量和饲料作物的纳污能力而定。
上述技术方案中,畜禽包括猪、鸡、鸭和鹅等,也包括牛、羊等反刍动物。
基于同一个发明构思,本发明还提供一种基于上述种养结合的畜禽养殖场污染生态治理方法,包括:
一、栏舍源头分离、节水:将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,机械刮粪或人工干清粪清理出来的粪便堆放在干粪棚,再由干粪棚将粪便分别输往固体高温好氧发酵系统和动物源性饲料工厂,粪尿和冲栏水输送往调节池;
二、饲料昆虫养殖:先调节粪便含水率至合适范围,作为昆虫的饲料,进行昆虫养殖,获得虫体和虫卵,作为动物源性饲料,与植物源性饲料按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽;将虫粪经输送装置输送至固体高温好氧发酵反应器内进行高温好氧发酵,制得固体有机肥料;
三、粪便高温好氧发酵:
(1)自来水自动对低温保温水箱补水,低温保温水箱利用高度差在检测控制系统的控制下,自动向高温保温水箱补水,启动常压热水锅炉以及太阳能加热系统的循环泵,循环泵将高温保温水箱的水输往常压热水锅炉和太阳能加热系统进行加热后,输往高温保温水箱进行储能,开启固体高温好氧发酵反应器的加热水套或盘管前端的电磁阀,开启热水循环水泵,热水经循环水泵及管道输送至该固体高温好氧发酵反应器的加热水套或盘管,使该发酵固体高温好氧发酵反应器内物料升温;
(2)通过输送设备将栏舍分离出的粪便、虫粪和辅料,以及嗜热腐熟菌剂送入固体高温好氧发酵反应器内,控制混合物料含水率在55~65%之间,在加料的同时,检测控制系统同时启动该固体高温好氧发酵反应器的驱动装置,使反应器实现进料并搅拌;
(3)进料完成后,检测控制系统控制固体高温好氧发酵反应器停止搅拌T1时间,再搅拌T2时间,再停止T1时间后,再搅拌T2时间,停-搅拌-停-搅拌-停-搅拌,周而复始是为定时搅拌程序,于此同时,当固体高温好氧发酵反应器在T2时间搅拌时,检测控制系统都自动启动引风机,为固体高温好氧发酵反应器内的被发酵物质供氧;①当检测控制系统检测到固体高温好氧发酵反应器内物料温度低于物料的设定温度H1时,热水进入加热夹套或盘管,使反应器内物料温度上升;②当该固体高温好氧发酵反应器内物料温度大于等于H2时,停止定时搅拌的程序,改为温度控制搅拌程序:启动引风机、驱动固体高温好氧发酵反 应器搅拌,直到固体高温好氧发酵反应器内物料温度低于H2后再启动定时搅拌程序,使该固体高温好氧发酵反应器内物料温度维持在H1~H2之间,高温好氧反应器的定时搅拌程序和温度控制搅拌程序,为该固体高温好氧发酵反应器内的物料建立合适的发酵温度并提供了够用氧气,为粪便固体的高温好氧发酵,建立了合适的环境;
(4)物料进料后经T3时间的发酵,一次发酵完成,检测控制系统控制该固体高温发酵反应器停机,然后先出部分料,再立即进等量的物料,之后每隔T3时间,再出部分料,再立即进等量的物料,以此类推,出料时先启动出料机,同时检测控制系统控制固体高温好氧发酵反应器搅拌,引导出料;
(5)固体高温好氧发酵反应器排出的物料经输送装置输送至陈化间,期间定时翻堆或曝气,使物料降温、散失水分,直到完全腐熟,制得有机肥料;
(6)当M个固体高温好氧发酵反应器同时发酵时,检测控制系统分别检测各固体高温好氧发酵反应器内物料温度,使各固体高温好氧发酵反应器内物料温度维持在H1~H2之间;
(7)检测控制系统检测、控制高温保温水箱中水温,使之恒定在H3~H4内:①当高温保温水箱中温度低于H3时,启动循环泵和常压热水锅炉,加热高温保温水箱的热水,当太阳能加热系统集热水箱的热水温度大于H3时,启动太阳能加热系统的循环泵,加热高温保温水箱热水;②当高温保温水箱中温度达到H4时,关闭常压热水锅炉;
四、粪污液体中温厌氧发酵:
(1)将粪污液体与冲栏水混合液输送至调节池内,使调节池内液体液位不断升高,当高于调节池排液口时,粪污液体因高度差沿连接管道自然流入第一个软体厌氧发酵袋内,检测控制系统控制打开第一个液体中温厌氧发酵反应器加热盘管前端的电磁阀,开启循环水泵,热水进入加热盘管内循环,使软体厌氧发酵袋内物料温度迅速升至设定温度,物料开始进行中温厌氧发酵反应;
(2)当第一个软体厌氧发酵袋内液体液位逐渐升高,高于排液口时,液体因高度差沿连接管道自然流入第二个软体厌氧发酵袋内,检测控制系统控制打开第二个液体中温厌氧发酵反应器加热盘管前端的电磁阀,热水进入加热盘管内循环,使软体厌氧发酵袋内物料温度迅速升至设定温度,物料持续进行中温厌氧发酵反应;
(3)当第二个软体厌氧发酵袋内液体液位逐渐升高,高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,粪污液体通过第N个软体厌氧发酵袋直至流入出液池内,检测控制系统控制打开第N个液体中温厌氧发酵反应器加热盘管前端的电磁阀,热水进入加热盘管内循环,使第N个软体厌氧发酵袋内物料温度迅速升至设定温度,物料持续进行中温厌氧发酵反应;
(4)分别定时启动N个液体中温厌氧发酵反应器中的偏振器,防止软体厌氧发酵袋内液体“结壳”,减慢液体沉积物沉淀速度;
(5)检测控制系统分别控制各液体中温厌氧反应器加热盘管前的电磁阀的开和闭,分别控制各软体厌氧发酵袋内物料温度,使之恒定在设定温度范围内,粪污液体依次流经N个软体厌氧发酵袋,第N个软体厌氧发酵袋内发酵液因高度差沿管道自然流入出液池中,制得沼液;
(5)检测控制系统根据设定的厌氧发酵时间T,定时启动污泥泵以控制出液池的液位,确保粪污液体在厌氧中温发酵反应器内的停留时间达到T,当厌氧发酵的时间达到T后,用污泥泵将出液池中沼液泵入贮液池中,使出液池中液体液位降低,当检测控制系统检测出液池的液位到达下限液位后关闭污泥泵;
(6)N个软体厌氧发酵袋产生的沼气经输送管道输送至沼气预处理装置处理后,作为燃烧燃料提供给常压热水锅炉和蒸汽发生器,当冬季气温低时,常压热水锅炉和蒸汽发生器还使用包括电、柴油,以及生物质等作为补充燃料;
五、病死畜禽及胎盘裂解与扩繁:
(1)病死畜禽及胎盘裂解:
①用叉车或其它转运设备将体积较大的病死畜禽放入网笼中,输送装置将网笼推送到裂解与扩繁反应器内,将体积较小的病死畜禽和胎盘放入网笼中,输送装置将网笼推送到裂解反应器内,关闭封盖门,将调节池内粪污液体经污泥泵输送至裂解与扩繁反应器和裂解反应器内,使网笼半浸泡在液体中;
②启动蒸汽发生器,分别打开裂解与扩繁反应器和裂解反应器进汽管道上的电磁阀,蒸汽发生器生产的热蒸汽经单向阀分别输送至该裂解与扩繁反应器和裂解反应器内,使该裂解与扩繁反应器和裂解反应器内液体温度和压力升高,同时排尽该裂解与扩繁反应器和裂解反应器内的冷空气后分别关闭该裂解与扩繁反应器和裂解反应器排气管道上的排气阀,使该裂解与扩繁反应器和裂解反应器内温度和压力继续升高,分别达到法定处理的温度和压力,病死畜禽和胎盘开始高温高压裂解,检测控制系统检测、控制该裂解与扩繁反应器和裂解反应器内温度和压力,使之恒定在法定的温度和压力的范围内,并保持法定时间,使病死畜禽彻底无害化,尸体解体,溶于液体中;
③高温高压裂解完成后,分别关闭裂解与扩繁反应器和裂解反应器进汽管道上的电磁阀,各反应器均完成高温高压裂解后关闭蒸汽发生器,分别开启热水管道上的电池阀以及该裂解与扩繁反应器和裂解反应器进水管道上的的电池阀,启动高温保温水箱出水管道上循环水泵,热水分别进入该裂解与扩繁反应器和裂解反应器的水套循环,使裂解液降温并与高温保温水箱热水温度达到平衡;之后关闭高温热水管道上的电磁阀,启动低温保温水箱出水管道上循环水泵,冷水进入该裂解与扩繁反应器和裂解反应器的水套循环,使裂解液温度降低到设定温度H6,关闭循环水泵;
(2)将裂解液作为扩繁微生物的培养基,经扩繁得到微生物培养液;将裂解液作为养殖饲料昆虫的原料进行饲料昆虫养殖;
(Ⅰ)裂解液扩繁微生物培养液方法如下:
①开启裂解反应器出料管道上的电磁阀,将裂解反应器内裂解液输送到扩繁反应器内,提前培养的微生物种子液分别经裂解与扩繁反应器和扩繁反应器进料口输送至反应器内,分别打开裂解与扩繁反应器和扩繁反应器曝气管道上的电磁阀,启动曝气风机,新鲜空气经空气过滤器过滤后,再经单向阀向裂解与扩繁反应器和扩繁反应器内定时曝气送氧,同时,检测控制系统检测、控制反应器内温度,使温度维持在H5~H6之间,检测控制方法如下:当检测控制系统检测到该裂解与扩繁反应器和扩繁反应器内温度低于下限值H5时,检测控制系统控制高温保温水箱对裂解与扩繁反应器和扩繁反应器加热至H6后关闭;
②裂解液经一段时间培养扩繁后,培养液菌浓度达到要求,即完成扩繁过程,微生物培养液经排料阀排出至贮液罐中静置,然后经油水分离器分离得到微生物培养液和油脂,而油脂作为工业原料;
③当多个反应器同时反应时,检测控制系统根据不同裂解与扩繁阶段,分别检测、控制各反应器内物料温度和压力,使各反应器内温度和压力维持在设定范围内;
(Ⅱ)裂解液养殖饲料昆虫方法如下:
①在裂解液中添加畜禽粪便,并混合均匀,将混合物作为昆虫的饲料,进行昆虫养殖,获得虫体和虫卵,作为动物源性饲料,与植物源性饲料按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽;②将残余的裂解液与畜禽粪便混合物及昆虫粪便,经输送装置输送至固体高温好氧发酵反应器内进行高温好氧发酵,制得固体有机肥料;
六、饲料作物种植:
(1)将微生物培养液按一定比例喷洒到陈化的固体有机肥料中,搅拌均匀制得生物有机肥料;将微生物培养液按一定比例添加到沼液中,制得液体微生物肥料;根据饲料作物生长需求,在沼液中添加适量的氮磷钾化肥,制得液体有机无机复混肥;
(2)根据畜禽养殖场饲养畜禽数量和种植的饲料作物的纳污能力配套种植土地,在种植前及种植过程中,根据饲料作物生长需求分别施用适量生物有机肥料、液体微生物肥料和液体有机无机复混肥,收获如牧草、玉米等饲料原料,输送至饲料工厂,经加工制得植物源性饲料,与动物源性饲料按一定比例混合, 再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽;
七、废气治理:
(1)固体高温好氧发酵系统发酵臭气治理:分别开启固体高温好氧发酵反应器排气管道上的电磁阀,固体高温好氧发酵反应器发酵过程中产生的臭气分别经换热冷凝器换热后,再分别经引风机引入生物除臭滤塔,经生物除臭滤塔内生物填料吸收、转化达标后排放,同时,经换热冷凝器加热的新鲜空气分别引入固体高温好氧发酵反应器内;
(2)裂解与扩繁系统发酵废气治理:分别开启各反应器排气管道上的电磁阀,裂解与扩繁系统在发酵过程中产生的废气分别经引风机引入生物除臭滤塔,经生物除臭滤塔内生物填料吸收、转化达标后排放。
关于本发明的有益效果及优点分析如下:
本发明按照可持续发展治理原则、生态循环经济治理原则和自动化、设备化治理原则治理规模化养殖场养殖污染:
(1)可持续发展治理原则是一种注重长远发展的经济增长模式,要求既满足当代人的需求,又不损害后代人满足其需求的能力,本发明通过治理养殖场如粪便、尿液、冲栏水、病死畜禽尸体和胎盘,抗生素、以及废气等全部污染物,在解决养殖废弃物污染问题的同时,将养殖废弃物转化为对人类、对生态可持续发展的有益资源,用于建设和修复环境,使规模化养殖业不会危害人类的可持续发展;
(2)生态循环经济治理是一种以减少进入生产流程的物质量、以不同方式多次反复使用某种物品、废弃物资源化为目的的全过程的管理模式,满足生态循环、经济发展需求的废弃物治理,其原则主要体现在减量化、再使用和再循环三个方面,本发明通过栏舍源头分离和节水冲栏,将雨污、饮污分离,在栏舍源头减少污水量,使粪尿实现了最大程度的减量化,为粪污资源化利用奠定了基础,本发明将畜禽养殖产生的粪便、粪污,以及病死尸体和胎盘资源化利用,分别制成固体和液体有机肥料进行还田,同时在土地上种植牧草、玉米等饲料作物,饲料再用于饲养畜禽,将粪便用于饲料昆虫养殖,产生的虫体加工成饲料用于喂养畜禽,实现养种结合,将粪污厌氧发酵产生的沼气再利用,作为治理所需的燃料;对治理过程中产生含热臭气通过换热实现回收,再将回收的热量为反应器供热,对粪污厌氧发酵产生的沼气,作为治理所需的燃料实现资源回收,对裂解与扩繁系统的热量通过换热实现热量的回收和再利用,从而使所有的治理环节,都形成了循环的生态闭环,促进了养殖业与生态环境的和谐发展;
(3)自动化、设备化治理原则是运用自动化技术、远程监控技术、使用自动化设备完成废弃物治理,避免治理工作项目化、工程化,减少人为因素、环境因素的干扰和影响,使治理效果高度一致、产成品的质量高度一致的原则,本发明通过固体高温好氧发酵反应器、液体中温厌氧发酵反应器、裂解与扩繁反应器和生物除臭滤塔等设备分别对粪便、粪污,以及病死畜禽、胎盘、臭气烟气等污染物进行治理,使治理过程设备化、标准化,降低人工参与程度,提高治理过程的稳定性和连续性,同时,本发明利用自动检测控制系统实现设备工艺和原料、产品的远程实时监控,记录污染物去向,现场不需要专家管理,设备全自动化运行,设备远程预警及诊断,在云端即可获取现场设备的运行状况,以利提前维修。
本发明中,粪便通过高温好氧发酵和陈化两个阶段,快速实现物料的无害化和稳定化,制得固体有机肥料,其创新如下:设计多个高温保温水箱,当固体高温好氧发酵反应器内物料温度低于设定温度时,高温保温水箱为固体高温好氧发酵反应器内物料提供热源,使物料温度升高,通过换热冷凝器吸收物料的热量,换热冷凝器吸收的热量用于加热新鲜空气,再将新鲜空气引入固体高温好氧发酵反应器内,为被发酵物料提供新鲜温暖的空气,既提高了加热的效率,又降低了系统的能耗。
针对传统厌氧发酵方法时间长、沼气产气率低、沼气池要求容量大、沼气池建设成本高,以及沼气池底部沼渣难以清理等一系列问题,本发明创新设计新型液体中温厌氧发酵反应器,并将多个液体中温厌氧发酵反应器串联进行中温厌氧发酵,其创新如下:(1)采用中温厌氧发酵,大大提高发酵效益,缩短发酵时间,物料在沼气池停留时间短,从而降低沼气池容量要求,降低沼气池成本,同时,与高温厌氧发酵方 式相比,本方案能极大地降低能耗;(2)利用软体厌氧发酵袋作为厌氧发酵容器,施工简单,基建工程量大大减小、极大地降低基建成本;(3)每个液体中温厌氧发酵反应器底部设置沿长度方向的斜面,且多个液体中温厌氧发酵反应器斜面最低位置沿粪污液体流向依次降低,形成高度差,粪污液体因高度差依次自然流经多个液体中温厌氧发酵反应器进行多级发酵,避免传统处理方式中因液体在各反应池输送产生的能耗,同时,串联的液体中温厌氧发酵反应器内液体不断流动,液体在单个反应器停留时间相对较短,沼渣沉积慢,沼渣随不断流动的沼液带出,避免传统沼气发酵时,物料在单个沼气池停留时间过长,沼渣大量沉积难以清理的问题;(4)在液体中温厌氧发酵反应器内设置偏振器,避免传统沼气发酵时,沼气池液面结壳的问题,提高产气效率;(5)在各反应池底部设计加热盘管,发酵过程中通过向各液体中温厌氧发酵反应器的加热盘管注入循环热水,控制各液体中温厌氧发酵反应器内物料温度始终稳定在限定范围内,使之迅速达到无害化标准,发酵效率大大提高,物料在多级液体中温厌氧发酵反应器内累计停留超过15天,充分腐熟,实现稳定化,从而达到沼液农用标准;(6)粪污液体在串联的软体厌氧发酵袋中先进先出,不会出现未经发酵流出软体厌氧发酵袋的情况;(7)粪污液体在软体厌氧发酵袋中停留的时间可以通过控制出液池的液位来调节,以确保粪尿液体在软体厌氧发酵袋中厌氧发酵的停留时间,达到法定的时间的要求。
本发明设计的裂解与扩繁系统,将病死畜禽和胎盘浸泡在密闭反应器内粪污液体中,先将病死畜禽和胎盘高温高压无害化裂解,使病死畜禽和胎盘溶入粪污液体中,制得裂解液,再将裂解液作为培养液扩繁功能性微生物的培养基,经扩繁制得微生物培养液,或作为饲养昆虫的食物,其创新点如下:(1)本发明创新治污方式,将病死畜禽及胎盘裂解产生的裂解液作为微生物培养的培养基,培养功能性微生物,分别添加到固体有机肥料和沼液中,制得生物有机肥料和液体微生物肥料,病死畜禽及胎盘中含有丰富的营养物质,如蛋白质、脂肪及无机盐等,经高温高压裂解后,大部分营养物质溶入裂解液中,为微生物生长、繁殖提供必要的营养物质,本发明与传统化制法相比,降低后期干燥步骤处理成本,不产生污水污染,繁殖的功能性微生物添加到有机肥料中,制得生物肥料,废弃物资源化利用率最大化,提高有机肥料附加值;(2)裂解与扩繁反应器集病死畜禽高温高压裂解和微生物扩繁于一体,一体多用,同时考虑到小畜禽病死率高的实际情况,本发明配套多个裂解反应器和扩繁反应器,将裂解过程与扩繁过程分开,从而解决病死畜禽产生量与处理能力不匹配的问题;(3)裂解与扩繁反应器和裂解反应器内均匀布置有多个曝气头,采用蒸汽发生器产生的高温高压蒸汽从反应器底部对液体及病死畜禽进行曝气,使裂解与扩繁系统升温和加压,迅速实现无害化,同时,曝气过程中产生大量的气泡摩擦病死畜禽,促进病死畜禽尸体快速解体,溶于到粪污液体中,增加粪污液体营养物质含量,为下一步微生物液体扩繁奠定了物质基础;(4)病死畜禽高温高压裂解完成后,本发明分别将高温保温水箱中热水和低温保温水箱中冷水输送至裂解与扩繁反应器的水套,对高温裂解液进行降温处理,为下一步微生物扩繁创造适宜的温度条件,再利用加热的热水对微生物培养液进行保温处理,提高微生物扩繁效率,本发明充分回收利用了裂解液余热,避免热量浪费,提高了加热的效率,又降低了系统的能耗;(5)对病死畜禽裂解剩余物再利用,病死畜禽裂解产生的油脂回收、再利用,使资源转化率最大化;(6)将裂解液作为饲养昆虫的食物,进行饲料昆虫养殖,制得动物源性饲料,病死畜禽及胎盘中含有丰富的营养物质,如蛋白质、脂肪及无机盐等,用于饲养昆虫的生长和繁殖,使得畜禽尸体、胎盘得到资源化利用,同时提高饲养昆虫养殖效益和产品质量。
本发明将污染治理工厂的产成品有机肥料、生物有机肥料,用于改良饲料工厂种植基地的土壤,而污染治理工厂的产成品液体有机无机复混肥、液体微生物肥料,用于浇灌滴灌配套种植土地上种植的粮食、牧草等作物,而粮食、牧草等作物,以及饲料工厂饲养的昆虫,作为饲料工厂的原料,为养殖降低了成本,提高了饲料的营养水平,促进了养殖业与生态环境的和谐发展!
综上所述,本发明对畜禽养殖过程中产生的粪便、尿液、冲栏水、病死尸体和胎盘,以及废气等污染物进行生态治理,并对粪便、尿液、病死畜禽和胎盘等进行资源化利用,本发明不仅治理了规模化畜禽养殖场养殖过程中所有污染物,而且还将有机废、弃物转化成可利用的资源,对农村环境保护、畜牧业良性 发展,以及实施能源可持续发展战略都有着重要意义。
附图说明
图1为本发明所涉及的一种基于种养结合的畜禽养殖场污染生态治理系统示意图;
图2为本发明所涉及的饲料昆虫养殖示意图;
图3为本发明所涉及的固体高温好氧发酵系统示意图;
图4为本发明所涉及的液体中温厌氧发酵系统连接关系截面示意图;
图5为本发明所涉及的液体中温厌氧发酵反应器结构截面示意图;
图6为本发明所涉及的液体中温厌氧发酵系统连接关系俯视示意图
图7为本发明所涉及的饲料作物种植示意图;
图8为本发明所涉及的裂解与扩繁系统示意图;
图9为本发明所涉及的裂解与扩繁反应器曝气(汽)装置连接示意图;
图10为本发明所涉及的裂解与扩繁反应器横截面结构示意图;
图11为本发明所涉及的裂解与扩繁反应器纵切面结构示意图;
图12为本发明所涉及的病死畜禽输送装置横截面结构示意图;
图13为本发明所涉及的病死畜禽输送装置纵切面结构示意图;
图14为本发明所涉及的扩繁反应器结构示意图;
图15为本发明所涉及的加热及热量平衡系统示意图;
图16为本发明所涉及的固体高温好氧发酵系统的废气处理系统示意图;
图17为本发明所涉及的裂解与扩繁系统的废气处理系统示意图;
图18为本发明所涉及的裂解液养殖饲料昆虫示意图;
图19为本发明所涉及的一种牛羊养殖污染生态治理系统示意图;
图中,101-源头分离猪舍、102-污染治理工厂、103-饲料工厂、104-固体高温好氧发酵系统、105-液体中温厌氧发酵系统、106-裂解与扩繁系统、107-加热及热量平衡系统、108-废气处理系统、109-检测控制系统;201-虫粪、202-虫体虫卵、203-动物源性饲料;
301-干粪棚、302-辅料、303-腐熟菌剂、304A-固体高温好氧发酵反应器、304B-固体高温好氧发酵反应器、304M-固体高温好氧发酵反应器、305-陈化间;
401-调节池、402A-液体中温厌氧反应器、402B-液体中温厌氧反应器、402N-液体中温厌氧反应器、403-出液池、404-污泥泵、405-贮液池;
501-反应池、502-保温层、503-热反射板、504-加热盘管、505-软体厌氧发酵袋、506-排水沟、507-进料口、508-出料口、509-集水井、510-沼气排气管、511-保温层、512-压力传感器、513-偏振器;
601-沼液、602-化肥、603-固体有机肥、604-液体有机无机复混肥、605-液体微生物肥料、606-生物有机肥、607-配套种植土地、608-植物源性饲料;
701裂解与扩繁反应器-、702-微生物培养液、703A-裂解反应器、703B-裂解反应器、704-扩繁反应器、705-油脂;
801-支座、802-罐体、803-封盖、804-铰链、805-密封圈、806-锁扣、807-水套、808-曝气管、809-出料管、810-循环水进水管、811-排气管、812-进料管、
813-循环水排水管、814-电磁阀、815-曝气头;816-导轨、817-温度传感器、818-压力传感器、819-安全阀、820-保温层;
1001-推车、1002-网笼、1003-导轨、1004-笼体、1005-钢丝网、1006-笼盖、1007-锁链、1008-拉手、1009-滚轮;
1101-常压热水锅炉、1102-蒸汽发生器、1103-太阳能加热系统、1104-高温保温水箱、1105-低温保温水箱、 1106a-循环水泵、1106b-循环水泵、1106c-循环水泵、1106d-循环水泵、1106e-循环水泵、1107a-电磁阀、1107b-电磁阀、1107c-电磁阀、1107d-电磁阀、1107e-电磁阀、1107f-电磁阀、1107g-电磁阀、1107h-电磁阀、1107i-电磁阀、1107j-电磁阀、1107k-电磁阀、1107l-电磁阀、1107m-电磁阀、1107n-电磁阀、1107o-电磁阀、1107p-电磁阀、1107s-电磁阀、1107t-电磁阀、1107u-电磁阀、1107v-电磁阀、1107w-电磁阀、1107x-电磁阀、1107y-电磁阀、1110-输汽管道、1112-沼气预处理装置;
1201a-换热冷凝器、1201b-换热冷凝器、1201m-换热冷凝器、1202a-引风机、1202b-引风机、1202m-引风机、1203-生物除臭滤塔、1204a-电磁阀、1204b-电磁阀、1204m-电磁阀、1205a-电磁阀、1205b-电磁阀、1205m-电磁阀;
1301-曝气风机、1302-空气过滤器、1303a-电磁阀、1303b-电磁阀、1303c-电磁阀、1303d-电磁阀、1304b-电磁阀、1304c-电磁阀、1304d-电磁阀、1304e-电磁阀、1305引风机、1306-生物除臭滤塔、1307a-单向阀、1307b-单向阀、1308-三通。
具体实施方式
本发明所涉及的一种基于种养结合畜禽养殖场污染生态治理系统示意图如图1所示,系统包括源头分离节水型栏舍101、污染治理工厂102、饲料工厂103,以及配套种植土地607等;所述的污染治理工厂102和饲料工厂103是由专业的团队对畜禽粪污进行专业化处置,把畜禽粪污在源头利用配套的污染治理车间将污染转化并生产为改良土壤所需的肥料是为污染治理工厂102,把畜禽粪污在源头,利用配套种植土地607和饲料生产车间,将污染转化并生产动物源性饲料203和植物源性饲料608,是为饲料工厂103;污染治理工厂102由固体高温好氧发酵系统104、液体中温厌氧发酵系统105、裂解与扩繁系统106、加热及热量平衡系统107、废气处理系统108和检测控制系统109组成;所述的源头分离节水型栏舍101是将雨污、饮污进行分离,雨水、饮用余水排往室外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,而且畜禽出栏或转栏时采用高压水枪甚至采用高压空气进行冲栏,机械刮粪或人工干清粪清理出来的粪便堆放在干粪棚301,再由干粪棚301将粪便分别输往固体高温好氧发酵系统104和动物源性饲料工厂103,饲料工厂103产生的虫粪201输送往固体高温好氧发酵系统104,而粪尿液体和冲栏水输送往调节池404,调节池401连接液体中温厌氧发酵系统105的进料口,以及裂解与扩繁系统106的进液口;固体高温好氧发酵系统104产生的的发酵臭气排气口,以及裂解与扩繁系统106的废气排气管连接废气处理系统108;加热及热量平衡系统107分别通过管道连接固体高温好氧发酵系统104的加热夹套或盘管、液体中温厌氧发酵系统105的加热盘管,以及裂解与扩繁系统106的水套和盘管;检测控制系统109的各传感器设置在上述各系统内,对各关键参数进行检测,检测控制系统109对上述组成部分进行连接控制。
本发明所涉及的饲料昆虫养殖示意图如图2所示,干粪棚301内固体粪便经输送装置输送到饲料工厂103,先调节粪便含水率至合适范围,作为饲料昆虫的饲料,进行昆虫养殖,获得虫体和虫卵202,作为动物源性饲料203,与植物源性饲料608按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽;将虫粪201经输送装置输送至固体高温好氧发酵反应器(304A、304B和....304M)内进行高温好氧发酵,制得固体有机肥料603;
本发明所涉及的固体高温好氧发酵系统示意图如图3所示,固体高温好氧发酵系统104包括M个固体高温好氧发酵反应器(304A、304B和....304M),干粪棚301内固体粪便、虫粪201,辅料302及腐熟菌剂303经输送装置分别输送至固体高温好氧发酵反应器(304A、304B和....304M)内,固体高温好氧发酵反应器(304A、304B和....304M)出料口分别经输送装置连接陈化间305。
本发明所涉及的液体中温厌氧发酵系统示意图如图4和图6所示,液体中温厌氧发酵系统105由调节池401、液体中温厌氧发酵反应器(402A、402B和....402N)、出液池403、污泥泵404和贮液池405组成,调节池401的出液口经管道连接第一个液体中温厌氧发酵反应器402A进料口,其排料口经管道连接第二个 液体中温厌氧发酵反应器402B进料口,以此类推,直至连接到第N个液体中温厌氧发酵反应器402N进料口,其排料口经管道连接出液池403,出液池403再经污泥泵404连贮液池405,N个液体中温厌氧发酵反应器(402A、402B和....402N),液体中温厌氧发酵反应器402B进料口的池底低于液体中温厌氧发酵反应器402B进料口0.2米,以此类推,第N个液体中温厌氧发酵反应器402N进料口的池底低于前面液体中温厌氧发酵反应器出料口0.2米,以防止后面液体中温厌氧发酵反应器中的沉淀物,回流到前面的液体中温厌氧发酵反应器中去,而每个液体中温厌氧发酵反应器(402A、402B和....402N)进料口侧的池底都高于出料口的池底,其倾斜度的范围为0.5%,以减少液体中温厌氧发酵反应器(402A、402B和....402N)清理污泥的次数。
本发明所涉及的中温厌氧发酵反应池示意图如图5所示,液体中温厌氧发酵反应器(402A、402B和....402N)是在矩形的反应池501池底建设有从进料口向出料口倾斜的斜面,其倾斜度为0.5%,斜面的四周建有排水沟506,排水沟506通过管道连接地势更低处的集水井509,反应池底501收集的水份经水沟汇集到集水井509排出,反应池501池底的四周及池底斜面设置有保温层502,保温层502由保温材料组成,在反应池501池底部保温层502表面设置热辐射板503,在热辐射板503上均匀固定加热盘管504,在加热盘管504上覆盖软体厌氧发酵袋505,软体厌氧发酵袋505沿长度方向位置高的一侧设置有进料口507,低的一侧设置有出料口508,为防止软体厌氧发酵袋505内液面接壳,在矩形反应器长度方向的中部,设置有偏振器513,软体厌氧发酵袋505的顶部设置有沼气排气管510,沼气排气管510上设置有压力传感器512,软体厌氧发酵袋505上方还覆盖有保温层502和防水盖。
本发明所涉及的饲料作物种植示意图如图7所示,适量的化肥602和微生物培养液702分别添加到沼液601中,制得液体有机无机复混肥604和液体微生物肥料605,将适量微生物培养液702喷洒到固体有机肥603中,搅拌均匀后制得生物有机肥606,将液体有机无机复混肥604、液体微生物肥料605和生物有机肥606分别施用到配套种植土地607上,配套种植土地607种植饲料作物,收获的饲料原料输送至饲料工厂103,经加工制得植物源性饲料608,用于喂养畜禽。
本发明所涉及的裂解与扩繁系统示意图如图8所示,裂解与扩繁系统106主要由裂解与扩繁反应器701、裂解反应器(703A和703B)、扩繁反应器704、蒸汽发生器1102、曝气风机1301、空气过滤器1302,以及连接管道组成,调节池401经输送装置分别连接到裂解与扩繁反应器701和裂解反应器(703A和703B)的进料管812,裂解反应器(703A和703B)的排料管经输送装置连接到扩繁反应器704的进料口905,裂解与扩繁反应器701的出料管809和扩繁反应器704的出料口910分别经管道连接到储液罐。
本发明所涉及的裂解与扩繁系统曝气(汽)装置连接示意图如图9所示,蒸汽发生器1102的排汽口分别经单向阀1307b及输汽管道1110分别连接三通1308的一个输入口,以及裂解反应器(703A和703B)的蒸汽进汽口,裂解反应器(703A和703B)的进汽管道前端分别设置有电磁阀(1304b和1304c),曝气风机1301的进气端联通大气,出气端依次经空气过滤器1302、单向阀1307a及输气管道连接分别连接三通1308的另一个输入口,以及扩繁反应器704的进气口,扩繁反应器704进气管道上设置有电磁阀1304d,三通1308的输出端经管道连接裂解与扩繁反应器701的曝气管808,裂解与扩繁反应器701的进气(汽)管道上设置有电磁阀1304e。
本发明所涉及的裂解与扩繁反应器横截面及纵切面结构示意图如图10和图11所示,裂解与扩繁反应器701由支座801、罐体802、封盖803,以及输送装置组成,卧置的罐体802固定在支座801上,罐体802的一侧用封盖803密闭封死,罐体802的另一侧装有封盖门,封盖门与罐体802之间采用铰链804连接,封盖门与罐体802之间设置有密封圈805,封盖门关闭时采用多个锁扣806螺栓锁紧、密封,使封盖803与罐体802及封盖门之间构成一个密闭的裂解及扩繁空间,在罐体802内设置有平行于罐体802轴线并沿罐体802径向固定的导轨816,用来承载并输送装载病死畜禽及胎盘的网笼1002,在导轨816下部安装有曝气管808和多个曝气头815;封盖803上侧布置有排气管811和进料管812,封盖803上侧还安装有压力传 感器818、安全阀819,封盖的下侧安装有温度传感器817、出料管809;在卧置罐体802外部装有水套807,水套807用来对裂解与扩繁反应器701进行降温,水套807的循环水进水管810安排在罐体802的下部,水套807的循环水排水管813安排在罐体802的上部,水套807的外面包裹有保温层820,保温层820由保温隔热材料组成;
本发明所涉及的病死畜禽输送装置横截面及纵切面结构示意图如图12和图13所示,输送装置702由推车1001和网笼1002组成,推车1001上部固定有导轨1003,导轨1003上放置网笼1002,网笼1002是由笼体1004和钢丝网1005组成的长方形笼体,四周及底部钢丝网1005焊接在笼体1004上,笼体1004顶部设置有活动笼盖1006,笼盖1006与笼体1004之间采用锁链1007连接,笼盖1006外侧还设置有拉手1008,笼体1004底部固定有多个滚轮1009,滚轮1009与导轨1003接触连接,推车1001上的导轨1003方向与罐体802内导轨816对接一致,并与罐体802内导轨816齐平,当输送病死畜禽时,首先用叉车等将病死畜禽放置到网笼1002内,网笼1002沿推车1001和罐体802内导轨816输送到罐体802内设定位置。
本发明所涉及的扩繁反应器结构示意图如图14所示,扩繁反应器704由立式、密闭的保温罐体907、盘管906和曝气装置909组成,罐体907顶部设置有曝气口902、盘管循环水出口903、盘管循环水进口904和排气口908,底部设置有出料口910,盘管906固定在罐体907内,并沉浸在裂解液中,罐体907底部设置有曝气装置909,其曝气管道通过罐壁延伸到罐体907外,依次与与电磁阀、空气过滤器、曝气风机的出风口连接;罐体907的外面包裹有保温层,保温层由保温隔热材料组成。
本发明所涉及的加热及热量平衡系统示意图如图15所示,加热及热量平衡系统107主要由常压热水锅炉1101、高温保温水箱1104、低温保温水箱1105、循环水泵(1106a~1106e)、电磁阀(1107a~1107y),以及连接管道等组成,进一步地,对于太阳能资源充裕的地区,加热及热量平衡系统107还包括太阳能加热系统1103,高温保温水箱1104是常压热水锅炉1101、太阳能加热系统1103,以及蒸汽发生器1102的水源,高温保温水箱1104经出水管道1108分别向常压热水锅炉1101、太阳能加热系统1103及蒸汽发生器1102输送热水;而被常压热水锅炉1101、太阳能加热系统1103加热的水,通过各自的管道送回到高温保温水箱1104实现储能;高温保温水箱1104的另一个出水管道1111连接循环水泵1106e,分别向固体高温好氧发酵反应器(304A、304B和....304M)、液体中温厌氧发酵反应器(402A、402B和....402N)及裂解与扩繁反应器701、裂解反应器(703A和703B)、扩繁反应器704输送热水,各反应器的回水经各自的回水管道送回到高温保温水箱1104;低温保温水箱1105是高温保温水箱1104的水源,低温保温水箱1105摆放在高温保温水箱1104的上方,通过检测控制系统109自动对高温保温水箱1104进行补水,低温保温水箱1105的另一个出水管道经循环水泵1106e分别连接裂解与扩繁反应器701和裂解反应器(703A和703B)的水套807,以及扩繁反应器704的盘管906,通过各自的回水管道送回到低温保温水箱1105实现循环;液体中温厌氧发酵反应器(402A、402B和....402N)各软体沼气袋顶部的沼气排气管510经排气管道并联沼气预处理装置1112,沼气预处理装置1112内的沼气经过预处理装置处理净化后,输送至常压热水锅炉1101进行燃烧供热,各排气管道上均设置有电磁阀(1107v、1107w和1107x)。
本发明所涉及的固体高温好氧发酵系统104的废气处理系统108示意图如图16所示,其结构连接如下:固体高温好氧发酵反应器(304A、304B和....304M)的排气口分别经管道连接换热冷凝器(1201a、1201b和....1201m)的废气进气口,换热冷凝器(1201a、1201b和....1201m)的废气排气口经管道连接引风机(1202a、1202b和....1202m)的输入端,换热冷凝器(1201a、1201b和....1201m)的空气进气口分别联通大气,换热冷凝器(1201a、1201b和....1201m)的空气出气口分别经管道连接固体高温好氧发酵反应器(304A、304B和....304M)的进气口,固体高温好氧发酵反应器(304A、304B和....304M)的进气管道和排气管道上分别设置有电磁阀(1204a、1204b和....1204m)和(1205a、1205b和....1205m),引风机(1202a、1202b和....1202m)的输出端分别经管道并联生物除臭滤塔1203的进气口,生物除臭滤塔1203的排气口经竖直管道联通大气。
本发明所涉及的裂解与扩繁系统106的废气处理系统108如图17所示,其结构连接如下:裂解与扩繁 反应器701、裂解反应器(703A和703B)、扩繁反应器704排气管道分别连接引风机1305的输入端,各反应器排气管道上分别设置有电磁阀(1303a、1303b、1303c和1303d),引风机1305的输出端分别经管道并联到生物除臭滤塔1306的进气口,生物除臭滤塔1306的排气口经竖直管道联通大气。
本发明所涉及的裂解液养殖饲料昆虫示意图如图18所示,在裂解液中添加畜禽粪便,并混合均匀,将混合物作为昆虫的饲料,进行昆虫养殖,获得虫体和虫卵202,作为动物源性饲料203,与植物源性饲料608按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽;②将残余的裂解液与畜禽粪便混合物及昆虫粪便,经输送装置输送至固体高温好氧发酵反应器(304A、304B和....304M)内进行高温好氧发酵,制得固体有机肥料603。
实施例一
一种基于种养结合的养猪场污染生态治理方法,包括:
一、栏舍源头分离、节水:源头分离节水型栏舍101将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入猪粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,机械刮粪或人工干清粪清理出来的猪粪便堆放在干粪棚301,再由干粪棚301将粪便分别输往固体高温好氧发酵系统104和动物源性饲料工厂103,猪粪尿和冲栏水输送往调节池401;
二、黑水虻养殖:先调节猪粪便含水率至合适范围,然后在粪便上接种适量黑水虻适龄幼虫,经一段时间生长、繁殖后得到虫粪201和黑水虻虫体虫卵202混合物,黑水虻虫体虫卵202经干燥、粉碎等加工后制得黑水虻饲料203,与植物源性饲料608按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养猪只;虫粪201经输送装置输送至固体高温好氧发酵反应器(304A、304B和....304M)内进行高温好氧发酵,制得固体有机肥料603;
三、粪便高温好氧发酵:
(1)打开电磁阀1107f,自来水自动对低温保温水箱1105补水,打开电磁阀1107a,低温保温水箱1105利用高度差自动向高温保温水箱1104补水,打开电磁阀(1107g、1107b和1107d),启动循环水泵(1106a和1106b),启动常压热水锅炉1101以及太阳能加热系统1103,高温保温水箱1104的水输往常压热水锅炉1101和太阳能加热系统1103进行加热后,再开启电磁阀(1107c和1107e),再启动循环水泵(1106a和1106b),热水输往高温保温水箱1104进行储能,开启电磁阀1107i,开启固体高温好氧发酵反应器(304A、304B或304M)加热夹套或盘管前端的电磁阀(1107j、1107k或1107l),启动热水循环水泵1106e,热水经输送发酵固体高温好氧发酵反应器(304A、304B或304M)内物料升温;
(2)通过输送设备将干粪棚301的固体粪便和辅料302,以及腐熟菌剂303送入固体高温好氧发酵反应器(304A、304B或304M)内,控制混合物料含水率在55~65%之间,在加料的同时,检测控制系统109同时启动该固体高温好氧发酵反应器(304A、304B或304M)的驱动装置,实现进料并搅拌;
(3)进料完成后,检测控制系统109控制固体高温好氧发酵反应器(304A、304B或304M)停止搅拌50分钟,再搅拌10分钟,再停止50分钟后,再搅拌10分钟,停-搅拌-停-搅拌-停-搅拌,周而复始是为定时搅拌程序,于此同时,当该固体高温发酵反应器(304A、304B或304M)在搅拌时,检测控制系统109都分别自动启动引风机(1202a、1202b或1202m),为高温好氧发酵反应器(304A、304B或304M)内的被发酵物质供氧;①当检测控制系统109检测到该固体高温好氧发酵反应器(304A、304B或304M)内物料温度低于物料的设定温度60℃时,热水进入加热夹套或盘管,使固体高温好氧发酵反应器(304A、304B或304M)内物料温度上升;②当固体高温好氧发酵反应器(304A、304B或304M)内物料温度大于或等于70℃时,停止定时搅拌的程序,改为温度控制搅拌程序:启动引风机(1202a、1202b或1202m),驱动固体高温好氧发酵反应器(304A、304B或304M)搅拌,直到固体高温好氧发酵反应器(304A、304B或304M)内物料温度低于70℃后再启动定时搅拌程序,使该固体高温好氧发酵反应器(304A、304B或304M) 内物料温度维持在60~70℃之间,固体高温好氧反应器(304A、304B或304M)的定时搅拌程序和温度控制搅拌程序,为固体高温好氧发酵反应器(304A、304B或304M)内的物料建立合适的发酵温度并提供了够用氧气,为粪便固体的高温好氧发酵,建立了合适的环境;
(4)物料进料后经24h完成高温好氧发酵,检测控制系统109控制该固体高温发酵反应器(304A、304B或304M)停机,然后先出料50%,再立即进料50%,之后每隔24h,再出料50%,再立即进料50%,以此类推,出料时先启动螺旋出料机,同时检测控制系统109控制固体高温好氧发酵反应器(304A、304B或304M)搅拌,引导出料;
(5)固体高温好氧发酵反应器(304A、304B或304M)排出的物料经输送装置输送至陈化间305,期间定时翻堆或曝气,使物料降温、散失水分,直到完全腐熟,制得有机肥料;
(6)当固体高温好氧发酵反应器(304A、304B和304M)同时发酵时,检测控制系统109分别检测各固体高温好氧发酵反应器(304A、304B和304M)内物料温度,使各固体高温好氧发酵反应器(304A、304B和304M)内物料温度维持在60~70℃之间;
(7)检测控制系统109检测、控制高温保温水箱1104中水温,使之恒定在70~85℃之间:①当高温保温水箱1104中温度低于70℃时,启动常压热水锅炉1101,当太阳能加热系统1103集热水箱的热水温度大于70℃时,启动太阳能加热系统1103输出端的循环泵1106e,将热水输送至高温保温水箱1104热水;②当高温保温水箱1104中温度达到85℃时,关闭常压热水锅炉。
四、粪污液体中温厌氧发酵:
(1)将粪尿和冲栏水输送至调节池401内,使调节池401内粪污液体液位不断升高,当高于调节池401的排液口时,粪污液体因高度差沿连接管道自然流入第一个液体中温厌氧发酵反应器402A中,检测控制系统109控制打开第一个液体中温厌氧发酵反应器402A加热盘管前端的电磁阀1107s,热水进入第一个液体中温厌氧发酵反应器402A加热盘管504内循环,使第一个液体中温厌氧发酵反应器402A内物料温度迅速升至35℃,物料开始中温厌氧发酵反应;
(2)当第一个液体中温厌氧发酵反应器402A中内液体液位高于排液口时,粪污液体因高度差沿连接管道自然流入第二个液体中温厌氧发酵反应器402B中,检测控制系统109控制打开第二个液体中温厌氧发酵反应器402B加热盘管前端的电磁阀1107t,热水进入第二个液体中温厌氧发酵反应器402B加热盘管内循环,使物料温度迅速升至35℃,物料持续中温厌氧发酵反应;
(3)当第二个液体中温厌氧发酵反应器402B内液体液位高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,止到粪污液体自然流入第N个液体中温厌氧发酵反应器402N内,检测控制系统109控制打开第N个液体中温厌氧发酵反应器402N加热盘管504前端的电磁阀1107u,热水进入第N个液体中温厌氧发酵反应器402N加热盘管504内循环,使物料温度迅速升至35℃,物料持续中温厌氧发酵反应;
(4)分时启动液体中温厌氧发酵反应器(402A、402B和....402N)中的偏振器513,防止液体液面“结壳”,减慢液体沉积物沉淀速度;
(5)检测控制系统109分别检测、控制液体中温厌氧发酵反应器(402A、402B和....402N)中物料温度,使之维持在35~50℃恒定范围内,粪污液体依次流经N个液体中温厌氧发酵反应器(402A、402B和....402N),第N个液体中温厌氧发酵反应器402N中发酵液因高度差沿管道自然流入出液池403中,制得沼液肥;
(5)检测控制系统109根据设定的厌氧发酵时间,定时启动污泥泵404以控制出液池403的液位,确保粪污液体在液体厌氧中温发酵反应器(402A、402B和....402N)内的停留时间达到15天以上,当中温厌氧发酵的时间达到15天后,用污泥泵404将出液池403中沼液泵入贮液池405中,使出液池403中液体液位降低,当检测控制系统109检测出液池的液位到达下限液位后关闭污泥泵404;
(6)液体中温厌氧发酵反应器(402A、402B和....402N)产生的沼气经沼气排气管510及输送管道输 送至沼气预处理装置1112处理后,作为蒸汽发生器1102燃烧燃料,当冬季气温低时,蒸汽发生器1102还燃烧包括电、柴油,以及生物质等作为补充燃料;
五、病死猪及胎盘裂解与扩繁:
(1)病死猪及胎盘裂解
①用叉车或其它转运设备将病死大猪放入网笼1002中,输送装置将网笼1002推送到裂解与扩繁反应器701内,用叉车或其它转运设备将病死小猪和胎盘放入网笼1002中,输送装置将网笼1002推送到裂解反应器(703A或703B)内,关闭封盖门,将调节池中401中液体经输送泵输送至裂解与扩繁反应器701和裂解反应器(703A或703B)内,使网笼1002半浸泡在粪污液体中;
②开启蒸汽发生器进水管道上的电磁阀1107b,将高温保温水箱1104中的热水泵入蒸汽发生器1102,再启动蒸汽发生器1102,最后再开启该裂解与扩繁反应器701和裂解反应器和裂解反应器(703A或703B)进汽管道前端的电磁阀(1304e、1304b或1304c),蒸汽发生器1102产生的热蒸汽输送至裂解与扩繁反应器701和裂解反应器(703A或703B)内,使该裂解与扩繁反应器701和裂解反应器(703A或703B)内液体温度和压力升高,排尽该裂解与扩繁反应器701和裂解反应器(703A或703B)内的冷空气后分别关闭裂解与扩繁反应器701和裂解反应器(703A或703B)排气阀,裂解与扩繁反应器701和裂解反应器(703A或703B)内温度和压力分别达到130℃和0.25Mpa,病死猪及胎盘开始高温高压裂解,检测控制系统109检测、控制裂解与扩繁反应器701和裂解反应器(703A或703B)内温度和压力,使之维持在130~140℃和0.25~0.35Mpa范围内,并保持30min以上,使病死猪彻底无害化,尸体解体,溶于液体中,得到裂解液;
③高温高压裂解完成后,关闭蒸汽发生器1102,开启电磁阀1107y,开启裂解与扩繁反应器701和裂解反应器(703A或703B)循环水进水管道上的电磁阀(1107m、1107n或1107o),开启电磁阀1107i,启动循环水泵1106e,热水进入该裂解与扩繁反应器701和裂解反应器(703A或703B)的水套循环,使裂解液温度与高温保温水箱1104热水温度达到平衡;之后关闭高温保温水箱1104出水管道上循环水泵1106e及电磁阀1107i,关闭电磁阀1107y,启动低温保温水箱1105出水管道上循环水泵1106d及电磁阀1107h,冷水进入该裂解与扩繁反应器701和裂解反应器(703A或703B)的水套循环,使裂解液温度降低到25~35℃之间,关闭循环水泵1106d及电磁阀1107h;
(2)裂解液扩繁
①开启裂解反应器(703A或703B)出料管道上的电磁阀,将裂解反应器(703A或703B)内裂解液输送到扩繁反应器704内,将提前培养的微生物种子液分别经裂解与扩繁反应器701的进料管812和扩繁反应器704的进料口905输送至该裂解与扩繁反应器701和扩繁反应器704内,启动曝气风机1301,检测控制系统109分别控制电磁阀1304d和电磁阀1304e的开或闭,将经空气过滤器1302过滤的无菌空气分别输送至裂解与扩繁反应器701和扩繁反应器704内,同时,检测控制系统109检测、控制裂解与扩繁反应器701和扩繁反应器704内温度,使温度分别维持在25~35℃之间,检测控制方法如下:1)当检测控制系统109检测到裂解与扩繁反应器701或扩繁反应器704内温度低于25℃时,检测控制系统109控制开启高温保温水箱1104出水管道上循环水泵1106e,开启电磁阀1107i,开启电磁阀(1107m或1107p),升高裂解与扩繁反应器701和扩繁反应器704内培养液温度至35℃时,停止循环水泵1106e,关闭电磁阀1107i,关闭电磁阀(1107m或1107p);2)当检测控制系统109检测到裂解与扩繁反应器701或扩繁反应器704内温度超过35℃时,检测控制系统109控制启动曝气风机1301,开启电磁阀(1304d或1304e),向裂解与扩繁反应器701或扩繁反应器704内曝气,使该裂解与扩繁反应器701或扩繁反应器704内物料温度降至25~35℃之间时,关闭曝气风机1301,关闭电磁阀(1304d或1304e);
②裂解液经3天培养后,培养液菌浓度达到要求,即完成扩繁过程,分别打开裂解与扩繁反应器701出料管809换热扩繁反应器704底部的出料管910,排出培养液,储存在储液罐中,然后经油水分离器分离得到微生物培养液702和油脂705,而油脂705作为工业原料;
③当多个裂解与扩繁反应器701、裂解反应器(703A和703B),以及扩繁反应器704同时反应时,检测控制系统109根据不同裂解与发酵阶段,分别检测、控制各反应器内物料温度和压力,使各反应器反应器内温度和压力维持在设定范围内;
六、饲料作物种植:
(1)将微生物培养液702按一定比例喷洒到陈化的固体有机肥料603中,混合均匀后制得生物有机肥料606;将微生物培养液702按一定比例添加到沼液601中,制得液体微生物肥料605;根据皇竹草生长需求,在沼液中添加适量的氮磷钾化肥602,制得液体有机无机复混肥604;
(2)根据养猪场存栏数量和皇竹草纳污能力配套种植土地607,在皇竹草种植前及种植过程中,根据饲料作物生长需求分别施用适量固体有机肥603、生物有机肥料606、液体微生物肥料605和液体有机无机复混肥604,收获皇竹草,输送至植物源性饲料加工厂103,经加工制得植物源性饲料608,与黑水虻饲料203按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养猪只;
七、废气治理:
(1)固体高温好氧发酵系统104发酵臭气治理:分别开启固体高温好氧发酵反应器(304A、304B或....304M)排气管道上的电磁阀(1205a、1205b或....1205m),发酵过程中产生的臭气分别经换热冷凝器(1201a、1201b或....1201m)换热后,再经引风机(1202a、1202b或....1202m)分别引入生物除臭滤塔1203,经生物除臭滤塔1203内生物填料吸收、转化达标后排放,同时,经换热冷凝器(1201a、1201b或....1201m)加热的新鲜空气分别引入固体高温好氧发酵反应器(304A、304B或....304M)内;
(2)裂解与扩繁系统106发酵废气治理:分别打开电磁阀(1303a、1303b、1303c或1303d),开启引风机1305,各反应器处理过程中产生的废气分别经引风机1305引入生物除臭滤塔1306,废气经生物除臭滤塔1306内生物填料吸收、转化达标后排放。
实施例二
一种基于种养结合的养猪场污染生态治理方法,包括:
一、栏舍源头分离、节水:源头分离节水型栏舍101将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入猪粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,机械刮粪或人工干清粪清理出来的猪粪便堆放在干粪棚301,再由干粪棚301将粪便分别输往固体高温好氧发酵系统104和动物源性饲料工厂103,猪粪尿和冲栏水输送往调节池401;
二、黑水虻养殖:先调节猪粪便含水率至合适范围,然后在粪便上接种适量黑水虻适龄幼虫,经一段时间生长、繁殖后得到虫粪201和黑水虻虫体虫卵202混合物,黑水虻虫体虫卵202经干燥、粉碎等加工后制得黑水虻饲料203,与植物源性饲料608按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养猪只;虫粪201经输送装置输送至固体高温好氧发酵反应器(304A、304B和....304M)内进行高温好氧发酵,制得固体有机肥料603;
三、粪便高温好氧发酵:
(1)打开电磁阀1107f,自来水自动对低温保温水箱1105补水,打开电磁阀1107a,低温保温水箱1105利用高度差自动向高温保温水箱1104补水,打开电磁阀(1107g、1107b和1107d),启动循环水泵(1106a和1106b),启动常压热水锅炉1101以及太阳能加热系统1103,高温保温水箱1104的水输往常压热水锅炉1101和太阳能加热系统1103进行加热后,再开启电磁阀(1107c和1107e),再启动循环水泵(1106a和1106b),热水输往高温保温水箱1104进行储能,开启电磁阀1107i,开启固体高温好氧发酵反应器(304A、304B或304M)加热夹套或盘管前端的电磁阀(1107j、1107k或1107l),启动热水循环水泵1106e,热水经输送发酵固体高温好氧发酵反应器(304A、304B或304M)内物料升温;
(2)通过输送设备将干粪棚301的固体粪便和辅料302,以及腐熟菌剂303送入固体高温好氧发酵反应器(304A、304B或304M)内,控制混合物料含水率在55~65%之间,在加料的同时,检测控制系统109同时启动该固体高温好氧发酵反应器(304A、304B或304M)的驱动装置,实现进料并搅拌;
(3)进料完成后,检测控制系统109控制固体高温好氧发酵反应器(304A、304B或304M)停止搅拌50分钟,再搅拌10分钟,再停止50分钟后,再搅拌10分钟,停-搅拌-停-搅拌-停-搅拌,周而复始是为定时搅拌程序,于此同时,当该固体高温发酵反应器(304A、304B或304M)在搅拌时,检测控制系统109都分别自动启动引风机(1202a、1202b或1202m),为高温好氧发酵反应器(304A、304B或304M)内的被发酵物质供氧;①当检测控制系统109检测到该固体高温好氧发酵反应器(304A、304B或304M)内物料温度低于物料的设定温度60℃时,热水进入加热夹套或盘管,使固体高温好氧发酵反应器(304A、304B或304M)内物料温度上升;②当固体高温好氧发酵反应器(304A、304B或304M)内物料温度大于或等于70℃时,停止定时搅拌的程序,改为温度控制搅拌程序:启动引风机(1202a、1202b或1202m),驱动固体高温好氧发酵反应器(304A、304B或304M)搅拌,直到固体高温好氧发酵反应器(304A、304B或304M)内物料温度低于70℃后再启动定时搅拌程序,使该固体高温好氧发酵反应器(304A、304B或304M)内物料温度维持在60~70℃之间,固体高温好氧反应器(304A、304B或304M)的定时搅拌程序和温度控制搅拌程序,为固体高温好氧发酵反应器(304A、304B或304M)内的物料建立合适的发酵温度并提供了够用氧气,为粪便固体的高温好氧发酵,建立了合适的环境;
(4)物料进料后经24h完成高温好氧发酵,检测控制系统109控制该固体高温发酵反应器(304A、304B或304M)停机,然后先出料50%,再立即进料50%,之后每隔24h,再出料50%,再立即进料50%,以此类推,出料时先启动螺旋出料机,同时检测控制系统109控制固体高温好氧发酵反应器(304A、304B或304M)搅拌,引导出料;
(5)固体高温好氧发酵反应器(304A、304B或304M)排出的物料经输送装置输送至陈化间305,期间定时翻堆或曝气,使物料降温、散失水分,直到完全腐熟,制得有机肥料;
(6)当固体高温好氧发酵反应器(304A、304B和304M)同时发酵时,检测控制系统109分别检测各固体高温好氧发酵反应器(304A、304B和304M)内物料温度,使各固体高温好氧发酵反应器(304A、304B和304M)内物料温度维持在60~70℃之间;
(7)检测控制系统109检测、控制高温保温水箱1104中水温,使之恒定在70~85℃之间:①当高温保温水箱1104中温度低于70℃时,启动常压热水锅炉1101,当太阳能加热系统1103集热水箱的热水温度大于70℃时,启动太阳能加热系统1103输出端的循环泵1106e,将热水输送至高温保温水箱1104热水;②当高温保温水箱1104中温度达到85℃时,关闭常压热水锅炉;
四、粪污液体中温厌氧发酵:
(1)将粪尿和冲栏水输送至调节池401内,使调节池401内粪污液体液位不断升高,当高于调节池401的排液口时,粪污液体因高度差沿连接管道自然流入第一个液体中温厌氧发酵反应器402A中,检测控制系统109控制打开第一个液体中温厌氧发酵反应器402A加热盘管前端的电磁阀1107s,热水进入第一个液体中温厌氧发酵反应器402A加热盘管504内循环,使第一个液体中温厌氧发酵反应器402A内物料温度迅速升至35℃,物料开始中温厌氧发酵反应;
(2)当第一个液体中温厌氧发酵反应器402A中内液体液位高于排液口时,粪污液体因高度差沿连接管道自然流入第二个液体中温厌氧发酵反应器402B中,检测控制系统109控制打开第二个液体中温厌氧发酵反应器402B加热盘管前端的电磁阀1107t,热水进入第二个液体中温厌氧发酵反应器402B加热盘管内循环,使物料温度迅速升至35℃,物料持续中温厌氧发酵反应;
(3)当第二个液体中温厌氧发酵反应器402B内液体液位高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,止到粪污液体自然流入第N个液体中温厌氧发酵反应器402N内,检测控制系统109 控制打开第N个液体中温厌氧发酵反应器402N加热盘管504前端的电磁阀1107u,热水进入第N个液体中温厌氧发酵反应器402N加热盘管504内循环,使物料温度迅速升至35℃,物料持续中温厌氧发酵反应;
(4)分时启动液体中温厌氧发酵反应器(402A、402B和....402N)中的偏振器513,防止液体液面“结壳”,减慢液体沉积物沉淀速度;
(5)检测控制系统109分别检测、控制液体中温厌氧发酵反应器(402A、402B和....402N)中物料温度,使之维持在35~50℃恒定范围内,粪污液体依次流经N个液体中温厌氧发酵反应器(402A、402B和....402N),第N个液体中温厌氧发酵反应器402N中发酵液因高度差沿管道自然流入出液池403中,制得沼液肥;
(5)检测控制系统109根据设定的厌氧发酵时间,定时启动污泥泵404以控制出液池403的液位,确保粪污液体在液体厌氧中温发酵反应器(402A、402B和....402N)内的停留时间达到15天以上,当中温厌氧发酵的时间达到15天后,用污泥泵404将出液池403中沼液泵入贮液池405中,使出液池403中液体液位降低,当检测控制系统109检测出液池的液位到达下限液位后关闭污泥泵404;
(6)液体中温厌氧发酵反应器(402A、402B和....402N)产生的沼气经沼气排气管510及输送管道输送至沼气预处理装置1112处理后,作为蒸汽发生器1102燃烧燃料,当冬季气温低时,蒸汽发生器1102还燃烧包括电、柴油,以及生物质等作为补充燃料;
五、病死猪及胎盘裂解与养殖:
(1)病死猪及胎盘裂解
①用叉车或其它转运设备将病死大猪放入网笼1002中,输送装置将网笼1002推送到裂解与扩繁反应器701内,用叉车或其它转运设备将病死小猪和胎盘放入网笼1002中,输送装置将网笼1002推送到裂解反应器(703A或703B)内,关闭封盖门,将调节池中401中液体经输送泵输送至裂解与扩繁反应器701和裂解反应器(703A或703B)内,使网笼1002半浸泡在粪污液体中;
②开启蒸汽发生器进水管道上的电磁阀1107b,将高温保温水箱1104中的热水泵入蒸汽发生器1102,再启动蒸汽发生器1102,最后再开启该裂解与扩繁反应器701和裂解反应器和裂解反应器(703A或703B)进汽管道前端的电磁阀(1304e、1304b或1304c),蒸汽发生器1102产生的热蒸汽输送至裂解与扩繁反应器701和裂解反应器(703A或703B)内,使该裂解与扩繁反应器701和裂解反应器(703A或703B)内液体温度和压力升高,排尽该裂解与扩繁反应器701和裂解反应器(703A或703B)内的冷空气后分别关闭裂解与扩繁反应器701和裂解反应器(703A或703B)排气阀,裂解与扩繁反应器701和裂解反应器(703A或703B)内温度和压力分别达到130℃和0.25Mpa,病死猪及胎盘开始高温高压裂解,检测控制系统109检测、控制裂解与扩繁反应器701和裂解反应器(703A或703B)内温度和压力,使之维持在130~140℃和0.25~0.35Mpa范围内,并保持30min以上,使病死猪彻底无害化,尸体解体,溶于液体中,得到裂解液;
③高温高压裂解完成后,关闭蒸汽发生器1102,开启电磁阀1107y,开启裂解与扩繁反应器701和裂解反应器(703A或703B)循环水进水管道上的电磁阀(1107m、1107n或1107o),开启电磁阀1107i,启动循环水泵1106e,热水进入该裂解与扩繁反应器701和裂解反应器(703A或703B)的水套循环,使裂解液温度与高温保温水箱1104热水温度达到平衡;之后关闭高温保温水箱1104出水管道上循环水泵1106e及电磁阀1107i,关闭电磁阀1107y,启动低温保温水箱1105出水管道上循环水泵1106d及电磁阀1107h,冷水进入该裂解与扩繁反应器701和裂解反应器(703A或703B)的水套循环,使裂解液温度降低到25~35℃之间,关闭循环水泵1106d及电磁阀1107h;
(2)裂解液养殖饲料昆虫
①将裂解与扩繁反应器701和裂解反应器(703A或703B)中裂解液输送至饲料工厂103,在裂解液中添加畜禽粪便,并混合均匀,将混合物作为昆虫的饲料,进行昆虫养殖,获得虫体和虫卵202,作为动物源性饲料203,与植物源性饲料608按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养 饲料,用于饲养猪只;
②将残余的裂解液与畜禽粪便混合物及昆虫粪便,经输送装置输送至固体高温好氧发酵反应器(304A、304B和304M)内进行高温好氧发酵,制得固体有机肥料603;
六、饲料作物种植:
(1)根据甜象草生长需求,在沼液中添加适量的氮磷钾化肥602,制得液体有机无机复混肥604;
(2)根据养猪场存栏数量和甜象草纳污能力配套种植土地607,在甜象草种植前及种植过程中,根据饲料作物生长需求分别施用适量固体有机肥603和液体有机无机复混肥604,收获甜象草,输送至植物源性饲料加工厂103,经加工制得植物源性饲料608,与黑水虻饲料203按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养猪只;
七、废气治理:
(1)固体高温好氧发酵系统104发酵臭气治理:分别开启固体高温好氧发酵反应器(304A、304B或....304M)排气管道上的电磁阀(1205a、1205b或....1205m),发酵过程中产生的臭气分别经换热冷凝器(1201a、1201b或....1201m)换热后,再经引风机(1202a、1202b或....1202m)分别引入生物除臭滤塔1203,经生物除臭滤塔1203内生物填料吸收、转化达标后排放,同时,经换热冷凝器(1201a、1201b或....1201m)加热的新鲜空气分别引入固体高温好氧发酵反应器(304A、304B或....304M)内;
(2)裂解与扩繁系统106发酵废气治理:分别打开电磁阀(1303a、1303b、1303c或1303d),开启引风机1305,各反应器处理过程中产生的废气分别经引风机1305引入生物除臭滤塔1306,废气经生物除臭滤塔1306内生物填料吸收、转化达标后排放。
实施例三
一种基于种养结合的养鸡场污染生态治理方法,包括:
一、栏舍源头分离、节水:源头分离节水型栏舍101将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪便中,使粪便最大程度的减量化,机械刮粪或人工干清粪清理出来的鸡粪堆放在干粪棚301,再由干粪棚301将粪便分别输往固体高温好氧发酵系统104和动物源性饲料工厂103;
二、黑水虻养殖:先调节猪粪便含水率至合适范围,然后在粪便上接种适量黑水虻适龄幼虫,经一段时间生长、繁殖后得到虫粪201和黑水虻虫体虫卵202混合物,黑水虻虫体虫卵202经干燥、粉碎等加工后制得黑水虻饲料203,与植物源性饲料608按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养鸡只;虫粪201经输送装置输送至固体高温好氧发酵反应器(304A、304B和....304M)内进行高温好氧发酵,制得固体有机肥料603;
三、粪便高温好氧发酵:
(1)打开电磁阀1107f,自来水自动对低温保温水箱1105补水,打开电磁阀1107a,低温保温水箱1105利用高度差自动向高温保温水箱1104补水,打开电磁阀(1107g、1107b和1107d),启动常压热水锅炉1101以及太阳能加热系统1103,高温保温水箱1104的水输往常压热水锅炉1101和太阳能加热系统1103进行加热后,再开启电磁阀(1107c和1107e),启动循环水泵(1106a和1106b),热水输往高温保温水箱1104进行储能,开启电磁阀1107i,开启待发酵的固体高温好氧发酵反应器(304A、304B或304M)加热夹套或盘管前端的电磁阀(1107j、1107k或1107l),启动热水循环水泵1106e,热水输送发酵固体高温好氧发酵反应器(304A、304B或304M)内物料升温;
(2)通过输送设备将干粪棚301的固体粪便和辅料302,以及腐熟菌剂303送入固体高温好氧发酵反应器(304A、304B或304M)内,控制混合物料含水率在55~65%之间,在加料的同时,检测控制系统109同时启动该固体高温好氧发酵反应器(304A、304B或304M)的驱动装置,实现进料并搅拌;
(3)进料完成后,检测控制系统109控制固体高温好氧发酵反应器(304A、304B或304M)停止搅拌 50分钟,再搅拌10分钟,再停止50分钟后,再搅拌10分钟,停-搅拌-停-搅拌-停-搅拌,周而复始是为定时搅拌程序,于此同时,当该固体高温发酵反应器(304A、304B或304M)在搅拌时,检测控制系统109分别自动启动引风机(1202a、1202b或1202m),为高温好氧发酵反应器(304A、304B或304M)内的被发酵物质供氧;①当检测控制系统109检测到该固体高温好氧发酵反应器(304A、304B或304M)内物料温度低于物料的设定温度60℃时,热水进入加热夹套或盘管,使固体高温好氧发酵反应器(304A、304B或304M)内物料温度上升;②当固体高温好氧发酵反应器(304A、304B或304M)内内物料温度大于或等于70℃时,停止定时搅拌的程序,改为温度控制搅拌程序:分别启动引风机(1202a、1202b或1202m)、驱动固体高温好氧发酵反应器(304A、304B或304M)搅拌,直到固体高温好氧发酵反应器(304A、304B或304M)内物料温度低于70℃后再启动定时搅拌程序,使该固体高温好氧发酵反应器(304A、304B或304M)内物料温度维持在60~70℃之间,固体高温好氧反应器(304A、304B或304M)的定时搅拌程序和温度控制搅拌程序,为固体高温好氧发酵反应器(304A、304B或304M)内的物料建立合适的发酵温度并提供了够用氧气,为粪便固体的高温好氧发酵,建立了合适的环境;
(4)物料进料后经24h完成高温好氧发酵,检测控制系统109控制该固体高温发酵反应器(304A、304B或304M)停机,然后先出料50%,再立即进料50%,之后每隔24h,再出料50%,再立即进料50%,以此类推,出料时先启动螺旋出料机,同时检测控制系统109控制固体高温好氧发酵反应器(304A、304B或304M)搅拌,引导出料;
(5)固体高温好氧发酵反应器(304A、304B或304M)排出的物料经输送装置输送至陈化间305,期间定时翻堆或曝气,使物料降温、散失水分,止到完全腐熟,制得有机肥料;
(6)当固体高温好氧发酵反应器(304A、304B和304M)同时发酵时,检测控制系统109分别检测、控制各固体高温好氧发酵反应器(304A、304B和304M)内物料温度,使各固体高温好氧发酵反应器(304A、304B和304M)内物料温度维持在60~70℃之间;
(7)检测控制系统109检测、控制高温保温水箱1104中水温,使之恒定在70~85℃之间:①当高温保温水箱1104中温度低于70℃时,启动常压热水锅炉1101,当太阳能加热系统1103集热水箱的热水温度大于70℃时,启动太阳能加热系统1103输出端的循环泵1106e,将热水输送至高温保温水箱1104热水;②当高温保温水箱1104中温度达到85℃时,关闭常压热水锅炉;
四、饲料作物种植:
(1)根据玉米生长需求,在固体有机肥中添加适量的氮磷钾化肥602,制得固体有机无机复混肥;
(2)根据养鸡场存栏数量和玉米纳污能力配套种植土地607,在玉米种植前及种植过程中,根据玉米不同生长时期对养分需求,分别施用适量固体有机肥603和有机无机复混肥,收获的玉米输送至植物源性饲料加工厂103,经加工制得植物源性饲料608,与动物源性饲料按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养鸡只,而玉米秸秆作为辅料输送至固体高温好氧发酵反应器内,与鸡粪混合高温发酵,制得固体有机肥料;
五、废气治理:
分别开启固体高温好氧发酵反应器(304A、304B或....304M)排气管道上的电磁阀(1205a、1205b或....1205m),发酵过程中产生的臭气分别经换热冷凝器(1201a、1201b或....1201m)换热后,再经引风机(1202a、1202b或....1202m)分别引入生物除臭滤塔1203,经生物除臭滤塔1203内生物填料吸收、转化达标后排放,同时,新鲜空气经换热冷凝器(1201a、1201b或....1201m)加热后再分别引入固体高温好氧发酵反应器(304A、304B或....304M)内。
实施例四
一种基于种养结合养牛场污染生态治理方法,包括:
一、栏舍源头分离、节水:源头分离节水型栏舍101将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入牛粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,机械刮粪或人工干清粪清理出来的牛粪便堆放在干粪棚301,再由干粪棚301将粪便分别输往固体高温好氧发酵系统104,牛粪尿和冲栏水输送往调节池401;
二、粪便高温好氧发酵:
(1)打开电磁阀1107f,自来水自动对低温保温水箱1105补水,打开电磁阀1107a,低温保温水箱1105利用高度差自动向高温保温水箱1104补水,打开电磁阀(1107g、1107b和1107d),启动循环水泵(1106a和1106b),启动常压热水锅炉1101以及太阳能加热系统1103,高温保温水箱1104的水输往常压热水锅炉1101和太阳能加热系统1103进行加热后,再开启电磁阀(1107c和1107e),再启动循环水泵(1106a和1106b),热水输往高温保温水箱1104进行储能,开启电磁阀1107i,开启固体高温好氧发酵反应器(304A、304B或304M)加热夹套或盘管前端的电磁阀(1107j、1107k或1107l),启动热水循环水泵1106e,热水经输送发酵固体高温好氧发酵反应器(304A、304B或304M)内物料升温;
(2)通过输送设备将干粪棚301的固体粪便和辅料302,以及腐熟菌剂303送入固体高温好氧发酵反应器(304A、304B或304M)内,控制混合物料含水率在55~65%之间,在加料的同时,检测控制系统109同时启动该固体高温好氧发酵反应器(304A、304B或304M)的驱动装置,实现进料并搅拌;
(3)进料完成后,检测控制系统109控制固体高温好氧发酵反应器(304A、304B或304M)停止搅拌50分钟,再搅拌10分钟,再停止50分钟后,再搅拌10分钟,停-搅拌-停-搅拌-停-搅拌,周而复始是为定时搅拌程序,于此同时,当该固体高温发酵反应器(304A、304B或304M)在搅拌时,检测控制系统109都分别自动启动引风机(1202a、1202b或1202m),为高温好氧发酵反应器(304A、304B或304M)内的被发酵物质供氧;①当检测控制系统109检测到该固体高温好氧发酵反应器(304A、304B或304M)内物料温度低于物料的设定温度60℃时,热水进入加热夹套或盘管,使固体高温好氧发酵反应器(304A、304B或304M)内物料温度上升;②当固体高温好氧发酵反应器(304A、304B或304M)内物料温度大于或等于70℃时,停止定时搅拌的程序,改为温度控制搅拌程序:启动引风机(1202a、1202b或1202m),驱动固体高温好氧发酵反应器(304A、304B或304M)搅拌,直到固体高温好氧发酵反应器(304A、304B或304M)内物料温度低于70℃后再启动定时搅拌程序,使该固体高温好氧发酵反应器(304A、304B或304M)内物料温度维持在60~70℃之间,固体高温好氧反应器(304A、304B或304M)的定时搅拌程序和温度控制搅拌程序,为固体高温好氧发酵反应器(304A、304B或304M)内的物料建立合适的发酵温度并提供了够用氧气,为粪便固体的高温好氧发酵,建立了合适的环境;
(4)物料进料后经24h完成高温好氧发酵,检测控制系统109控制该固体高温发酵反应器(304A、304B或304M)停机,然后先出料50%,再立即进料50%,之后每隔24h,再出料50%,再立即进料50%,以此类推,出料时先启动螺旋出料机,同时检测控制系统109控制固体高温好氧发酵反应器(304A、304B或304M)搅拌,引导出料;
(5)固体高温好氧发酵反应器(304A、304B或304M)排出的物料经输送装置输送至陈化间305,期间定时翻堆或曝气,使物料降温、散失水分,直到完全腐熟,制得有机肥料;
(6)当固体高温好氧发酵反应器(304A、304B和304M)同时发酵时,检测控制系统109分别检测各固体高温好氧发酵反应器(304A、304B和304M)内物料温度,使各固体高温好氧发酵反应器(304A、304B和304M)内物料温度维持在60~70℃之间;
(7)检测控制系统109检测、控制高温保温水箱1104中水温,使之恒定在70~85℃之间:①当高温保温水箱1104中温度低于70℃时,启动常压热水锅炉1101,当太阳能加热系统1103集热水箱的热水温度大于70℃时,启动太阳能加热系统1103输出端的循环泵1106e,将热水输送至高温保温水箱1104热水;② 当高温保温水箱1104中温度达到85℃时,关闭常压热水锅炉。
三、粪污液体中温厌氧发酵:
(1)将粪尿和冲栏水输送至调节池401内,使调节池401内粪污液体液位不断升高,当高于调节池401的排液口时,粪污液体因高度差沿连接管道自然流入第一个液体中温厌氧发酵反应器402A中,检测控制系统109控制打开第一个液体中温厌氧发酵反应器402A加热盘管前端的电磁阀1107s,热水进入第一个液体中温厌氧发酵反应器402A加热盘管504内循环,使第一个液体中温厌氧发酵反应器402A内物料温度迅速升至35℃,物料开始中温厌氧发酵反应;
(2)当第一个液体中温厌氧发酵反应器402A中内液体液位高于排液口时,粪污液体因高度差沿连接管道自然流入第二个液体中温厌氧发酵反应器402B中,检测控制系统109控制打开第二个液体中温厌氧发酵反应器402B加热盘管前端的电磁阀1107t,热水进入第二个液体中温厌氧发酵反应器402B加热盘管内循环,使物料温度迅速升至35℃,物料持续中温厌氧发酵反应;
(3)当第二个液体中温厌氧发酵反应器402B内液体液位高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,止到粪污液体自然流入第N个液体中温厌氧发酵反应器402N内,检测控制系统109控制打开第N个液体中温厌氧发酵反应器402N加热盘管504前端的电磁阀1107u,热水进入第N个液体中温厌氧发酵反应器402N加热盘管504内循环,使物料温度迅速升至35℃,物料持续中温厌氧发酵反应;
(4)分时启动液体中温厌氧发酵反应器(402A、402B和....402N)中的偏振器513,防止液体液面“结壳”,减慢液体沉积物沉淀速度;
(5)检测控制系统109分别检测、控制液体中温厌氧发酵反应器(402A、402B和....402N)中物料温度,使之维持在35~50℃恒定范围内,粪污液体依次流经N个液体中温厌氧发酵反应器(402A、402B和....402N),第N个液体中温厌氧发酵反应器402N中发酵液因高度差沿管道自然流入出液池403中,制得沼液肥;
(5)检测控制系统109根据设定的厌氧发酵时间,定时启动污泥泵404以控制出液池403的液位,确保粪污液体在液体厌氧中温发酵反应器(402A、402B和....402N)内的停留时间达到15天以上,当中温厌氧发酵的时间达到15天后,用污泥泵404将出液池403中沼液泵入贮液池405中,使出液池403中液体液位降低,当检测控制系统109检测出液池的液位到达下限液位后关闭污泥泵404;
(6)液体中温厌氧发酵反应器(402A、402B和....402N)产生的沼气经沼气排气管510及输送管道输送至沼气预处理装置1112处理后,作为蒸汽发生器1102燃烧燃料,当冬季气温低时,蒸汽发生器1102还燃烧包括电、柴油,以及生物质等作为补充燃料;
四、病死牛及胎盘裂解与扩繁:
(1)病死牛及胎盘裂解
①用叉车或其它转运设备将病死大牛放入网笼1002中,输送装置将网笼1002推送到裂解与扩繁反应器701内,用叉车或其它转运设备将病死小牛和胎盘放入网笼1002中,输送装置将网笼1002推送到裂解反应器(703A或703B)内,关闭封盖门,将调节池中401中液体经输送泵输送至裂解与扩繁反应器701和裂解反应器(703A或703B)内,使网笼1002半浸泡在粪污液体中;
②开启蒸汽发生器进水管道上的电磁阀1107b,将高温保温水箱1104中的热水泵入蒸汽发生器1102,再启动蒸汽发生器1102,最后再开启该裂解与扩繁反应器701和裂解反应器和裂解反应器(703A或703B)进汽管道前端的电磁阀(1304e、1304b或1304c),蒸汽发生器1102产生的热蒸汽输送至裂解与扩繁反应器701和裂解反应器(703A或703B)内,使该裂解与扩繁反应器701和裂解反应器(703A或703B)内液体温度和压力升高,排尽该裂解与扩繁反应器701和裂解反应器(703A或703B)内的冷空气后分别关闭裂解与扩繁反应器701和裂解反应器(703A或703B)排气阀,裂解与扩繁反应器701和裂解反应器(703A或703B)内温度和压力分别达到130℃和0.25Mpa,病死牛及胎盘开始高温高压裂解,检测控制系统109检测、 控制裂解与扩繁反应器701和裂解反应器(703A或703B)内温度和压力,使之维持在130~140℃和0.25~0.35Mpa范围内,并保持30min以上,使病死牛彻底无害化,尸体解体,溶于液体中,得到裂解液;
③高温高压裂解完成后,关闭蒸汽发生器1102,开启电磁阀1107y,开启裂解与扩繁反应器701和裂解反应器(703A或703B)循环水进水管道上的电磁阀(1107m、1107n或1107o),开启电磁阀1107i,启动循环水泵1106e,热水进入该裂解与扩繁反应器701和裂解反应器(703A或703B)的水套循环,使裂解液温度与高温保温水箱1104热水温度达到平衡;之后关闭高温保温水箱1104出水管道上循环水泵1106e及电磁阀1107i,关闭电磁阀1107y,启动低温保温水箱1105出水管道上循环水泵1106d及电磁阀1107h,冷水进入该裂解与扩繁反应器701和裂解反应器(703A或703B)的水套循环,使裂解液温度降低到25~35℃之间,关闭循环水泵1106d及电磁阀1107h;
④开启裂解反应器(703A或703B)出料管道上的电磁阀,将裂解反应器(703A或703B)内裂解液输送到扩繁反应器704内;
(2)裂解液扩繁
①将提前培养的微生物种子液分别经裂解与扩繁反应器701的进料管812和扩繁反应器704的进料口905输送至该裂解与扩繁反应器701和扩繁反应器704内,启动曝气风机1301,检测控制系统109分别控制电磁阀1304d和电磁阀1304e的开或闭,将经空气过滤器1302过滤的无菌空气分别输送至裂解与扩繁反应器701和扩繁反应器704内,同时,检测控制系统109检测、控制裂解与扩繁反应器701和扩繁反应器704内温度,使温度分别维持在25~35℃之间,检测控制方法如下:1)当检测控制系统109检测到裂解与扩繁反应器701或扩繁反应器704内温度低于25℃时,检测控制系统109控制开启高温保温水箱1104出水管道上循环水泵1106e,开启电磁阀1107i,开启电磁阀(1107m或1107p),升高裂解与扩繁反应器701和扩繁反应器704内培养液温度至35℃时,停止循环水泵1106e,关闭电磁阀1107i,关闭电磁阀(1107m或1107p);2)当检测控制系统109检测到裂解与扩繁反应器701或扩繁反应器704内温度超过35℃时,检测控制系统109控制启动曝气风机1301,开启电磁阀(1304d或1304e),向裂解与扩繁反应器701或扩繁反应器704内曝气,使该裂解与扩繁反应器701或扩繁反应器704内物料温度降至25~35℃之间时,关闭曝气风机1301,关闭电磁阀(1304d或1304e);
②裂解液经3天培养后,培养液菌浓度达到要求,即完成扩繁过程,分别打开裂解与扩繁反应器701出料管809换热扩繁反应器704底部的出料管910,排出培养液,储存在储液罐中,然后经油水分离器分离得到微生物培养液702和油脂705,而油脂705作为工业原料;
③当多个裂解与扩繁反应器701、裂解反应器(703A和703B),以及扩繁反应器704同时反应时,检测控制系统109根据不同裂解与发酵阶段,分别检测、控制各反应器内物料温度和压力,使各反应器反应器内温度和压力维持在设定范围内;
六、饲料作物种植:
(1)将微生物培养液702按一定比例喷洒到陈化的固体有机肥料603中,混合均匀后制得生物有机肥料606;将微生物培养液702按一定比例添加到沼液601中,制得液体微生物肥料605;根据皇竹草生长需求,在沼液中添加适量的氮磷钾化肥602,制得液体有机无机复混肥604;
(2)根据养牛场存栏数量和皇竹草纳污能力配套种植土地607,在皇竹草种植前及种植过程中,根据饲料作物生长需求分别施用适量固体有机肥603、生物有机肥料606、液体微生物肥料605和液体有机无机复混肥604,收获皇竹草,输送至植物源性饲料加工厂103,经加工制得植物源性饲料608,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养牛只;
七、废气治理:
(1)固体高温好氧发酵系统104发酵臭气治理:分别开启固体高温好氧发酵反应器(304A、304B或....304M)排气管道上的电磁阀(1205a、1205b或....1205m),发酵过程中产生的臭气分别经换热冷凝器 (1201a、1201b或....1201m)换热后,再经引风机(1202a、1202b或....1202m)分别引入生物除臭滤塔1203,经生物除臭滤塔1203内生物填料吸收、转化达标后排放,同时,经换热冷凝器(1201a、1201b或....1201m)加热的新鲜空气分别引入固体高温好氧发酵反应器(304A、304B或....304M)内;
(2)裂解与扩繁系统106发酵废气治理:分别打开电磁阀(1303a、1303b、1303c或1303d),开启引风机1305,各反应器处理过程中产生的废气分别经引风机1305引入生物除臭滤塔1306,废气经生物除臭滤塔1306内生物填料吸收、转化达标后排放。

Claims (10)

  1. 一种基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,包括源头分离节水型栏舍、污染治理工厂、饲料工厂以及配套种植土地;所述的污染治理工厂和饲料工厂是由专业的团队对畜禽粪污进行专业化处置,把畜禽粪污在源头利用配套的污染治理车间将污染转化并生产为改良土壤所需的肥料是为污染治理工厂,把畜禽粪污在源头,利用配套的种植土地和饲料生产车间,将污染转化并生产动物源性饲料和植物源性饲料,是为饲料工厂;所述的污染治理工厂由固体高温好氧发酵系统、液体中温厌氧发酵系统、裂解与扩繁系统、加热及热量平衡系统、废气处理系统和检测控制系统组成;所述的源头分离节水型栏舍是将雨污、饮污进行分离,雨水、饮用余水排往室外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,而且畜禽出栏或转栏时采用高压水枪甚至采用高压空气进行冲栏,机械刮粪或人工干清粪清理出来的粪便堆放在干粪棚,再由干粪棚将粪便分别输往固体高温好氧发酵系统和饲料工厂,饲料工厂产生的虫粪输送往固体高温好氧发酵系统,而粪尿液体和冲栏水输送往调节池,调节池连接液体中温厌氧发酵系统的进料口,以及裂解与扩繁系统的进液口;固体高温好氧发酵系统产生的发酵臭气排气口,以及裂解与扩繁系统的发酵臭气排气口通过排气管道连接废气处理系统;加热及热量平衡系统分别通过管道连接固体高温好氧发酵系统的加热夹套或盘管、液体中温厌氧发酵系统的加热盘管,以及裂解与扩繁系统的水套和盘管;检测控制系统的各传感器设置在上述各系统内,对各关键参数进行设置、检测和控制。
  2. 根据权利要求1所述的基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,饲料工厂是由专业的团队对畜禽粪污进行专业化处置,把畜禽粪污在源头,利用配套的种植土地种植粮食和牧草,在生产植物源饲料的同时,用畜禽粪便以及畜禽尸体和胎盘的裂解液调配畜禽粪便饲养昆虫,生产虫体虫卵,作为动物源性饲料;种植的粮食和牧草包括皇竹草、象草、苜蓿草、苋草、黑麦草、狼尾草、构树、玉米、大豆在内一种或几种;饲养的昆虫包括黑水虻、蚯蚓在内一种或几种;饲料工厂是将收获的植物源性饲料、动物源性饲料再添加适当的粮食、微量元素,生产全价营养饲料,用于饲养畜禽。
  3. 根据权利要求1所述的基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,所述固体高温好氧发酵系统包括M个固体高温好氧发酵反应器,M为正整数;所述干粪棚通过输送装置与各固体高温好氧发酵反应器的进料口连通,各固体高温好氧发酵反应器的出料口处设有与之连通的陈化间。
  4. 根据权利要求1所述的基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,液体中温厌氧发酵系统包括依次连通的调节池、N个液体中温厌氧发酵反应器、出液池、污泥泵和贮液池,其中,N为正整数。
  5. 根据权利要求4所述的基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,所述液体中温厌氧发酵反应器包括软体厌氧发酵袋,调节池的出液口经管道连接第一个软体厌氧发酵袋的进料口,其该软体厌氧发酵袋的排料口经管道连接第二个软体厌氧发酵袋的进料口,以此类推,直至连接到第N个软体厌氧发酵袋的进料口,其排料口经管道连接出液池,出液池再经污泥泵连接贮液池;所述液体中温厌氧发酵反应器还包括底部为矩形的反应池,所反应池设置于沿反应池长度方向倾斜角为0.3~1%的斜面上,该斜面的四周建有排水沟,排水沟通过管道连接地势更低处的集水井,反应池底收集的水份经排水沟汇集到集水井排出,反应池的底部四周及池底斜面设置有保温层,该保温层由保温材料组成,池底部保温层表面设有热辐射板,热辐射板上均匀固定有加热盘管,加热盘管上覆盖有软体厌氧发酵袋,软体厌氧发酵袋沿长度方向位置高的一侧设置有进料口,低的一侧设置有排料口,矩形反应器长度方向的中部设置有偏振器,软体厌氧发酵袋的顶部设置有沼气管道,管道上设置有压力传感器,软体厌氧发酵袋上方还覆盖有保温层和防水盖。
  6. 根据权利要求4所述的基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,彼此串联的液体中温厌氧发酵反应器,后面的液体中温厌氧发酵反应器进料口的池底低于前面液体中温厌氧发酵反应器出料口的高度0.2米以上,以防止后面反应器中的沉淀物,回流到前面的反应器中去,而每个液体中温厌氧发酵反应器,其进料口侧的池底都高于出料口的池底,其倾斜度的范围为0.3~1%,以减少液体中温厌氧发 酵反应器清理污泥的次数。
  7. 根据权利要求1所述的基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,裂解与扩繁系统由Y个裂解与扩繁反应器(Y≥2)、X个裂解反应器(X≥1)、Z个扩繁反应器(Z≥1)、蒸汽发生器、曝气风机、空气过滤器、电磁阀,以及连接管道组成,调节池中液体经输送泵输送到裂解与扩繁反应器,以及裂解反应器内,裂解反应器的出料管接至扩繁反应器,裂解与扩繁反应器以及扩繁反应器的出料管分别经管道连接到储液罐;所述裂解与扩繁反应器包括支座、罐体、封盖以及输送装置,罐体固定在底座上,罐体的一侧用封盖密闭封死,罐体的另一侧装有封盖门,封盖门与罐体之间采用铰链连接,封盖门关闭时采用多个锁扣螺栓锁紧、密封,使封盖与罐体及封盖门之间构成一个密闭的裂解及扩繁空间;所述罐体卧置,罐体内设置有平行于罐体轴线并沿罐体径向固定的导轨,用来承载并输送装载病死猪及胎盘的网笼,所述导轨下部安装有曝气管和多个曝气头,曝气管的一端密封,另一端通过封盖延伸到罐体外,并依次与电磁阀、单向阀、空气过滤器、曝气风机的出风口以及电磁阀、单向阀、蒸汽发生器的蒸汽出口连通;封盖的上侧布置有排气管和进料管,封盖上侧还安装有压力传感器、安全阀,封盖下侧安装有温度传感器、出料管;在卧置罐体外部装有水套,水套用来对裂解罐进行降温,水套的循环水进水管安排在罐体的下部,水套的循环水排水管安排在罐体的上部,水套的外面包裹有由保温隔热材料制成的保温层。
  8. 根据权利要求1所述的基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,所述加热及热量平衡系统由常压热水锅炉、E个高温保温水箱(E≥1)、F个低温保温水箱(F≥1)、循环水泵、电磁阀以及连接管道;对于太阳能资源充裕的地区,加热及热量平衡系统还包括太阳能加热系统;高温水箱用于为常压热水锅炉、太阳能加热系统以及蒸汽发生器提供水源,高温水箱的出水管分别与常压热水锅炉、太阳能加热系统及蒸汽发生器进水口连通;常压热水锅炉、太阳能加热系统的出水口通过各自的管道与高温水箱的进水管连通;高温水箱的另一个出水管连接水泵,分别向固体高温好氧发酵反应器、液体中温厌氧发酵反应器及裂解与扩繁反应器、裂解反应器输送热水,各反应器的回水经各自的回水管道,送回到高温水箱;低温水箱为高温水箱提供水源,低温水箱设置于高温水箱的上方,在检测控制系统的控制下自动的对高温水箱进行补水,低温水箱的另一个出水管道经泵分别与裂解与扩繁反应器和裂解反应器的水套连接,同时各水套通过各自的回水管道,将水送回到低温水箱实现循环。
  9. 根据权利要求1所述的基于种养结合的畜禽养殖场污染生态治理系统,其特征在于,废气处理系统包括固体高温好氧发酵系统臭气处理系统和裂解与扩繁系统废气处理系统;所述固体高温好氧发酵系统臭气处理系统的结构连接如下:固体高温好氧发酵反应器的排气口分别经各自的排气管道连接换热冷凝器的废气进气口,各换热冷凝器的废气排气口分别经管道连接引风机的输入端,换热冷凝器的空气进气口联通大气,各换热冷凝器的空气出气口经管道分别连接固体高温好氧发酵反应器的进气口,各引风机的输出端分别经管道并联到生物除臭滤塔的进气口,生物除臭滤塔的排气口经竖直管道联通大气;裂解与扩繁系统废气处理系统的结构连接如下:裂解与扩繁反应器的曝气口分别经管道依次连接空气过滤器和曝气风机,裂解与扩繁反应器和裂解反应器的排气管道分别连接到引风机的输入端,各引风机的输出端通过管道连接生物除臭滤塔的进气口,生物除臭滤塔的排气口经竖直管道联通大气。
  10. 一种基于上述种养结合的畜禽养殖场污染生态治理方法,其特征在于,包括如下步骤:
    一、栏舍源头分离、节水:将雨污、饮污进行分离,雨水、饮用余水排往舍外的沟渠而不是混入粪尿中,采用节水冲栏及机械刮粪或人工干清粪,在栏舍源头上使雨水、饮用余水不混入粪尿中,使粪尿最大程度的减量化,清洗栏舍采用高压水枪甚至采用高压空气,机械刮粪或人工干清粪清理出来的粪便堆放在干粪棚,再由干粪棚将粪便分别输往固体高温好氧发酵系统和动物源性饲料工厂,粪尿和冲栏水输送往调节池;
    二、饲料昆虫养殖:先调节粪便含水率至合适范围,作为昆虫的饲料,进行昆虫养殖,获得虫体和虫卵,作为动物源性饲料,与植物源性饲料按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽;将虫粪经输送装置输送至固体高温好氧发酵反应器内进行高温好氧发酵,制得固体有机肥料;
    三、粪便高温好氧发酵:
    (1)自来水自动对低温保温水箱补水,低温保温水箱利用高度差在检测控制系统的控制下,自动向高温保温水箱补水,启动常压热水锅炉以及太阳能加热系统的循环泵,循环泵将高温保温水箱的水输往常压热水锅炉和太阳能加热系统进行加热后,输往高温保温水箱进行储能,开启固体高温好氧发酵反应器的加热水套或盘管前端的电磁阀,开启热水循环水泵,热水经循环水泵及管道输送至该固体高温好氧发酵反应器的加热水套或盘管,使该发酵固体高温好氧发酵反应器内物料升温;
    (2)通过输送设备将栏舍分离出的粪便、虫粪和辅料,以及嗜热腐熟菌剂送入固体高温好氧发酵反应器内,控制混合物料含水率在55~65%之间,在加料的同时,检测控制系统同时启动该固体高温好氧发酵反应器的驱动装置,使反应器实现进料并搅拌;
    (3)进料完成后,检测控制系统控制固体高温好氧发酵反应器停止搅拌T1时间,再搅拌T2时间,再停止T1时间后,再搅拌T2时间,停-搅拌-停-搅拌-停-搅拌,周而复始是为定时搅拌程序,于此同时,当固体高温好氧发酵反应器在T2时间搅拌时,检测控制系统都自动启动引风机,为固体高温好氧发酵反应器内的被发酵物质供氧;①当检测控制系统检测到固体高温好氧发酵反应器内物料温度低于物料的设定温度H1时,热水进入加热夹套或盘管,使反应器内物料温度上升;②当该固体高温好氧发酵反应器内物料温度大于等于H2时,停止定时搅拌的程序,改为温度控制搅拌程序:启动引风机、驱动固体高温好氧发酵反应器搅拌,直到固体高温好氧发酵反应器内物料温度低于H2后再启动定时搅拌程序,使该固体高温好氧发酵反应器内物料温度维持在H1~H2之间,高温好氧反应器的定时搅拌程序和温度控制搅拌程序,为该固体高温好氧发酵反应器内的物料建立合适的发酵温度并提供了够用氧气,为粪便固体的高温好氧发酵,建立了合适的环境;
    (4)物料进料后经T3时间的发酵,一次发酵完成,检测控制系统控制该固体高温发酵反应器停机,然后先出部分料,再立即进等量的物料,之后每隔T3时间,再出部分料,再立即进等量的物料,以此类推,出料时先启动出料机,同时检测控制系统控制固体高温好氧发酵反应器搅拌,引导出料;
    (5)固体高温好氧发酵反应器排出的物料经输送装置输送至陈化间,期间定时翻堆或曝气,使物料降温、散失水分,直到完全腐熟,制得有机肥料;
    (6)当M个固体高温好氧发酵反应器同时发酵时,检测控制系统分别检测各固体高温好氧发酵反应器内物料温度,使各固体高温好氧发酵反应器内物料温度维持在H1~H2之间;
    (7)检测控制系统检测、控制高温保温水箱中水温,使之恒定在H3~H4内:①当高温保温水箱中温度低于H3时,启动循环泵和常压热水锅炉,加热高温保温水箱的热水,当太阳能加热系统集热水箱的热水温度大于H3时,启动太阳能加热系统的循环泵,加热高温保温水箱热水;②当高温保温水箱中温度达到H4时,关闭常压热水锅炉;
    四、粪污液体中温厌氧发酵:
    (1)将粪污液体与冲栏水混合液输送至调节池内,使调节池内液体液位不断升高,当高于调节池排液口时,粪污液体因高度差沿连接管道自然流入第一个软体厌氧发酵袋内,检测控制系统控制打开第一个液体中温厌氧发酵反应器加热盘管前端的电磁阀,开启循环水泵,热水进入加热盘管内循环,使软体厌氧发酵袋内物料温度迅速升至设定温度,物料开始进行中温厌氧发酵反应;
    (2)当第一个软体厌氧发酵袋内液体液位逐渐升高,高于排液口时,液体因高度差沿连接管道自然流入第二个软体厌氧发酵袋内,检测控制系统控制打开第二个液体中温厌氧发酵反应器加热盘管前端的电磁阀,热水进入加热盘管内循环,使软体厌氧发酵袋内物料温度迅速升至设定温度,物料持续进行中温厌氧发酵反应;
    (3)当第二个软体厌氧发酵袋内液体液位逐渐升高,高于排液口时,粪污液体因高度差沿连接管道自然流出,以此类推,粪污液体通过第N个软体厌氧发酵袋直至流入出液池内,检测控制系统控制打开第N个液体中温厌氧发酵反应器加热盘管前端的电磁阀,热水进入加热盘管内循环,使第N个软体厌氧发酵袋内物料温度迅速升至设定温度,物料持续进行中温厌氧发酵反应;
    (4)分别定时启动N个液体中温厌氧发酵反应器中的偏振器,防止软体厌氧发酵袋内液体“结壳”,减慢液体沉积物沉淀速度;
    (5)检测控制系统分别控制各液体中温厌氧反应器加热盘管前的电磁阀的开和闭,分别控制各软体厌氧发酵袋内物料温度,使之恒定在设定温度范围内,粪污液体依次流经N个软体厌氧发酵袋,第N个软体厌氧发酵袋内发酵液因高度差沿管道自然流入出液池中,制得沼液;
    (5)检测控制系统根据设定的厌氧发酵时间T,定时启动污泥泵以控制出液池的液位,确保粪污液体在厌氧中温发酵反应器内的停留时间达到T,当厌氧发酵的时间达到T后,用污泥泵将出液池中沼液泵入贮液池中,使出液池中液体液位降低,当检测控制系统检测出液池的液位到达下限液位后关闭污泥泵;
    (6)N个软体厌氧发酵袋产生的沼气经输送管道输送至沼气预处理装置处理后,作为燃烧燃料提供给常压热水锅炉和蒸汽发生器,当冬季气温低时,常压热水锅炉和蒸汽发生器还使用包括电、柴油,以及生物质等作为补充燃料;
    五、病死畜禽及胎盘裂解与扩繁:
    (1)病死畜禽及胎盘裂解:
    ①用叉车或其它转运设备将体积较大的病死畜禽放入网笼中,输送装置将网笼推送到裂解与扩繁反应器内,将体积较小的病死畜禽和胎盘放入网笼中,输送装置将网笼推送到裂解反应器内,关闭封盖门,将调节池内粪污液体经污泥泵输送至裂解与扩繁反应器和裂解反应器内,使网笼半浸泡在液体中;
    ②启动蒸汽发生器,分别打开裂解与扩繁反应器和裂解反应器进汽管道上的电磁阀,蒸汽发生器生产的热蒸汽经单向阀分别输送至该裂解与扩繁反应器和裂解反应器内,使该裂解与扩繁反应器和裂解反应器内液体温度和压力升高,同时排尽该裂解与扩繁反应器和裂解反应器内的冷空气后分别关闭该裂解与扩繁反应器和裂解反应器排气管道上的排气阀,使该裂解与扩繁反应器和裂解反应器内温度和压力继续升高,分别达到法定处理的温度和压力,病死畜禽和胎盘开始高温高压裂解,检测控制系统检测、控制该裂解与扩繁反应器和裂解反应器内温度和压力,使之恒定在法定的温度和压力的范围内,并保持法定时间,使病死畜禽彻底无害化,尸体解体,溶于液体中;
    ③高温高压裂解完成后,分别关闭裂解与扩繁反应器和裂解反应器进汽管道上的电磁阀,各反应器均完成高温高压裂解后关闭蒸汽发生器,分别开启热水管道上的电池阀以及该裂解与扩繁反应器和裂解反应器进水管道上的的电池阀,启动高温保温水箱出水管道上循环水泵,热水分别进入该裂解与扩繁反应器和裂解反应器的水套循环,使裂解液降温并与高温保温水箱热水温度达到平衡;之后关闭高温热水管道上的电磁阀,启动低温保温水箱出水管道上循环水泵,冷水进入该裂解与扩繁反应器和裂解反应器的水套循环,使裂解液温度降低到设定温度H6,关闭循环水泵;
    (2)将裂解液作为扩繁微生物的培养基,经扩繁得到微生物培养液;将裂解液作为养殖饲料昆虫的原料进行饲料昆虫养殖;
    (Ⅰ)裂解液扩繁微生物培养液方法如下:
    ①开启裂解反应器出料管道上的电磁阀,将裂解反应器内裂解液输送到扩繁反应器内,提前培养的微生物种子液分别经裂解与扩繁反应器和扩繁反应器进料口输送至反应器内,分别打开裂解与扩繁反应器和扩繁反应器曝气管道上的电磁阀,启动曝气风机,新鲜空气经空气过滤器过滤后,再经单向阀向裂解与扩繁反应器和扩繁反应器内定时曝气送氧,同时,检测控制系统检测、控制反应器内温度,使温度维持在H5~H6之间,检测控制方法如下:当检测控制系统检测到该裂解与扩繁反应器和扩繁反应器内温度低于下限值H5时,检测控制系统控制高温保温水箱对裂解与扩繁反应器和扩繁反应器加热至H6后关闭;
    ②裂解液经一段时间培养扩繁后,培养液菌浓度达到要求,即完成扩繁过程,微生物培养液经排料阀排出至贮液罐中静置,然后经油水分离器分离得到微生物培养液和油脂,而油脂作为工业原料;
    ③当多个反应器同时反应时,检测控制系统根据不同裂解与扩繁阶段,分别检测、控制各反应器内物料温度和压力,使各反应器内温度和压力维持在设定范围内;
    (Ⅱ)裂解液养殖饲料昆虫方法如下:
    ①在裂解液中添加畜禽粪便,并混合均匀,将混合物作为昆虫的饲料,进行昆虫养殖,获得虫体和虫卵,作为动物源性饲料,与植物源性饲料按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽;②将残余的裂解液与畜禽粪便混合物及昆虫粪便,经输送装置输送至固体高温好氧发酵反应器内进行高温好氧发酵,制得固体有机肥料;
    六、饲料作物种植:
    (1)将微生物培养液按一定比例喷洒到陈化的固体有机肥料中,搅拌均匀制得生物有机肥料;将微生物培养液按一定比例添加到沼液中,制得液体微生物肥料;根据饲料作物生长需求,在沼液中添加适量的氮磷钾化肥,制得液体有机无机复混肥;
    (2)根据畜禽养殖场饲养畜禽数量和种植的饲料作物的纳污能力配套种植土地,在种植前及种植过程中,根据饲料作物生长需求分别施用适量生物有机肥料、液体微生物肥料和液体有机无机复混肥,收获如牧草、玉米等饲料原料,输送至饲料工厂,经加工制得植物源性饲料,与动物源性饲料按一定比例混合,再添加适当的粮食、微量元素等配方,生产全价营养饲料,用于饲养畜禽;
    七、废气治理:
    (1)固体高温好氧发酵系统发酵臭气治理:分别开启固体高温好氧发酵反应器排气管道上的电磁阀,固体高温好氧发酵反应器发酵过程中产生的臭气分别经换热冷凝器换热后,再分别经引风机引入生物除臭滤塔,经生物除臭滤塔内生物填料吸收、转化达标后排放,同时,经换热冷凝器加热的新鲜空气分别引入固体高温好氧发酵反应器内;
    (2)裂解与扩繁系统发酵废气治理:分别开启各反应器排气管道上的电磁阀,裂解与扩繁系统在发酵过程中产生的废气分别经引风机引入生物除臭滤塔,经生物除臭滤塔内生物填料吸收、转化达标后排放。
PCT/CN2017/106630 2017-10-12 2017-10-18 一种基于种养结合的畜禽养殖场污染生态治理系统及方法 WO2019071644A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/529,304 US20200078840A1 (en) 2017-10-12 2019-08-01 Ecological pollution treatment system for livestock and poultry farms based on combination of planting and breeding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710949791.6 2017-10-12
CN201710949791.6A CN107759254B (zh) 2017-10-12 2017-10-12 一种基于种养结合的畜禽养殖场污染生态治理系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/529,304 Continuation US20200078840A1 (en) 2017-10-12 2019-08-01 Ecological pollution treatment system for livestock and poultry farms based on combination of planting and breeding

Publications (1)

Publication Number Publication Date
WO2019071644A1 true WO2019071644A1 (zh) 2019-04-18

Family

ID=61268055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106630 WO2019071644A1 (zh) 2017-10-12 2017-10-18 一种基于种养结合的畜禽养殖场污染生态治理系统及方法

Country Status (3)

Country Link
US (1) US20200078840A1 (zh)
CN (1) CN107759254B (zh)
WO (1) WO2019071644A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127970A (zh) * 2019-06-04 2019-08-16 广东广垦畜牧工程研究院有限公司 一种规模化猪场猪粪综合处理的方法及处理装置
CN110921828A (zh) * 2019-12-20 2020-03-27 深圳市中环生物能源科技有限公司 生化综合中常温厌氧处理系统及其处理方法
CN111875417A (zh) * 2020-07-23 2020-11-03 安徽辰创工程技术开发有限公司 一种粪污无害化处理装置
CN112024569A (zh) * 2020-07-31 2020-12-04 浙江天地环保科技股份有限公司 一种封闭式易腐有机废弃物生物处理自动化集成系统及方法
CN114793809A (zh) * 2022-04-14 2022-07-29 河南科技大学 一种利用沼液的苜蓿周年生产方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107597809B (zh) * 2017-10-12 2020-09-11 汪深 一种病死畜禽治理系统及方法
CN108889765A (zh) * 2018-07-06 2018-11-27 浙江百思达科技有限公司 餐厨垃圾后处理系统以及方法
CN108531395A (zh) * 2018-07-11 2018-09-14 上海环境工程设计研究院有限公司 一种小型畜禽粪污处理一体化装置
CN108935138A (zh) * 2018-07-30 2018-12-07 开平市华声生物科技有限公司 一种畜禽粪便闭环式生物循环利用系统
CN108990912A (zh) * 2018-08-17 2018-12-14 李恒 一种用于黑水虻幼虫的叠层式养殖工艺与设备
CN109536365B (zh) * 2018-11-22 2021-08-24 广州博善生物科技股份有限公司 发酵饲料装置、系统及方法
CN109497103B (zh) * 2018-11-28 2020-07-07 广东省农业科学院动物科学研究所 一种复合脂类、减少畜禽粪污臭味臭气排放复合脂类喷雾剂及其制备方法和应用
CN109685677A (zh) * 2018-12-24 2019-04-26 广西大学 一种智慧粪肥收运系统及方法
CN109984096B (zh) * 2019-04-18 2024-03-26 扬州宇家环保科技有限公司 一种黑水虻一体式自动养殖生产线
CN110040912A (zh) * 2019-05-08 2019-07-23 苏州金桨节能与环保科技有限公司 一种靶向微生物的培菌方法及其应用
CN112913783A (zh) * 2019-12-06 2021-06-08 湖南祥柏生态环保科技有限公司 一种粪污无害化黑水虻养殖方法
CN111713412A (zh) * 2020-05-29 2020-09-29 安徽良木农业发展有限公司 一种生态养猪系统及其生态循环方法
CN111849712B (zh) * 2020-06-29 2023-08-29 河南科技大学 用于沼气工程和用户供暖的热水循环系统及其控制方法
CN111972348A (zh) * 2020-08-27 2020-11-24 荆门尚迪环保科技有限公司 一种畜禽养殖以及作物种植的循环结合方法
CN112273038B (zh) * 2020-10-21 2022-10-11 塔里木大学 一种促苗壮苗的棉花种植方法
CN112588781B (zh) * 2020-11-25 2022-03-25 湖南祥柏生态环保科技有限公司 安全隔离式病死动物处理厂区
CN112658005A (zh) * 2020-12-04 2021-04-16 牧原食品股份有限公司 一种病死畜禽无害化智能处理系统
CN112603184A (zh) * 2020-12-08 2021-04-06 孙竹良 无人操作生产动物蛋白的无臭非水冲城市公厕和农村宅厕
CN112661360A (zh) * 2020-12-29 2021-04-16 广西风向标环保科技有限公司 一种养殖污水处理及资源化利用工艺
CN113213696A (zh) * 2021-02-01 2021-08-06 陕西新泓水艺环境科技有限公司 一种污水处理装置及方法
CN113620509A (zh) * 2021-07-23 2021-11-09 江苏龙腾工程设计股份有限公司 一种用于建筑的装配式污水处理装置及净化污水的方法
CN114091761B (zh) * 2021-11-24 2022-08-12 中国科学院地理科学与资源研究所 种养空间优化方法及装置
CN115197008B (zh) * 2022-08-23 2024-03-12 问心农业科技(宜昌)有限公司 一种肥料发酵装置及发酵工艺
FR3138978A1 (fr) * 2022-08-25 2024-03-01 Innovafeed Installation de traitement de frass provenant d’un élevage d’insectes
CN117658392A (zh) * 2024-02-01 2024-03-08 北京中农富通园艺有限公司 一种鱼菜共生系统及其污水处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251226A (ja) * 2010-06-01 2011-12-15 Mis:Kk 畜糞尿のリサイクルプラント、畜糞尿のリサイクルシステム、畜糞尿のリサイクル方法
CN103265154A (zh) * 2013-04-27 2013-08-28 罗炳 养殖污粪资源化利用综合处理工艺
CN106039982A (zh) * 2016-07-11 2016-10-26 湖南屎壳郎环境科技有限公司 一种发酵臭气和燃烧烟气的洗涤治理系统及方法
CN106116736A (zh) * 2016-07-11 2016-11-16 湖南屎壳郎环境科技有限公司 规模化养殖场畜禽粪尿及病死畜禽胎盘治理系统及方法
CN206046638U (zh) * 2016-07-11 2017-03-29 湖南屎壳郎环境科技有限公司 一种规模化养猪场养殖污染综合治理系统
CN106747692A (zh) * 2016-11-22 2017-05-31 北京京鹏环宇畜牧科技股份有限公司 基于种养结合的牧场粪肥生产系统及方法
CN106824972A (zh) * 2016-07-11 2017-06-13 湖南屎壳郎环境科技有限公司 一种规模化养猪场养殖污染综合治理系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111534A (ja) * 2001-10-03 2003-04-15 Mitsubishi Heavy Ind Ltd 水産資源のリサイクル方法、および海中構造物
US7153427B2 (en) * 2002-07-22 2006-12-26 Environmental Energy & Engineering Co. Nitrogen recovery system and method using heated air as stripping gas
CN102329159A (zh) * 2011-10-19 2012-01-25 沈阳师范大学 一种与有机肥生产相结合的沼气生产方法
CN104984985B (zh) * 2015-08-05 2018-07-10 江昊 一种针对病死畜禽的处理方法
CN106001054B (zh) * 2016-05-30 2018-03-20 湖南卢氏环保科技有限公司 病死畜禽处理方法
CN105836984A (zh) * 2016-06-20 2016-08-10 山东民和生物科技股份有限公司 一种养殖粪污的多级循环利用系统及方法
CN107698119A (zh) * 2017-09-17 2018-02-16 湖南山河美生物环保科技股份有限公司 一种实现猪场粪污资源化利用零污染排放的治理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011251226A (ja) * 2010-06-01 2011-12-15 Mis:Kk 畜糞尿のリサイクルプラント、畜糞尿のリサイクルシステム、畜糞尿のリサイクル方法
CN103265154A (zh) * 2013-04-27 2013-08-28 罗炳 养殖污粪资源化利用综合处理工艺
CN106039982A (zh) * 2016-07-11 2016-10-26 湖南屎壳郎环境科技有限公司 一种发酵臭气和燃烧烟气的洗涤治理系统及方法
CN106116736A (zh) * 2016-07-11 2016-11-16 湖南屎壳郎环境科技有限公司 规模化养殖场畜禽粪尿及病死畜禽胎盘治理系统及方法
CN206046638U (zh) * 2016-07-11 2017-03-29 湖南屎壳郎环境科技有限公司 一种规模化养猪场养殖污染综合治理系统
CN106824972A (zh) * 2016-07-11 2017-06-13 湖南屎壳郎环境科技有限公司 一种规模化养猪场养殖污染综合治理系统及方法
CN106747692A (zh) * 2016-11-22 2017-05-31 北京京鹏环宇畜牧科技股份有限公司 基于种养结合的牧场粪肥生产系统及方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110127970A (zh) * 2019-06-04 2019-08-16 广东广垦畜牧工程研究院有限公司 一种规模化猪场猪粪综合处理的方法及处理装置
CN110921828A (zh) * 2019-12-20 2020-03-27 深圳市中环生物能源科技有限公司 生化综合中常温厌氧处理系统及其处理方法
CN111875417A (zh) * 2020-07-23 2020-11-03 安徽辰创工程技术开发有限公司 一种粪污无害化处理装置
CN111875417B (zh) * 2020-07-23 2022-11-25 深圳市润道通环保科技有限公司 一种粪污无害化处理装置
CN112024569A (zh) * 2020-07-31 2020-12-04 浙江天地环保科技股份有限公司 一种封闭式易腐有机废弃物生物处理自动化集成系统及方法
CN112024569B (zh) * 2020-07-31 2023-12-05 浙江天地环保科技股份有限公司 一种封闭式易腐有机废弃物生物处理自动化集成系统及方法
CN114793809A (zh) * 2022-04-14 2022-07-29 河南科技大学 一种利用沼液的苜蓿周年生产方法

Also Published As

Publication number Publication date
CN107759254A (zh) 2018-03-06
CN107759254B (zh) 2020-08-14
US20200078840A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
CN107759254B (zh) 一种基于种养结合的畜禽养殖场污染生态治理系统及方法
CN106116736B (zh) 规模化养殖场畜禽粪尿及病死畜禽胎盘治理系统及方法
CN106824972B (zh) 一种规模化养猪场养殖污染综合治理系统及方法
CN101358209B (zh) 以畜禽粪便为原料高温厌氧发酵制备沼气的工艺方法
CN107597809B (zh) 一种病死畜禽治理系统及方法
CN107651822B (zh) 一种畜禽粪污液体生态治理系统及方法
CN206046638U (zh) 一种规模化养猪场养殖污染综合治理系统
CN101692788A (zh) 高效畜禽用有机生物垫料及其生产方法
CN110407424A (zh) 一种异位发酵床处理动植物粪污方法
CN108112541A (zh) 一种畜禽养殖零排放的养殖方法
CN103396180A (zh) 一种利用金针菇菌渣处理病死动物的方法
CN1817370B (zh) 畜禽粪污超高温厌氧生物快速消毒防疫系统及处理方法
CN109678565A (zh) 养殖粪污中温太阳能好氧发酵罐
CN104326775A (zh) 有机肥生产工艺、生产线及有机肥生产设备
CN104649763B (zh) 一种厌氧处理集约化养牛场排泄物的方法
CN106746177A (zh) 一种粪污无害化处理方法
JP3706097B2 (ja) 有機廃棄物発酵処理システム
CN112568128A (zh) 一种零排放的牲畜舍养殖生态环境系统
CN209872801U (zh) 养殖粪污中温太阳能好氧发酵罐
CN215905943U (zh) 病死禽畜尸体及沼液无害化降解池
CN208166874U (zh) 一种预热式好氧堆肥装置
CN105503300A (zh) 一种以牛粪为主料制备高效有机肥的方法
CN215302341U (zh) 一种黑水虻与鸡联合养殖的生态循环养鸡房
CN107360983B (zh) 生态猪养殖系统及方法
CN212345032U (zh) 利用黑水虻实现畜禽粪污快速减量及干化处理的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928328

Country of ref document: EP

Kind code of ref document: A1