WO2019070108A1 - Proceso de alto rendimiento para la producción de antivenenos de fragmentos f (ab') 2 de anticuerpos - Google Patents

Proceso de alto rendimiento para la producción de antivenenos de fragmentos f (ab') 2 de anticuerpos Download PDF

Info

Publication number
WO2019070108A1
WO2019070108A1 PCT/MX2017/000115 MX2017000115W WO2019070108A1 WO 2019070108 A1 WO2019070108 A1 WO 2019070108A1 MX 2017000115 W MX2017000115 W MX 2017000115W WO 2019070108 A1 WO2019070108 A1 WO 2019070108A1
Authority
WO
WIPO (PCT)
Prior art keywords
kda
obtaining
fragments
antibody fragments
plasma
Prior art date
Application number
PCT/MX2017/000115
Other languages
English (en)
French (fr)
Inventor
Jorge Alejandro GONZÁLEZ CANUDAS
Walter Jacob GARCÍA UBBELOHDE
Gabriel ROSAS ROMERO
Vicente RIVERA MARTÍNEZ
Original Assignee
Laboratorios Silanes S.A. De C.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laboratorios Silanes S.A. De C.V. filed Critical Laboratorios Silanes S.A. De C.V.
Priority to PCT/MX2017/000115 priority Critical patent/WO2019070108A1/es
Priority to EP17927999.7A priority patent/EP3680252A4/en
Priority to MA49426A priority patent/MA49426B1/fr
Priority to MX2019015360A priority patent/MX2019015360A/es
Publication of WO2019070108A1 publication Critical patent/WO2019070108A1/es
Priority to CONC2020/0001084A priority patent/CO2020001084A2/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/06Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies from serum
    • C07K16/065Purification, fragmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39591Stabilisation, fragmentation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2

Definitions

  • the present invention relates to the field of biotechnology based on fragmentation of antibodies that are used in vaccines for passive immunization to neutralize toxins present in venoms of poisonous animals; specifically, it refers to a biological product wherein the active principle is a combination of F (ab ') 2 fragments of antibodies and to the process to obtain them with high purity and potency.
  • snake bites and scorpion bites are medical emergencies in many parts of the world where these animals are distributed. The most affected are agricultural workers and children from food-producing countries. It is difficult to estimate the true worldwide incidence of snake bites. It is reported that each year there are 5 million snake bites, resulting in 2.5 million poisonings, and 125,000 deaths and perhaps three times that number of permanent sequelae in the world, (Chippaux, 1998).
  • Passive immunization which refers to the administration of antibodies to protect against infections or toxins, was experimentally tested by several researchers, including Albert Calmette who protected rabbits against cobra venom by administering antibodies one hour before. in the form of antiserum (Calmette, 1896). Passive immunization is used today to treat infections successfully, for example, against rabies or against Ebola, and also poisoning.
  • an antibody is defined by the variable chains it contains, regardless of whether it contains their constant regions or not, hence the interest to produce and isolate only the F (ab ') 2 fragments.
  • the Fe fragment comprises the antkjénic determinants of the antibody, such that, when a complete antibody generated in an animal of another species is administered to a patient, the patient generates an immune response against these antigenic determinants, giving rise to a variety of Adverse secondary responses that can even be an anaphylactic shock.
  • Fab or F (ab ') 2 fragments finds another advantage in what is known as the concept of volume of distribution, which is only the volume of the body in which a certain drug is dissolved, this volume can refer only to Circulating blood as in the case of IgG or include a greater part of the body water for the case of the fragments. Therefore, the Fab and F (ab ') 2, because they have a greater body volume, can access to neutralize toxins lodged in different tissues, not only in the blood, and can even cross the blood-brain barrier in both directions and can be used to neutralize or eliminate neuro-toxins.
  • the use of the F (ab ') 2 has an advantage over the Fab, which is that they have a longer retention time in the body because they have twice the molecular weight, in addition they retain the ability to precipitate the antigen in physiological conditions, and also have a size that allows them to access a sufficient volume of distribution for treatment purposes.
  • scorpion poisons are also a complex mixture of a wide variety of molecules and play an important role in the defense and capture of prey.
  • scorpion poisons are also a complex mixture of a wide variety of molecules and play an important role in the defense and capture of prey.
  • scorpion venom generally shows low levels of enzymatic activity (Gwee et al., 2002).
  • the toxins of the venom of the species Trtyus serrulatus were analyzed by radioimmunoassays, showing that in addition to its complexity, they have very different antigenic reactivity patterns, even some antigens can not be detected by the sera, which gives us an idea of how complex the immune response can be, De Lima, et al. (1993).
  • Spider poisons are also a complex mixture of proteins, polypeptides, neurotoxins, nucleic acids, free amino acids, inorganic salts and monoamines that cause diverse effects. Heinen, A.B. Gorini da Veiga / Toxicon 57 (2011) 497-511 in vertebrates and invertebrates (Jackson and Parks, 1989, Ori and Ikeda, 1998, Schanbacher et al., 1973). For example, funnel net spiders (robotic Atrax), one of the most poisonous species, produce more than 1000 peptides, as revealed by the mass spectrometric analysis of their venom. A gross estimate of 500 different toxins for each spider venom would give us a total of 19,000,000 toxins for the approximately 38,000 known spider species.
  • Hyperimmune plasma is understood as that plasma which contains extremely high levels of antibodies and for this invention refers specifically to the presence of high concentrations of polyclonal antibodies in the plasma generated by immunization with poisons or derivatives thereof of poisonous species, to immunize Generally equines or sheep are used.
  • the process of the present invention promotes the generation and obtaining of the F (ab ') 2 fragments of the effectively neutralizing antibodies, although the complexity of the poisons could hinder their generation and separation or fractionation and at the same time achieve them free of molecules that are not F (ab ') 2 and that are irrelevant or even undesirable (like pyrogens among other toxics) for the neutralization mechanism. It is important to consider that the use of recombinant antibodies (such as scFv) or monoclonal antibodies of other variants of recombinant antibodies is not the best alternative for neutralization of complex poisons (of unknown composition), since it involves the isolation of such components of the venom (antigens).
  • variable domains VH, VL
  • scFv design of humanized or hybrid antibodies , etc.
  • antigenic determinants are encrypted and only during the antigen processing that is carried out in antigen presenting cells (APCs), within which the antigens are processed beginning with the degradation of them in cytosolic proteasomes (in the APCs) Random peptides are generated that are presented in the membranes by the major histocompatibilkJad complex molecules to awaken lymphocyte responses, among these responses is the expansion of memory cells and the generation of high affinity antibodies by the antigen. The answers come to light before the immune system so that the production of very effective antibodies will be achieved to neutralize the toxic effects.
  • APCs antigen presenting cells
  • the protagónica immune response in the generation of antibodies of high affinity is the one that is derived from B cells; B lymphocytes are considered as professional antigen presenting cells (APCs) despite their primary role in humoral immunity.
  • B cells process and present specific and non-specific antigens differently, the presentation of specific antigen through the B cell antigen receptor occurs with very high efficiency and is associated with the activation of B cells, resulting in the activation of related T cells.
  • the presentation of nonspecific antigen by B cells is minimized and dissociated from the activation of B cells.
  • B cells inactivate T cells that recognize non-specific antigenic epitopes presented by B cells, or induce differentiation or expansion of regulatory T cells.
  • Protein purification techniques described in the state of the art such as electrophoresis, chromatographic separation (such as gel permeation chromatography, ion exchange and affinity chromatography and high performance liquid chromatography (HPLC)), among others , are ideal to obtain minimum or relatively discrete quantities, in fact, there are innumerable articles that describe methods of protein purification that can produce from a few micrograms to a few hundred milligrams of very pure protein products.
  • these processes are very difficult to scale without involving high production costs, which limits their use for levels of industrial protein production.
  • the papain enzyme preferably purified, either free or immobilized, removing cell debris by centrifugation, separating and recovering the fragments and then purifying them, preferably by immunoassay.
  • Landon uses purified antigens which, unlike poisons, can easily be ligated to supports to obtain a sieve for the purification of the Fabs of interest, and never uses or discusses the method to obtain Fab fragments against antigens that are mixtures of many substances, such as poisons, plus it only works with papain and chemopapain and does not discuss the possibility of using pepsin.
  • Landon J. et al. (2014) also describes a process to purify antigens of F (ab ') 2 and Fab of IgG from hyperimmune serum of sheep, with the aim of minimizing the degradation of immunoglobulins first precipitate all the proteins of the serum, including the albumin, with caprylic acid, the immunoglobulins do not precipitate, later they carry out the digestion to obtain the F (ab ') 2 or the Fabs, with the addition of pepsin or papain, respectively.
  • papain joined by disulfide bridges with some of the fragments resulting from digestion from which papain can subsequently continue to digest and degrade the obtained fragments.
  • it uses anti-papain antibodies, which capture the hybrid compounds of the enzyme.
  • the fragments are purified by passing the solution through a column with protein A where the Fe fragments and hybrid compounds are retained.
  • This problem that occurs in digestion with papain has not been reported to occur with digestion with pepsin.
  • Some traditional methods involve digestion with pepsin and the precipitation of the fraction of the fragments with ammonium or sodium sulfates, but a pre-separation of the antibodies is usually handled first by precipitation with sulphate and then the digestion of the antibody fraction.
  • the Chinese application CN 103864930 refers to the obtaining of F (ab ') 2 fragments of antibodies that resist the scorpion venom Buthus martensii karsch and is based on the production of horse plasma immunized with this poison and the fragments are obtained and purified by enzymolysis and salting out, and by exchange column they obtain the active F (ab ') 2 fragments with high purity, the selected peak is purified by desalting column or by ultrafiltration, sterilized by filtration and finally the product is lyophilized.
  • the Chinese application CN 101816789 refers to the obtaining of F (ab ') 2 fragments of vi Southerndos anti-venom antibodies, it is based on obtaining horse plasma immunized with this venom and the immunoglobulins are obtained by salting out, it is used the dialysis by centrifugation, then the F (ab ') 2 fragments are obtained by enzymysis and purified by hydrophobic column, they are passed through membrane ultrafiltration from 8000 to 10000 Da or by ultrafiltration by desalination membrane and filter for sterilization of 0.22pm , and freeze-dried at the end.
  • Thermocoagulation performed at 54 ° C facilitates the precipitation of non-digested serum proteins such as albumin and fibrinogen, however these temperatures can also damage a certain percentage of the immunoglobulin fragments that were generated during enzymatic digestion, so that by eliminating it, more intact proteins of interest remain (F (ab ') 2 fragments), so that achieving to eliminate its application represents an outstanding advantage to the state of the art.
  • the ultrafiltrate is a filtration technique that uses membranes to separate different types of solids and liquids (separates particles with a diameter of 0.1 to 0.001 ⁇ (1,000 to 20,000 Da), by applying a driving force, pressure is always applied,
  • concentration and the electric potential also influence as a driving force, with the ultrafiltrate the flow passes parallel to the surface of the membrane and is not perpendicular as is the case with ordinary filtration, so there is an accumulation on the surface of the membrane,
  • two liquid phases are separated, one exhausted in solute (ultrafiltrate or permeate) and one enriched in solute (retained) (Garavito, 1995).
  • diafiltration is a modification of the ultrafiltrate in which water is added to the Feeding in order to facilitate the permeate of some components through the membrane, the added water recirculates in the process of Thus, the concentration of the soluble components of the permeate is reduced and the concentration of the components of the retentate is increased.
  • nanofiltration it is a membrane filtration process that occurs through the application of pressure, where low molecular weight solutes (approximately in the range of 1000 daltons) are retained, while others, such as salts, can pass totally or partially, through the membrane with the filtrate.
  • Ultrafiltrate has become an important technique in the treatment of water and industrial effluents; can be used directly in the production of drinking water thanks to its ability to retain bacteria and viruses. In some other cases it can be used as pre-treatment before nanofiltration or reverse osmosis. In the case of agri-food industries, it is in the treatment of milk that the ultrafiltrate has been used most in particular for the concentration of whey. In the surface treatment industries, the ultrafiltrate is used for the regeneration of cataphoresis paint baths used in the automotive industry. Ultrafiltration can also be used to separate oil-in-water emulsions.
  • the Ultrafiltration serves to separate and concentrate enzymes, viruses or active ingredients that serve the manufacture of vaccines, which is the technical field that concerns us in the present invention.
  • the ultrafiltration operation and its variants is a unitary operation ideally designed and used for the separation and concentration of particles and not so much of molecular classes; for the most tiny separation of sizes and molecular types, the unit operations used in the state of the art are primarily chromatographic techniques, since up to now they have been the only techniques that have allowed to obtain high purity for biotechnological or biological products.
  • the ultrafiltration and its variants are applied in the separation of products of not much added value or where an extraordinarily separation of the molecular fractions (in the dairy industry for example) is not so relevant, in order to increase the speed of production, then tend to use higher flows and pressures to perform the purification operation, when such parameters are raised may not have such a precise separation, but this will not have a major impact on the health of the consumer of the product, however , for the separation of molecular fractions in biotechnological products as used for the present invention, the application of ultrafiltration techniques becomes a technical problem that requires experimental design involving an inventive level.
  • ultrafiltration has been redirected in a novel and inventive manner towards a high performance process for production, procurement and purification of antibodies and compositions comprising them; particularly, antibody fragments and compositions comprising them; more particularly, F (ab ') 2 fragments and compositions comprising them, capable of neutralizing poisons from hyperimmune plasma of non-human mammal.
  • the present invention also presents data on the optimal conditions of digestion, that is, where the highest productivity of F (ab ') 2 is achieved, which also represents an important advance in the production methods based on digestion of antibodies with pepsin .
  • salt precipitation that is also used to separate and further purify by dialysis is low cost, but results in low antibody recovery;
  • the process based on salting-out is difficult to scale in sterile conditions and gives low yield and purity.
  • precipitation with caprylic acid may increase the IgG yield, but the process takes a long time and does not eradicate endotoxin-producing bacterial contamination (Landon J. ef al (2014)).
  • the production technique based on the separation or fractionation, which is proposed with the present invention, has a high yield of product at low process cost is certainly beneficial for the biotechnology industry particularly in the field of antivenoms based on polyclonal antibodies or in its active fragments.
  • experimental development working with very complex mixtures and of biological origin such as hyper-immune sera (Ghosh, and Cui, 2000) and ultrafiltration is applied based on an exhaustive experimental work with the invention has been optimized the separation of the molecules of interest.
  • the current method for the preparation of anti-rabies serum F (ab ') 2 approved by the WHO is based on the approach described by Pope (1938; 1939 a; 1939 b) and Harms, briefly: the digestion with pepsin ( 30 min, 30 ° C, pH 3.2) of raw hyperimmune equine plasma is followed by a heat denaturation step (1 h at 55 ° C, pH 4.3) to precipitate most non-IgG and by additional addition of ammonium sulfate (salting-out), to precipitate the IgG including F (ab ') 2. Due to the precipitation step of the salt, the process results in products F (ab ') 2 of comparatively low yield and low purity.
  • the objective of the invention is to provide a new process suitable for industrial production of antivenoms, based on the obtaining and digestion of immunoglobulins and subsequent purification of the F (ab ') 2 fragment of such immunoglobulins, obtained from crude equine hyperinmune plasma with the aim of obtaining a higher yield than with the process approved by WHO, and obtain an active product, more efficient and pure than those obtained by the processes described in the closest state of the art (US Pat 6,709,655, Roodt, AR et al., 2010).
  • cresol maximum 3.5 mg per vial of 0.5 to 1 ml
  • the process of obtaining it is reported to be initiated by immunizing horses with increased doses of the venom, obtaining the high titre serum and purifying with different stages of saline precipitation and refining by digestion with pepsin, the F (ab ') 2 fragments are purified by gels Adsorbents and multistage filtrations followed by dilution for the required power.
  • These products are flaunted as high purity.
  • the general processing steps of these antivenoms indicate that the novelty of the claimed invention is not affected.
  • the present invention contrasts in many elements with the processes and similar products belonging to the closest state of the art.
  • the present invention relates to a high-performance process for the production of antivenoms of F (ab ') 2 fragments of immunoglobulins IgGs; its use is an alternative to the use of IgGs, although as mentioned, smaller variants of IgGs have been developed trying to improve their bioavailability, penetrability in tissues, and solubility; even so, the polyclonal F (ab ') 2 fragments remain to date the most efficient to neutralize the toxicity of the poisons, the present invention obeys to the complexity of the poisons, which contributes to their effectiveness.
  • the present invention provides a process for the production and obtaining of antivenoms based on fragments of F (ab ') 2 antibodies of plasma immunoglobulins, designed to confer from a passive immunization, neutralizing toxins from poisons for which they were manufactured. .
  • the parameters of the unit operation used allow to obtain pure F (ab ') 2 fragments.
  • the analysis by chromatography of F (ab ') 2 fragments shows unique peaks of said fragments making it possible to observe the absence of another type of fragments or biological material, such as proteins and Fab fragments, which makes this invention unique in its kind for obtaining fragments F (ab ') 2 cigars.
  • the present invention has the advantage of separating and at the same time purifying very close particles in molecular weight using parameters and ranges of working conditions in the unit operation, which otherwise could not be separated or purified using the conditions, the parameters and the working materials for biological materials, including the pore size of the uttrafiltration membrane, used for the manufacture of antibody fragments.
  • the ultrafiltration process of the present invention also makes it possible to raise the yield of the antibody fragments, particularly, of the F (ab ') 2 antibody fragments.
  • the high-performance process of the present invention allows obtaining and observing by chromatography a single peak of F (ab) 2 fragments, whose only presence in the absence of other type of particles and / or contaminating fragments, makes the composition comprising fragments of F (ab ') 2 antibodies obtained through the present invention, a composition much more effective than those existing in the state of the art obtained by conventional techniques of conventional dialysis and ultrafiltration. Therefore, the high yield production process and novel and inventive obtaining of antivenoms shown here allows to purify the F (ab ') 2 fragments without reducing their potency as demonstrated by the titles and potency of the fragments in traditional ways.
  • the present invention also presents data on optimal digestion conditions, where the highest productivity of F (ab ') 2 is achieved.
  • the contribution of the process of obtaining the invention is as important as the quality of the hyperimmune plasmas (in terms of concentration of titles).
  • the most direct antecedent of the technology of the present invention is the patent US 6,709,655 (hereinafter patent 655) so that throughout the description an intensive comparative analysis of the process is made.
  • the present invention offers a product whose quality is due to the process and is therefore distinctive of the products of the state of the art, they are also an alternative of safe antivenoms and of the quality required for the highest standards.
  • Figure 1 Separation by reverse phase chromatography of the components that make up the venom of the species Bitis gabonica gabonica. Calvete, JJ et al (2007).
  • Figure 2 Timeline of the development of antibody-based antivenoms.
  • Figure 3 A: Chromatogram of the supernatant after precipitation with ammonium sulfate (digested antiviperine plasma + process water + pepsin + ammonium sulfate). B: Chromatogram of the clarified supernatant (digested antiviperine plasma + process water + pepsin + ammonium sulfate); Clarification I and II.
  • Plasma (a) Chromatogram of the antiviperine plasma, (b) Chromatogram of the prepared plasma (digested antiviperine plasma + process water), Preparation of the plasma.
  • Digestion (c) Chromatogram of the mixture (digested antiviperine plasma + process water + pepsin), End of digestion.
  • Precipitation (d) Chromatogram of the precipitate (digested antiviperine plasma + process water + ammonium sulfate).
  • Clarification (e) Clarification chromatogram (digested antiviperine plasma + process water + ammonium sulfate).
  • Figure 6 Quantification of phenol cresol in the samples of the different stages of the production process and obtaining F (ab ') 2 fragments at the pilot plant level from an antiviperine plasma where it was applied in the filtration stage tangential cassette systems with cut-off size of 30 kDa with washings with 0.9% sodium chloride and 50 kDa with washes with process water.
  • Figure 7 Quantification of the phenol in the samples of the different stages of the production process and obtaining F (ab ') 2 fragments at the pilot plant level from an Antialacrán plasma where the fiber system was applied in the tangential filtration stage hollow with cut size of 30 kDa with washes with process water (20 washes).
  • Figure 8 Quantification of the phenol of the samples from the different stages of the production process and obtaining F (ab ') 2 fragments at the pilot plant level from an Antialacrán plasma where the fiber system was applied in the tangential filtration stage hollow with cut size of 30 kDa with washes with process water (30 washes).
  • Figure 9 Title of antibodies in plasma expressed as DLso Neut / ml, annual averages 2009 to 2014, Viperino Group I. Poisons obtained from induced bite of two species of vi Southerndos were used. FB: Specific fraction for Bot rops and FC: Specific fraction for Crotalus.
  • the poisons of the animals have evolved quickly and effectively in conjunction with the mechanisms of defense presented by the relationship between prey and predators, poisons provide defense against predators and also help capture prey, which results in a large repertoire of molecules that bind to specific targets, and of which not yet enough is known to design specific neutralizing molecules for all the toxic molecules in the mixture of proteins that make up a poison.
  • the present invention relates to a high performance process for obtaining an antidote against poisonings caused by venoms of poisonous species, based on immunoglobulins of animal origin, the antidotes of the invention are characterized by their efficiency, neutralize the toxic molecules even those of extensive repertoire as some poisons require, and are characterized by their purity as described below.
  • the immunoglobulins or antibodies from which the antivenoms of the invention are obtained are polyclonal and are of biological origin, derived from hyperimmune plasma, so they need to be fractionated from the plasma and purified; the purity is conferred by the process of the invention and the potency is conferred both by the process of obtaining and by the quality of the hyperimmune plasmas from which the total immunoglobulins are processed, said quality is referred to by the antibody titer and its neutralizing capacity .
  • the quality of the hyperimmune plasmas depends in turn on the quality of the poisons used to immunize the horse and also depends on the immunization schemes, of course on the health condition of the animal.
  • example 1 A basic immunization scheme for carrying out the present invention is described and is of an illustrative and non-limiting nature.
  • hyperimmune plasma is derived from equines, from the immunoglobulins present in it, the F (ab ') 2 fragments are obtained and these possess the neutralizing capacity of virtually all the toxins present in the poisons.
  • F (ab ') 2 fragments are obtained and these possess the neutralizing capacity of virtually all the toxins present in the poisons.
  • Patent 655 describes a method of obtaining F (ab ') 2 antibodies from serum or hyperimmune plasma as a source of antibodies that is contacted with pepsin, followed by two precipitations of proteins with ammonium sulfate followed by dialysis and steps of clarification. Table 1 describes 17 steps for this method. Under this technique F (ab ') 2 antibodies with a biological activity and remarkable purity are obtained, but as we have said, they are perfectible characteristics just as the process is.
  • the process of 17 steps of Table 1 is the direct antecedent of the present invention, currently, the increased quality in the quality of the poisons used to immunize and obtain the hyperimmune plasma, and better immunization schemes, have in turn made have plasma with better antibody titers, which encourages the development of new, more efficient processes to obtain F (ab ') 2 fragments;
  • new processing steps have been developed to make the production of antivenoms more efficient; all these changes are reflected in the time, later data of the quality of the plasma and the way to process it are presented that are reflected in purity, productivity and power of antivenoms.
  • the approximate manufacturing time using the 17 steps is 52 days.
  • the process of the invention differs in the process of the closest state of the art in several aspects: With the process of the invention only 12 steps equivalent to the 17 of the previous process are applied (see tables 1) and 21). One of the determinations that were carried out was on the enzymatic digestion process, as it is appreciated, it is carried out with different parameters, the optimal conditions found during the development of the invention indicate that the digestion is carried out optimally at a temperature of 37 + 1 ° C and with a pH of 3.5 ⁇ 0.1 for 90 minutes.
  • Another difference that is marked as an object of the invention is that for the processing of hyperimmune plasmas, only a process of saline precipitation (or salting out, with ammonium sulfate) is required and this does not require the addition of cresol or ether.
  • Ethyl others are carried out without resting, the time it takes for the salt to be dissolved is sufficient for the precipitation to take place and immediately the next step is taken (table 21).
  • ethyl ether it should be noted that it is already used in very low concentration and has no relevance to the quality of the final product, since it is easily eliminated during purification, and its presence is not required to be regulated.
  • thermocoagulation process that is applied during the time that the salt precipitation lasts.
  • a marked difference with the process of the invention refers to the incorporation of ultrafiltration (UF); some special modalities are described below, ultrafiltration replaces the second ammonium sulfate precipitation and also replaces the long and risky dialysis process, which also implies contamination risk.
  • the type and parameters of ultrafiltration determine the degree of purity obtained (greater than 95%).
  • the ultrafiltration with the elements and parameters as established in the present invention guarantees the purification, desalination and concentration of the F (ab ') 2 fragments, all at visibly advantageous levels with respect to that reported in the state of the art.
  • the regulatory levels of cresol phenol were already met, when ultrafiltration was applied, the concentration in the finished product was further reduced.
  • the result of this process is obtaining unprecedented yields, an antivenom quality of F (ab ') 2 with potency and purity also unprecedented in its type.
  • the total manufacturing time of a finished product is approximately 18 days.
  • thermocoagulation occurs after digestion when the product is subjected to a temperature of 54 ° C, for 30 minutes at rest; thermocoagulation occurs simultaneously with the first precipitation with ammonium sulfate and then the mixture is passed at a temperature of 8 to 4 ° C for 2 to 24 hours, also at rest, then the supernatant is recovered by decantation and clarified by passing it through filters of 12, 8 and 4 ⁇ , this is carried out with the 7-plate system, it is worth mentioning that this system no longer meets the reg ⁇ latenos requirements, in this stage 50% of cresol / phenol was eliminated.
  • the process of the 955 patent 35% of the ammonium sulfate is again added to the clarified supernatant, the plasma is then subjected to a second precipitation, after adjusting the pH to approximately 6.8, a rest is required for 12 hrs. Subsequently, the soluble fraction is recovered and centrifuged again, the obtained paste is recovered, it contains the F (ab ') 2 fragments, it is solubilized and left to rest for 12 to 20 hrs at 2-8 ° C. The sediment is removed since it contains low molecular weight components and salts, the recovered supernatant is the one that contains the specific F (ab ') 2 fragments against the poison for which it was generated during the immunization.
  • the product is clarified at 0.2 ⁇ and proceeds with the dialysis process with a duration of 52 days, and also increases the risk of contamination.
  • all these steps, from the thermocoagulation and clarification of the digested mixture to the dialysis, are eliminated, that is, the thermocoagulation, the second precipitation and the dialysis are not carried out, resulting in a lower loss of the proteins of interest (fragments of previously generated immunoglobulins), as mentioned, reduces the risk of contamination, also implies a saving of time, and very considerable man / hours, so Both production costs also decrease considerably.
  • the following results support these conclusions.
  • thermocoagulation itself already with the alternative uRrafiltration conditions, so that we compare the operation of the tangential filtration of the hollow fiber system with a cut-off size of 30 kDa with the tangential filtration system per cassette with a cut-off size of 30 kDa followed by 50 kDa .
  • the cassette is a plate and structure device favored by the ease of scaling from the laboratory to small plants, it is the holder of the ultrafiltration system.
  • the hollow fiber system is arranged as a module with several tubes or fibers of small diameter (from 0.6 to 2 mm), the solution to filter flows through the open cores of fibers and the percolated liquid is collected in a surrounding cartridge the fibers.
  • the HPLC analysis of antiviperine plasma samples from the different stages of a process for the production and obtaining of F (ab ') 2 fragments with the application of cresol, ethyl ether and thermocoagulation was carried out, carrying out an enzymatic digestion at a temperature of 37 ° C ⁇ 2 ° C and applying the operation of the tangential filtration of the hollow fiber system with a cut-off size of 30 kDa.
  • the clarifications I and II are described in example 5.
  • the UF hollow fiber is technically described in example 6.
  • the invention proposes to use 21 to 25 kg of ammonium sulfate for a batch of 60 liters of plasma (35% w / v); in contrast, with the 17-step process (double precipitation) for a batch of 60 liters of plasma, 33 to 34 kg of ammonium sulfate was used for each precipitation (55% w / v).
  • this change not only implies the simple saving of salt, but is related to the optimization of the solvation process to favor the precipitation of only the unwanted molecules and simultaneously to conserve in dissolution of the F (ab ') molecules two.
  • precipitation with (NhU ⁇ SC involves precisely the saline precipitation of unwanted proteins, precipitate albumin and hemoglobin that are in high concentration, in the supernatant are still soluble F molecules (ab ') 2, so that once the ammonium sulfate is solubilized, the whole mixture is immediately subjected to the clarification step (I and II), the first is carried out in a membrane with a pore of 8.0 to 20.0 ⁇ , the second The clarified step is carried out with nominal 0.2 um pore membrane, the clarification step I and II eliminates large particles and helps a better performance of the ultrafiltration, ensuring that the membranes are not damaged.It is important to note that, according to the observations working with the process of the invention, it is necessary to immediately perform salting out and clarification
  • tables 9 and 10 include the power data corresponding to the same 4 batches, but freshly purified, that is, before adjusting power, the 4 batches come from the same volume of plasma.
  • the data in tables 9 and 10 corresponds to processing of the same volume of plasma, are 60 liters per lot (ie for each of the lots: B-3K-21, B-3K-11, B-2C-17 and B-3J-01).
  • tables 9 and 10 reiterate the data on the number of pieces obtained and are comparable since, as mentioned, they are obtained by processing the same volume of plasma, this time the data have been averaged to facilitate the comparison.
  • the difference in the number of pieces (vials) obtained, 25,631 and 27,061 pieces (average 26,346) for the process with ultrafiltration with hollow fiber of 30 kDa, against 1, 670 and 1, 648 is very remarkable pieces (average 1, 659) for the dialysis process, so the process of obtaining antivenoms is more than 15 times more productive, at least 15 times more productive. It is important to note that these data from 4 lots are presented as examples, but the results have been consistent as can be demonstrated in the production records of lots obtained by years of manufacture.
  • the power is comparable in all the batches of tables 5 to 8 since this is required for reg ⁇ latenos effects, this power is adjusted to not less than 150 LDso of scorpion venom per bottle (FEUM 2011 2 ) and is the power of the product
  • the power data must be considered before said adjustment, that is, the power data of the concentrated product, which is when it has just been obtained from the obtaining process. .
  • Tables 9 and 10 show the differences are notable: For batches B-3K-21, B-3K-11 antialacrán (obtained with the method of the invention), the potencies of the concentrated product were 698.42 and 699.23 DLsoNeut mL respectively.
  • the cut stress parameter Tau (x) is the value we present as a determinant to achieve a purity of 95% (Ahrer, et al 2006).
  • the ultrafiltration of the invention is carried out from the clarification obtained from the previous step, a tangential filtration is carried out.
  • the tangential filtration operation of the hollow fiber system with a cut-off size of 30 kDa was replaced by the cassette system with a cut-off size of 30 kDa - 50 kDa, the purity was favored and it was also observed that he reduces the fragmentation of the F (ab ') 2 protein so the cassette system offers higher performance.
  • the adequate parameters to use cassettes of 30 and 50 kDa surprisingly the final product not only reaches the expected quality, but exceeds it.
  • Chromatograms 4 (a) to 4 (k) are refer to the process of obtaining antivenoms (taking as an example a tote of a product designed as anti-snake (or antiviperino), using the ultrafiltration with cassettes of 30 and then 50 kDa ..
  • Chromatograms 4 (c) to 4 (h ) are the result of the digestion kinetics for 6 hours
  • the chromatogram (i) is the result of the precipitation with ammonium sulfate and without thermocoagulation by means
  • the chromatogram (j) is the clarified product.
  • 4 (r) refer to three repetitions of step by cassettes of 30 kDa and 5 0 kDa.
  • Table 15 presents results corresponding to the complete process of production and obtaining F (ab ') 2 fragments, which is why it is representative of its characterization. This process was carried out at the pilot plant level. It was made from plasma without the application of cresol, ethyl ether and thermocoagulation, carrying out an enzymatic digestion that was carried out over 6 hours for experimental evaluation purposes, with a single saline precipitation and replacing the operation of tangential filtration of the hollow fiber system with a cut-off size of 30 kDa by the cassette system with a cut-off size of 30 kDa - 50 kDa.
  • Phenol and its derivatives such as cresol are preservatives, however, they are toxic substances; As with any hazardous substance, its effects on health will depend on the dose, the duration and type of exposure, the presence of other chemical substances.
  • the North American regulation for foods and medicines or FDA (US Food and Drug Administration (FDA) regulation) does not allow the use of cresols in pharmaceutical products. Although other regulations allow, the ideal is to get rid of it. Therefore, during the development of the invention, we determine the purification of phenol and cresol as explained below. According to the FEUM, the process for handling plasmas involves the use of phenol (from Roodt AR ef al, 2010) or cresol as a preservative of the plasma freshly extracted from the immunized animal.
  • cresol Upon arrival at the plant cresol is also added according to the standards, only for products manufactured under the regulations of the FDA has not been used cresol added (it should be mentioned that in the end this never impacted on the sterility of the plasma samples processed). Notwithstanding the above, with the dialysis process (17 steps) it was already possible to substantially eliminate the concentration of cresol (cresol / phenol) reaching pharmaceutically acceptable levels, with the process of the invention the concentration of cresol / phenol is reduced to less of 0.058 mg / vial. During the development of the invention we decided to quantify the cresol and the phenol in the different stages of the production process and obtain F (ab ') 2 fragments, this is done through tangential ultrafiltration, using cassettes of 30 kDa and 50 kDa size.
  • the analytical method consists of a colorimetric chemical reaction with diazoic solution, the azo compound in the presence of cresol and / or phenol gives rise to a reaction that generates the p-hydroxy-azo-para-nitrobenzene, colored compound which absorbs in the visible range at 550 nm.
  • the processing of this test is described.
  • the optimal pepsin digestion time was calculated later, with an experimental design in which enzymatic kinetics were evaluated in several batches.
  • Pepsin is used at a concentration of 6.6 g / l of plasma.
  • the preparation of the pepsin is illustrated in example 2.
  • a pH of 3.5 ⁇ 0.1 was controlled with control, a temperature of 37 ° C ⁇ 1 ° C.
  • the digestion time was 6 h.
  • the samples to be considered are the times 0 h (Time 0), 1.5 h (Time 3), 3 h (Time 6), 4.5 h (Time 9), 6 h (Time 12).
  • Example 3 the procedure for enzymatic digestion is described in more detail.
  • Pre-filtering is integrated at 0.1 um, which leaves the product in better conditions so that it passes to nanofiltration.
  • the components of the formulation that is made in the bulk of the product confer stability to the active principle, since in spite of the fact that the product is subjected to lyophilisation it does not undergo any type of alteration,
  • the final product does not need to be stored in refrigeration or is unstable when exposed to light, its expiration lasts for more than 5 years, however, due to sanitary requirements, an expiration date of 4 years is assigned.
  • the lyophilization process is described.
  • Tables 22 to 25 show the results of the dissolution process and the analysis of the formulations of these concentrated and hyperconcentrated lots, times were taken by direct observation of the vials (seen by two people (Q1 and Q2)) since enter the solution and until the particles disappear, 8 repetitions of each batch were taken.
  • Tables 26 to 29 indicate the stability of two batches: Lot B-9H-21, produced by only one precipitation and UF per hollow fiber 30 kDa (Tables 26 and 27) and lot B-OK-15, produced by 17 steps and (Tables 28 and 29) and the stability parameters are met in both cases.
  • the present invention relates to a novel process for the production of F (ab ') 2 fragments of antibodies that specifically bind to antigens present in poisons, with a preferred embodiment for antagonizing arachnid or vi Southernd poisons;
  • the process of the invention is characterized by the use of uKrafiltration and the reduction of unit stages, obtaining a safe antivenom for its neutralizing efficacy and because it does not generate any pyrogenic or anaphylactic reaction.
  • the process of the invention is of the utmost performance and purity for the final product, this improves in its neutralizing potency and in its stability, the quality of the final product is therefore superior to that obtained with the processes described in the state of the technique.
  • Tables 30 and 31 show the antibody titer expressed as neutralizing doses (DLso Neut / ml) the first (30) using scorpion venom of the species Centruroides noxius, C. limpidus limpidus, C. limpidus tecomanus and C. suffussus suffussus, obtained by maceration of telson glands (Group of horses I and IV) and the second ones (31) using venom obtained by electrical stimulation of telson glands (Group of horses II and III).
  • DLso Neut / ml neutralizing doses
  • the invention relates to the production of antivenoms against venoms of snake species or ophidians selected from the group of genera and species comprising: genus Cerastes, including the species: C. boehmei, C. cerastes, C. gasperettii, C vivid, Pseudocerastes f ⁇ eldi ,, Pseudocerastes persicus, Pseudocerastes urarachnoides; Brtis genus, including the species B. albanica, B. arietans, B. armata, B. atropos, B. caudalis, B. comuta, B. gabonica, B. harenna, B. heráldica, B.
  • genus Cerastes including the species: C. boehmei, C. cerastes, C. gasperettii, C vivid, Pseudocerastes f ⁇ eldi ,, Pseudocerastes persicus
  • inomata B. nasicomis , B. parviocula, B. peringueyi, B. rhinoceros, B. rubida, B. schneideri, B. worthingtoni, B. xeropaga; Crotalus genus, including species: C. d. terrific C. adamanteus C. angelensis C. aquilus C. armstrongi C. basiliscus C. campbelli, C. catalinensis, C. cerastes, C. cerberus, C. culminatus, C. durissus, C. enyo, C. er ⁇ csmithi, C. horr ⁇ dus, C. intermedius, C. lannomi, C. lepidus C.
  • mitchellii C. molossus, C. morulus, C. oreganus. C. omatus, C. polystictus, C. pricei, C. pusillus, C. pyrrhus, C. ravus, C. ruber, C. scutulatus, C. simus C. stejnegeri, C. stephensi, C. tancitarensis, C. tigris , C. tlaloci, C. totonacus, C. transversus, C. triseriatus, C. tzabcan, C. vegrandis, C. viridis, C.
  • melanocephala Lachesis muta, Lachesis stenophrys; likewise, species of elápidos including to the cobras species Naja naja siamensis and the sorts; Acanthophi, Aipysurus, Antaioserpens, Aspidelaps Aspidomorphu, Austrelaps, Brachyumphis, Bungarus, Cacophis.Calliophis, Cryptophis, Demansia, Dendroaspis, Denisonia, Drysdalia, Echiopsis, Elapognathus, Elapsoidea, Emydocephalus, Enhydrna, Ephalophis, Furina, Hemachatus, Hemiaspis, Hemibungarus, Hoplocephalus "Hydrelaps, Hydrophis, Kolpophis, Laticauda, Loveridgelaps.Micropechis, Micruroides, Micrurus, Naja, Notechis, Ogmodon, O
  • the invention provides for the production of antivenoms designed against poisons of arachnid species selected from the group consisting of: the Barasian species: Phoneutria nigriventar, the Australian species of funnel net spiders including the species Atrax robustus.and the species of the Hadronyche genus. Species of worldwide distribution of the genera Phoneutria, of the genus Missulena and of the genus Latrodectus, including the species: L. bishopi, L. hesperus, L. mactans, L. variolus, L. antheratus, L. apicalis, L. corallinus, L. curacaviensis, L. diaguita, L. mirabilis, L. quartus, L.
  • antivenoms designed against poisonous species of sicharid arachnids (Sicar ⁇ idae family) of both the genus Sicarius and the genus Loxosceles, including the species: L gaucho, L intermedia, L. laeta, L. deserta, L. reclusa, L accepts, L adelaida, L. alamosa, Lalicea, L amazonian, L anomalous, L apachea, L. aphrasta, L. aranea L. arizonic, L. aurea, L low, L. barbara, L. belli L. bentejui, L.
  • antivenoms for treatment of scorpions caused by species or genera selected from the group consisting of: Androctonus genus including the species: Androctonus australis Androctonus mauretanicus mauretanicus, Androctonus crassicauda, Buthacus genus including the species: Buthacus macrocentrus , genus Buthus, including the species Buthus occitanus tunetanus, genus Leiurus including the species Leiurus quinquestriatus hebraeus, genus Parabuthus including the species Parabuthus granulatus, genus Centruroides including the species: Centruroides noxius, Centruroides limpidus, Centruroides suf ⁇ üsus, genus Tityus, including the species: Tityus serrulatus, Tityus metuendus, Tityus matthieseni, Tityus bastosi, Tityus bahiensi.
  • the therapeutic applications using the antivenoms of the invention are the modality of the invention, in the example e basic treatment schemes are mentioned. It is a principal object of the invention to provide a process for producing and obtaining a composition of F (ab ') 2 antibody fragments capable of neutralizing poisons from hyperimmune mammalian non-human plasma, characterized in that it comprises:
  • step (c) above the precipitation of unwanted protein fragments, step (c) above, is performed by adding 21% P / V ammonium sulfate at room temperature, during the for the duration of the solubilization of ammonium sulfate, and immediately at this step proceed to clarification I and II of step (d) above.
  • the precipitation of fragments of unwanted proteins from step (c) above is performed by adding 21% P / V ammonium sulfate to the time in which the temperature is increased to 54 ° C, during the time that the solubilization of the ammonium sulphate lasts, and immediately after this step we proceed to the clarification I and II of step (d) above.
  • 30 kDa tangential fiber filtration is carried out with an average ⁇ of 4.06 Pa.
  • step (e) the tangential filtration by 30 kDa cassette is carried out keeping a t in average of 2.05 Pa and 20 washes are made and the subsequent tangential filtration by cassette of 50 kDa is done keeping a ⁇ of 0 and 20 washes are made.
  • compositions obtained by said process are embodiments of the invention in such a way that a degree of purity> 95%, a Fab percentage of 0 to 3%, a percentage of low molecular weight components of 0 to 0.90% and a percentage of high molecular weight components from 0 to 4.2%.
  • Methods of the invention are compositions of F (ab ') 2 antibody fragments obtained by said process in such a way that they are capable of neutralizing poisons with a power that exceeds by k) less than 6 times that obtained when the purification is carried out. based on a process of double salt precipitation and dialysis.
  • EXAMPLE 1 Immunization to obtain hyperimmune plasma.
  • the immunization schemes have been variable.
  • An example of the way to immunize is to apply doses of poisons alone or in cocktails, native or recombinant, ranging from 3 to 150 DLso per horse over 12 immunizations given for 5 to 6 weeks for the basic schemes and 70 to 450 DLso per horse during 5 immunizations for 3 weeks
  • Complete and incomplete Freund's adjuvants can be used, as well as an isotonic saline solution, using a total of 5, 10 or 20 ml in the different inoculations.
  • the source of antibodies used in the present invention can be obtained by plasmapheresis: bleeding at a rate of 6 to 10 liters per horse by bleeding, two bleedings are performed during the 15 days following the last inoculation of each scheme the blood is erythrocyte sedimentation and the entire cellular package is returned, thus reducing the stress associated with the fall of blood cells and producing the least possible impact on the health of the animal despite being subjected to the production of antibodies.
  • plasma Only plasma is retained as the source of antibodies for the method of the present invention may be a mixture of blood plasmas from different animals immunized with the same antigen.
  • EXAMPLE 2 Preparation of the pepsin solution to produce F (ab ') 2 fragments.
  • the clarification of the pepsin solution proceeds, for which a membrane with pore size 1.0 to 3.0 ⁇ is used.
  • the membrane with a pore size of 0.2 ⁇ (absolute) is subsequently used. wetted with process water, and flow adjustment as recommended by the protocol for the equipment.
  • EXAMPLE 3 Enzymatic digestion of the plasma to produce F (ab ') 2 fragments.
  • the temperature of the plasma + process water mixture is increased to 37 ° C ⁇ 2 ° C.
  • the pH is adjusted to 3.5 ⁇ 0.2 with 5 N HCl.
  • 166.6 ml_ of the sterile pepsin solution is added to the plasma + process water mixture located in the 5 I reactor at a temperature of 37 ° C and a pH of 3.5 ⁇ 0.2.
  • the mixture of the plasma + process water + sterile pepsin solution located in the 5 liter reactor is maintained at a temperature of 37 ° C ⁇ 2 ° C and a pH of 3.5 ⁇ 0.2 during 90 minutes in constant agitation.
  • the pH is adjusted to 4.2 ⁇ 0.2 of the digested plasma mixture + process water + filtered pepsin solution located in the 5 liter reactor at a temperature of 37 ° C ⁇ 2 ° C with NaOH 5 N.
  • Ammonium sulfate is added to the digested plasma mixture + process water + pepsin solution.
  • 840 g of ammonium sulfate is added to the digested plasma mixture + process water-i-sterile pepsin solution located in the 5 L reactor at a temperature of 37 ° C ⁇ 2 ° C , pH of 4.2 ⁇ 0.2 and constant agitation.
  • EXAMPLE 5 Clarification I and II of the supernatant from precipitation (Salting-Out) to obtain F (ab ') 2 fragments.
  • the membrane is with a pore size of 8.0 to 20.0 ⁇
  • the system is fed with a peristaltic pump, the feed flow is kept constant, the pressure increase at 25 psi indicates that the process must be stopped in this time, a density of the product to be processed of 1.2 mg / ml was considered, and a volume of 150 g (125 ml) was used, the approximate flow: 6-7 ml / min, with a yield of 56 liters / m 2 .
  • Climbing to filter 60 and 120 liters the calculated area of the appropriate filter is 1.05 m 2 or 2.1 m 2 , respectively. With an area of 1 m 2 the process takes 30 minutes applying a flow of 2,000 ml / min.
  • This example is scalable.
  • Clarification II is carried out with a membrane of pore size of 0.2 ⁇ m.
  • the calculated flow of feed is 12 ml / min and the Flux (LHM) of 956, the membrane area is 0.00138 m 2 , in yield is 605 liters / m 2 .
  • LHM Flux
  • a membrane with 0.099 m 2 of area can be used.
  • Climbing to a batch of 120 liters can be used a membrane with 0.198 m 2 of area.
  • the theoretical time of the process is 30 minutes with a flow of 2,000 ml / min, but this is adjustable depending on the the availability of commercial membranes or the volume to be filtered.
  • EXAMPLE 6 Tangential filtration of the clarified to obtain F (ab ') 2 fragments by 30 kDa hollow fiber membrane.
  • the membrane is polyester sulfone cutting size of 30 kDa, the operating conditions (feed flow, recirculation time, volume / area ratio, transmembrane pressure, initial volume concentration factor, diafiltration volume and volume concentration factor) final), were tested and selected internally.
  • the purity obtained protein concentration and yield is presented in table 13, is the average of 7 tests where 500 ml were filtered per membrane test of 0.14 m 2 , thus a ratio of volume / area of 4 liters is considered / m 2 , the initial volume concentration factor is 3 X and the final volume is 5 X, the diafiltration volume is 20 and the time of the process is 4 hours. It works with a value of ⁇ on average of 4.06 Pa; This allows the separation of the expected molecules, without causing the formation of aggregates or plugging of the filter.
  • EXAMPLE 7 Tangential filtration of the clarified to obtain F (ab ') 2 fragments per 30 kDa cassette.
  • the product to be ultrafiltered is concentrated to 2 liters (2x). It diafiltrates maintaining the constant volume of 2 liters by adding the 0.9% sodium chloride solution with another pump until completing 40 liters of 0.9% sodium chloride (20 washes).
  • the operating conditions feed flow, recirculation time, volume / area ratio, transmembrane pressure, initial volume concentration factor, diafiltration volume and final volume concentration factor) were tested and selected internally, thus allowing the separation of the expected molecules, without causing the formation of aggregates or plugging of the cassette. It works with a value of ⁇ on average of 2.05 Pa.
  • EXAMPLE 8 Tangential filtration of the ultrafiltrate by 30 kDa to obtain F (ab ') 2 fragments per 50 kDa cassette.
  • a membrane with pore size 0.2 um (absolute) is prepared, wetting it with process water at a permeate and feed flow calculated according to its performance, volume and system area.
  • the pump flow setting is approximately 17 ml / min and the capsule is wetted with this membrane with 100 ml of process water.
  • the pump flow is adjusted to approximately 10 ml / min and the solution is clarified through the capsule with this membrane. Everything is done at room temperature.
  • EXAMPLE 10 Formulation of the F (ab ') 2 fragment solution.
  • the amount of sodium chloride calculated is weighed.
  • the calculated amount of sucrose is weighed.
  • the calculated amount of glycine is weighed. Dissolve the sodium chloride, sucrose and glycine calculated in 50% of the volume of process water to reach the final volume in the formulation container. This last operation is omitted if the volume of the concentrate does not need to be diluted and then the sodium chloride, sucrose and glycine are added directly.
  • the volume of the formula sodium chloride, sucrose and glycine is mixed with the volume of the concentrate to reach the calculated final volume of the formulation. All this step is carried out at room temperature.
  • EXAMPLE 11 Prefiltration of the solution of F (ab ') 2 fragments formulated and final nanofiltration.
  • the prefiltration and the nanofiltration were integrated in table 21 as steps 8 and 9 of the process of the invention.
  • the formulated bulk be pre-filtered to then be subjected to viral clarification by nanofiltration.
  • the prefiltration membrane is 0.1 ⁇ (absolute).
  • the average flow is 15 ml / min and the Flux (LHM) of 478
  • the membrane area is 0.00138 m 2
  • the yield is 119.8 Iphores / m 2 .
  • Climbing for lots of 40 liters can be used a membrane with 0.335 m 2 of area. If a 0.33 m 2 filtration area available in the market is used, the theoretical time of the process is 12 minutes with a pressure of 10 psi., But this is adjustable depending on the availability of commercial membranes.
  • PVDF polyvinylidene difluoride
  • EXAMPLE 12 Sterile terminal filtration of the formulated F (ab ') 2 fragment solution.
  • step 10 of table 21 As a finished product it is required that the formulated bulk be sterilized by membrane (step 10 of table 21).
  • a membrane of 0.2 jim sterilizing grade is used. The system is powered by peristaltic pump, the pressure increase of the system is 2 psi.
  • the flow is 12.4 ml / min and the Flux (LHM) of 538, the membrane area is 0.00138 m 2 .
  • Climbing to a batch of 40 liters can be used a membrane with 0.111 m 2 of area.
  • the product bottles are frozen for 8 hours at -70 ° C and 1000 mBar, the main drying is done at -20 ° C (plate temperature), 0 mBar for 63 hours and the final drying at 30 ° C (temperature of the dish), 0 mBar for 8 hours.
  • the main drying and the final drying are carried out with the temperature of the lyophilization chamber -60 ° C. These conditions are established for an operation volume of 125 ml (25 vials).
  • Example 14 Verification of cresol and phenol removal for each of the stages of the process of obtaining F (ab ') 2 fragments at the pilot plant level.
  • Samples of equine plasma were submitted to the pilot plant process, samples were taken from each stage: digestion with pepsin, precipitation, thermocoagulation, and the diafiltration modalities: the tangential with hollow fiber of 30 kDa cut size and the one made with systems 30 kDa and 50 kDa cassettes, subsequent samples were also taken: the last clarified, the product prefiltered, nano filtered and finished product (PT).
  • samples were taken in each stage and in each in the 2X concentration, diafiltered 5, 10, 15 and 20 washes and samples were taken in the 10X concentration, diafiltered 5, 10, 15 and 20 washes.
  • Antivenoms against scorpion venom can be used according to the degree of poisoning under the following scheme (Table 33): Table 33.
  • Antivenoms against snake venom can be used according to the degree of poisoning under the following scheme (Table 34):
  • the present invention is a high performance process for obtaining a safe and effective antidote to act against the toxic activity of poisons; the antidote is a composition based on F (ab ') 2 fragments of IgG antibodies, which when administered in mammals produce a passive immunity.
  • the F (ab ') 2 fragments obtained by the process of the present invention are of polyclonal origin and are characterized by their potency and purity.
  • Chippaux JP (1998). Snake-bites: appraisal of the global situation. BulEetin of the World Health Organization, 76 (5), 515-24.
  • Tityus serrulatus scorpion venom toxins display a complex pattern of antigenic reactivity. Toxicon Feb; 31 (2): 223-7.
  • a protocol for 'enhanced pepsin digestion' a step by step method for obtaining purge antibody fragments in high yield from serum Journal of Immunological Methods 275 (2003) 239-250.

Abstract

La presente invención se refiere al campo de los productos de origen biológico basada en fragmentación de anticuerpos que se utilizan para inmunización pasiva para neutralizar toxinas presenten en venenos de animales ponzoñosos, específicamente se refiere a un producto biológico en donde el principio activo es una combinación de fragmentos de anticuerpos F(ab')2 y al proceso para obtenerlos con un mayor rendimiento y mejor calidad en cuanto a pureza y capacidad neutralizante de tales toxinas. Se describe su purificación a partir de plasma hiperinmune mediante sa!fing out prescindiendo de cresol, de termocoagulación y de diálisis y aplicando técnicas de ultrafiltración con parámetros específicos para obtener fragmentos de F(ab')2 con purezas mayores a 95%.

Description

PROCESO DE ALTO RENDIMIENTO PARA LA PRODUCCIÓN DE
ANTIVENENOS DE FRAGMENTOS F(ab')2 DE ANTICUERPOS
CAMPO DE LA INVENCIÓN
La presente invención se refiere al campo de la biotecnología basada en fragmentación de anticuerpos que se utilizan en vacunas para inmunización pasiva para neutralizar toxinas presentes en venenos de animales ponzoñosos; específicamente, se refiere a un producto biológico en donde el principio activo es una combinación de fragmentos F(ab')2 de anticuerpos y al proceso para obtener los mismos con alta pureza y potencia.
ANTECEDENTES
Las mordeduras de serpiente y las picaduras de escorpión son emergencias médicas en muchas partes del mundo donde se distribuyen estos animales. Los más afectados son los trabajadores agropecuarios y los niños de países productores de alimentos. Es difícil de estimar la verdadera incidencia mundial de mordeduras de serpientes. Se ha informado que cada año hay 5 millones de mordeduras de serpiente, resultando en 2.5 millones de envenenamientos, y 125,000 muertes y quizás tres veces ese número de secuelas permanentes en el mundo, (Chippaux, 1998).
La incidencia de mortalidad es particularmente alta en África, Asia, América Latina y Nueva Guinea. Solamente en La India puede haber hasta 50,000 muertes por mordeduras de serpientes cada año. La mayoría de las personas afectadas por mordeduras de serpiente no buscan tratamiento en el hospital, sino que prefieren remedios tradicionales, por lo que el número de accidentes y de muertes asociadas está subestimado a falta de estos registros, (Gutiérrez, et al. 2006, Fox, et al. 2006). Algunos estudios han comenzado a revelar la verdadera carga de la mortalidad de mordedura de serpiente, por ejemplo, en la región oriental de Terai en Nepal, hubo 162 muertes por mordedura de serpientes por 100,000 habitantes por año (Sharma, 2004), y en una región de Nigeria, la incidencia de picaduras de serpientes fue de 497 por 100, 000 personas por año, con una tasa de mortalidad del 12.2% (Warrell y Amett, 1976). Un estudio realizado en Malumfashi, Nigeria, mostró que había 40-50 casos de mordedura de serpiente, con 4 muertes por cada 100,000 por año; 19% de los mordidos desarrollaron secuelas persistentes y solo el 8.5% buscó tratamiento hospitalario; en el distrito de Kilifi, en la costa de Kenia, el 68% de las victimas de mordeduras de serpientes consultaron a un "muganga" local (brujo médico), sólo el 27% fueron al hospital y el 36% quedaron con secuelas permanentes (Pugh, et al., 1980; Snow, 1994).
El problema global es mucho mayor de lo que se ha logrado registrar, además la carga de sufrimiento humano atribuible a estos envenenamientos implica un mayor impacto para la salud pública. Se estima que hay 2 millones de envenenamientos por año para el África Subsaharíana, en donde la mayoría de las víctimas son niños o jóvenes trabajadores agrícolas, muchos de los cuales se quedan para el resto de sus vidas con consecuencias físicas o psicológicas permanentes; muchas de las personas afectadas son los trabajadores agrícolas (productores de alimentos) cuyas familias dependen de su actividad. Los accidentes tienen un impacto económico en las comunidades agrícolas en estos países. En el África Subsaharíana, los envenenamientos por serpientes y escorpiones son aún un problema de salud pública sin resolver debido a la crisis en la producción de antivenenos.
En Norte América ocurren encuentros del humano con serpientes y escorpiones derivando en más de 25,000 llamadas al año a los centros de toxicología. Independientemente del área de práctica geográfica, seguirán ocurriendo un número significativo de eventos a nivel mundial.
La inmunización pasiva, que se refiere a la administración de anticuerpos para proteger en contra de infecciones o de tóxicos, fue probada experimentalmente por varios investigadores, entre los cuales se destaca Albert Calmette quien protegió conejos en contra del veneno de cobra administrándoles una hora antes anticuerpos en forma de antisuero (Calmette, 1896). La inmunización pasiva se utiliza en nuestros días para tratar infecciones de manera exitosa, por ejemplo, contra la rabia o contra el Ébola, y también envenenamiento.
Hasta ahora para inmunización pasiva solo se han comercializado los fragmentos Fab y F(ab')2, aunque varios candidatos clínicos y preclínicos se han generado utilizando scFv, dominios VH o VL humanos, los dominios VHH de camélidos humanizados, y los dominios individuales IgNAR. También ha sido recientemente construido un nuevo andamio de fragmento de anticuerpo a partir del dominio CH2 de una IgG humana. Además, se han utilizado varías estrategias para mejorar la natural corta vida media propia de fragmentos de anticuerpos, incluyendo la PEGilación, el uso de la repetición de secuencias de péptidos, la polisialización, fusiones o uniones con albúmina o con IgG o fusiones, entre otros enfoques.
La funcionalidad de un anticuerpo se define por las cadenas variables que contiene, independientemente de que contenga o no sus regiones constantes, de ahí el interés de producir y aislar solamente los fragmentos F(ab')2. Por otro lado, el fragmento Fe comprende los determinantes antkjénicos del anticuerpo, de tai forma que, al administrarle a un paciente anticuerpos completos generados en algún animal de otra especie, el paciente genera una respuesta inmune en contra de esos determinantes antigénicos dando origen a variadas respuestas secundarías adversas que incluso puede ser un choque anafiláctico. Estos problemas se reducen significativamente al digerir previamente los anticuerpos ya sea con papaína o pepsina y al administrar solamente los fragmentos Fab o F(ab purificados resultantes.
El uso de fragmentos Fab o F(ab')2 encuentra otra ventaja en lo que se conoce como concepto de volumen de distribución, que no es sino el volumen del cuerpo en el que un determinado fármaco es disuelto, este volumen puede referirse solo a la sangre circulante como en el caso de las IgG o incluir una mayor parte del agua corporal para el caso de los Fragmentos. Por ello, los Fab y F(ab')2 por tener un mayor volumen corporal pueden acceder a neutralizar toxinas alojadas en diversos tejidos, no solo en la sangre, e incluso pueden atravesar la barrera hematoencefálica en ambos sentidos y pueden ser utilizados para neutralizar o eliminar neuro-toxinas. Particularmente, el uso de los F(ab')2 tiene una ventaja sobre los Fab, que consiste en que tienen un mayor tiempo de retención en el organismo pues tienen el doble de peso molecular, además que conservan la capacidad para precipitar al antfgeno en condiciones fisiológicas, y también tienen un tamaño que les permite acceder a un volumen de distribución suficiente para fines de tratamiento.
Al conservar los fragmentos F(ab')2 las principales características de los anticuerpos, las aplicaciones que tienen estos últimos se extienden a los primeros, con la ventaja adicional de que al carecer del fragmento Fe, es menos probable el reconocimiento como ajenos por parte del organismo del paciente al que se le administran, teniendo una mayor tolerancia a su aplicación y reduciéndose la posibilidad de reacciones secundarias (reacción humoral al Fe o reacción de Arthus y la activación del sistema del complemento), esto resulta particularmente útil para tratamientos prolongados tales como los que se aplican en las enfermedades autoinmunes. Como es evidente, en tos procesos de purificación de F(ab')2 es importante considerar las diferencias entre los venenos de especies de serpientes que están alejadas tanto geográficamente como fiiogenéticamente. Los venenos entre especies difieren en efectos, así, Mitchell y Reichert (1886) encontraron diferencias significativas en las concentraciones de globulinas y peptonas en venenos de la serpiente de cascabel (Crotalus adamanteus), mocasín de agua (Agkistrodon piscivorus) y cobra (Naja naja). También encontraron que estos venenos diferían en sus efectos farmacológicos y en los cambios en los tejidos producidos. Wolfenden (1886) informó sobre las diferencias químicas entre los venenos de la cobra y la víbora de Rusell (Vípera russellh), concluyendo que dependían de las modificaciones en las moléculas proteínicas. Aún en nuestros días la composición los venenos de víboras no han podido ser adecuadamente definidos, los componentes de los venenos se clasifican por sus efectos farmacológicos como: neurotoxinas, hemorraginas, citolisinas, etc. Pronto se puso de manifiesto que la composición de los venenos de las serpientes no podía ser adecuadamente definida por las técnicas bioquímicas del día, y los componentes del veneno se clasificaron generalmente por sus efectos farmacológicos como neurotoxinas, hemorraginas, citolisinas, etc. Como ejemplo, en la figura 1 se hace evidente la complejidad en cuanto a componentes que puede alcanzar el veneno, en este caso de la especie Bitis gabonica gabonica.De las propiedades inmunogénicas del veneno de serpiente y el desarrollo de antitoxinas bacterianas, los antisueros terapéuticos de los venenos de serpientes se desarrollaron sobre una base más o menos empírica con una comprensión imperfecta de la naturaleza y complejidad de los venenos.
Al igual que sucede con los venenos de especies de viperinos, los venenos de alacranes también son una mezcla compleja de una gran variedad de moléculas y desempeñan un papel importante en la defensa y captura de presas. Tal y como lo refieren Hainen y Gorini da Veiga (2011), se han identificado más de 1500 especies de alacranes, cada una produciendo un tipo diferente de veneno; se estima que cada veneno está compuesto por 50-100 polipéptidos tóxicos diferentes (Lourenco, 1994 y Possani et ai., 2000). En contraste con los venenos de araña y serpiente, el veneno de alacrán generalmente muestra bajos niveles de actividad enzimática (Gwee et al., 2002). Contienen mucopolisacáridos, fosfolipasas, hialuronidasas, inhibidores de proteasa, moléculas de bajo peso molecular tales como serotonina e histamina, péptidos liberadores de histamina, sales inorgánicas, mucostdad y muchas proteínas pequeñas básicas llamadas péptidos neurotóxicos (Martin- Eauclaire y Couraud, 1995, Müller, 1993) y Simard y Watt, 1990). De las aproximadamente 1500 especies de alacranes, solo han sido estudiadas algunas cuantas, esto es un indicador de la necesidad de proveer de antídotos para cubrir la demanda a nivel mundial.
Como ejemplo de la complejidad, las toxinas del veneno de la especie Trtyus serrulatus, (especie considerada como la más peligrosa de los alacranes Sudamericanos y responsable de la mayoría de los casos fatales), fueron analizadas por radioinmunoensayos, muestran que además de su complejidad, presentan patrones de reactividad antigénica muy diversos, incluso algunos antígenos no logran ser detectados por los sueros, io cual nos da una idea de lo compleja que puede ser la respuesta inmunológica, De Lima, et al. (1993).
Los venenos de araña son también una mezcla compleja de proteínas, polipéptidos, neurotoxinas, ácidos nucleicos, aminoácidos libres, sales inorgánicas y monoaminas que causan efectos diversos. Heinen, A.B. Gorini da Veiga / Toxicon 57 (2011) 497-511 en vertebrados e invertebrados (Jackson y Parks, 1989, Ori e Ikeda, 1998, Schanbacher et al., 1973). Por ejemplo, las arañas red de embudo (Atrax robustos), uno de los géneros con especies de las más venenosas, producen más de 1000 péptidos, como lo revelan los análisis de espectrometría de masas de su veneno. Una estimación bruta de 500 toxinas diferentes para cada veneno de araña nos daría un total de 19,000,000 de toxinas para las aproximadamente 38,000 especies de arañas conocidas. En el campo del diseño y fabricación de antivenenos, tal complejidad bioquímica de la mayoría de los venenos es una variable a considerar. Para el caso de la obtención de fragmentos de anticuerpos que neutralicen de manera efectiva a los venenos complejos, aún es necesario partir de anticuerpos derivados del plasma hiperinmune, conservando la mayor cantidad de tales anticuerpos con sus diferentes afinidades para las diversas toxinas antigénicas para tener más probabilidades de neutralizar de manera efectiva. Se entiende por plasma hiperinmune aquel plasma que contiene niveles de anticuerpos sumamente elevados y para esta invención se refiere específicamente a la presencia de concentraciones elevadas de anticuerpos policlonales en el plasma generados por la inmunización con venenos o derivados de los mismos de especies ponzoñosas, para inmunizar generalmente se utilizan equinos u ovinos. El proceso de la presente invención promueve la generación y obtención de los fragmentos F(ab')2 de los anticuerpos efectivamente neutralizantes, a pesar de que la complejidad de los venenos pudiera dificultar su generación y separación o fraccionamiento y al mismo tiempo lograr obtenerlos libres de moléculas que no son F(ab')2 y que son irrelevantes o incluso indeseables (como los pirógenos entre otros tóxicos) para el mecanismo de neutralización. Es importante considerar que el uso de anticuerpos recombinantes (como los scFv) o monoclonales de otras variantes de anticuerpos recombinantes no es la mejor alternativa para neutralización de venenos complejos (de composición desconocida), dado que implica el aislamiento de tales componentes del veneno (antígenos y/o péptidos antigénicos) para aplicar técnicas de biología molecular para obtener los anticuerpos específicos que previamente se hayan reconocido como neutralizantes efectivos, y de ahí ya sea los dominios variables (VH, VL) o el diseño de scFv, de anticuerpos humanizados o híbridos, etc. Estas técnicas no son las ideales para producción a escala comercial por su laboriosidad y costo además de que implica la pérdida de grandes cantidades de los anticuerpos de interés. Los fragmentos F(ab')z policlonales siguen siendo a la fecha los más eficientes para neutralizar la toxicidad de los venenos. Es importante conservar la policlonalidad original ya que muchos de los anticuerpos verdaderamente neutralizantes de la actividad tóxica pueden estar representados en el suero hiperinmune pero en concentraciones no muy altas, esto ocurre en dos situaciones: Cuando el veneno es muy complejo en cuanto a componentes y el antígeno no está muy bien representado en cuanto a concentración y cuando los determinantes antigénicos están encríptados. Cuando el veneno es muy complejo en cuanto a componentes, y los antígenos tóxicos se encuentran pero en baja representación por lo que no se logra una producción alta de anticuerpos neutralizantes. Cuando los determinantes antigénicos están encriptados y solamente durante el procesamiento del antígeno que se lleva a cabo en células presentadoras de antígenos (APCs), dentro de las cuales se procesan los antígenos comenzando con la degradación de los mismos en proteasomas citosólicos (en las APCs) se generan péptidos al azar que son presentados en las membranas por las moléculas de complejo mayor de histocompatibilkJad para despertar respuestas de linfocitos, entre estas respuestas está la expansión células de memoria y la generación de anticuerpos de alta afinidad por el antígeno. Las respuestas salen a relucir ante el sistema inmunológico por lo que se logrará la producción de anticuerpos muy efectivos para neutralizar los efectos tóxicos. La respuesta inmunológica protagónica en la generación de anticuerpos de alta afinidad es la que se deriva de las células B; los linfocitos B se consideran como células presentadoras de antígenos (APC) profesionales a pesar de su papel primario en la inmunidad humoral. En general está claro que las células B procesan y presentan antígenos específicos e inespecíficos de manera diferente, la presentación de antígeno específico a través del receptor de antígeno de células B se produce con una eficacia muy alta y se asocia con la activación de células B, resultando en la activación de células T relacionadas. En contraste, la presentación de antígeno inespecífico por células B se minimiza y se disocia de la activación de células B. Como resultado, las células B inactivan las células T que reconocen los epítopos antigénicos no específicos presentados por las células B, o inducen la diferenciación o expansión de las células T reguladoras. Estos mecanismos sirven para asegurar la producción efectiva de anticuerpos específicos de antígeno de alta afinidad, pero minimizan la producción de anticuerpos inespecíficos y autoanticuerpos (Chen y Jensen, 2008). De los anticuerpos policlonales que se producen en el animal hiperínmunizado, solo un porcentaje es verdaderamente neutralizante y durante la obtención de F(ab')2 a partir del plasma ocurre una gran pérdida de los mismos, de entre los más importantes algunos serán fragmentos con bajo porcentaje de representación, y será por esta razón, más probable que se pierdan, consecuentemente bajará o se perderá la capacidad de neutralizar al veneno cuando se trate de neutralizar determinantes antigénicos ó epítopes de los que depende la actividad biológica tóxica del antígeno del veneno. Con respecto al estado de la técnica más cercano a la invención, el antecedente más directo es la patente US 6,709,655, por lo que a lo largo de la descripción se hace un intensivo análisis comparativo de los procesos de purificación. Las técnicas de purificación de proteínas que se describen en el estado de la técnica tales como la electroforesis, la separación cromatográfica (como la cromatografía de exclusión molecular, intercambio iónico y por afinidad y la cromatografía líquida de alta resolución (HPLC)), entre otras, son ideales para obtener cantidades mínimas o relativamente discretas, de hecho, existen innumerables artículos que describen métodos de purificación de proteínas que pueden producir desde unos pocos microgramos hasta unos pocos cientos de miligramos de productos proteínicos muy puros. Sin embargo, estos procesos son muy difíciles de escalar sin implicar altos costos de producción, lo que limita su uso para niveles de producción industrial de proteínas. En ia literatura se han reportado varios enfoques de producción de anticuerpos y sus fragmentos, con afinidad a venenos. Por ejemplo, en las patentes US 4,849,352 y US 8,048,414 de Sull an ef al., se describe la producción de fragmentos Fab ó F(ab')2 mediante la digestión de anticuerpos, presentes en suero hiperinmune, con papaína ó pepsina inmovilizada en una matriz de poliacrilamida y la producción de fragmentos F(ab')2. Para purificar estos fragmentos se valen de una segunda cromatografía ahora por afinidad en donde se encuentra fijado el antígeno (los antígenos presentes en el veneno) y así se retienen las moléculas de F(ab) ó F(ab que son atraídos por el antígeno (veneno) inmovilizado en una matriz de poliacrilamida, obteniendo fragmentos Fab ó F(ab')z No obstante la pureza con que se obtienen los fragmentos requeridos, para una producción comercial a gran escala de preparaciones de fragmentos de anticuerpos con el método descrito en las patentes de Sullivan resulta sumamente costosa tanto por el uso de enzimas inmovilizadas para la digestión como por el uso de antígenos inmovilizados para la purificación. Además, aunque un tamiz antigénico puede ser útil para la producción de fragmentos de anticuerpos contra sustancias puras, este método no es factible para purificar anticuerpos contra venenos que son mezclas de una gran cantidad y variedad de toxinas, ya que requeriría un consumo excesivo de tiempo y de recursos. Para poder aislar todas las moléculas de F(ab')2 capaces de neutralizar a todos los antígenos presentes en el veneno se requeriría no solo realizar múltiples cromatografías sino conocer a todos los antigenos lo cual a la fecha no ha sido fácil de distinguir, sobre todo en lo que se refiere a venenos complejos como comúnmente ocurre con los venenos de las especies de serpientes y de alacranes. Con el método de Sullivan et al descrito en las patentes US 4,849,352 y US 8,048,414 la calidad neutralizante de los antivenenos puede verse incluso comprometida. Otro enfoque que es importante revisar es el que se muestra en la patente US 5,733,742 en la que Landon er al, reivindica un proceso para producir fragmentos Fab a partir de sangre completa en un medio estéril, en donde pone en contacto la sangre completa directamente con la enzima papaína, preferentemente purificada, ya sea libre o inmovilizada, removiendo residuos celulares por centrifugación, separando y recuperando los fragmentos para posteriormente purificarlos, preferentemente por imnunoafinidad. Nuevamente, Landon usa antígenos purificados los cuales, a diferencia de los venenos, fácilmente se pueden ligar a soportes para obtener un tamiz para la purificación de los Fab de interés, y nunca utiliza ni discute sobre el método para obtener fragmentos Fab contra antígenos que son mezclas de muchas sustancias, como son los venenos, además de que solamente trabaja con papaína y quimiopapaína y no discute la posibilidad de usar pepsina. En los reportes de Landon y Jones (2002 y 2003) se describe un protocolo para obtener fragmentos F(ab')2 a partir de suero ovino que consiste en la digestión con pepsina en una mezcla de reacción a pH 3.5 que mantiene elevando el pH a 6 con un buffer de piperazina, centrífuga a 2750 g y elimina el precipitado o bien filtra con filtro de fibra de vidrio), de esta solución separa los componentes de bajo peso molecular (< 13kDa) mediante diafiltración de flujo tangencial en membrana de polietersulfona con un corte de peso molecular de 30 kDa, en este paso no se logra eliminar la pepsina, lo cual es necesario para que no se formen agregados de los productos de digestión, por lo que se lleva a cabo una cromatografía de intercambio iónico, así se elimina todo contaminante ácido incluyendo la pepsina. Con el procedimiento de Landon, no se realiza salting out, si no que el producto de la digestión se va a ultrafiltración. La necesidad de utilizar un método cromatográfico para eliminar la enzima hace que este proceso sea difícil de escalar a producción industrial por los altos costos que implica. Landon J. et al. (2014), también describe un proceso para purificar antivenenos de F(ab')2 y Fab de IgG a partir de suero hiperinmune de ovinos, con el objetivo de minimizar la degradación de las inmunoglobulinas primero precipitan todas las proteínas del suero, incluyendo la albúmina, con ácido caprílico, las inmunoglobulinas no precipitan, posteriormente realizan la digestión para obtener los F(ab')2 o los Fab, con la adición de pepsina o de papaína, respectivamente. Con este método también se presenta contaminación con albúmina que se optimiza modificando tiempos de mezclado y de temperatura, y también se presentan productos de degradación que se eliminan por diafiltración, las impurezas ácidas presentes también requieren eliminación pasando por una columna de intercambio iónico. El uso del ácido caprílico ya sea simultáneo a la digestión o después de la digestión, reduce el tiempo de digestión (de 24 horas a 4 horas en las condiciones que se reportan) sin que merme demasiado la producción de F(ab')2. Un enfoque adicional de producción de fragmentos Fab es el de la patente US 4,814,433 en la que Fredrickson expone un procedimiento para obtener Fab libres de papaína, pues observa que al digerir los anticuerpos con esta enzima, permanecen como contaminantes en la solución compuestos híbridos de la papaína unida por puentes de disulfuro con alguno de los fragmentos resultantes de la digestión, de los que posteriormente la papaína puede continuar digiriendo y degradando los fragmentos obtenidos. Para resolver el problema, utiliza anticuerpos anti-papaína, que capturan los compuestos híbridos de la enzima. Posteriormente purifica los fragmentos pasando la solución por una columna con proteína A en donde quedan retenidos los fragmentos Fe y los compuestos híbridos. Este problema que se presenta en la digestión con papaína, no ha sido reportado que se presente con la digestión con pepsina. Algunos métodos tradicionales involucran la digestión con pepsina y la precipitación de la fracción de los fragmentos con sulfates de amonio o de sodio, pero suele manejarse primero una pre-separación de ios anticuerpos por precipitación con sulfato y luego la digestión de la fracción de anticuerpos. Sin embargo, con este protocolo se han reportado grandes pérdidas de la actividad biológica en los fragmentos resultantes y un alto contenido de anticuerpos intactos y otros contaminantes. Otras modalidades de procesamiento de inmunoglobulinas de plasma inmunizado se describen en las patentes chinas CN 103864930 y CN 101816789, sin embargo, ambas incluyen procesos cromatográficos que no representan un balance costo- beneficio favorable. La solicitud china CN 103864930 se refiere a la obtención de fragmentos F(ab')2 de anticuerpos que resisten al veneno del alacrán Buthus martensii karsch y se basa en la obtención de plasma de caballo inmunizado con este veneno y se obtienen y purifican los fragmentos mediante enzimolisis y salting out, y por columna de intercambio obtienen los fragmentos F(ab')2 activos con alta pureza, el pico seleccionado se purifica por columna de desalación o por ultrafiltración, se esteriliza por filtración y finalmente se liofiliza el producto. La solicitud china CN 101816789 se refiere a la obtención de fragmentos F(ab')2 de anticuerpos anti-veneno de vipéridos, se basa en la obtención de plasma de caballo inmunizado con este veneno y se obtienen las inmunoglobulinas por salting out, se utiliza la diálisis por centrifugación, posteriormente se obtienen los fragmentos F(ab')2 mediante enzimolisis y se purifican por columna hidrofóbica, se pasan por ultrafiltración en membrana de 8000 a 10000 Da o bien por ultrafiltración por membrana desalinizadora y filtro para esterilización de 0.22pm, y se liofilizan al final. La digestión enzimática en la producción de F(ab')2 de por sí conlleva a la pérdida de actividad de algunas moléculas F(ab')2 y por lo tanto a la pérdida de potencia de la fracción F(ab')2 resultante en comparación con la IgG no digerida. Esta pérdida de actividad puede explicarse por las condiciones agresivas de bajo pH necesarias para la digestión, pero también por la digestión inespecífica de IgG que se hace evidente con la incubación a tiempos de reacción más largos. Se han descrito numerosas condiciones de digestión que varían en cuanto al tipo y concentración de enzima y tiempo de digestión, y en el estado de la técnica se puede apreciar que el proceso no está bien normalizado. La única enzima capaz de escindir completamente la IgG para dar F(ab')2 es la pepsina. Como se reporta en documentos del estado de la técnica, después de la digestión enzimática, normalmente se requieren varias etapas de purificación por diversidad de métodos, para asegurar una alta pureza y eficacia de los productos con mínimos efectos secundarios y mínima pérdida de las moléculas de interés. La purificación se puede realizar por salting out (precipitación salina), utilizando ácido caprílico, sulfato de amonio o sulfato sódico. En el estado de la técnica también se reporta el uso simultáneo o consecutivo de la termocoagulación durante esta etapa. En el proceso de la patente US 6,709,655 se describe el proceso de purificación del principio activo basado en precipitaciones y diálisis y en donde el paso de termocoagulación es también imprescindible y se menciona que sigue una vez finalizada la primera precipitación con sulfato de amonio. La termocoagulación que se realiza a 54 °C facilita que precipiten proteínas séricas que no se digieren tales como la albúmina y el fibrinógeno, sin embargo estas temperaturas también puede dañar a cierto porcentaje de ios fragmentos de inmunoglobulinas que se generaron durante la digestión enzimática, con lo que al eliminarla se conservan más proteínas de interés intactas (fragmentos F(ab')2), por lo que lograr eliminar su aplicación representa una ventaja sobresaliente al estado de la técnica. La ultrafiltractón es una técnica de filtración que utiliza membranas para separar diferentes tipos de sólidos y líquidos (separa partículas con diámetro de 0.1 a 0.001 μτη (1 ,000 a 20,000 Da), mediante la aplicación de una fuerza impulsora, siempre se aplica presión, pero también influye como fuerza impulsora la concentración y el potencial eléctrico. Con la ultrafiltractón el flujo atraviesa paralelamente la superficie de la membrana y no es perpendicular como ocurre con la filtración ordinaria, por lo que se produce una acumulación sobre la superficie de la membrana, se separan así dos fases líquidas, una agotada en soluto (ultrafiltrado o permeado) y una enriquecida en soluto (retenido) (Garavito, 1995). Por otro lado, la diafiltración es una modificación de la ultrafiltractón en la cual se adiciona agua a la alimentación con el fin de facilitar el permeado de algunos componentes a través de la membrana, el agua agregada va recirculando en el proceso de modo tal que se reduce la concentración de los componentes solubles del permeado y se incrementa la concentración de los componentes del retenido. Mientras que la nanofiltración, es un proceso de filtración por membranas que se da por la aplicación de presión, donde solutos de bajo peso molecular (aproximadamente en el rango de los 1000 daltons) son retenidos, mientras que otros, como las sales, pueden pasar total o parcialmente, a través de la membrana con el filtrado. La ultrafiltractón se ha vuelto una técnica importante en el tratamiento de las aguas y de los efluentes industriales; puede utilizarse directamente en la producción de agua potable gracias a su capacidad de retener las bacterias y los virus. En algunos otros casos puede utilizarse como pretratamiento antes de la nanofiltración o de la ósmosis inversa. En el caso de las industrias agroalimentarias es en el tratamiento de la leche que la ultrafiltractón ha sido más utilizada en particular para la concentración del lactosuero. En las industrias del tratamiento de superficie, la ultrafiltractón se utiliza para la regeneración de los baños de pintura por cataforésis utilizados en la industria automovilística. La ultrafiltración puede igualmente utilizarse para separar emulsiones aceite-en-agua. En el campo de la bioquímica, la ultrafiltración sirve para separar y concentrar enzimas, virus o principios activos que sirven a la fabricación de vacunas, que es el campo técnico que nos ocupa en la presente invención. Tal como se conoce en el estado de la técnica, la operación de ultrafiltración y sus variantes, es una operación unitaria idealmente diseñada y utilizada para la separación y concentración de partículas y no tanto de clases moleculares; para la separación más exquisita de tamaños y tipos moleculares las operaciones unitarias que se utilizan en el estado de la técnica son prímordialmente técnicas cromatográficas, ya que hasta el momento han sido las únicas técnicas que han permitido obtener pureza alta para productos biotecnológicos o biológicos. Regularmente, la ultrafiltración y sus variantes se aplican en la separación de productos de no mucho valor agregado o en donde no es tan relevante una separación exquisita de las fracciones moleculares (en la industria láctea por ejemplo), con la finalidad de incrementar la velocidad de producción, se tiende entonces a utilizar flujos y presiones más elevadas para realizar la operación de purificación, cuando tales parámetros se elevan quizás no se tenga una separación tan precisa, pero esto no tendrá un impacto importante en la salud del consumidor del producto, sin embargo, para la separación de fracciones moleculares en productos biotecnológicos como se emplea para la presente invención, la aplicación de las técnicas de ultrafiltración se vuelve un problema técnico que requiere de diseño experimental involucrando un nivel inventivo. En la presente invención, se ha redirígido la ultrafiltración de forma novedosa e inventiva hacia un proceso de alto rendimiento para producción, obtención y purificación de anticuerpos y composiciones que los comprenden; particularmente, fragmentos de anticuerpos y composiciones que los comprenden; más particularmente, fragmentos F(ab')2 y composiciones que los comprenden, capaces de neutralizar venenos a partir de plasma hiperinmune de mamífero no humano. La presente invención también presenta datos sobre las condiciones óptimas de digestión, es decir, en donde se logra la mayor productividad de F(ab')2, lo cual también representa un avance destacado en los métodos de producción basados en digestión de anticuerpos con pepsina. En la patente ES 2549690 se describe la obtención de derivados de anticuerpos con un paso de diafíltración por flujo tangencial, emplean una membrana de 50 kDa para dicha diafíltración; además de que a juzgar por las figuras de los cromatogramas no se logra un grado de pureza comparable al obtenido para la presente invención, como se describe más adelante; en realidad no se logran eliminar los componentes de bajo peso molecular (debajo de 15 kDa) en los mismos niveles que los obtenidos con el proceso de la presente invención. En dicha patente no se muestran evidencias de rendimientos ni datos de potencias de los antivenenos obtenidos. Con esto resulta evidente que no basta implementar cualquier protocolo de ultrafiltración, sino que se requiere el diseño del protocolo y de los parámetros adecuados. Otras técnicas de purificación son por supuesto las cromatográficas, como lo son cromatografía de intercambio iónico y la cromatografía de afinidad, pero ya describimos sus desventajas para el campo de la invención. Por lo general, la precipitación con sal (salting-out) que también se utiliza para separar y purificar posteriormente mediante diálisis, es de bajo coste, pero resulta en una baja recuperación de anticuerpos; el proceso basado en salting- out es difícil de escalar en condiciones estériles y da bajo rendimiento y pureza. Además, puede estar asociado con grandes pérdidas en la actividad de anticuerpos y/o la formación de agregados. Alternativamente, la precipitación con ácido caprílico puede aumentar el rendimiento de IgG, pero el proceso lleva mucho tiempo y no erradica contaminaciones bacterianas productoras de endotoxinas (Landon J. ef al. (2014)). En el estado de la técnica también se reporta que la diálisis es eficaz para purificar los F(ab')2 pero no puede eliminar por completo la pepsina, su presencia puede afectar a la estabilidad de los fragmentos de anticuerpos por lo que para eliminarla se valen de la cromatografía de intercambio iónico como ya se ha mencionado (Landon J., ef al. (2003)). La principal ventaja de los procesos de ultrafiltración sobre los procesos convencionales de bioseparación es el alto rendimiento del producto. Sin embargo, a pesar del amplio uso de la ultrafiltración en procesos tales como diafiltración y concentración, el potencial para su uso en el fraccionamiento de proteínas no ha sido tan ampliamente explotado en la industria biotecnológica. Esto se debe principalmente a dos razones: Una es la falta de comprensión de los mecanismos de separación involucrados en la ultrafiltración, sorprendentemente, todavía es considerado por muchos como un mero proceso de tamizado donde el tamaño es el único criterio para la separación del soluto. Existe un mito de que una diferencia de ocho a diez veces en el tamaño del soluto es esencial para la separación satisfactoria del soluto por ultrafiltración. Pero este no es el caso ya que el tamaño del soluto es sólo uno de los muchos factores responsables de la separación. Las interacciones soluto-soluto, las interacciones soluto-membrana, la polarización de la concentración, el modo predominante de transporte de soluto (es decir, convectivo o difusivo) se encuentran entre varios factores que pueden ser responsables del fraccionamiento de la proteína. Otra razón de la baja explotación de estos métodos es que los trabajos de investigación sobre la aplicación de la ultrafiltración en el área de fraccionamiento protéico ha sido sobre la separación de mezclas simuladas de proteínas; si bien esto ha llevado a una mejor comprensión de los mecanismos de transporte de proteínas y la separación, la falta de investigación basada en aplicaciones ha mantenido la ultrafiltración en el punto ciego de los usuarios potenciales. El hecho es que los procesos de ultrafiltración se pueden sintonizar de manera precisa para conseguir una alta productividad y pureza del producto al mismo tiempo. El aumento en la demanda de antivenenos policlonales implica el desarrollo de procesos de purificación de los anticuerpos y de sus fragmentos activos factibles a gran escala y eficientes. La técnica de producción, basada en la separación o fraccionamiento, que se propone con la presente invención, tiene un alto rendimiento de producto a bajo coste de proceso ciertamente es beneficiosa para la industria biotecnológica particularmente en el campo de los antivenenos basados en anticuerpos policlonales o en sus fragmentos activos. En la presente invención se describe desarrollo experimental trabajando con mezclas muy complejas y de origen biológico como son los sueros hiperínmunes (Ghosh, y Cui, 2000) y se aplica la ultrafiltración basada en un trabajo experimental exhaustivo con la invención se ha logrado optimizar la separación de las moléculas de interés. Por ejemplo, el método actual para la preparación de suero antirrábico F(ab')2 aprobado por la OMS, se basa en el enfoque descrito por Pope (1938; 1939 a; 1939 b) y Harms, brevemente: la digestión con pepsina (30 min, 30 °C, pH 3.2) de plasma equino hiperinmune crudo es seguida por una etapa de desnaturalización por calor (1h a 55 °C, pH 4.3) para precipitar la mayoría de no IgG y por una adición adicional de sulfato de amonio (salting-out), para precipitar las IgG incluyendo F(ab')2. Debido a la etapa de precipitación de la sal, el proceso da lugar a productos F(ab')2 de rendimiento comparativamente bajo y baja pureza. Aunque la patente US 6,709,655 supera la calidad del producto final, no deja de basarse en la precipitación con sal además de consumir mucho tiempo; el producto final también es perfectible como lo veremos más adelante en la presente descripción. El objetivo de la invención es proveer de un nuevo proceso adecuado para producción industrial de antivenenos, basado en la obtención y digestión de inmunoglobulinas y posterior purificación del fragmento F(ab')2 de tales inmunoglobulinas, se obtienen a partir de plasma hiperínmune crudo equino con el objetivo de obtener un mayor rendimiento que con el proceso que aprueba la OMS, y obtener un producto activo, más eficiente y puro que aquellos obtenidos por los procesos descritos en el estado de la técnica más cercano (US PAT 6,709,655, de Roodt, A.R. et al. 2010). El desarrollo del proceso fue resultado de años de investigaciones, se describen en la presente: pruebas de actividad de los fragmentos F(ab')2, análisis comparado de productividad o rendimiento, y análisis comparativos de pureza. Un método de obtención de anticuerpos F(ab')2 a partir de suero o de plasma hiperínmune como fuente de anticuerpos, que utiliza el principio anterior está descrito en las patentes US 8,512,706, US 6,709,655, US 7,485,303 y US 8,075,893, en el que se contacta la fuente de anticuerpos con pepsina, para posteriormente realizar dos precipitaciones con sulfato de amonio y posteriores pasos de purificación. La presente invención provee de una composición de fragmentos F(ab')2 anticuerpos con una actividad biológica y pureza notables. Con el proceso de la presente invención, la actividad biológica y la pureza de los productos finales se incrementan, además también es un proceso de mejor rendimiento, por lo que se ahorran horas hombre y se disminuyen los costos y los tiempos de producción. Durante el desarrollo de la invención se plantearon objetivos tendientes a eliminar pasos que puedan afectar la productividad del proceso, asi mismo se trabajó sobre el proceso conocido modificando parámetros de manera que se incrementara también la productividad y la calidad del producto fuera superior tanto en potencia como en pureza, minimizando la posibilidad de que durante el uso como antiveneno se presenten reacciones adversas. Otra tecnología en donde se pretende el uso de F(ab')2 se describen en la patente US 7,537,916 de Jones et. al, en donde se producen fragmentos F(ab')2 de manera recombinante, por lo que para la producción de antivenenos no se resuelve el problema de la necesidad de conservación de policlonalidad o multivalencia requerida para neutralizar venenos complejos. En el estado de la técnica más cercano también se encuentran los antivenenos fabricados por la empresa NAVPC a partir de plasma hiperínmune de caballo y basados en la obtención y purificación de la fracción de fragmentos F(ab')2 de anticuerpos, los cuales difieren en sus propiedades finales. A juzgar por el requerimiento de refrigeración para almacenarlo (4 ± 2 °C y en la oscuridad), y por la descripción de sus productos, estos no son liofilizados, lo que los hace susceptibles a ser degradados a temperatura ambiente y ante la exposición a la luz. Además, sus productos contienen una concentración alta de cresol (máximo 3.5 mg por ampolleta de 0.5 a 1 mi). Sobre el proceso de obtención se divulga se inicia inmunizando caballos con dosis incrementadas del veneno, obteniendo el suero de alto título y purificar con diferentes etapas de precipitación salina y refinado por digestión con pepsina, los fragmentos F(ab')2 son purificados por geles adsorbentes y multietapas de filtraciones seguido por dilución para la potencia requerida. Estos productos se ostentan como de alta pureza. Los pasos generales de procesamiento de estos antivenenos indican que no se afecta la novedad de la invención reclamada. Como se puede derivar de los antecedentes aquí descritos, la presente invención contrasta en muchos elementos con los procesos y con los productos similares pertenecientes al estado de la técnica más cercano. La presente invención se refiere a un proceso de alto rendimiento para la producción de antivenenos de fragmentos F(ab')2 de las inmunoglobulinas IgGs; su uso es una alternativa al uso de las IgGs, aunque como se mencionó, se han desarrollado variantes más pequeñas de IgGs intentando mejorar su biodisponibilidad, la penetrabilidad en los tejidos, y la solubilidad; aun así, los fragmentos F(ab')2 policlonales siguen siendo a la fecha los más eficientes para neutralizar la toxicidad de los venenos, la presente invención obedece a la complejidad de los venenos, lo que contribuye a su eficacia. En resumen, la presente invención provee de un proceso de producción y obtención de antivenenos basados en fragmentos de anticuerpos F(ab')2 de inmunoglobulinas plasmáticas, diseñados para conferir de una inmunización pasiva, neutralizando las toxinas de los venenos para los cuates fueron fabricados. Más aún, en la presente invención los parámetros de la operación unitaria utilizados permiten obtener fragmentos F(ab')2 puros. En una modalidad, el análisis por cromatografía de los fragmentos de F(ab')2 muestra picos únicos de dichos fragmentos permitiendo observar la ausencia de otro tipo de fragmentos o material biológico, como por ejemplo, proteínas y fragmentos Fab, lo que hace de esta invención única en su tipo para la obtención de fragmentos F(ab')2 puros. En otra modalidad, la presente invención posee la ventaja de separar y al mismo tiempo purificar partículas muy cercanas en peso molecular utilizando parámetros y rangos de condiciones de trabajo en la operación unitaria, que de otro modo no se podrían separar ni purificar utilizando las condiciones, los parámetros y los materiales de trabajo para materiales biológicos, incluyendo el tamaño de poro de la membrana de uttrafiltración, utilizado para la fabricación de fragmentos de anticuerpos. En otra modalidad y a diferencia del estado de la técnica conocido, el proceso de ultrafiltración de la presente invención permite también elevar el rendimiento de obtención de los fragmentos de anticuerpos, particularmente, de los fragmentos de anticuerpos F(ab')2. En otra modalidad, el proceso de alto rendimiento de la presente invención permite obtener y observar por cromatografía un único pico de fragmentos F(ab)2, cuya sola presencia en ausencia de otro tipo de partículas y/o fragmentos contaminantes, hace de la composición que comprende fragmentos de anticuerpos F(ab')2 obtenido a través de la presente invención, una composición mucho más efectiva que aquellas existentes en el estado de la técnica obtenidas por las técnicas tradicionales de diálisis y ultrafiltración convencional. Por lo tanto, el proceso de alto rendimiento de producción y obtención novedoso e inventivo de antivenenos que aquí se muestra permite purificar los fragmentos F(ab')2 sin mermar su potencia como se demuestra de los títulos y potencia de los fragmentos por vías tradicionales en comparación con aquellos obtenidos por el proceso descrito en la presente memoria técnica, Los altos rendimientos observados mejoran la efectividad ya que está ligado a la potencia. En otra modalidad, la presente invención también presenta datos sobre las condiciones óptimas de digestión, en donde se logra la mayor productividad de F(ab')2. La contribución del proceso de obtención de la invención es tan importante como la calidad de los plasmas hiperinmunes (en términos de concentración de títulos). El antecedente más directo de la tecnología de la presente invención es la patente US 6,709,655 (en lo sucesivo patente 655) por lo que a lo largo de la descripción se hace un intensivo análisis comparativo del proceso. La presente invención ofrece un producto cuya calidad se debe al proceso y es por lo tanto distintivo de los productos del estado de la técnica, son además una alternativa de antivenenos seguros y de la calidad requerida para los más altos estándares. BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1: Separación por cromatografía de fase reversa de los componentes que conforman al veneno de la especie Bitis gabonica gabonica. Calvete, JJ et al (2007).
Figura 2: Línea de tiempo del desarrollo de antivenenos basados en anticuerpos.
Figura 3: A: Cromatograma del sobrenadante después de precipitación con sulfato de amonio (plasma antiviperino digerido + agua de proceso + pepsina + sulfato de amonio). B: Cromatograma del sobrenadante clarificado (plasma antiviperino digerido + agua de proceso + pepsina + sulfato de amonio); Clarificación I y II.
Figura 4: Plasma: (a) Cromatograma del plasma antiviperino, (b) Cromatograma del plasma preparado (plasma antiviperino digerido + agua de proceso), Preparación del plasma. Digestión: (c) Cromatograma de la mezcla (plasma antiviperino digerido + agua de proceso + pepsina), Fin de la digestión. Precipitación: (d) Cromatograma del precipitado (plasma antiviperino digerido + agua de proceso + sulfato de amonio). Clarificación: (e) Cromatograma del clarificado (plasma antiviperino digerido + agua de proceso + sulfato de amonio). Ultrafiltración (4 repeticiones): (f, h,J, I) Cromatogramas del ultrafittrado I (solución de fragmentos F(ab')2, Filtración tangencial I por cassestte 30 kDa, (g, /, k, m) Cromatograma del ultrafiltrado II (solución de fragmentos F(ab')2, Filtración tangencial II por cassestte 50 kDa. Figura 5: Cuantificación del fenol de muestras de antiviperino en las diferentes etapas del proceso de producción y obtención de fragmentos F(ab")2 a nivel planta piloto a partir de un plasma de antiviperino donde se aplicó en la etapa de filtración tangencial el sistema fibra hueca con tamaño de corte de 30 kDa con lavados con agua de proceso.
Figura 6: Cuantificación del fenol cresol en las muestras de las diferentes etapas del proceso de producción y obtención de fragmentos F(ab')2 a nivel planta piloto a partir de un plasma de antiviperino donde se aplicó en la etapa de filtración tangencial los sistemas cassettes con tamaño de corte de 30 kDa con lavados con cloruro de sodio 0.9% y 50 kDa con lavados con agua de proceso.
Figura 7: Cuantificaáón del fenol en las muestras de las diferentes etapas del proceso de producción y obtención de fragmentos F(ab')2 a nivel planta piloto a partir de un plasma de Antialacrán donde se aplicó en la etapa de filtración tangencial el sistema fibra hueca con tamaño de corte de 30 kDa con lavados con agua de proceso (20 lavados).
Figura 8: Cuantificación del fenol de las muestras de las diferentes etapas del proceso de producción y obtención de fragmentos F(ab')2 a nivel planta piloto a partir de un plasma de Antialacrán donde se aplicó en la etapa de filtración tangencial el sistema fibra hueca con tamaño de corte de 30 kDa con lavados con agua de proceso (30 lavados).
Figura 9: Título de anticuerpos en plasma expresado como DLso Neut/ml, promedios anuales 2009 a 2014, Viperino Grupo I. Se utilizaron venenos obtenidos de mordida inducida de dos especies de vipéridos. FB: Fracción especifica para Bot rops y FC: Fracción específica para Crotalus.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El aumento en la demanda de antivenenos policlonales implica el desarrollo de procesos de purificación de los anticuerpos y de sus fragmentos activos factibles a gran escala y eficientes. La mayoría de los antivenenos para inmunización pasiva son eficientes en cuanto a su capacidad neutralizante, pero el proceso de producción se considera no sólo tedioso sino también largo y no suficientemente eficiente, además el uso de estos antivenenos puede estar asociado con efectos adversos. Con el paso del tiempo los procesos de producción se han ido mejorando gracias a los avances en los campos de la inmunización y la bioquímica analítica, dando como resultado productos más apropiados en farmacocinética y farmacodinamia, mejorando su actividad específica y reduciendo sus efectos secundarios, incluyendo la reacción anafiláctica.
Visualizando el desarrollo de los antivenenos a lo largo del tiempo de la figura 2 es posible identificar que los principios de la tecnología siguen siendo los mismos que hace más de 115 años, no obstante, se han ¡do haciendo diversas mejoras a partir de técnicas como la fragmentación de anticuerpos, purificación de proteínas, etc. Sin embargo, a pesar del descubrimiento de las tecnologías de hibridomas y la ingeniería de anticuerpos no han existido innovaciones más contundentes. De momento el desarrollo empleando estas técnicas sólo se ha dado en investigaciones científicas, pero no han llegado a mercado (Ahvarenga, et al., 2014) (Williams, et al.. 2011).
Uno de los factores que definen los procesos para obtener antivenenos con capacidad para neutralizarlos de manera eficiente es la obtención de los venenos de las diferentes especies como se explica a continuación: Los venenos de los animales han evolucionado de manera rápida y efectiva conjuntamente con los mecanismos de defensa presentados por la relación entre presas y predadores, los venenos proveen defensa en contra de predadores y también ayudan a la captura de presas, los cuales resultan en un gran repertorio de moléculas que se unen a blancos específicos, y de los cuales aún no se conoce lo suficiente como para diseñar moléculas neutralizantes específicas para todas las moléculas tóxicas existentes en la mezcla de proteínas que conforman un veneno.
La presente invención se refiere a un proceso de alto rendimiento para obtener un antídoto contra envenenamientos ocasionados por venenos de especies ponzoñosas, basado en inmunoglobulinas de origen animal, los antídotos de la invención se caracterizan por su eficiencia, neutralizan a las moléculas toxicas incluso las de amplio repertorio como lo exigen algunos venenos, y se caracterizan por su pureza como se describe más adelante.
Las inmunoglobulinas o anticuerpos de los cuales se obtienen los antivenenos de la invención son policlonales y son de origen biológico, derivados de plasma hiperinmune, por lo que requieren ser fraccionados del plasma y purificados; la pureza es conferida por el proceso de la invención y la potencia es conferida tanto por el proceso de obtención como por la calidad de los plasmas hiperinmunes del cual se procesan las inmunoglobulinas totales, dicha calidad está referida por el título de anticuerpos y su capacidad neutralizante.
La calidad de los plasmas hiperinmunes depende a su vez de la calidad de los venenos utilizados para inmunizar al caballo y depende también de los esquemas de inmunización, por supuesto de la condición de salud del animal. En el ejemplo 1 se describe un esquema de inmunización básico para llevar a cabo la presente invención y es de carácter ilustrativo y no limitativo.
Comúnmente el plasma hiperinmune es derivado de equinos, de las inmunoglobulinas presentes en el mismo se obtienen los fragmentos F(ab')2 y estos poseen capacidad neutralizante de virtualmente todas las toxinas presentes en los venenos. Con el proceso de la invención se obtiene un mayor rendimiento ya que se evita la pérdida de proteína relevante (inmunoglobulinas procesadas a partir de plasma hiperinmune).
En la patente 655 se describe un método de obtención de anticuerpos F(ab')2 a partir de suero o de plasma hiperinmune como fuente de anticuerpos que se contacta con pepsina, posteriormente se realizan dos precipitaciones de proteínas con sulfato de amonio seguido de diálisis y pasos de clarificación. En la tabla 1 se describen 17 pasos para este método. Bajo esta técnica se obtienen anticuerpos F(ab')2 con una actividad biológica y pureza notable, pero como lo hemos dicho, son características perfectibles al igual que lo es el proceso. El proceso de 17 pasos de la tabla 1 , es el antecedente directo de la presente invención, actualmente, la calidad incrementada en la calidad de los venenos utilizados para inmunizar y obtener el plasma hiperinmune, y mejores esquemas de inmunización, han hecho a su vez contar con plasma con mejores títulos de anticuerpos, lo que incita al desarrollo de nuevos procesos a su vez más eficientes para obtener fragmentos F(ab')2; en nuestros laboratorios de investigación, se han venido desarrollando nuevos pasos de procesamiento tendientes a hacer más eficiente la producción de antivenenos; todos estos cambios se ven reflejados en el tiempo, más adelante se presentan datos de la calidad del plasma y de la forma de procesarlo que se reflejan en pureza, productividad y potencia de antivenenos. El tiempo de fabricación aproximado utilizando los 17 pasos es de 52 días. En la patente 655, se menciona, como alternativa de la diálisis, el uso de ultrafiltración, sin embargo, este paso es solamente una sugerencia sin presentar ninguna base experimental, por lo que a partir de este documento no es posible anticipar su desempeño, además de ser necesaria la experimentación y diseño de parámetros para que del método se obtenga un producto de calidad y también maximice el rendimiento. Cabe aclarar que esta ennumeración de 17 pasos del proceso lleva implícitas una o más operaciones unitarias; para poder comparar el proceso de la invención con el de la tabla 1 , se clasificaron los pasos de manera que pudieran ser comparables.
Figure imgf000024_0001
** La patente US 6, 709,655 no menciona que al plasma antes de su procesamiento de purificación se le agrega fenol, cresol y/o éter etílico, pero por normatividad el uso de este tipo de conservadores va implícito en el proceso. El éter etílico se utiliza en muy baja concentración, y no tiene relevancia para la calidad del producto final ya que se elimina fácilmente durante la purificación, regulatoriamente no se requiere que se especifique su presencia.
Tal y como se detalla más adelante, el proceso de la invención difiere en el proceso del estado de la técnica más cercano en varios aspectos: Con el proceso de la invención solo se aplican 12 pasos equivalentes a los 17 del proceso anterior (ver tablas 1 y 21). Una de las determinaciones que se realizaron fue sobre el proceso de digestión enzimática, ésta como se aprecia, se realiza con parámetros distintos, las condiciones óptimas encontradas durante el desarrollo de la invención indican que la digestión se realiza óptimamente a una temperatura de 37 + 1 °C y con un pH de 3.5 ± 0.1 durante 90 minutos. Otra diferencia que se marca como un objeto de la invención es que para el procesamiento de los plasmas hiperinmunes, solo se requiere un proceso de precipitación salina (ó salting out, con sulfato de amonio) y ésta no requiere la adición de cresol ni de éter etílico, demás se realiza sin dejar en reposo, es suficiente el tiempo que tarda la sal en ser disuelta para que se realice la precipitación y de inmediato se procede al siguiente paso (tabla 21). Con respecto al éter etílico, cabe aclarar que, ya se utiliza en muy baja concentración y no tiene relevancia para la calidad del producto final ya que se elimina fácilmente durante la purificación, regulatoriamente no se requiere que se especifique su presencia. Otra de las diferencias descritas y soportadas para el proceso de la invención es que durante el procesamiento se puede optar por eliminar el proceso de termocoagulación que se aplica durante el tiempo que dura la precipitación salina. Una marcada diferencia con el proceso de la invención se refiere a la incorporación de la ultrafiltración (UF); más adelante se describen algunas modalidades especiales de la misma, la ultrafiltración sustituye a la segunda precipitación con sulfato de amonio y también sustituye al largo y riesgoso proceso de diálisis, el cual además implica riesgo de contaminación. El tipo y parámetros de ultrafiltración determinan el grado de pureza obtenido (mayores a 95%). Entre las ventajas de aplicar los cambios mencionados están los rendimientos y potencias que se ven ahora incrementadas como se explica: por la naturaleza del proceso nuevo se posibilita purificar en una misma serie dos lotes de plasma equino, que antes solo se podría procesar uno solo, pero independientemente de esta facilidad, con el proceso de la invención, partiendo de un lote de plasma equivalente en volumen, el proceso por 12 pasos resulta en un mayor número de viales del producto final y con potencias incrementadas; más adelante se describen a detalle los factores que influyeron en los mayores rendimientos y potencias. El proceso de purificación de la invención elimina el cresol y fenol, gracias a la ultrafiltración. La ultrafiltración con los elementos y parámetros como quedó establecida en la presente invención garantiza la purificación, desalinización y concentración de los fragmentos F(ab')2, todo esto en niveles visiblemente ventajosos con respecto a lo reportado en el estado de la técnica. Desde el proceso por diálisis descrito en la tabla 1 , ya se cumplía con los niveles regulatoriamente aceptables de cresol fenol, al aplicar la ultrafiltración se logró disminuir aún más la concentración en el producto terminado. El resultado de este proceso es la obtención de rendimientos sin precedentes, una calidad de antiveneno de F(ab')2 con potencia y pureza también sin precedentes en su tipo. Solamente por el hecho de sustituir la doble precipitación y diálisis por la operación de ultrafiltración, el tiempo total de fabricación de un producto terminado es de aproximadamente 18 días. Como lo hemos mencionado, durante el desarrollo de la invención se plantearon objetivos tendientes a eliminar pasos o cambiar pasos que al final mejoren la productividad (rendimiento) del proceso y la calidad del producto final, así mismo se trabajó sobre el proceso conocido: el descrito en la patente US 6,709,655. Se hicieron modificaciones en todo nivel, desde la modificación de parámetros hasta un cambio radical en la manera de procesar el material. La conjunción de todo se tradujo en un proceso más eficiente y calidad del producto superior en potencia, estabilidad y pureza, minimizando la posibilidad de que durante el uso como antiveneno se presenten reacciones adversas. Los pasos que se describen a continuación de manera independiente, correspondientes al proceso de la invención son los que reportan las ventajas mencionadas; esto se probó analíticamente durante ensayos experimentales.
Eliminación del paso de termocoagulación que sigue a la digestión enzimática, y primer Salting-Out y eliminación del segundo SaKing-Out La termocoagulación facilita que precipiten proteínas séricas que no se digieren tales como la albúmina y el fibrinógeno, sin embargo, esto puede dañar a los fragmentos de inmunoglobulinas que se generaron durante la digestión enzimática, con lo que al eliminarla se conservan más proteínas de interés intactas (fragmentos F(ab')2), en este sentido, el proceso de la invención el cual prescinde de la termocoagulación, tiene consecuentemente mejor rendimiento. En seguida se describen detalladamente las diferencias de resultados con y sin termocoagulación y también sin el segundo Salting-Out. En la patente US 6,706,655 (en adelante 955) se divulga que la termocoagulación ocurre después de la digestión cuando someten el producto a una temperatura de 54°C, durante 30 minutos en reposo; la termocoagulación ocurre simultáneamente a la primera precipitación con sulfato de amonio y luego se pasa la mezcla a una temperatura de 8 a 4 °C por un espacio de 2 a 24 horas también en reposo luego se recupera el sobrenadante por decantación y se clarifica pasándolo por filtros de 12, 8 y 4 μτη, esto se lleva a cabo con el sistema de 7 platos, cabe mencionar que dicho sistema ya no cumple con los requerimientos regúlatenos, en esta etapa se eliminaba el 50% de cresol/fenol. De acuerdo con la descripción del proceso de la patente 955, al sobrenadante clarificado se le adiciona nuevamente sulfato de amonio 35%, se somete asi el plasma a una segunda precipitación previo ajuste del pH a aproximadamente 6.8 se requiere aquí un reposo durante 12 hrs. Posteriormente la fracción soluble se recupera y se centrifuga nuevamente, la pasta obtenida se recupera, contiene a los fragmentos F(ab')2, se solubiliza y deja en reposo de 12 a 20 hrs a 2-8 °C. Se elimina el sedimento ya que contiene componentes de bajo peso molecular y sales, el sobrenadante recuperado es el que contiene a los fragmentos F(ab')2 específicos en contra de veneno para el que fue generado durante la inmunización. El producto se clarifica a 0.2 μητι y se procede con el proceso de diálisis con una duración de 52 días, y además se incrementa el riesgo de contaminación. Con el proceso de la invención todos estos pasos, desde la termocoagulación y clarificación de la mezcla digerida hasta la diálisis, se eliminan, es decir, ya no se realiza la termocoagulación, la segunda precipitación ni la diálisis, resultando en una menor pérdida de las proteínas de interés (fragmentos de inmunoglobulinas previamente generados), como se ha mencionado disminuye el riesgo de contaminación, además implica un ahorro de tiempo, y horas/hombre muy considerable, por lo tanto los costos de producción también disminuyen considerablemente. Los siguientes resultados avalan estas conclusiones. Es importante señalar que en estos ensayos no se comparó con el proceso del estado de la técnica que se ha venido señalando (patente 955), (doble precipitación salina y termocoagulación), el propósito de estos ensayos era evaluar el efecto de la termocoagulación en sí ya con las condiciones de uRrafiltración alternativas, de manera que comparamos la operación de la filtración tangencial del sistema fibra hueca con un tamaño de corte de 30 kDa con el sistema de filtración tangencial por cassette con un tamaño de corte de 30 kDa seguido de 50 kDa. El cassette es un dispositivo de placa y estructura favorecido por la facilidad de escalado a partir del laboratorio a pequeñas plantas, es el sostenedor del sistema de ultrafiltración. El sistema de fibra hueca se dispone como un módulo con varios tubos o fibras de pequeño diámetro (de 0.6 a 2 mm), la solución a filtrar fluye a través de los núcleos abiertos de fibras y el líquido percolado es recogido en un cartucho que rodea las fibras. Se realizó el análisis HPLC de muestras de plasma antiviperino provenientes de las diferentes etapas de un proceso para la producción y obtención de fragmentos F(ab')2 con la aplicación de cresol, éter etílico y termocoagulación, efectuando una digestión enzimática a una temperatura de 37 °C ± 2 °C y aplicando la operación de la filtración tangencial del sistema fibra hueca con un tamaño de corte de 30 kDa. Las clarificaciones I y II se describen en el ejemplo 5. La UF fibra hueca se describe técnicamente en el ejemplo 6. Por otro lado, se realizó el análisis HPLC de muestras de plasma antiviperino provenientes de las diferentes etapas de un proceso de producción y obtención de fragmentos F(ab')2 a nivel piloto, y se realizó prescindiendo de la aplicación de cresol, éter etílico y termocoagulación, efectuando una digestión enzimática a una temperatura de 37 °C ± 2 °C y sustituyendo la operación de la filtración tangencial del sistema fibra hueca con un tamaño de corte de 30 kDa por el sistema cassette con un tamaño de corte de 30 kDa - 50 kDa. La UF con cassettes se describe técnicamente en los ejemplos 7 y 8. Los resultados se muestran en las tablas 2 y 3.
Figure imgf000029_0001
Figure imgf000030_0001
De acuerdo a los resultados del proceso de producción y obtención de fragmentos F(ab')2 a nivel planta piloto prescindiendo de la aplicación de cresol, éter etílico y termocoagulación, efectuando una digestión enzimática a una temperatura de 37 °C ± 2 °C y sustituyendo la operación de filtración tangencial del sistema fibra hueca con un tamaño de corte de 30 kDa por el sistema cassette con un tamaño de corte de 30 kDa - 50 kDa muestra la obtención de un concentrado con una pureza de 98.16 % de F(ab')2 y un nivel no detectable de Fab de acuerdo al análisis por HPLC mientras que en el proceso de producción y obtención de fragmentos F(ab')2 a nivel planta piloto con la aplicación de cresol, éter etílico y termocoagulación, efectuando una digestión enzimática a una temperatura de 37 °C ± 2 °C y aplicando la operación de filtración tangencial del sistema fibra hueca con un tamaño de corte de 30 kDa se muestra la obtención de un concentrado con una pureza de 94.65 % de F(ab')2 y un nivel detectable de Fab de 1.55 % de Fab. Es importante señalar que no se muestran resultados de las etapas de la clarificación III, formulación, nanofiltración, prefiltración y filtración estéril respecto la solución de fragmentos F(ab')2 ya que en estas etapas las purezas de F(ab')2 y Fab se mantienen constantes a los concentrados y tampoco se promociona la formación de fragmentos Fab. En los ejemplos 11 y 12 se describe el procesamiento para estos pasos.
Eliminación de la segunda precipitación con sulfato de amonio y del proceso de diálisis.
En la etapa de término de la digestión con pepsina, para el proceso de la invención esta reacción se detiene ajusfando el pH a 4.2 + 0.2 con NaOH 5N y se procede a la precipitación agregando sulfato de amonio conservando la agitación. Los datos en las tablas 2 y 3 indican que la fracción de F(ab')2 se obtiene ahora por un proceso de ultrafiltración que se aplica enseguida de la primera y única precipitación salina; los datos obtenidos confirman que la aplicación de ultrafiltración con el proceso de la invención se purifican las moléculas F(ab')2, sin necesidad de precipitarlas con un segundo proceso de salting-out; esto tuvo implicaciones no solo en la economía del proceso por el simple hecho de eliminar este paso sino en una mejor recuperación de las moléculas de interés. En cuanto a la cantidad de sulfato de amonio utilizada, la invención propone utilizar de 21 a 25 kg de sulfato de amonio para un lote de 60 litros de plasma (35% w/v); de manera contrastante, con el proceso de 17 pasos (doble precipitación) para un lote de 60 litros de plasma se usaban de 33 a 34 kg de sulfato de amonio para cada precipitación (55% w/v). Como lo mencionamos, este cambio no solo implica el simple ahorro de la sal, sino que está relacionado con la optimización del proceso de solvatación para favorecer la precipitación solamente de las moléculas no deseadas y simultáneamente conservar en disolución de las moléculas F(ab')2.
Consecuentemente a la eliminación de la segunda precipitación con Sulfato de
Amonio que se realizaba para precipitar ahora a las moléculas F(ab')2, se elimina la necesidad de dializar; en lugar de estos pasos se utilizan los sistemas de ultrafiltración que en principio se propuso utilizar el formato de fibra hueca 30 kDa, después se propuso el formato de cassette 30 kDa y 50 kDa y pudimos realizar comparaciones en cuanto a pureza y rendimientos.
Por el proceso de diálisis los lotes de antivenenos obtenidos han resultado con grados de pureza variable, la variabilidad en lotes es normal y esperable, pero el contenido de F(ab')2 por este proceso de 17 pasos puede tener muy altos porcentajes de merma, como se ejemplifica en la tabla 4, de entre los lotes indicados, se ve que incluso la fracción F(ab')2 obtenida puede estar representando solo un 44 % y los componentes de bajo peso molecular pueden ocupar un 55 % en la fracción recién dializada.
Figure imgf000033_0001
Para el proceso de la invención, la precipitación con (NhU^SC (Salting-out) implica precisamente la precipitación salina de proteínas no deseadas, precipitan albúmina y hemoglobina que se encuentran en alta concentración, en el sobrenadante están aún solubles moléculas F(ab')2, de manera que una vez solubilizado el sulfato de amonio, toda la mezcla se somete de inmediato al paso de clarificado (I y II), el primero se lleva a cabo en membrana con poro de 8.0 a 20.0 μιτι, el segundo clarificado se lleva a cabo con membrana poro 0.2 um nominal. El paso de clarificado I y II elimina partículas grandes y ayuda a un mejor desempeño de la ultrafiltración, asegurando que las membranas no resulten dañadas. Es importante hacer notar que, de acuerdo a las observaciones trabajando con el proceso de la invención, es necesario que inmediatamente se efectúe salting out y la clarificación
I y II; en el proceso de 17 pasos incluso recomendaba el reposo de la mezcla para promover la precipitación (un periodo de reposo de dos horas en la primera precipitación y de 12 horas en la segunda), pero hemos comprobado que estos periodos de reposo lejos de beneficiar al rendimiento, de acuerdo con nuestra observación, los reposos provocan pérdida ó merma de F(ab')2. En la figura 3A se presenta un cromatograma de HPLC de la muestra de un lote de plasma para el producto antiviperino, digerido con pepsina y precipitado con sulfato de amonio antes y después del clarificado I y II. En el proceso de 17 pasos la clarificación de la mezcla recién digerida se realizaba con el sistema de 7 platos, con el proceso de la invención se emplean estas clarificaciones I y II con un intervalo de 8 a 20 μπι, un cromatograma de HPLC de esta etapa se muestra en la figura 3B para una muestra de un lote del producto antiviperino. Como lo hemos mencionado, el sistema de 7 platos actualmente no es aceptable en términos de normatividad ya que tiene potencial de contaminación muy alto de los filtrados. Después de los clarificados I y
II continúa la ultrafiltración.
Ultrafiltración ó Filtración tangencial con fibra hueca.
En el proceso de la patente ,955 después de obtener la pastilla de F(ab')2 se continúa un largo proceso de diálisis que implicaba la inversión de por lo menos 8 a 10 días para un lote de plasma de 60 litros. Con el proceso de la invención este paso ya no es necesario y en consecuencia se ahorran la serie de pasos derivados de dicho proceso de diálisis que son: la recuperación de la fracción soluble, su 34
centrifugado para concentrar la fracción soluble y luego disolver en reposo durante 12 a 20 hrs y decantar, el precipitado se tenía que someter a otro clarificado por 0.2 um, y luego se procedía a la diálisis que implicaba la inversión de 40 días por lote solamente para la diálisis y una tercera clarificación del dializado por 0.2 μτη. Durante el desarrollo de la invención se implemento la ultrafiltración ó filtración tangencial con fibra hueca de 30 kDa; que ahorra la segunda precipitación y los pasos descritos para diálisis. Como prueba del desempeño del proceso de ultrafiltración, se presentan como ejemplos el resultado de 2 lotes de antivenenos (los lotes antialacrán B-3K-21 y B-3K-11) ambos procesados con filtración tangencial con fibra hueca de 30 kDa (ver tablas 5 y 6). Estas tablas corresponden a los certificados de análisis para tales lotes, en donde se pueden comparar los efectos de la ultrafiltración automatizada utilizando filtración con fibra hueca de 30 kDa.
Figure imgf000035_0001
(método ELISA) comparados con un control
negativo.
Esterilidad Cumple los requisitos Cumple
Inocuidad Al final del periodo de prueba los Cumple
animales deben sobrevivir sin
presentar signos significativos de
toxicidad ni pérdida de peso.
Pirógenos La suma del incremento de 0.2 °C
temperatura de tres conejos no debe
ser mayor de 1.2 °C.
Potencia No menos de 150 DLso 219,57 DLso Neu/Fco neutralizantes de veneno de alacrán
Humedad Máximo 3.0% (m/v) 1.7420 %
Proteínas* No más de 10.0 % (m/v)l 0.171 %
Osmoiaridad Mínimo 240 mOsmol/kg después de 733 mOsmol/kg
la dilución cuando aplique
Pureza y distribución de tamaño molecular (por HPLC de exclusión molecular)
F(ab')2 No menos de 90% 91.28 %
CBPM No más de 10% (De acuerdo con la 4.92 %
Farmacopea De Los Estados Unidos
Mexicanos).
Pureza (por SDS Pa< ae en condiciones reductoras) "
Albúmina No más de 0.5 % < 0.5 %
IgG No más de 5.0 % < 5.0 %
PH 6.0 y 7.0 a 25 °C + 2 °C 6.58 a 24.8 °C
Cresol No más de 0.41 mg/vial 0.0055 mg/vial
Reconstitución No más de 35 s 11.15 s
Tabla 6: DATOS DEL CERTIFICADO DE ANALISIS PARA FABOTERÁPICO
POLIVALENTE ANTIALACRÁN.
LOTE B-3K-11
Filtración Fibra Hueca kDa
Producto terminado. No. De Código: 100152
Fecha de fabricación: F.l. 27/Feb/13. F.T. 10/Ene/14, F.L.L 23/Oct/13.
Fecha de caducidad: Oct/17.
Cantidad: 27277 Piezas
Determinaciones Especificaciones Resultados
Descripción del Apariencia pulverulenta o de un Sólido poroso frágil de liofilizado solido poroso, frágil de color blanco color blanco.
a amarillo claro.
Descripción del Líquido transparente o ligeramente Líquido ligeramente reconstituido opalescente e incoloro o ligeramente opalescente e incoloro.
amarillo. Libre de partículas Libre de partículas extrañas en suspensión. Diluyeme . extrañas en
Figure imgf000036_0001
B3E11. suspensión.
Figure imgf000037_0001
Para comparar las ventajas de la implementación de la ultrafiltración también se presentan como ejemplo el resultado de 2 lotes de antivenenos (los lotes antialacrán B-2C-17 y B-3J-011) ambos procesados por el método de diálisis (17 pasos) descrito en la patente US 6709655, (ver tablas 7 y 8).
Figure imgf000038_0001
Figure imgf000039_0001
El dato de potencias que se incluye en las tablas 5 a 8 corresponde al ajustado para cumplir con las dosis neutralizantes medias requeridas por vial o frasco, es por eso que no difieren en gran medida entre sí; por lo tanto, para comparar las potencias, en las tablas 9 y 10 se incluyen los datos de potencias correspondientes a los mismos 4 lotes, pero recién purificados, es decir, antes del ajuste de potencias, los 4 lotes provienen de un mismo volumen de plasma. Los datos de las tablas 9 y 10 corresponde a procesamientos de un mismo volumen de plasma, son 60 litros por lote (es decir para cada uno de los lotes: B-3K-21, B-3K-11, B-2C-17 y B-3J-01).
Tabla 9. Lotes de antialacrán procesados por Diálisis (17 pasos de la tabla 1)
Lote de Concentrado Potencia del Litros de Número de Producto concentrado plasma piezas Terminado DLsoNeut mL (por 60 litros de plasma)
B-2C-17 B-1F-06 110.64 60 1 ,670
Figure imgf000040_0001
B-3J-01 B-3G-02 156.7 60 1 ,648
Tabla 10. Lotes de antialacrán procesados por una precipitación salina y ultafiltración con fibra hueca 30 kDa
Lote de Concentrado Potencia del Litros de Número de Producto (Lotes que concentrado plasma piezas Terminado lo promedio promedio (Por 60 litros conforman) DLsoNeut/mL de plasma)
B-3K-21 B-3C-08
B-3C-09 698.42 60 25,631
B-3K-11 B-3B-27
Figure imgf000040_0002
B-3B-25 699.23 60 27,061
En cuanto a la comparación de rendimientos, en las tablas 9 y 10 se reitera el dato de número de piezas obtenidas y son comparables ya que como se mencionó, se obtienen del procesamiento de un mismo volumen de plasma, esta vez los datos se han promediado para facilitar la comparación. Es muy notable la diferencia en el número de piezas (viales) obtenidos, 25,631 y 27,061 piezas (promedian 26,346) para el proceso con ultrafiltración con fibra hueca de 30 kDa, contra 1 ,670 y 1 ,648 piezas (promedian 1 ,659) para el proceso de diálisis, por lo que el proceso de obtención de antivenenos es más de 15 veces más productivo pó por lo menos 15 veces más productivo. Es importante señalar que estos datos de 4 lotes se presentan como ejemplos, pero los resultados han sido consistentes como se puede demostrar en los registros de producción de lotes obtenidos por años de fabricación. Así mismo, los detalles de los procedimientos se han mantenido como información confidencial y no han estado expuestos a publicaciones. En los certificados de análisis se verá que el dato de los componentes de alto peso molecular CAPM y Fab ya no se registran en los lotes de la invención, dado que por el proceso estos llegan a niveles no detectables por cromatografía líquida de alta resolución (HPLC). Los F(ab')2 y los componentes de bajo peso molecular (CBP ) deben estar en no menos de 90% y no más de 10% respectivamente, esto es de acuerdo a las directrices de la farmacopea mexicana (FEUM°). La respuesta por pirógenos es equiparable y está también de acuerdo a los requerimientos farmacopéicos (FEUM 20111). La potencia es equiparable en todos los lotes de las tablas 5 a 8 dado que así se requiere para efectos regúlatenos, esta potencia está ajustada a no menos de 150 DLso de veneno de alacrán por frasco (FEUM 20112) y es la potencia del producto terminado, sin embargo para comparar las diferencias de las potencias obtenidas en virtud de ambos procesos se debe considerar el dato de potencia antes de dicho ajuste, es decir, los datos de potencia del producto concentrado, que es cuando acaba de obtenerse del proceso de obtención. En las tablas 9 y 10 se muestran estos datos y las diferencias son notables: Para los lotes B-3K-21 , B-3K-11 antialacrán (obtenidos con el método de la invención), las potencias del producto concentrado fueron de 698.42 y 699.23 DLsoNeut mL respectivamente. Para los lotes B-2C-17, B-3J-01 antialacrán (obtenidos con el método de 17 pasos) las potencias del producto concentrado fueron de 110.64 y 156.7 DLsoNeut/mL. A juzgar por los ejemplos presentados la potencia se incrementa por lo menos 6 veces. Otra manera indirecta de ver las diferencias de potencias se Ven comparando la cantidad de proteína específica en el Producto Terminado (después de ajustar la dosis letal neutralizante. La información de las tablas 5 a 8 maneja diferentes unidades para la concentración de proteína (porcentajes ó en mg/vial), por lo que en las tablas 11 y 12 se muestran las concentraciones de proteína en mg/vial para los 4 lotes del producto terminado antialacrán. Es notorio que se requiere más proteína cuando se procesa por 17 pasos lo que indica que el proceso de la invención tiene mayor rendimiento.
Figure imgf000042_0003
Figure imgf000042_0001
Para terminar de caracterizar la implementación de la ultrafiltración por fibra hueca de 30 kDa, en la tabla 13 se muestran los niveles de los diferentes componentes, el grado de pureza de F(ab')2 está en un promedio de 95.35 en esta muestra representativa de lotes de antivenenos.
Figure imgf000042_0002
A081014 96.08 2.43 16.15 6.21 3.88
A151014 98.68 ND 19.52 7.70 3.88
G211014 94.65 1.55 9.68 3.66 3.88
1311014 87.16 4.38 8.27 2.88 3.88
PROMEDIO 95.35 2.57 12.76 4.90 4.06
Figure imgf000043_0001
Ultrafiltración tangencial con cassettes.
Concretándonos en el hecho de sustituir la operación de la filtración tangencial del sistema fibra hueca con un tamaño de corte de 30 kDa por filtración tangencial con cassette con un tamaño de corte de 30 kDa y 50 kDa, el propósito obedece a obtener un producto con una pureza más alta sin pérdida de potencia, durante el desarrollo de la invención encontramos el rango de parámetros requeridos para evitar la fragmentación de proteínas por lo que se logró tener un proceso más eficiente, al minimizar la pérdida de proteínas F(ab')2. Lo importante no está en la operación unitaria en sí, si no en los rangos en los parámetros específicos encontrados, que permiten un grado de pureza superior, tanto que no hay Fab detectable, es decir, el cambio a cassettes también implicó un cambio de diferencia de presión baja ya que las diferencias de presión más alta supone el daño de la proteínas, (en su mayoría irrelevantes) que generan fragmentos confundibles con Fab por peso molecular, pero se logró obtener los parámetros de presión y flujo adecuados, los cuales se manejan en rangos relativamente bajos, para evitar la formación de fragmentos de Fab. El parámetro esfuerzo de corte Tau (x) es el valor que presentamos como determinante para conseguir una pureza del 95% (Ahrer, et al 2006). Además, con la separación por ultrafiltración solamente con 30 kDa o solamente con 50 kDa, no se consigue la eliminación de Fab. Para contraste de los procesos, en la tabla 14 presentamos datos de pureza obtenidos utilizando el sistema de ultrafiltración con la opción de cassettes de 30 y 50 kDa, con el que comprobamos que se logran purezas del 95% en promedio. En la tabla 14 se muestran 8 ensayos pasando la muestra por 30 kDa (se adjudica un código de muestra) y consecutivamente por 50 kDa (se adjudica otro código de muestra). Es notorio que la eliminación de F(ab) se logra definitivamente después de filtración por 50 kDa. Se utilizaron los parámetros de Flujo de alimentación, Flux, presión tangencial y ΔΡ que resultaron adecuados.
Figure imgf000044_0001
La ultrafiltración de la invención se lleva a cabo a partir del clarificado obtenido del paso anterior, se realiza una filtración tangencial. Durante el desarrollo de la invención se sustituyó la operación de filtración tangencial del sistema fibra hueca con un tamaño de corte de 30 kDa por el sistema cassette con un tamaño de corte de 30 kDa - 50 kDa se vió favorecida la pureza y también se observó que se reduce la fragmentación de la proteína F(ab')2 por lo que el sistema cassette ofrece mayor rendimiento. Enseguida se describen los parámetros adecuados para utilizar cassettes de 30 y 50 kDa, sorprendentemente el producto final no solo alcanza la calidad esperada, sino que la supera. En los cromatogramas de HPLC de la figura 4, se muestran resultados de análisis del plasma sin procesar 4(a) y 4(b), y luego digerido 4(c), y finalmente después de ser sometido a cassette de 30 kDa y enseguida de 50 kDa, con la finalidad de comprobar la reproducibilidad del proceso se muestran 4 repeticiones de esta etapa de filtración tangencial para muestras diferentes (figuras 4(f) a 4(m). Los cromatogramas 4(a) a 4(k) se refieren al proceso de obtención de antivenenos (tomando como ejemplo a un tote de un producto diseñado como anti-serpiente (ó antiviperino), utilizando la ultrafiltración con cassettes de 30 y luego de 50 kDa. Los cromatogramas 4(c) a 4(h) son resultantes de la cinética de digestión durante 6 horas. El cromatograma (i) es resultante de la precipitación con sulfato de amonio y sin termocoagulación de por medio. El cromatograma (j) es el producto clarificado. Los cromatogramas 4(k) a 4(r) se refieren a tres repeticiones de paso por cassettes de 30 kDa y 50 kDa.
La tabla 15 presenta resultados correspondientes al proceso completo de producción y obtención de fragmentos F(ab')2 por lo que es representativa de su caracterización, este proceso fue realizado a nivel planta piloto. Se realizó a partir de plasma prescindiendo de la aplicación de cresol, de éter etílico y de termocoagulación, efectuando una digestión enzimática que se llevó a cabo a lo largo de 6 horas con fines de evaluación experimental, con una sola precipitación salina y sustituyendo la operación de filtración tangencial del sistema fibra hueca con un tamaño de corte de 30 kDa por el sistema cassette con un tamaño de corte de 30 kDa - 50 kDa.
Figure imgf000046_0001
Figure imgf000047_0001
Con el proceso de la invención se elimina cresol y de fenol.
El fenol y sus derivados como el cresol son preservativos, sin embargo, son sustancias tóxicas; como ocurre con cualquier sustancia peligrosa, sus efectos sobre la salud van a depender de la dosis, la duración y el tipo de exposición, de la presencia de otras sustancias químicas. La regulación norteamericana para alimentos y medicamentos ó FDA (U.S. Food and Drug Administraron (FDA) regulation), no permite el uso de cresoles en productos farmacéuticos. Aunque otras regulaciones lo permitan, lo ideal es conseguir eliminarlo. Por lo que durante el desarrollo de la invención determinamos la depuración de fenol y cresol como se explica a continuación. De acuerdo con la FEUM el proceso para manejo de plasmas implica el uso de fenol (de Roodt A. R. ef al, 2010) o de cresol como conservante del plasma recién extraído del animal inmunizado. Al llegar a planta se le agrega cresol también de acuerdo a las normas, solamente para productos fabricados bajo la normatividad de la FDA no se ha utilizado cresol agregado (cabe mencionar que al final esto nunca impactó en el carácter estéril de las muestras de plasma asi procesadas). No obstante lo anterior, con el proceso de diálisis (17 pasos) ya se lograba eliminar sustancialmente la concentración de cresol (cresol/fenol) llegando a niveles farmacéuticamente aceptables, con el proceso de la invención la concentración de cresol/fenol se reduce a menos de 0.058 mg/vial. Durante el desarrollo de la invención decidimos cuantrficar el cresol y el fenol en las diferentes etapas del proceso de producción y obtención de fragmentos F(ab')2, esto lo realizamos mediante la ultrafiltración tangencial, utilizando cassettes de tamaño de corte 30 kDa y 50 kDa y utilizando agua de proceso y la concentración de cresol que se usa así como la de fenol (0.52 mg/ml y 0.45 mg/ml respectivamente), mediante el método analítico para la determinación de cresol, se observó que tanto cresol como fenol se eliminan desde la diafiltración con 30 kDa se elimina. Los resultados se muestran en la tabla 16. El método espectrofotométrico no distingue fenol de cresol pero se vierten resultados diferenciados, el método está diseñado para medir fenol y el valor de fenol se obtiene aplicando un factor de conversión de acuerdo con métodos farmacopéicos (FEUM4, 2011). El método analítico consiste en una reacción química colorímétrica con solución diazóica, el compuesto azo en presencia de cresol y/o fenol da lugar a una reacción que genera el p-hidroxi-azo-para nitrobenceno, compuesto de color que absorbe en el rango visible a 550 nm. En el ejemplo 14 se describe el procesamiento de este ensayo.
Figure imgf000049_0001
50 kDa
Los datos nos indican que el cresol y el fenol es removido por el proceso de filtración tangencial desde la primera etapa de concentración y no detectable desde el lavado número 5. Con esto se contaba con la base experimental para considerar que el proceso de filtración tangencial con formato de cassette remueve el cresol a niveles no detectables.
Cabe mencionar que para estas comparaciones se realizaron los controles necesarios para probar que el método en sf no genera interferencia, para esto se realizó el ensayo generando un producto control ("blanco de comparación") el cual consistió de una solución de cloruro de sodio 0.9% sin añadir cresol ni fenol. Realizamos el mismo análisis de cuantificación de cresol y fenol pero aplicando el proceso de producción de fragmentos F(ab')2 antivenenos de viperinos (antiviperinos) y antivenenos de alacranes (antialacrán), a nivel planta piloto, y partiendo desde los plasmas equinos antiviperinos y antialacranes y durante la digestión con pepsina, precipitación, termocoagulación, y las modalidades de diafiltraciones: la tangencial con fibra hueca de tamaño de corte de 30 kDa y la realizada con sistemas cassettes de 30 kDa y de 50 kDa, también se tomaron muestras posteriores: el último clarificado, el producto formulado prefiltrado, nano filtrado y producto terminado (PT). Los resultados para antiviperinos se muestran en las gráficas de las figuras 2, 3 y 4. El método utilizado en las mediciones que se presentan en las figuras 5 a 8 es el espectrofotométrico por lo que la determinación implica tanto a fenol como a cresol. Se trabajaron 20 y 30 lavados en estos experimentos (figuras 7 y 8), pero más adelante quedó establecido que con 20 lavados es suficiente. Los datos nos indican que la etapa de clarificación reduce un 30% del cresol presente en el producto, en la etapa de filtración tangencial se obtiene hasta un 99% aproximadamente de reducción del cresol, donde se llega al 80% durante la primera concentración y el resto se alcanza con los lavados. La diferencia entre 20 lavados y 30 lavados es distinguible al comparar las gráficas de las figuras 7 y 8. Cabe resaltar que en todos los casos la concentración de cresol aparentemente aumenta en la etapa de formulación, por consiguiente, el porcentaje de reducción tiene una ligera caída hasta un valor de 97%, la explicación de este aumento es la interferencia que tiene el excipiente glicina. En el protocolo de validación del método de cresol, se hace la indicación de que la glicina interfiere en la señal "La solución de glicina y la matriz analítica presentan interferencia visual a 550 nanómetros". Concluyentcmente existe una remoción del cresol adicionado durante el proceso de producción y obtención de fragmentos F(ab')2, el mayor porcentaje se obtiene en la etapa de filtración tangencial alcanzando un 99% al final del proceso. Para tener más controlada la depuración por cresol y por fenol, se adaptó un método de detección cromatográfico validado (HPLC) por ser más específico, con este método se concluye que se logran niveles de Cresol y Fenol de menos de 0.58 mg/ml por vial. Cabe señalar que en esta etapa experimental también se pudo concluir que el uso combinado de cassetes e y el incremento del número de lavados durante la uítrafiltración, también determinan la disminución de los componentes de bajo peso molecular (CBPM) sin decrementar el contenido de componente activo (F(ab». Con estos pasos, las características del producto final superan a las requeridas por farmacopea.
Determinación del tiempo óptimo de digestión con pepsina.
El tiempo óptimo de digestión de pepsina se calculó posteriormente, con un diseño experimental en el que se evaluó la cinética enzimática en varios lotes. La pepsina se utiliza a una concentración de 6.6 g/l de plasma. La preparación de la pepsina se ilustra en el ejemplo 2. Para la digestión enzimática se manejó un pH de 3.5 ± 0.1 con control, una temperatura de 37 °C ± 1 °C. El tiempo de digestión fue de 6 h. Las muestras a considerar son respecto los tiempos 0 h (Tiempo 0), 1.5 h (Tiempo 3), 3 h (Tiempo 6), 4.5 h (Tiempo 9), 6 h (Tiempo 12). En el ejemplo 3 se describe con mayor detalle el procedimiento para digestión enzimática. Se efectuó 1 lote de digestión enzimática con el Plasma antiviperinos (Lote: B3GALN09A) y se efectuó 1 lote de digestión enzimática con el Plasma Hiperinmune Antialcrán (Lote: B3BAL12B). En las tablas 17 a 20 se muestran resultados para diversos lotes de plasma. La cantidad más alta de F(ab')2 obtenida a partir del plasma de todos los lotes analizados fue a los 90 minutos. La cantidad de F(ab')2 y Fab en el plasma, en el plasma preparado y en la digestión de tiempo 0 no se consideran ya que son fragmentos que corresponden al tamaño similar de F(ab')2 y Fab lo cual se corrobora con el SDS - PAGE en condiciones reductores. Con base en estos resultados se propone para el proceso de producción y obtención de fragmentos de F(ab')2 realizar digestiones a un pH de 3.5 ± 0.1 con control y a una temperatura de 37 ± 1 °C durante 1.5 h (90 min), con estas condiciones se promociona la formación de F(ab')2 y la no formación de Fab incluso a niveles detectables por HPLC.
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Después de 90 minutos la productividad de F(ab')2 no mejora y además la enzima puede comenzar a dañar las proteínas de interés, por lo que la digestión debe pararse en este punto de la cinética. La integración de los pasos del proceso para la obtención de una composición de fragmentos F(ab')∑ de anticuerpos a partir de plasma hiperinmune se presentan en la tabla 21.
Figure imgf000056_0001
Se integra un prefiltrado a 0.1 um que deja el producto en mejores condiciones para que pase a nanofiltración.
9 Nanofiltración del Granel del producto membrana de 20 nm para eliminar potencial presencia de virus
10 Filtración Terminal Estéril del Granel del producto
11 Llenado del Granel del producto
12 Liofilización, se reconstituyen muestras por lote para certificados de análisis.
Figure imgf000057_0001
Los componentes de la formulación que se realiza al granel del producto, (glicina, cloruro de sodio, sacarosa), confieren estabilidad al principio activo, ya que a pesar de que el producto se somete a liofilizado éste no sufre ningún tipo de alteración, el producto final no requiere ser almacenado en refrigeración ni es inestable ante la exposición a la luz, su caducidad se extiende por bastante más de 5 años, no obstante, por los requerimientos sanitarios se le asigna una fecha de caducidad de 4 años. En el ejemplo 13 se describe el proceso de liofilización.
Es importante mencionar que la proporción de cada uno de los excipientes (glicina, cloruro de sodio, sacarosa), inciden en los tiempos de reconstitución de la mezcla. Este dato en la práctica médica es muy relevante existen antídotos en el mercado que tardan varios minutos en disolverse, se pierden así valiosos minutos que pueden marcar una diferencia importante; ya que los minutos cuenta en los casos de envenenamiento lo mejor es que se se inyecte el antídoto al paciente lo antes posible y el producto de la invención se reconstituye en pocos segundos. Los antivenenos liofilizados comercialmente disponibles tienen un tiempo de reconstitución mucho más prolongado (Gerrínga, et al. 2013).
Se llevaron a cabo estudios de tiempo de solubilidad en lotes concentrados e hiperconcentrados (100x) utilizando la formulación descrita en el ejemplo 10. Los productos hiperconcentrados pueden llegar a requerirse para resolver problemas más graves de envenenamiento por lo que se procedió a concentrarlos 100x durante el mismo proceso de UF. Para estos ensayos de tiempo de reconstitución del producto liofilizado, se fabricaron 3 lotes: Anti-alacrán, Anti-serpiente y un Anti- TNF; utilizando digestión enzimática por pepsina a pH 3.5 ± 0.1 con control y a una temperatura de 37 ± 1 °C durante 1.5 h (90 minutos), una sola precipitación con sulfato de amonio 21% P/V; se utilizó el producto ultrafiltrado con cassette de 30 kDa, cada lote se dividió en 2; una parte se formuló, dosificó y liofilizó, son los llamados concentrados. La otra parte se concentró a 100 X, formuló, dosificó y liofilizó, estos son tos llamados hiperconcentrados. En las tablas 22 a 25 se muestran los resultados del proceso de disolución y los análisis de las formulaciones de estos lotes concentrados e hiperconcentrados, los tiempos se tomaron por observación directa de los viales (visto por dos personas (Q1 y Q2)) desde que ingresa la solución y hasta que desaparecen las partículas, se tomaron 8 repeticiones de cada lote. Las tablas 26 a 29 indican la estabilidad de dos lotes: Lote B-9H-21 , producido por solo una precipitación y UF por fibra hueca 30 kDa (Tablas 26 y 27) y lote B-OK-15, producido por 17 pasos y (Tablas 28 y 29) y los parámetros de estabilidad se cumplen en ambos casos.
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
5
10
15
20
25
30
Figure imgf000066_0001
La presente invención se refiere un nuevo proceso de producción de fragmentos F(ab')2 de anticuerpos que se unen específicamente a antígenos presentes en venenos, con una modalidad preferida para antagonizar venenos de arácnidos, o de vipéridos; el proceso de la invención se caracteriza por la utilización de uKrafiltración y la reducción de etapas unitarias, obteniéndose un antiveneno seguro por su eficacia neutralizante y porque que no genera reacción pirogénica ni anafiláctica alguna. El proceso de la invención es del más arto rendimiento y pureza para el producto final, éste mejora en su potencia neutralizante y en su estabilidad, la calidad del producto final es por lo tanto superior a la obtenida con los procesos descritos en el estado de la técnica.
Es importante destacar que la motivación de los cambios en el proceso para obtener antivenenos basados en fragmentos F(ab')2 de inmunoglobulinas, se debió a un cambio constante en la calidad de los venenos utilizados para inmunizar a los caballos, y también por las mejoras en los esquemas de inmunización. Lo anterior trajo como consecuencia la obtención de títulos de anticuerpos en el plasma muy altos, por lo que fue necesario adaptarse a estas nuevas condiciones que se iban presentando año con año tal y como se evidencia a continuación.
Para el caso de los antivenenos contra venenos de especies de alacranes se implementó un cambio en la forma de obtener los venenos, se trataba de estimular eléctricamente al telson del animal en lugar de retirar el telson y macerarlo. En las Tablas 30 y 31 se muestra el título de anticuerpos expresado como dosis neutralizantes (DLso Neut/ml) las primeras (30) utilizando veneno de alacranes de las especies Centruroides noxius, C. limpidus limpidus, C. limpidus tecomanus y C. suffussus suffussus, obtenido por maceración de glándulas de telson (Grupo de caballos I y IV) y las segundas (31) utilizando veneno obtenido por estimulación eléctrica de glándulas de telson (Grupo de caballos II y III). La diferencia en los niveles de potencia entre los grupos A y B se debe por lo tanto a la forma de obtener el veneno de los alacranes, se debe comparar por grupo y por año, es decir: grupos I y II vs grupos III y IV, por ejemplo: para el año 2009 102.78 y 95.06 VS 121.9 y 112.04; para el año 2010 104.92 y 112.4 VS 141.8 y 116.02 y así sucesivamente. De esta comparación podemos concluir que ha resultado muy beneficioso el obtener veneno al estimular eléctricamente las glándulas en lugar de macerarlas.
Figure imgf000068_0001
También en el caso de títulos de anticuerpos en los plasmas antiviperinos se ha notado un incremento año con año. Como ejemplo, en la figura 9 se muestran algunos datos.
Los esquemas de inmunización también se han venido modificando y esto también ha generado el incremento en título de anticuerpos que se ha visto año con año. Si bien el incremento en potencias también se ha debido al incremento en los títulos de anticuerpos no ha sido el motivo principal por el que han mejorado los rendimientos, ya que el nivel de incrementos en títulos no es directamente proporcional al incremento de rendimientos por unidad de volumen de plasma, de ahí se infiere que el proceso de obtención de F(ab')2 es también una variable que ha promovido el incremento en rendimientos y concomitantemente en potencias además de mejorar las purezas en más del 95%.
Es objeto principal de la invención proveer de un proceso para obtener antivenenos cuyo principio activo son fragmentos F(ab')2 de anticuerpos policlonales provenientes de suero de mamífero no humano hiperinmune. Es modalidad de la invención proveer de un proceso que requiere menos pasos que lo conocido en el estado de la técnica por lo que el tiempo de fabricación es más corto que el que se requiere con los procesos descritos en el estado de la técnica, por lo que la utilización horas-hombre se ve reducida, la utilización horas-máquina se ve reducida. Es modalidad de la invención proveer de un proceso descrito con 12 pasos esenciales con mayor productividad, y cuyo producto final liofilizado presenta una estabilidad probada durante 48 meses.
Es modalidad de la invención ia producción de antivenenos en contra de venenos de especies de serpientes u ofidios seleccionados del grupo de géneros y especies que comprende: género Cerastes, incluyendo a las especies: C. boehmei, C. cerastes, C. gasperettii, C. vípera, Pseudocerastes fíeldi,, Pseudocerastes persicus, Pseudocerastes urarachnoides; género Brtís, incluyendo a las especies B. albanica, B. arietans, B. armata, B. Atropos, B. caudalis, B. comuta, B. gabonica, B. harenna, B. heráldica, B. inomata, B. nasicomis, B. parviocula, B. peringueyi, B. rhinoceros, B. rubida, B. schneideri, B. worthingtoni, B. xeropaga; género Crotalus, incluyendo a las especies: C. d. terrifícus C. adamanteus C. angelensis C. aquilus C. armstrongi C. basiliscus C. campbelli, C. catalinensis, C. cerastes, C. cerberus, C. culminatus, C. durissus, C. enyo, C. erícsmithi, C. horrídus, C. intermedius, C. lannomi, C. lepidus C. mitchellii, C. molossus, C. morulus, C. oreganus. C. omatus, C. polystictus, C. pricei, C. pusillus, C. Pyrrhus, C. ravus, C. ruber, C. scutulatus, C. simus C. stejnegeri, C. stephensi, C. tancitarensis, C. tigris, C. tlaloci, C. totonacus, C. transversus, C. triseriatus, C. tzabcan, C. vegrandis, C. viridis, C. willardi; la especie Calloselasma rhodostoma que pertenece a la familia Crotalinae nativa del sureste Asiático de Tailandia al norte de Malasia y en la isla de Java; el género Lachesis , incluyendo a las especies: L. acrochorda, L. melanocephala, Lachesis muta, Lachesis stenophrys; así mismo, especies de elápidos incluyendo a las cobras especies Naja naja siamensis y los géneros; Acanthophi, Aipysurus, Antaioserpens, Aspidelaps Aspidomorphu, Austrelaps, Brachyumphis, Bungarus, Cacophis.Calliophis, Cryptophis, Demansia, Dendroaspis, Denisonia, Drysdalia, Echiopsis, Elapognathus, Elapsoidea, Emydocephalus, Enhydrína, Ephalophis, Furina, Hemachatus, Hemiaspis, Hemibungarus, Hoplocephalus„Hydrelaps, Hydrophis, Kolpophis, Laticauda, Loveridgelaps.Micropechis, Micruroides, Micrurus, Naja, Notechis, Ogmodon, Ophiophagus, Oxyuranus, Oxyuremus, Parahydrophis Parapistocalamus Parasut, Paroplocephalus, Pseudechis, Pseudohaja, Pseudonaja, Rhinoplocephalus, Salomonelaps, Sinomicmrus, Suta, Thalassophis, Toxicocalamus, Tropidechis, Vermicella y Watterinnesia.
Es modalidad de la invención la producción de antivenenos diseñados en contra de venenos de especies de arácnidos seleccionadas del grupo que consiste de: la especie barasileña: Phoneutria nigriventar, las especies australianas de arañas de red embudo incluyendo a la especie Atrax robustus.y las especies del género Hadronyche. Las especies de distribución mundial de los géneros Phoneutria, del género Missulena y del género Latrodectus, incluyendo a las especies: L. bishopi, L. hesperus, L. mactans, L. variolus, L. antheratus, L apicalis, L. corallinus, L. curacaviensis, L. diaguita, L mirabilis, L. quartus, L thoracicus, L. variegatus, L tredecimguttatus, L dahli, L hystrix, L lilianae, L. pallidus, L revivensis, L renivulvatus, L tredecimguttatus, L. lugubrís, L. cinctus, L. indistinctus, L. karrooensis, L menavodi, L obscurior, L rhodesiensis, L geometricus, L elegans, L. erythromalas, L. ex laos. También es modalidad de la invención la producción de antivenenos diseñados en contra de venenos de especies de arácnidos sicáridos (familia Sicaríidae) tanto del género Sicarius como del género Loxosceles, incluyendo a las especies: L gaucho, L intermedia, L. laeta, L. deserta, L. reclusa, L acepta, L adelaida, L. alamosa,, Lalicea, L amazónica, L anómala, L apachea, L. aphrasta, L. aranea L. arizónica, L. áurea, L baja, L. barbara, L. belli L. bentejui, L. bergeri, L bettyae, L blancasi, L blanda, L. candela, L caribbaea, L. carmena, L. chapadensis, L chinateca, L. colima, L. conococha, L Coquimbo, L coyote, L. cubana, L devia, L fontainei, L. foutadjalloni, Lfrancisca, L frizzelli , L. gloria L guajira, L. guatemala, L. harrietae, L. herrén, L. hirsuta, L huasteca, L. hupalupa, L. immodesta, L. inca, L. ínsula, L jaca, L. Jamaica, L. jarmila, L. julia, L. kaiba, L lacroixi, L lacta, L. lawrencei, L lútea, L. luteola, L. mahan, L maisi, Lmanuela, L martha, L meruensis, L misteca, L mogote, L mrazig, L mulege, L nahuana, L neuvillei, L niedeguidonae, L olmea, L pallidecolorata, L palma, L panamá, L. parramae, L pilosa, L piura, L pucará, L puortoi, L. rica, Lrosana, Lrothi, L rufescens, L rufipes, L russelli, L .sabina, L seri, L similis, L simillima, L smithi, L sonora, L. spadicea, L. speluncarum, L spinulosa, L surca L. taeniopalpis L. taino L tazarte L tehuana L Tenango, L teresa, L tibicena, L. tlacolula, L. unicolor, L. valdosa, Lvalida, L variegata L virgo, L vonwredei, L weyrauchi, L yucatana, L zapoteca.
Es modalidad de la invención la producción de antivenenos para tratamiento de escorpionismo provocado por especies ó géneros seleccionados del grupo que consiste de: género Androctonus incluyendo a las especies: Androctonus australis Androctonus mauretanicus mauretanicus, Androctonus crassicauda, género Buthacus incluyendo a la especie: Buthacus macrocentrus, género Buthus, incluyendo a la especie Buthus occitanus tunetanus, género Leiurus incluyendo a la especie Leiurus quinquestriatus hebraeus, género Parabuthus incluyendo a la especie Parabuthus granulatus, género Centruroides incluyendo a las especies: Centruroides noxius, Centruroides limpidus, Centruroides sufíüsus, género Tityus, incluyendo a las especies: Tityus serrulatus, Tityus metuendus, Tityus matthieseni, Tityus bastosi, Tityus bahiensi.
Es modalidad de la invención aplicaciones terapéuticas utilizando los antivenenos de la invención, en el ejemplo e se mencionan esquemas de tratamiento básicos. Es objeto principal de la invención proveer de un proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 capaces de neutralizar venenos a partir de plasma hiperinmune de mamífero no humano, caracterizado porque comprende:
a) Mezclar de plasmas sanguíneos hiperinmunes que contienen fenol (concentrado) en el reactor seguido de la digestión enzimática por pepsina a pH 3.5 ± 0.1 con control y a una temperatura de 37 ± 1 °C durante 1.5 h (90 minutos);
b) Detener la reacción ajustando el pH a 4.2 + 0.2 con NaOH 5N 21% Peso/Volumen; c) De inmediato proceder a la precipitación de fragmentos de proteínas no deseadas y adicionando Sulfato de amonio 21% P/V. Se obtiene la fracción soluble de F(ab')2 que es la mezcla digerida. En donde la precipitación ocurre conforme se diluye el sulfato de amonio;
d) De inmediato, proceder a la clarificación I y II, de la mezcla digerida obtenida en iv, en donde la clarificación I se lleva a cabo con un tamaño de poro en un intervalo de 8 μm a 20 μm y la clarificación II con un tamaño de poro 0.2 μm nominal, se obtiene una solución de F(ab')2 parcialmente purificada lista para la ultrafiltración; e) Proceder a la uitrafiltración automatizada de la mezcla digerida a. Por membrana de fibra hueca 30 kDa.
b. Por cassette de kDa 30 y por cassette de 50 kDa f) Proceder a la clarificación II del concentrado, determinar la potencia en DL50 neutralizantes/ml;
g) Formular el granel del producto. Ajusfar por dilución para obtener la potencia especificada para el producto;
h) Agregar excipientes: glicina, cloruro de sodio, sacarosa;
i) Integrar un prefiltrado a 0.1 um que deja el producto en mejores condiciones para que pase a nanofiltración;
j) Eliminar potencial presencia de virus mediante nanofiltración del granel del producto con membrana de 20 nm;
k) Proceder a filtración terminal estéril del granel del producto; I) Proceder al llenado;
m) Liofilizar.
Es modalidad del proceso de la invención el hecho de prescindir de la adición de cresol y/o de éter. Con el proceso de producción de fragmentos de anticuerpos F(ab')2 reivindicado, el rendimiento supera por lo menos 15 veces al que se obtiene cuando la purificación se basa en un proceso de doble precipitación salina y diálisis. En una modalidad del proceso de producción de fragmentos de anticuerpos F(ab')2, la precipitación de fragmentos de proteínas no deseadas, paso (c) anterior, se realiza adicionando sulfato de amonio 21% P/V a temperatura ambiente, durante el tiempo que dure la solubilizacfón del sulfato de amonio, e inmediato a este paso se procede a la clarificación I y II del paso (d) anterior. En otra modalidad del proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2, la precipitación de fragmentos de proteínas no deseadas de paso (c) anterior, se realiza adicionando sulfato de amonio 21% P/V al tiempo en que se incrementa la temperatura a 54 °C, durante el tiempo que dure la solubilización del sulfato de amonio, e inmediato a este paso se procede a la clarificación I y II del paso (d) anterior. En otra modalidad del proceso, la filtración tangencial por fibra hueca de 30 kDa se realiza conservando una τ en promedio de 4.06 Pa. En otra modalidad, en el paso (e) la filtración tangencial por cassette de 30 kDa se realiza conservando una t en promedio de 2.05 Pa y se realizan 20 lavados y la subsecuente filtración tangencial por cassette de 50 kDa se realiza conservando una τ de 0 y se realizan 20 lavados. Es modalidad de la invención que en el paso (h) del proceso de producción anterior se integren dichos excipientes en las siguientes proporciones en función de la cantidad de proteína: a) [volumen (mi)] x [0.009 (g/ml)]= Cantidad de cloruro de sodio (g) b) [Cantidad de proteína (g)] x [0.33]= Cantidad de sacarosa (g) c) [Cantidad de proteína (g)] x [0.67]= Cantidad de glicina (g)
Son modalidades de la invención las composiciones obtenidas por dicho proceso de tal forma que se obtiene un grado de pureza > 95%, un porcentaje de Fab de 0 a 3%, un porcentaje de componentes de bajo peso molecular de 0 a 0.90% y un porcentaje de componentes de alto peso molecular de 0 a 4.2%. Son modalidades de la invención las composiciones de fragmentos de anticuerpos F(ab')2 obtenidas por dicho proceso de tal forma que son capaces de neutralizar venenos con una potencia que supera por k) menos 6 veces a la que se obtiene cuando la purificación se basa en un proceso de doble precipitación salina y diálisis. Los siguientes ejemplos se presentan con carácter ilustrativo y no limitativo de la invención y se refieren a métodos esenciales que habilitan al fabricante tomando como base el procesamiento un volumen mínimo representativo de plasma hiperinmune para llevar a cabo cada proceso de filtración y así se posibilita el cálculo para escalamiento a los volúmenes requeridos para producción industrial, para todo el proceso de obtención y purificación de la fracción de F(ab')2 de la invención. Pueden entonces considerarse estas caracterizaciones como modalidades de la invención.
EJEMPL0 1 : Inmunización para obtener plasma hiperinmune.
Los esquemas de inmunización han sido variables. Un ejemplo de la manera de inmunizar consiste en aplicar dosis de venenos solos o en cocteles, nativos o recombinantes, que oscilan entre 3 y 150 DLso por caballo a lo largo de 12 inmunizaciones dadas durante 5 a 6 semanas para los esquemas de base y de 70 a 450 DLso por caballo durante 5 inmunizaciones durante 3 semanas Para los esquemas de refuerzo, según el tipo de veneno aplicado. Se pueden utilizar adyuvantes completos e incompletos de Freund, así como una solución isotónica salina, utilizando un total de 5, 10 ó 20 mi en las diferentes inoculaciones. La fuente de anticuerpos utilizada en la presente invención se pueden obtener por plasmaféresis: sangrando a una velocidad de 6 a 10 litros por caballo por sangrado, se realizan dos sangrías durante los 15 días siguientes a la última inoculación de cada esquema la sangre se eritro-sedimenta y todo el paquete celular es regresado, reduciendo así el estrés asociado con la caída de células sanguíneas y produciendo el menor impacto posible en la salud del animal a pesar de ser sometido a la producción de anticuerpos.
Se conserva únicamente el plasma como la fuente de anticuerpos para el método de la presente invención puede ser una mezcla de plasmas sanguíneos de diferentes animales inmunizados con el mismo antígeno.
EJEMPLO 2: Preparación de la solución de pepsina para producir fragmentos F(ab')2.
Para preparar 166.6 mL de la solución de pepsina HC1 1 mM. Se pesan 13.3 g de pepsina. Se adicionan 166.6 mL de la solución de HC1 1 mM a un frasco de 500 mL con agitador magnético, se adicionan los 13.3 g de pepsina al mismo, se disuelven, todo es a temperatura ambiente. Esta cantidad es para procesar en un reactor de 5 litros, 2 litros de plasma diluidos con el mismo volumen de agua de proceso. La pepsina queda a 6.6 g/l de plasma.
Se procede a la clarificación de la solución de pepsina, para lo cual se utiliza una membrana con tamaño de poro 1.0 a 3.0 μιτι. Para esterilizar se utiliza posteriormente la membrana con tamaño de poro 0.2 μτη (absoluto) previamente humectada con agua de proceso, y ajuste de flujo como lo recomiende el protocolo para el equipo.
EJEMPLO 3: Digestión enzimática del plasma para producir fragmentos F(ab')2.
Se lleva a cabo al integrar plasma y agua para el proceso en una proporción 50/50 % V/V. Por ejemplo, para 2 litros de plasma se puede utilizar un reactor de 5 litros al cual se transfieren usando una bomba peristáltica, se ajusta la velocidad de agitación del reactor a 300 r.p.m. Se transfieren 2 litros de agua de proceso al reactor de 5 litros con bomba peristáltica. Se ajusta la velocidad de agitación del reactor de 5 1 a 300 r.p.m.
Se aumenta la temperatura de la mezcla del plasma + agua de proceso a 37 °C ± 2 °C. Se ajusta el pH a 3.5 ± 0.2 con HCI 5 N. Se adicionan 166.6 ml_ de la solución de pepsina estéril a la mezcla del plasma + agua de proceso ubicada en el reactor de 5 I a una temperatura de 37 °C y un pH de 3.5 ± 0.2. Se mantiene la mezcla del plasma + agua de proceso + solución de pepsina estéril ubicada en el reactor de 5 litros a una temperatura de 37 °C ± 2 °C y un pH de 3.5 ± 0.2 durante 90 minutos en agitación constante. Para detener la reacción enzimática, se ajusta el pH a 4.2 ± 0.2 de la mezcla digerida del plasma + agua de proceso + solución de pepsina filtrada ubicada en el reactor de 5 litros a una temperatura de 37 °C ± 2 °C con NaOH 5 N.
EJEMPLO 4: Salting-Out para la obtención de fragmentos de F(ab')2.
Se agrega sulfato de amonio a la mezcla digerida de plasma + agua de proceso+ solución de pepsina. Para un reactor de 5 litros, se agregan 840 g de sulfato de amonio a la mezcla digerida del plasma + agua de proceso-i- solución de pepsina estéril ubicado en el reactor de 5 L a una temperatura de 37 °C ± 2 °C, pH de 4.2 ± 0.2 y agitación constante.
EJEMPLO 5: Clarificación I y II del sobrenadante proveniente de precipitación (Salting-Out) para obtener fragmentos F(ab')2.
Estos clarificados tienen como objetivo eliminar partículas que dañen las membranas de los sistemas de filtración tangencial. En las clarificaciones los flujos de alimentación y de las bombas se ajustan tomado en cuenta los rendimientos de cada membrana, los volúmenes y las áreas, siguiendo relaciones matemáticas conocidas en el estado de la técnica. Se presentan estos ejemplos:
Para la clarificación I la membrana es con tamaño de poro de 8.0 a 20.0 μτη, el sistema se alimenta con bomba peristáltica, el flujo de alimentación se conserva constante, el incremento de presión a 25 psi indica que debe pararse el proceso en este tiempo, se consideró una densidad del producto a procesar de 1.2 mg/ml, y se trabajó con un volumen de 150 g (125 mi), el flujo aproximado: 6-7 ml/min, con un rendimiento de 56 litros /m2. Escalando para filtrar 60 y 120 litros el área calculada del filtro adecuada es de 1.05 m2 ó 2.1 m2, respectivamente. Con un área de 1 m2 el proceso de lleva 30 minutos aplicando un flujo de 2,000 ml/min. Este ejemplo es escalable.
La clarificación II se efectúa con una membrana de tamaño de poro de 0.2 pm. Para un volumen de 836 mi, el flujo calculado de alimentación es de 12 ml/min y el Flux (LHM) de 956, el área de la membrana es de 0.00138 m2, en rendimiento es de 605 litros /m2. Escalando a un lote de 60 litros se puede usar una membrana con 0.099 m2 de área. Escalando a un lote de 120 litros se puede usar una membrana con 0.198 m2 de área.
Si se utiliza un área de filtración de 0.21 m2 y un tamaño de poro nominal de 0.2 um, disponible en el mercado, el tiempo teórico del proceso es de 30 minutos con un flujo de 2,000 ml/min, pero esto es ajustable dependiendo de la disponibilidad de membranas comerciales ó del volumen que se desee filtrar.
EJEMPLO 6: Filtración tangencial del clarificado para obtener fragmentos F(ab')2 por membrana de fibra hueca 30 kDa.
La membrana es de poliéster sulfona tamaño de corte de 30 kDa, las condiciones de operación (flujo de alimentación, tiempo de recirculación, relación volumen/área, presión transmembranal, factor de concentración de volumen inicial, volumen de diafiltración y factor de concentración de volumen final), fueron ensayadas y seleccionadas internamente. La pureza obtenida la concentración de proteína y rendimiento, se presenta en la tabla 13, es el promedio de 7 ensayos en donde se filtraron 500 mi por ensayo en membrana de 0.14 m2, así se considera una relación de Volumen/área de 4 litros/m2, el factor de concentración de volumen inicial es de 3 X y de volumen final 5 X, el volumen de diafiltración es de 20 y el tiempo del proceso es de 4 horas. Se trabaja con un valor de τ en promedio de 4.06 Pa; con esto se permite la separación de las moléculas esperada, sin ocasionar la formación de agregados o taponamiento del filtro.
EJEMPLO 7: Filtración tangencial del clarificado para obtener fragmentos F(ab')2 por cassette 30 kDa.
Para 4 litros de clarificado: Se pesan 360 g de cloruro de sodio, se adicionan 360 g de sodio y disuelven en 40 I de agua de proceso. Se toman 4 litros de clarificado y recirculan durante 5 min a través del sistema de filtración tangencial (cassette con un tamaño de corte de 30 kDa y un área de 0.5 m2).
El producto a ultrafiltrar se concentra a 2 litros (2x). Se diafiltra manteniendo el volumen constante de 2 litros añadiendo la solución de cloruro de sodio 0.9% con otra bomba hasta completar los 40 litros de cloruro de sodio 0.9% (20 lavados). Las condiciones de operación (flujo de alimentación, tiempo de recirculación, relación volumen/área, presión transmembranal, factor de concentración de volumen inicial, volumen de diafiltración y factor de concentración de volumen final), fueron ensayadas y seleccionadas internamente, con esto se permite la separación de las moléculas esperada, sin ocasionar la formación de agregados o taponamiento del cassette. Se trabaja con un valor de τ en promedio de 2.05 Pa.
EJEMPLO 8: Filtración tangencial del ultrafiltrado por 30 kDa para obtener fragmentos F(ab')2 por cassette 50 kDa.
Para filtrar un volumen del ultrafiltrado I, 0.4 litros se recirculan durante 5 min a través del sistema de filtración tangencial (cassette con un tamaño de corte de 50 kDa y un área de 0.5 m2). Diafiltrar manteniendo el volumen constante de 0.4 litros añadiendo agua de proceso con otra bomba hasta completar 10 litros de agua de proceso (20 lavados). Las condiciones de operación (flujo de alimentación, tiempo de recirculación, relación volumen/área, presión transmembranal, factor de concentración de volumen inicial, volumen de diafiltración y factor de concentración de volumen final), fueron ensayadas y seleccionadas internamente, con esto se permite la separación de las moléculas esperada, sin ocasionar la formación de agregados o taponamiento del cassette. EJEMPLO 9: Clarificación III del concentrado.
Se prepara una membrana con tamaño de poro 0.2 um (absoluto), humectándola con agua de proceso a un flujo de permeado y de alimentación calculados según su rendimiento, volumen y área del sistema. Para el ejemplo del procesamiento de 5 L de plasma, el ajuste del flujo de la bomba queda a aproximadamente a 17 ml/min y se humecta la cápsula con esta membrana con 100 mi de agua de proceso. Ya para filtrar la solución de fragmentos F(ab')2 se ajusta el flujo de la bomba aproximadamente a 10 ml/min y se clarifica la solución a través de la cápsula con esta membrana. Todo se realiza a temperatura ambiente.
Tabla 32.
Figure imgf000078_0001
EJEMPL0 10: Formulación de la solución de fragmentos F(ab')2.
A partir de los resultados de potencia del concentrado (clarificado III de la solución de fragmentos de F(ab')2 y las fórmulas descritas, se calcula el volumen final y las cantidades de excipientes: cloruro de sodio, sacarosa y glicina.
Se obtiene el factor de dilución, el % de excipientes y su concentración:
Figure imgf000078_0002
7% sólidos totales - Concentración de proteína final (%) = Excipientes(%)
La suma de proteínas y excipientes:
Figure imgf000079_0001
En función de la cantidad de proteína:
Figure imgf000079_0002
Se pesa la cantidad de cloruro de sodio calculada. Se pesa la cantidad de sacarosa calculada. Se pesa la cantidad de glicina calculada. Se disuelve el cloruro de sodio, sacarosa y glicina calculada en el 50% del volumen de agua de proceso para alcanzar el volumen final en el contenedor de formulación. Se omite esta última operación en caso de que por el volumen del concentrado no sea necesario diluir y entonces se procede a agregar directamente el cloruro de sodio, sacarosa y glicina. Se mezcla el volumen del formulado cloruro de sodio, sacarosa y glicina con el volumen del concentrado para alcanzar el volumen final calculado del formulado. Todo este paso se realiza a temperatura ambiente.
Cabe señalar que es factible ajustar el pH del subproducto en cualquier momento a partir del paso 4 de la tabla 21. En este punto es posible realizar el ajuste del pH a 6.9 ± 0.1 con bufferde boratos (pH 12-13).
EJEMPLO 11: Prefiltración de la solución de fragmentos F(ab')2 formulada y nanofiltración final.
La prefiltración y la nanofiltración se integraron en la tabla 21 como los pasos 8 y 9 del proceso de la invención. Para la obtención de la solución de fragmentos F(ab')2 como producto terminado se requiere que el granel formulado sea prefiltrado para luego ser sometido a una clarificación viral mediante el nanofiltrado. La membrana de prefiltrado es de 0.1 μτη (absoluto).
Para este ejemplo utilizado para caracterizar la etapa de prefiltrado 8 (no limitativo), para un volumen de 165 mi, el flujo promedio es de 15 ml/min y el Flux (LHM) de 478, el área de la membrana es de 0.00138 m2, el rendimiento es de 119.8 Iforos/m2. Escalando para lotes de 40 litros se puede usar una membrana con 0.335 m2 de área. Si se utiliza un área de filtración de 0.33 m2 disponible en el mercado, el tiempo teórico del proceso es de 12 minutos con una presión de 10 psi., pero esto es ajustable dependiendo de la disponibilidad de membranas comerciales.
Este ejemplo caracteriza la etapa de nanofiltrado 9 pero no es limitativo. Se utiliza una membrana hkJrofílica de difluoruro de polivinilideno (PVDF) modificada, con tamaño de poro de 20 nm (absoluto). Se caraterizó para un volumen a filtrar de 45 mi usando una presión de 45 Psi, se ensayaron tres muestras así y con esto se observó que los flujos presentan variaciones del inicio al final de proceso, se promedió el comportamiento del proceso; al ¡nielo el promedio se encuentra en 0.64 ml/min (LHM: 34.9), al final el promedio se encuentra en 0.29 ml/min (LHM:16). Para escalar a lotes de 40 litros se puede usar una membrana con 0.986 m2 de área. Se puede adaptar el sistema con un área de filtración de 1 m2 disponible en el mercado para procesar 40 litros. Todo este paso se realiza a temperatura ambiente.
EJEMPLO 12: Filtración terminal estéril de la solución de fragmentos F(ab')2 formulada.
Para la obtención de la solución de fragmentos F(ab')2 Como producto terminado se requiere que el granel formulado sea esterilizado por membrana (paso 10 de la tabla 21). Se utiliza una membrana de 0.2 jim grado esterilizante. El sistema se alimenta con bomba peristáltica, el incremento de presión del sistema es de 2 psi. Para este ejemplo utilizado para caracterizar esta etapa (no limitativo), para un volumen de 495 mi, el flujo es de 12.4 ml/min y el Flux (LHM) de 538, el área de la membrana es de 0.00138 m2. Escalando a un lote de 40 litros se puede usar una membrana con 0.111 m2 de área. Si se utiliza un área de filtración de 0.15 m2 disponible en el mercado, el tiempo teórico del proceso es de 30 minutos con un flujo de 1,300 ml/min, pero esto es ajustable dependiendo de la disponibilidad de membranas comerciales. EJEMPL013: Liofilización.
Los frascos de producto se congelan durante 8 horas a -70 °C y 1000 mBar, el secado principal se realiza a -20 °C (temperatura del plato), 0 mBar durante 63 horas y el secado final a 30 °C (temperatura del plato), 0 mBar durante 8 horas. El secado principal y el secado final se realizan con la temperatura de la cámara de liofilización -60 °C. Estas condiciones están establecidas para un volumen de operación de 125 mi (25 viales).
Ejemplo 14: Verificación de remoción de cresol y de fenol para cada una de las etapas del proceso de obtención de fragmentos F(ab')2 a nivel planta piloto.
Muestras de plasma equino se sometieron al proceso en planta piloto, se tomaron muestras de cada etapa: digestión con pepsina, precipitación, termocoagulación, y las modalidades de diafiltraciones: la tangencial con fibra hueca de tamaño de corte de 30 kDa y la realizada con sistemas cassettes de 30 kDa y de 50 kDa, también se tomaron muestras posteriores: el último clarificado, el producto formulado prefiltrado, nano filtrado y producto terminado (PT). Para cada modalidad, se tomaron muestras en cada etapa y en cada en la concentración 2X, diafiltrados 5, 10, 15 y 20 lavados y se tomaron muestras en la concentración 10X, diafiltrados 5, 10, 15 y 20 lavados.
Como control, ó blanco de comparación, se realizó cuantificación de cresol y fenol de la prueba realizada de filtración tangencial con los sistemas cassettes con tamaño de corte de 30 kDa y 50 kDa con lavados con cloruro de sodio 0.9% a partir de una solución de cloruro de sodio 0.9% y por otro lado utilizando agua de proceso. Para lo cual se tomaron muestras en la concentración 2X, diafiltrados 5, 10, 15 y 20 lavados y se tomaron muestras en la concentración 10X, diafiltrados 5, 10, 15 y 20 lavados. Todas las muestras se analizaron por el método analítico validado para la determinación de cresol. EJEMPL015: Aplicaciones terapéuticas
Los antivenenos contra el veneno de alacrán pueden utilizarse según el grado de envenenamiento bajo el siguiente esquema (tabla 33): Tabla 33.
Figure imgf000082_0001
Los antivenenos contra el veneno de serpientes (elápidos) pueden utilizarse según el grado de envenenamiento bajo el siguiente esquema (tabla 34):
Tabla 34.
Figure imgf000082_0002
Figure imgf000083_0001
La presente invención es un proceso de alto rendimiento para obtener un antídoto seguro y efectivo para actuar en contra de la actividad tóxica de venenos; el antídoto es una composición basada en fragmentos F(ab')2 de anticuerpos IgG, que al ser administrados en mamíferos producen una inmunidad pasiva. Los fragmentos F(ab')2 que se obtienen por el proceso de la presente invención son de origen policlonal y se caracterizan por su potencia y su pureza.
Con el proceso de la presente invención, la actividad biológica y la pureza de los productos finales se incrementan, además también es un proceso de mejor rendimiento, por lo que se ahorran horas hombre y se disminuyen los costos y los tiempos de producción de composición de esta naturaleza.
REFERENCIAS Ahrer K., Buchacher A., Iberer G., Jungbauer A. (2006). Effects of ultra-/diafiltration conditions on present aggregates in human immunoglobulin G preparations. Journal of Membrane Science 274, 108-115
Alvarenga, L. M., Zahkj, M., di Tommaso, A., Juste, M. O., Aubrey, N., Billiald, P., Et al. (2014). Engineering Venom's Toxin-Neutralizing Antibody Fragmente and Its Therapeutic Potential. Toxins (6), 2541 -2537.
Calmette. (1896). The treatment of animáis poisoned with snake venom by the injection of antivenomous serum. Br. Med. J., 2, pp. 399-400.
Calvete, J.J., Juárez, P. y Sanz, L. (2007) Snake venomics. Strategy and applications. J. Mass Spectrom. 42, 1405-1414.
CN 103864930 (2014). Zheng Ying, Et al.
CN 101816789 (2010). Quanshui Fan, Et al.
Chen X1 , Jensen PE. The role of B lymphocytes as antigen-presenting cells. Arch Immunol Ther Exp (Warsz). 2008 Mar-Apr;56(2):77-83. Epub 2008 Mar 31. Chen, Jensen P. E. (2008). The role of B lymphocytes as antkjen-presenting cells. Arch Immunol Ther Exp (Warsz). 2008 Mar-Apn56(2):77-83.
Chippaux JP (1998). Snake-bites: appraisal of the global situation. BulEetin of the World Health Organization, 76(5), 515-24.
De Lima M.E., Martin-Eauclaire M.F., Chavez-Olortegui C, Dlniz C.R., Granier C. (1993). Tityus serrulatus scorpion venom toxins display a complex pattern of antigenic reactivity. Toxicon. Feb;31(2):223-7.
ES 2549690 (2015). López de Silanes.
FEUM° Farmacopea de los Estados Unidos Mexicanos, Secretaría de Salud, 10a ed México 2011. Tomo 1 y 2, Pág. 279-293, 2367-2369. Y Especificación interna del Instituto Bioclon SA de CV.
FEUM1 Farmacopea de los Estados Unidos Mexicanos, Secretaría de Salud, 10a ed México 2011. Tomo 1 y 2, Pág. 449, 450, 2316, 2367-2369. USP 34 and NF 29 Pág. 115-116.
FEUM2 Farmacopea de los Estados Unidos Mexicanos, Secretaría de Salud, 10a ed México 2011. Tomo 2, Pág. 2292, 2293, 2316, 2367-2369.
FEUM3 Farmacopea de los Estados Unidos Mexicanos, Secretaría de Salud, 10a ed México 2011. Tomo 2, Pág. 2367-2369.
FEUM4 Farmacopea de los Estados Unidos Mexicanos, Secretaría de Salud, 10a ed México 2011. Pág. 2435. MPB0260. Determinación de cresol y fenol en productos biológicos.
Fox S, Rathuwithana AC, Kasturíratne A, Lalloo DG, de Silva, HJ (2006). Underestimation of snakebite mortality by hospital statistics in the Monaragala District of Sri Lanka. Transactions of the Royal Society of Tropical Medicine and Hygiene, 100(7):693-5.
Gerrínga D., Kingb T.R., Brantonc, R. (2013). Validating a faster method for reconstitution of Crotalidae Polyvalent Immune Fab (ovine). Toxicon. Volume 69, July 2013, Pages 42-49
Garavito, A.; Espíndola, M. (1995). Proceso de Concentración de Proteína de Suero de Leche por Ultrafiltración. Proyecto de Grado para optar al título de Ingeniero Químico. Planta de Vegetales - ICTA, Universidad Nacional de Colombia.
Ghosh, R., Cui, Z.F. (2000). Protein purification by ultrafiltration with pre-treated membrane. Journal of Membrane Science. Volume 167, Issue 1 , 14 March 2000, Pages 47-53.
Gutiérrez JM, Theakston RDG, Warrell DA (2006). Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS- Medicine Jun 6;3(6):0727-0731.e150.
Gwee, M.C.E., Nirthanan, S., Khoo, H.E., Gopalakrihnakone, P., Kini, R.M., Cheah, L.S., (2002). Autonomic effects of some scorpion venoms and toxins. Clin. Exp. Pharm. Physiol. 29, 795-801.
Harms A.J. The purification of antitoxic plasmas by enzyme treatment and heat denaturation. Biochem J. 1948;42:390-397.
Heinen T. E. y Gorini da Veiga A. B. (2011) Review Arthropod venoms and cáncer. Toxicon 57, 497-511.
Hemke, V. Journal of Cell and Tissue research Vol. 13(1) 3479-3484.
Landon J. et al. (2014). Single-reagent one-step procedures for the purification of ovine IgG, F(ab')2 and Fab antivenoms by caprylic acid. Joumai of Immunological Methods 402 (2014) 15-22.
Landon y Jones (2002). Enhanced pepsin digestión: a novel process for purifying antibody F(ab')2 fragments in high yield from serum. Journal of Immunological Methods 263 (2002) 57-74.
Landon y Jones (2003). A protocol for 'enhanced pepsin digestión': a step by step method for obtaining puré antibody fragments in high yield from serum Journal of Immunological Methods 275 (2003) 239-250.
Lourenco, W.R., (1994). Diversity and endemism in tropical versus températe scorpion communities. Biogeographica 70, 155-160.
Martin-Eauclaire, M.F., Couraud, F., (1995). Scorpion neurotoxins: effects and mechanisms. In: Chang, L.W., Dyer, R.S. (Eds.), Handbook of Neurotoxicology. Marcell and Dekker, New York, pp. 683-716.
MintonJr. S. A. Common Antigens in Snake Venoms. Capitulo: Venenos de serpientes. Volumen 52 de la serie Handbook of Experimental Pharmacology pp 847-862.
Mitchell, Sitas Weir, and Edward T. Reichert. Researches Upon the Venoms of
Poisonous Serpents. Washington: Smithsonian Institution, 1886.
Pope C.G. (1938). Dissagregation of proteins by enzymes. Br J Exp Path: 245-251. Pope, G.G., (1939a). The action of proteolytic enzymes on antitoxins and proteins of immune sera. I. True digestión of the protein. Br. J. Exp. Pathol. 20, 132-149.
Pope, G.G., (1939b). The action of proteolytic enzymes on antitoxins and proteins of immune ser. II. Heat denaturation after partial enzyme action. Br. J. Exp. Pathol. 20, 201-212.
Possani, L.D., Merino, E., Corona, M., Bolívar, F., Becerril, B., (2000). Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 82, 861-868. Pugh RN, Theakston RD, Reid HA (1980). Malumfashi Endemic Diseases Research Project, XIII. Epidemiology of human encounters with the spitting cobra, Naja nigrícollis, in the Malumfashi área of northern Nigeria. Annals of Tropical Medicine and Parasitology, 74(5):523-30.
Rodríguez-Pinto. (2005). Review. B cells as antigen presenting cells Cellular Immunology. 238. 67-75 www.elsevier.com/locate/ycimm
Saetang, T., Treamwattana, N., Suttijitpaisal, P., Ratanabanangkoon, K., (1997). Quantitative comparíson on the refinement of horse antivenom by salt fractionation and ion-exchange chromatography. J. Chromatogr., B: Biomed. Sci. Appl. 700, 233. Sharma SK et al. (2004). Impact of snake bites and determinants of fatal outcomes in southeastem Nepal. American Journal of Tropical Medicine and Hygiene, 2004, 71(2):234-238.
Simard, M.J., Watt, D.D., (1990). Venoms and toxins. In: Polis, G.A. (Ed.), The Biology of Scorpions. Stanford University Press, Standford, pp. 414- 444. Smith, K.J.
Snow RW et al. (1994). The prevalence and morbidity of snake bite and treatment- seeking behaviour among a rural Kenyan population. Annals of Tropical Medicine and Parasitology, 88(6):665-71.
US 4,814,433 (1989). Fredrickson R.
US 4,849,352 (1989). Sullivan et al.
US 5,733,742 (1998). Landon et al,
US 6,709,655 (2004). López de Silanes, et al.
US 8,048,414 (2011). Sullivan et al
Warrell DA, Arnett C (1976). The importance of bites by the saw-scaled or carpet viper (Echis carínatus): epidemiological studies in Nigeria and a review of the workJ literature. Acta Trópica, 33(4):307-41. Woifenden, R. N. (1886). On the nature and action of the venom of poisonous snakes. J. Physiol. (London.) 7, 326-324.
Williams, D., Gutiérrez, J.-M., Calvete, J., Wüster, W., Ratanabanangkoon, K., Paiva, O., y otros. (2011). Ending the drought: New strategies fbr improving the flow of affordable, effective antivenoms in Asia and Africa . Journal of Proteomics (74), 1735-1767.

Claims

REIVINDICACIONES
1. Proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 capaces de neutralizar venenos a partir de plasma hiperinmune de mamífero no humano, caracterizado porque comprende: a) Mezclar de plasmas sanguíneos hiperinmunes que contienen fenol en el reactor seguido de la digestión enzimática por pepsina a pH 3.5 ± 0.1 con control y a una temperatura de 37 ± 1 °C durante 90 minutos; b) Detener la reacción ajusfando el pH a 4.2 + 0.2 con NaOH 5N 21% P/V;
c) De inmediato proceder a la precipitación de fragmentos de proteínas no deseadas y adicionando Sulfato de amonio 21 % P/V. Se obtiene la fracción soluble de F(ab')2 que es la mezcla digerida. En donde la precipitación ocurre conforme se diluye el sulfato de amonio; d) De inmediato proceder a la clarificación I y II, de la mezcla digerida obtenida en (c), en donde la clarificación I se lleva a cabo con un tamaño de poro en un intervalo de 8 pm a 20 pm y la clarificación II con un tamaño de poro 0.2 pm nominal, se obtiene una solución de F(ab')2 parcialmente purificada lista para la uttrafiltración;
e) Proceder a la ultrafiltración automatizada de la mezcla digerida
c. Por membrana de fibra hueca 30 kDa.
d. Por cassette de kDa 30 y por cassette de 50 kDa f) Proceder a la clarificación II del concentrado, determinar la potencia en DLsoneutralizantes/ml;
g) Formular el granel del producto y ajusfar por dilución para obtener la potencia especificada para el producto;
h) Agregar excipientes: glicina, cloruro de sodio, sacarosa;
i) Integrar un prefiltrado a 0.1 um que deja el producto en mejores condiciones para que pase a nanofiltración;
j) Eliminar potencial presencia de virus mediante nanofiltración del granel del producto con membrana de 20 nm;
k) Proceder a filtración terminal estéril del granel del producto;
I) Proceder al llenado;
m) Liofilizar.
2. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 de conformidad con la reivindicación 1 ó 2 en donde la adición de cresol y/o de éter etílico son prescindibles.
3. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 de conformidad con la reivindicación 1 , 2 ó 3, en donde a la precipitación de fragmentos de proteínas no deseadas del paso (c), se realiza adicionando sulfato de amonio 21% P/V a temperatura ambiente, durante el tiempo que dure la solubilización del sulfato de amonio, e inmediato a este paso se procede a la clarificación I y II del paso (d).
4. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 de conformidad con la reivindicación 1 , 2 ó 3, en donde a la precipitación de fragmentos de proteínas no deseadas de paso (c), se realiza adicionando sulfato de amonio 21% P/V al tiempo en en que se incrementa la temperatura a 54 °C, durante el tiempo que dure la solubilización del sulfato de amonio, e inmediato a este paso se procede a la clarificación I y II del paso (d).
5. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 de conformidad con la reivindicación 1 , 2, 3, ó 5, en donde en el paso (e), la filtración tangencial por fibra hueca de 30 kDa se realiza conservando una τ en promedio de 4.06 Pa.
6. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 de conformidad con la reivindicación 1, 2, 3, 4 ó 5 en donde en el paso (e) la filtración tangencial por cassette de 30 kDa se realiza conservando una τ en promedio de 2.05 Pa y se realizan 20 lavados y la subsecuente filtración tangencial por cassette de 50 kDa se realiza conservando una τ de 0 y se realizan 20 lavados.
7. El proceso de conformidad con cualquiera de las reivindicaciones 1 a 6, en donde además en el paso (h) se integran dichos excipientes en las siguientes proporciones en función de la cantidad de proteína:
a) [volumen (mi)] x [0.009 (g/ml)]= Cantidad de cloruro de sodio (g) b) [Cantidad de protefna (g)] x [0.33]= Cantidad de sacarosa (g) c) [Cantidad de proteina (g)] x [0.67]= Cantidad de glicina (g)
8. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 de conformidad con cualquiera de las reivindicaciones 1 a 7, en donde el grado de pureza obtenido es > 95%.
9. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 de conformidad con cualquiera de las reivindicaciones 1 a 8, en donde el porcentaje de Fab que se obtiene va de 0 a 3%, el porcentaje de componentes de bajo peso molecular que se obtiene va de 0 a
0.90% y el porcentaje de componentes de alto peso molecular que se obtiene va de 0 a 4.2%.
10. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 de conformidad con cualquiera de las reivindicaciones 1 a 9, en donde el rendimiento supera por lo menos 15 veces al que se obtiene cuando la purificación se basa en un proceso de doble precipitación salina y diálisis.
11. El proceso de producción y obtención de una composición de fragmentos de anticuerpos F(ab')2 capaces de neutralizar venenos a partir de plasma hiperinmune de mamífero no humano, de conformidad con cualquiera de las reivindicaciones 1 a 10, en donde la potencia supera por lo menos 6 veces a la que se obtiene cuando la purificación se basa en un proceso de doble precipitación salina y diálisis.
12. Una composición de fragmentos de anticuerpos F(ab')2 capaces de neutralizar venenos a partir de plasma hiperinmune de mamífero no humano, caracterizado porque se obtiene por el proceso de cualquiera de las reivindicaciones 1 , 2, 3, 4, 5, 6 ó 7 y en dónde además:
n) el grado de pureza obtenido es > 95%.
o) el porcentaje de Fab que se obtiene va de 0 a 3%,
p) el porcentaje de componentes de bajo peso molecular que se obtiene va de 0 a 0.90%
q) el porcentaje de componentes de alto peso molecular que se obtiene va de 0 a 4.2%.
13. Una composición de fragmentos de anticuerpos F(ab')2 capaces de
neutralizar venenos a partir de plasma hiperinmune de mamífero no humano, de conformidad con la reivindicación 12, caracterizado además porque en función de la cantidad de proteína contiene las siguientes proporciones de excipientes:
r) [volumen (mi)] x [0.009 (g/ml)]=Cantidad de cloruro de sodio (g) s) [Cantidad de proteína (g)] x [0.33]=Cantidad de sacarosa (g) t) [Cantidad de proteína (g)] x [0.67]=Cantidad de glicina (g)
PCT/MX2017/000115 2017-10-02 2017-10-02 Proceso de alto rendimiento para la producción de antivenenos de fragmentos f (ab') 2 de anticuerpos WO2019070108A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/MX2017/000115 WO2019070108A1 (es) 2017-10-02 2017-10-02 Proceso de alto rendimiento para la producción de antivenenos de fragmentos f (ab') 2 de anticuerpos
EP17927999.7A EP3680252A4 (en) 2017-10-02 2017-10-02 HIGH PERFORMANCE PROCESS FOR PREPARATION OF POISON ANTIDOTS WITH F (AB ') - 2 ANTIBODY FRAGMENTS
MA49426A MA49426B1 (fr) 2017-10-02 2017-10-02 Processus à haut rendement pour la production d’antivenins à partir de fragments d’anticorps f(ab') 2
MX2019015360A MX2019015360A (es) 2017-10-02 2017-10-02 Proceso de alto rendimiento para la produccion de antivenenos de fragmentos f(ab')2 de anticuerpos.
CONC2020/0001084A CO2020001084A2 (es) 2017-10-02 2020-01-29 Proceso de alto rendimiento para la producción de antivenenos de fragmentos f (ab') 2 de anticuerpos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2017/000115 WO2019070108A1 (es) 2017-10-02 2017-10-02 Proceso de alto rendimiento para la producción de antivenenos de fragmentos f (ab') 2 de anticuerpos

Publications (1)

Publication Number Publication Date
WO2019070108A1 true WO2019070108A1 (es) 2019-04-11

Family

ID=65994605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2017/000115 WO2019070108A1 (es) 2017-10-02 2017-10-02 Proceso de alto rendimiento para la producción de antivenenos de fragmentos f (ab') 2 de anticuerpos

Country Status (5)

Country Link
EP (1) EP3680252A4 (es)
CO (1) CO2020001084A2 (es)
MA (1) MA49426B1 (es)
MX (1) MX2019015360A (es)
WO (1) WO2019070108A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814433A (en) 1987-09-16 1989-03-21 Miles Inc. Method for obtaining a papain-free antibody fragment preparation
US4849352A (en) 1984-10-09 1989-07-18 Sullivan John B Antibody purification process
US5733742A (en) 1993-06-03 1998-03-31 Therapeutic Antibodies Inc. Production of antibody fragments from whole blood
US6706655B2 (en) 1998-08-07 2004-03-16 Borealis Technology Oy Catalyst component comprising magnesium, titanium, a halogen and an electron donor, its preparation and use
US6709655B2 (en) 2001-02-28 2004-03-23 Instituto Bioclon, S.A. De C.V. Pharmaceutical composition of F(ab1)2 antibody fragments and a process for the preparation thereof
US7537916B2 (en) 2001-12-17 2009-05-26 Crucell Holland B.V. Efficient production of F(ab')2 fragments in mammalian cells
CN101816789A (zh) 2010-04-08 2010-09-01 成都军区疾病预防控制中心军事医学研究所 抗蝰蛇蛇毒冻干血清及制备方法
CN103864930A (zh) 2014-02-17 2014-06-18 中国人民解放军成都军区疾病预防控制中心 抗中国东亚钳蝎蝎毒F(ab’)2抗体制备及其使用方法
ES2549690A2 (es) 2012-10-18 2015-10-30 Inosan Biopharma, S.A. Inmunoterapéuticos polivalentes de alta especificidad basados en anticuerpos modificados y formulación liofilizada inyectable altamente segura y eficaz

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048414B1 (en) 1984-10-09 2011-11-01 Btg International Inc. Antivenom composition containing Fab fragments
US4849352A (en) 1984-10-09 1989-07-18 Sullivan John B Antibody purification process
US4814433A (en) 1987-09-16 1989-03-21 Miles Inc. Method for obtaining a papain-free antibody fragment preparation
US5733742A (en) 1993-06-03 1998-03-31 Therapeutic Antibodies Inc. Production of antibody fragments from whole blood
US6706655B2 (en) 1998-08-07 2004-03-16 Borealis Technology Oy Catalyst component comprising magnesium, titanium, a halogen and an electron donor, its preparation and use
US7485303B2 (en) 2001-02-28 2009-02-03 Instituto Bioclon, S.A. De C.V. Pharmaceutical composition of F(ab')2 antibody fragments
ES2345245T3 (es) * 2001-02-28 2010-09-20 Instituto Bioclon S.A. De Cv. Composicion farmaceutica de fragmentos f(ab)2 de anticuerpos y metodo para la preparacion de los mismos.
US6709655B2 (en) 2001-02-28 2004-03-23 Instituto Bioclon, S.A. De C.V. Pharmaceutical composition of F(ab1)2 antibody fragments and a process for the preparation thereof
US8075893B2 (en) 2001-02-28 2011-12-13 Instituto Bioclon, S.A. de S.V. Pharmaceutical composition of F(ab′)2 antibody fragments and a process for the preparation thereof
US8512706B2 (en) 2001-02-28 2013-08-20 Instituto Bioclon, S.A. De C.V. Compositions of F(ab′)2 antibody fragments
US7537916B2 (en) 2001-12-17 2009-05-26 Crucell Holland B.V. Efficient production of F(ab')2 fragments in mammalian cells
CN101816789A (zh) 2010-04-08 2010-09-01 成都军区疾病预防控制中心军事医学研究所 抗蝰蛇蛇毒冻干血清及制备方法
ES2549690A2 (es) 2012-10-18 2015-10-30 Inosan Biopharma, S.A. Inmunoterapéuticos polivalentes de alta especificidad basados en anticuerpos modificados y formulación liofilizada inyectable altamente segura y eficaz
CN103864930A (zh) 2014-02-17 2014-06-18 中国人民解放军成都军区疾病预防控制中心 抗中国东亚钳蝎蝎毒F(ab’)2抗体制备及其使用方法

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
AHRER K.BUCHACHER A.IBERER G.JUNGBAUER A.: "Effects of ultra-/diafiltration conditions on present aggregates in human immunoglobulin G preparations", JOURNAL OF MEMBRANE SCIENCE, vol. 274, 2006, pages 108 - 115, XP024931381, DOI: 10.1016/j.memsci.2005.08.018
ALVARENGA, L. M.ZAHID, M.DI TOMMASO, A.JUSTE, M. 0.AUBREY, N.BILLIALD, P. ET AL.: "Engineering Venom's Toxin-Neutralizing Antibody Fragments and Its Therapeutic Potential", TOXINS, vol. 6, 2014, pages 2541 - 2537
BURNOUF T. ET AL.: "Assessment of the viral safety of antivenoms fractionated from equine plasma", BIOLOGICALS, vol. 32, 2004, pages 115 - 128, XP004630832, DOI: doi:10.1016/j.biologicals.2004.07.001 *
CALMETTE: "The treatment of animals poisoned with snake venom by the injection of antivenomous serum", BR. MED. J., vol. 2, pages 399 - 400
CALVETE, J.J.JUAREZ, P.SANZ, L.: "Snake venomics. Strategy and applications", J. MASS SPECTROM, vol. 42, 2007, pages 1405 - 1414
CHEN, JENSEN P. E.: "The role of B lymphocytes as antigen-presenting cells", ARCH IMMUNOL THER EXP (WARSZ, vol. 56, no. 2, March 2008 (2008-03-01), pages 77 - 83
CHIPPAUX JP: "Snake-bites: appraisal of the global situation", BULLETIN OF THE WORLD HEALTH ORGANIZATION, vol. 76, no. 5, 1998, pages 515 - 24
DE LIMA M.E.MARTIN-EAUCLAIRE M.F.CHAVEZ-OLORTEGUI C.DINIZ C.R.GRANIER C.: "Tityus serrulatus scorpion venom toxins display a complex pattern of antigenic reactivity", TOXICON, vol. 31, no. 2, February 1993 (1993-02-01), pages 223 - 7, XP025807527, DOI: 10.1016/0041-0101(93)90290-Y
FOX SRATHUWITHANA ACKASTURIRATNE ALALLOO DGDE SILVA, HJ: "Underestimation of snakebite mortality by hospital statistics in the Monaragala District of Sri Lanka", TRANSACTIONS OF THE ROYAL SOCIETY OF TROPICAL MEDICINE AND HYGIENE, vol. 100, no. 7, 2006, pages 693 - 5, XP025125984, DOI: 10.1016/j.trstmh.2005.09.003
GERRINGA D.KINGB T.R.BRANTONC, R.: "Validating a faster method for reconstitution of Crotalidae Polyvalent Immune Fab (ovine", TOXICON, vol. 69, July 2013 (2013-07-01), pages 42 - 49, XP028559247, DOI: 10.1016/j.toxicon.2012.12.005
GHOSH, R.CUI, Z.F.: "Protein purification by ultrafiltration with pre-treated membrane", JOURNAL OF MEMBRANE SCIENCE, vol. 167, no. 1, 14 March 2000 (2000-03-14), pages 47 - 53, XP004187996, DOI: 10.1016/S0376-7388(99)00275-6
GUTIERREZ JMTHEAKSTON RDGWARRELL DA: "Confronting the neglected problem of snake bite envenoming: the need for a global partnership", PLOS-MEDICINE, vol. 6, no. 3, 2006, pages 0727 - 0731
GWEE, M.C.E.NIRTHANAN, S.KHOO, H.E.GOPALAKRIHNAKONE, P.KINI, R.M.CHEAH, L.S.: "Autonomic effects of some scorpion venoms and toxins", CLIN. EXP. PHARM. PHYSIOL., vol. 29, 2002, pages 795 - 801
HARMS A. J.: "The Purification of Antitoxic Plasmas by Enzyme Treatment and Heat Denaturation", BIOCHEM J, vol. 42, no. 3, 1948, pages 390 - 397, XP055590248 *
HARMS A.J.: "The purification of antitoxic plasmas by enzyme treatment and heat denaturation", BIOCHEM J., vol. 42, 1948, pages 390 - 397, XP055590248, DOI: 10.1042/bj0420390
HEINEN T. E.GORINI DA VEIGA A. B.: "Review Arthropod venoms and cancer", TOXICON, vol. 57, 2011, pages 497 - 511, XP028175506, DOI: 10.1016/j.toxicon.2011.01.002
HEMKE, V, JOURNAL OF CELL AND TISSUE RESEARCH, vol. 13, no. 1, pages 3479 - 3484
LANDON J. ET AL.: "Single-reagent one-step procedures for the purification of ovine IgG, F(ab')2 and Fab antivenoms by caprylic acid", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 402, 2014, pages 15 - 22, XP028820460, DOI: 10.1016/j.jim.2013.11.001
LANDONJONES: "A protocol for enhanced pepsin digestion': a step by step method for obtaining pure antibody fragments in high yield from serum", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 275, 2003, pages 239 - 250, XP004416752, DOI: 10.1016/S0022-1759(03)00005-X
LANDONJONES: "Enhanced pepsin digestion: a novel process for purifying antibody F(ab') fragments in high yield from serum", JOURNAL OF IMMUNOLOGICAL METHODS, vol. 263, 2002, pages 57 - 74, XP004354385, DOI: 10.1016/S0022-1759(02)00031-5
LOURENGO, W.R.: "Diversity and endemism in tropical versus temperate scorpion communities", BIOGEOGRAPHICA, vol. 70, 1994, pages 155 - 160
MARTIN-EAUCLAIRE, M.F.COURAUD, F.: "Proceso de Concentration de Proteina de Suero de Leche por Ultrafiltration. Proyecto de Grado para optar al tftulo de Ingeniero Quimico. Planta de Vegetales", 1995, ICTA, UNIVERSIDAD NACIONAL DE COLOMBIA, article "Scorpion neurotoxins: effects and mechanisms", pages: 683 - 716
MINTONJR. S. A.: "Common Antigens in Snake Venoms. Capftulo: Venenos de serpientes", HANDBOOK OF EXPERIMENTAL PHARMACOLOGY, vol. 52, pages 847 - 862
POPE C.G.: "Dissagregation of proteins by enzymes", BR J EXP PATH, 1938, pages 1886 - 251
POPE, G.G.: "The action of proteolytic enzymes on antitoxins and proteins of immune ser. II. Heat denaturation after partial enzyme action", BR. J. EXP. PATHOL., vol. 20, 1939, pages 201 - 212
POPE, G.G.: "The action of proteolytic enzymes on antitoxins and proteins of immune sera. I. True digestion of the protein", BR. J. EXP. PATHOL., vol. 20, 1939, pages 132 - 149
POSSANI, L.D.MERINO, E.CORONA, M.BOLIVAR, F.BECERRIL, B.: "Peptides and genes coding for scorpion toxins that affect ion-channels", BIOCHIMIE, vol. 82, 2000, pages 861 - 868
PUGH RNTHEAKSTON RDREID HA: "Malumfashi Endemic Diseases Research Project, XIII. Epidemiology of human encounters with the spitting cobra, Naja nigricollis, in the Malumfashi area of northern Nigeria", ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY, vol. 74, no. 5, 1980, pages 523 - 30
RODRIGUEZ-PINTO, REVIEW. B CELLS AS ANTIGEN PRESENTING CELLS CELLULAR IMMUNOLOGY, vol. 238, 2005, pages 67 - 75, Retrieved from the Internet <URL:www.elsevier.com/locate/ycimm>
SAETANG, T.TREAMWATTANA, N.SUTTIJITPAISAL, P.RATANABANANGKOON, K.: "Quantitative comparison on the refinement of horse antivenom by salt fractionation and ion-exchange chromatography", J. CHROMATOGR., B: BIOMED. SCI. APPL., vol. 700, 1997, pages 233, XP004095060, DOI: 10.1016/S0378-4347(97)00244-2
See also references of EP3680252A4
SHARMA SK ET AL.: "Impact of snake bites and determinants of fatal outcomes in southeastern Nepal", AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, vol. 71, no. 2, 2004, pages 234 - 238
SIMARD, M.J.WATT, D.D.: "The Biology of Scorpions", 1990, STANFORD UNIVERSITY PRESS, article "Venoms and toxins", pages: 414 - 444
SMITH, K.J.SNOW RW ET AL.: "The prevalence and morbidity of snake bite and treatment-seeking behaviour among a rural Kenyan population", ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY, vol. 88, no. 6, 1994, pages 665 - 71
SOLANO RODRÍGUEZ L: "Purification del suero antiviperino polivalente utilizando ácido caprílico (AC) solo y/o en combination con cromatografía de intercambio ionico y su comparacion con el método Birmex tradicional", TESIS PARA OBTENER EL GRADO DE MAESTRA EN CIENCIAS DE LA SALUD CON ÁREA DE CONCENTRATION EN VACUNOLOGÍA, December 2012 (2012-12-01), pages 10, 11, XP055590247 *
WARRELL DAARNETT C: "The importance of bites by the saw-scaled or carpet viper (Echis carinatus): epidemiological studies in Nigeria and a review of the world literature", ACTA TROPICA, vol. 33, no. 4, 1976, pages 307 - 41
WHO: "WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins", WHO EXPERT COMMITTEE ON BIOLOGICAL STANDARDIZATION, 59TH MEETING, 13 October 2008 (2008-10-13), Geneva, pages 47, 48, 54, 64, XP055590246 *
WILLIAMS, D.GUTIERREZ, J.-M.CALVETE, J.WUSTER, W.RATANABANANGKOON, K.PAIVA, O.: "Ending the drought: New strategies for improving the flow of affordable, effective antivenoms in Asia and Africa", JOURNAL OF PROTEOMICS, vol. 74, 2011, pages 2292,2293,2316,2367 - 293,2367-2369
WOLFENDEN, R. N.: "On the nature and action of the venom of poisonous snakes", J. PHYSIOL. (LONDON., vol. 7, pages 326 - 324

Also Published As

Publication number Publication date
MA49426A1 (fr) 2021-02-26
EP3680252A1 (en) 2020-07-15
EP3680252A4 (en) 2021-04-28
MA49426B1 (fr) 2022-09-30
MX2019015360A (es) 2020-02-07
CO2020001084A2 (es) 2020-02-18

Similar Documents

Publication Publication Date Title
ES2553385T3 (es) Proceso para preparar una composición de inmunoglobulina
ES2769783T3 (es) Procedimiento de purificación de inmunoglobulina
US8512706B2 (en) Compositions of F(ab′)2 antibody fragments
JP2013532182A (ja) 組み合わせ医薬組成物及び神経変性疾患に関連する疾患又は状態を治療する方法
CN101815530A (zh) 治疗性抗体的纯化方法和使用方法
ES2596407T3 (es) Método para la producción de formulaciones inyectables de productos proteicos hemoderivados y productos obtenidos utilizando dicho método
Guidlolin et al. Polyvalent horse F (Ab) 2 snake antivenom: Development of process to produce polyvalent horse F (Ab) 2 antibodies anti-african snake venom
Jadhav et al. Antivenin production in India
KR20080110828A (ko) 약물로 작용하는 아르보바이러스에 특이적 면역글로블린과,F(ab)&#39;2 및/또는 Fab 단편의 농축액
US7276236B2 (en) Methods of preparing immune globin and uses thereof
WO2019070108A1 (es) Proceso de alto rendimiento para la producción de antivenenos de fragmentos f (ab&#39;) 2 de anticuerpos
US20200190166A1 (en) Polyvalent immunotherapeutics of high specificty based on modified antibodies and a lyophilized injectable formulation highly safe and effective
Redwan et al. Production and purification of ovine anti-tetanus antibody
RU2470664C2 (ru) Способ получения иммуноглобулина для внутривенного введения, обогащенного иммуноглобулином м, и препарат, полученный этим способом
WO2007118987A1 (fr) Concentre d&#39;immunoglobulines specifiques du chikungunya en tant que medicament
Lati et al. Efficacy of IgG, Fab, and F (ab') 2 fragments of horse antivenom in the treatment of local symptoms after Cerastes cerastes (Egyptian snake) bite
RU2287345C2 (ru) Средство для стимуляции выработки фактора viii свертывания крови
TW200904468A (en) Concentrate of chikungunya-specific immunoglobulins as a medical product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017927999

Country of ref document: EP

Effective date: 20200308

NENP Non-entry into the national phase

Ref country code: DE