WO2019069373A1 - Resin film to be used as interlayer of laminated glass, film material for interlayer of laminated glass, laminated glass and method for manufacturing laminated glass - Google Patents

Resin film to be used as interlayer of laminated glass, film material for interlayer of laminated glass, laminated glass and method for manufacturing laminated glass Download PDF

Info

Publication number
WO2019069373A1
WO2019069373A1 PCT/JP2017/036004 JP2017036004W WO2019069373A1 WO 2019069373 A1 WO2019069373 A1 WO 2019069373A1 JP 2017036004 W JP2017036004 W JP 2017036004W WO 2019069373 A1 WO2019069373 A1 WO 2019069373A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
laminated glass
acrylate
resin
film
Prior art date
Application number
PCT/JP2017/036004
Other languages
French (fr)
Japanese (ja)
Inventor
石川 栄作
吉田 明弘
直己 高原
圭俊 古園
康平 向垣内
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019546442A priority Critical patent/JPWO2019069373A1/en
Priority to PCT/JP2017/036004 priority patent/WO2019069373A1/en
Publication of WO2019069373A1 publication Critical patent/WO2019069373A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers

Definitions

  • the present invention relates to a resin film used for an interlayer film of laminated glass, a film material for interlayer film of laminated glass, laminated glass, and a method of manufacturing laminated glass.
  • laminated glass is widely used as glass for windows of vehicles such as automobiles, sunroofs, interior panels, etc., since it is safe that fragments of the glass are not scattered even if it is damaged due to external impact. .
  • Laminated glass is also used in windows of trains, aircraft, construction machines, buildings and the like.
  • an interlayer film for laminated glass made of polyvinyl acetal resin such as polyvinyl butyral resin plasticized with a plasticizer is interposed between at least a pair of glass plates, and obtained by integrating them.
  • polyvinyl acetal resin such as polyvinyl butyral resin plasticized with a plasticizer
  • the present invention provides a resin film used for an interlayer film of laminated glass and a film material for an interlayer film of laminated glass which can produce laminated glass excellent in cracking resistance against an impact applied from the outside.
  • the purpose is to Another object of the present invention is to provide a laminated glass excellent in impact resistance and cracking resistance and a method for producing the laminated glass using the resin film.
  • the present invention provides a resin film used for an interlayer film of laminated glass, which has a maximum value of tan ⁇ at 25 ° C. and a frequency range of 100 to 100,000 Hz of 0.5 to 4.0.
  • the resin film may be formed from a resin composition containing a polymer of a monomer containing a (meth) acryloyl compound, and in that case, the weight average molecular weight of the polymer may be 200,000 to 2,000,000.
  • the (meth) acryloyl compound may contain an alkyl (meth) acrylate and a (meth) acrylate having a hydroxyl group.
  • the content of the alkyl (meth) acrylate may be 50 to 95 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the resin composition may further comprise a thermal crosslinking agent.
  • the resin film may have a haze of 10% or less.
  • the present invention also provides a film material for laminated film of laminated glass, comprising a base material and a resin layer provided on the base material, wherein the resin layer is a layer comprising the resin film according to the present invention described above. provide.
  • the present invention also provides a laminated glass comprising two opposing glass plates and an intermediate film sandwiched between two glass plates, wherein the intermediate film is the resin film according to the present invention described above. .
  • the present invention is further a method of producing laminated glass comprising two opposing glass plates and an intermediate film sandwiched between two glass plates, and the resin film according to the present invention described above, Producing laminated glass comprising the steps of bonding two glass plates to obtain a laminate, and heating and pressing the laminate under conditions of 30 to 150 ° C. and 0.3 to 1.5 MPa. Provide a way.
  • the present invention it is possible to provide a resin film and a film material for an interlayer used as an interlayer of laminated glass capable of producing laminated glass having excellent split resistance against an impact applied from the outside.
  • the present invention can also provide a laminated glass excellent in impact resistance and cracking resistance and a method of producing laminated glass using the resin film.
  • FIG. 1 It is a schematic cross section which shows one Embodiment of the film material for intermediate films of laminated glass. It is a schematic cross section which shows one embodiment of a laminated glass. It is a figure which shows the master curve created about the tan-delta value of the resin film of Example 2 and Comparative Example 3.
  • FIG. 1 shows the master curve created about the tan-delta value of the resin film of Example 2 and Comparative Example 3.
  • a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step in the numerical range described stepwise in the present specification.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • “A or B” may contain either A or B, and may contain both.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition. means.
  • (meth) acrylate means at least one of "acrylate” and the corresponding "methacrylate”. The same applies to other similar expressions such as (meth) acryloyl.
  • the resin film used for the interlayer film of the laminated glass of the present embodiment has a maximum value of tan ⁇ of 0.5 to 4.0 at a frequency of 100 to 100,000 Hz at 25 ° C.
  • the resin film is used, for example, to form an intermediate film of laminated glass including two opposing glass plates and an intermediate film sandwiched between the two glass plates.
  • the interlayer film can dissipate energy due to the impact even when an impact is applied from the outside, and the high breakage resistance of the laminated glass Sex can be expressed.
  • the maximum value of tan ⁇ is 0.5 or more, the energy dissipation due to impact is improved, and the break resistance of the laminated glass can be improved.
  • the maximum value of tan ⁇ is preferably 0.7 or more, more preferably 0.8 or more, and still more preferably 1.0 or more.
  • the maximum value of tan ⁇ is 4.0 or less, the amount of deformation of the laminated glass when an impact is applied can be suppressed by suppressing the plastic deformation, and the high split resistance of the laminated glass can be obtained. It can be improved.
  • the maximum value of the above-mentioned tan ⁇ is preferably 3.0 or less, more preferably 2.0 or less, still more preferably 1.6 or less, and 1.4 or less. Being particularly preferred.
  • the tan ⁇ value can be calculated from a composite curve (master curve) obtained from the dynamic viscoelasticity measurement method and the time-temperature conversion rule. More specifically, for example, in accordance with the method according to JIS K 0129: 2005, first, using a dynamic viscoelasticity measuring instrument (TA Instruments Inc., product name “RSA-G2”), ⁇ 70 to 100 The resin film is measured in a tensile measurement mode under the conditions of ° C., 0.05 / 0.5 / 5/50 Hz, and a strain amount of 1%. Next, from the obtained measurement results, a master curve is created at a reference temperature of 25 ° C. using the WLF method or the Arrhenius rule.
  • master curve a composite curve obtained from the dynamic viscoelasticity measurement method and the time-temperature conversion rule. More specifically, for example, in accordance with the method according to JIS K 0129: 2005, first, using a dynamic viscoelasticity measuring instrument (TA Instruments Inc., product name “RSA-G2”), ⁇ 70 to
  • the frequency range of 100 to 100000 Hz means that one of two sheets of glass that forms a laminated glass by freely dropping a hard ball from a displacement height of several centimeters to one meter and several tens of centimeters. Is a frequency range selected on the assumption of the strain rate generated when a hard sphere collides with the glass of.
  • the time-temperature conversion factor ⁇ T is calculated for each temperature value by the following WLF equation or Arrhenius equation.
  • the angular frequency ⁇ ′ with respect to the reference temperature T 0 can be calculated by the following equation A, and the relationship between the angular frequency ⁇ ′ and the measured dynamic viscoelasticity is By drawing, it is possible to obtain a master curve in which the horizontal axis is changed to frequency.
  • ⁇ T ⁇ '/ ⁇ (A)
  • the series of calculations described above can be calculated using TRIOS Software (TA Instruments, product name) attached to “RSA-G2”.
  • the resin film according to the present embodiment can be formed from a resin composition.
  • the composition of the resin composition is not particularly limited as long as the maximum value of the above-mentioned tan ⁇ in the resin film is within the desired range.
  • the resin composition may contain, for example, a polymer having rubber elasticity.
  • polymer having rubber elasticity examples include urethane polymers, styrene polymers, acrylic polymers, vinyl chloride polymers, amide polymers, and olefin polymers. These polymers may be used alone or in combination of two or more. Among them, at least one selected from the group consisting of a urethane-based polymer, a styrene-based polymer, and an acrylic-based polymer, from the viewpoint of being able to adjust the maximum value of the above-mentioned tan ⁇ in the resin film more efficiently into a desired range. It is preferable to contain a seed, and it is more preferable to contain an acrylic polymer.
  • the polymer contained in the resin composition may be a polymer of a monomer containing a (meth) acryloyl compound, that is, a polymer having a structural unit derived from the (meth) acryloyl compound.
  • the (meth) acryloyl compound means a compound having a (meth) acryloyl group in the molecule, preferably a compound having one (meth) acryloyl group in the molecule.
  • the (meth) acryloyl compound does not include the one corresponding to a silicon compound having an ethylenically unsaturated group described later.
  • Examples of (meth) acryloyl compounds include (meth) acrylic acid, (meth) acrylamide, (meth) acrylamide derivatives, alkyl (meth) acrylates having a linear or branched alkyl group, and alkylene glycol chains ( Meta) Acrylate, (Meth) acrylate having hydroxyl group, (Meth) acrylate having aromatic ring, (meth) acrylate having alicyclic group, (meth) acryloyl morpholine, tetrahydrofurfuryl (meth) acrylate and having isocyanate group (Meth) acrylate is mentioned.
  • alkyl (meth) acrylates examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) Acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate and stearyl (meth) acrylate And alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms.
  • alkyl (meth) acrylate n-butyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and n-octyl (meth) acrylate are preferable, and 2-ethylhexyl (meth) acrylate is preferable. More preferable.
  • alkyl acrylates are preferred to alkyl methacrylates.
  • the alkyl (meth) acrylates may be used alone or in combination of two or more.
  • the (meth) acrylate having a hydroxyl group for example, 2-hydroxyethyl (meth) acrylate, 1-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 1- There may be mentioned hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate and 1-hydroxybutyl (meth) acrylate.
  • Examples of (meth) acrylates having an alkylene glycol chain include polyethylenes such as diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate and hexaethylene glycol mono (meth) acrylate.
  • Glycol mono (meth) acrylate Polypropylene glycol mono (meth) acrylate such as dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate; Dibutylene glycol mono (meth) Polybutylene glycol mono (meth) acrylates such as acrylate and tributylene glycol mono (meth) acrylate; methoxy Triethylene glycol (meth) acrylate, methoxytetraethylene glycol (meth) acrylate, methoxyhexaethylene glycol (meth) acrylate, methoxyoctaethylene glycol (meth) acrylate, methoxynona ethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) Alkoxy polyalkylene glycol (meth) acrylates such as acrylate, methoxy hepta propylene glycol (
  • aromatic ring-containing (meth) acrylates examples include benzyl (meth) acrylate and phenoxyethyl (meth) acrylate.
  • (meth) acrylates having an alicyclic group examples include cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate.
  • Examples of (meth) acrylamide derivatives include N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) Acrylamide, N, N-diethyl (meth) acrylamide and N-hydroxyethyl (meth) acrylamide are included.
  • Examples of (meth) acrylates having an isocyanate group include 2- (2-methacryloyloxyethyloxy) ethyl isocyanate and 2- (meth) acryloyloxyethyl isocyanate.
  • the polymer according to the present embodiment preferably contains a structural unit derived from an alkyl (meth) acrylate.
  • the polymerization ratio of the alkyl (meth) acrylate is preferably 50 to 95% by mass, more preferably 50 to 90% by mass, and 50 to 85% by mass with respect to the total mass of the polymer. Is more preferred. Since the adhesiveness of a resin layer and a to-be-adhered body can be improved as the polymerization ratio of an alkyl (meth) acrylate is such a range, the break resistance of laminated glass can be improved more.
  • Such a polymer can be obtained by polymerizing a monomer containing an alkyl (meth) acrylate in the same content ratio as the above-mentioned polymerization ratio.
  • the polymer which concerns on this embodiment contains the structural unit derived from the (meth) acrylate which has a hydroxyl group.
  • the polymerization ratio of the (meth) acrylate having a hydroxyl group is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and more preferably 10 to 30% by mass with respect to the total mass of the polymer. It is further preferred that When the polymerization ratio of the (meth) acrylate having a hydroxyl group is in such a range, the break resistance of the laminated glass can be further improved, and the transparency of the obtained resin film can be improved.
  • Transparency can use haze as an index.
  • the haze is a value (%) representing the turbidity, which is given by the total transmittance T t of the light emitted by the lamp and dropped in the sample and the transmittance T d of the light diffused and scattered in the sample ((t It is calculated as T d / T t ) ⁇ 100.
  • T t total transmittance
  • T d transmittance
  • the (meth) acryloyl compound according to the present embodiment preferably contains an alkyl (meth) acrylate and a (meth) acrylate having a hydroxyl group from the viewpoint of improving the transparency of the laminated glass.
  • the content of the alkyl (meth) acrylate may be 50 to 95 parts by mass, may be 50 to 90 parts by mass, and is 50 to 85 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the content of the (meth) acrylate having a hydroxyl group may be 5 to 40 parts by mass, and may be 10 to 30 parts by mass with respect to 100 parts by mass of the total amount of monomers.
  • the (meth) acryloyl compound further contains a compound having a (meth) acryloyl group and a polar group such as a morpholino group, an amino group, a carboxyl group, a cyano group, a carbonyl group, a nitro group or a group derived from an alkylene glycol group.
  • a compound having a (meth) acryloyl group and a polar group such as a morpholino group, an amino group, a carboxyl group, a cyano group, a carbonyl group, a nitro group or a group derived from an alkylene glycol group.
  • the monomer which concerns on this embodiment may also contain the silicon compound which has an ethylenically unsaturated group other than the said (meth) acryloyl compound.
  • a silicon compound having an ethylenically unsaturated group it has a group having an unsaturated bond such as (meth) acryloyl group, styryl group, cinnamic acid ester group, vinyl group or allyl group, and silicon as a constituent atom It is not particularly limited as long as it is a compound having
  • the silicon compound according to the present embodiment may be a siloxane compound or a silane compound, and for example, the compounds represented by the formulas (a), (b) or (c) are used alone or in combination of two or more. May be
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 , R 3 , R 4 , R 5 , R 6 and R 7 each independently represent a hydrogen atom or a methyl group
  • R 8 represents monovalent carbon
  • L 1 represents a hydrogen group
  • L 1 represents a divalent hydrocarbon group or a single bond which may be interrupted by an oxygen atom
  • m represents an integer of 1 to 300.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 , R 3 , R 4 , R 5 , R 6 and R 7 each independently represent a hydrogen atom or a methyl group
  • L 1 and L 2 each represent It independently represents a divalent hydrocarbon group or a single bond which may be intervened by an oxygen atom
  • n represents an integer of 1 to 300.
  • R 1 represents a hydrogen atom or a methyl group
  • R 9 , R 10 and R 11 each independently represent a hydrogen atom or a monovalent hydrocarbon group
  • L 3 may be an oxygen atom 2 Represents a valent hydrocarbon group or a single bond.
  • Examples of the monovalent hydrocarbon group include an alkyl group having 1 to 6 carbon atoms and a phenyl group.
  • Examples of the divalent hydrocarbon group include an alkylene group having 1 to 20 carbon atoms.
  • the polymerization ratio of the monomer unit derived from the silicon compound is preferably 2 to 20% by mass, and preferably 4 to 10% by mass, with respect to the total mass of the polymer. More preferable.
  • the polymerization ratio of the silicon compound is in such a range, the adhesion between the resin film and the adherend is improved, and the toughness of the laminate is improved, thereby further improving the split resistance of the laminated glass. be able to.
  • the monomer may contain a compound having two or more (meth) acryloyl groups or a compound having a polymerizable group other than the (meth) acryloyl group, as long as the effects of the present invention are not impaired.
  • a compound which has polymeric groups other than a (meth) acryloyl group an acrylonitrile, styrene, vinyl acetate, ethylene, propylene, and divinylbenzene are mentioned, for example.
  • the weight-average molecular weight (Mw) of the polymer is preferably 200,000 to 2,000,000, preferably 500,000 to 1,500,000, as determined by gel permeation chromatography (GPC) using a calibration curve of standard polystyrene. It is more preferable, and more preferably 600000 to 1300000.
  • Mw of the polymer is 200,000 or more, the adhesion to the adherend is improved, so that the split resistance of the laminated glass is further improved, and when it is 2,000,000 or less, the viscosity of the resin composition is high.
  • the processability at the time of forming the resin film becomes good, and as a result, the split resistance of the laminated glass is further improved.
  • the polymer according to the present embodiment can be synthesized, for example, using a known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization and the like.
  • a compound which generates a radical by heat can be used as a polymerization initiator at the time of synthesizing a polymer.
  • the polymerization initiator include organic peroxides such as benzoyl peroxide and lauroyl peroxide; 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile) and the like Azo compounds may be mentioned.
  • the resin composition may, if necessary, contain various additives together with the above-mentioned polymer.
  • a crosslinking agent may be used to increase the cohesion of the resin composition.
  • Specific examples of the crosslinking agent include photocrosslinking agents and thermal crosslinking agents.
  • an alkylene diol di (meth) acrylate having an alkylene group having 1 to 20 carbon atoms an alkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate
  • Bisphenol type di (meth) acrylates such as ethoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol F di (meth) acrylate, bisphenol A type epoxy (meth) acrylate; and urethane di (meth) acrylates having a urethane bond It can be mentioned.
  • the urethane di (meth) acrylate having a urethane bond may have a polyalkylene glycol chain from the viewpoint of good compatibility with other components, and from the viewpoint of securing transparency, it has an alicyclic structure. You may have. If the compatibility between the photocrosslinking agent and the polymer is high, clouding of the resin film formed from the resin composition tends to be easily suppressed.
  • the weight average molecular weight of the photocrosslinking agent is preferably 100,000 or less, more preferably 300 to 100,000, and more preferably 500 to 80,000 from the viewpoint of being able to further suppress the generation of air bubbles and peeling under high temperature or high temperature and high humidity. It is further preferred that
  • the content ratio in the case of using a photocrosslinking agent is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 7% by mass or less based on the total mass of the polymer. preferable.
  • a resin film which has sufficient adhesiveness can be obtained as it is such a range.
  • the lower limit of the content of the photocrosslinking agent is not particularly limited, but is preferably 0.1% by mass or more, more preferably 2% by mass or more, from the viewpoint of making the film forming property favorable. It is more preferable that the content is at least% by mass.
  • thermal crosslinking agents such as an isocyanate compound, a melamine compound, an epoxy compound, can be used, for example.
  • a trifunctional or tetrafunctional polyfunctional thermal crosslinking agent is more preferable from the viewpoint of forming a gradually spread network structure in the resin film and appropriately adjusting the flexibility of the resin film.
  • an isocyanate compound is preferable as the thermal crosslinking agent, and a polyisocyanate compound is more preferable.
  • the polyisocyanate compound include a trimer of hexamethylene diisocyanate, a triol such as trimethylolpropane, a polyfunctional hexamethylene diisocyanate compound which is a reaction product of a diol or a monofunctional alcohol and hexamethylene diisocyanate.
  • the content ratio in the case of using a thermal crosslinking agent is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less based on the total mass of the polymer. preferable.
  • a resin film which has sufficient adhesiveness can be obtained as it is such a range.
  • the lower limit of the content of the thermal crosslinking agent is not particularly limited, but is preferably 0.01% by mass or more from the viewpoint of improving the film formability.
  • a photopolymerization initiator may be included.
  • the photopolymerization initiator promotes the curing reaction by irradiation of active energy rays.
  • Active energy rays refer to ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like.
  • the photopolymerization initiator is not particularly limited, and it is possible to use known materials such as benzophenone compounds, anthraquinone compounds, benzoyl compounds, sulfonium salts, diazonium salts, onium salts and the like.
  • photopolymerization initiator for example, benzophenone, N, N, N ', N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), N, N, N', N'-tetraethyl-4,4 ' -Diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, ⁇ -hydroxyisobutylphenone, 2-ethylanthraquinone, t-butylanthraquinone, 1,4-dimethylanthraquinone, 1-chloroanthraquinone, 2,3-dichloroanthraquinone, 3-chloro-2-methylanthraquinone, 1,2-benzoanthraquinone, 2-phenylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, thioxanth
  • a photopolymerization initiator from the viewpoint of not coloring the resin composition, for example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2) ⁇ -hydroxyalkylphenone compounds such as -hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one; bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide, Acyl phosphine oxide compounds such as 2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentyl phosphine oxide, 2,4,6-trimethyl benzoyl-diphenyl phosphine oxide; oligo (2-hydroxy-2-methyl-1) -(4- (1-Methylvinyl) phenyl) propanone And the like.
  • the photopolymerization initiator is, for example, bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide, bis (2,6-dimethoxy benzoyl) -2,4,4- from the viewpoint of particularly forming a thick resin film.
  • Acyl phosphine oxide compounds such as trimethyl-pentyl phosphine oxide and 2,4,6-trimethyl benzoyl diphenyl phosphine oxide may be included.
  • the content ratio of the photopolymerization initiator is preferably 0.05 to 5% by mass, and more preferably 0.1 to 3% by mass, with respect to the total mass of the resin composition. % By mass is more preferred.
  • the resin composition may optionally contain an additive other than the crosslinking agent.
  • an additive for example, a polymerization inhibitor such as paramethoxyphenol added for the purpose of enhancing the storage stability of the resin composition, or for the purpose of enhancing the heat resistance of the interlayer obtained by photocuring the resin composition.
  • An antioxidant such as triphenyl phosphite, a light stabilizer such as HALS (Hindered Amine Light Stabilizer) added for the purpose of enhancing the resistance of the resin composition to light such as ultraviolet light, and an adhesive property of the resin composition to glass And silane coupling agents to be added.
  • the resin composition may contain an inorganic filler, for example, crushed silica, fused silica, mica, clay mineral, short glass fiber or fine powder, hollow glass, calcium carbonate, quartz powder, metal hydrate Etc.
  • the content of the inorganic filler is preferably 0.01 to 100 parts by mass, more preferably 0.05 to 50 parts by mass, and more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition on the basis of the total solid content. Parts are more preferred.
  • the dispersibility of the inorganic filler may be improved by treatment with a commercially available surface treatment agent such as a coupling agent, or treatment with a triple roll, bead mill, or a disperser such as a nanomizer.
  • the film material for an intermediate film of the laminated glass of the present embodiment has a substrate and a resin layer provided on the substrate.
  • a resin layer is a layer which consists of a resin film concerning this embodiment mentioned above.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an intermediate film film material of laminated glass.
  • the film material 1 for an intermediate film of the present embodiment includes a resin layer 11 and one base 10 and the other base 12 laminated so as to sandwich the resin layer 11. May be
  • the substrate 10 it is preferable to use a substrate which is lightly releasable than the substrate 12.
  • the base material polymer films, such as a polyethylene terephthalate, a polypropylene, polyethylene, are mentioned, for example, Especially, a polyethylene terephthalate film (Hereinafter, it may be mentioned "PET film”) is preferable.
  • PET film polyethylene terephthalate film
  • the thickness of the substrate 10 is preferably 25 to 150 ⁇ m, more preferably 30 to 100 ⁇ m, and still more preferably 40 to 80 ⁇ m from the viewpoint of workability.
  • the planar shape of the substrate 10 is preferably larger than the planar shape of the resin layer 11, and the outer edge of the substrate 10 preferably protrudes outward beyond the outer edge of the resin layer 11.
  • the width of the outer edge of the base 10 overhanging the outer edge of the resin layer 11 is preferably 2 to 20 mm, and is preferably 4 to 10 mm, from the viewpoint of ease of handling, ease of peeling, and reduction of adhesion of dust and the like. It is more preferable that When the planar shape of the resin layer 11 and the base material 10 is a substantially rectangular shape such as a substantially rectangular shape, the width of the outer edge of the base material 10 overhangs the outer edge of the resin layer 11 is 2 to 20 mm in at least one side. It is preferably 4 to 10 mm on at least one side, more preferably 2 to 20 mm on all sides, and particularly preferably 4 to 10 mm on all sides.
  • the substrate 12 it is preferable to use a substrate that is heavier releasable than the substrate 10.
  • the substrate 12 include polymer films such as polyethylene terephthalate (PET), polypropylene, and polyethylene. Among them, PET films are preferable.
  • the thickness of the substrate 12 is preferably 50 to 200 ⁇ m, more preferably 60 to 150 ⁇ m, and still more preferably 70 to 130 ⁇ m from the viewpoint of workability.
  • the planar shape of the substrate 12 is preferably larger than the planar shape of the resin layer 11, and the outer edge of the substrate 12 preferably protrudes outward beyond the outer edge of the resin layer 11.
  • the width of the outer edge of the base 12 protruding beyond the outer edge of the resin layer 11 is preferably 2 to 20 mm, more preferably 4 to 10 mm, from the viewpoint of ease of handling, ease of peeling, and reduction of adhesion of dust and the like. It is more preferable that When the planar shape of the resin layer 11 and the base 12 is a substantially rectangular shape such as a substantially rectangular shape, the outer edge of the base 12 protrudes more than the outer edge of the resin layer 11 by 2 to 20 mm in at least one side. It is preferably 4 to 10 mm on at least one side, more preferably 2 to 20 mm on all sides, and particularly preferably 4 to 10 mm on all sides.
  • the peel strength between the base 10 and the resin layer 11 is preferably lower than the peel strength between the base 12 and the resin layer 11. As a result, the base 12 becomes more difficult to peel from the resin layer 11 than the base 10.
  • the peel strength can be adjusted, for example, by subjecting the substrate 12 and the substrate 10 to a surface treatment.
  • a surface treatment method for example, release treatment of the substrate with a silicone compound or a fluorine compound is mentioned.
  • a known technique can be used as a method of forming the resin layer 11.
  • the resin composition according to the present embodiment is diluted with a volatile solvent such as 2-butanone, cyclohexanone, methyl ethyl ketone, ethyl acetate, toluene or the like to prepare a coating liquid.
  • the coating solution is applied onto the substrate 12 and the solvent is removed by drying to form a resin layer having an arbitrary thickness.
  • each component may be blended and then diluted with a solvent, or may be previously diluted with a solvent prior to blending each component.
  • known methods such as a flow coating method, a roll coating method, a gravure coating method, a wire bar coating method, and a lip die coating method can be used.
  • the substrate 10 is laminated on the resin layer 11 to produce a film material for an intermediate film according to the present embodiment.
  • the resin layer 11 is configured to be sandwiched between the base 10 and the base 12. In order to control the releasability between the resin layer 11 and the base material 10 and the base material 12, even if the resin composition contains a surfactant such as a polydimethylsiloxane surfactant or a fluorine surfactant. Good.
  • the thickness of the resin layer 11 is not particularly limited because it is appropriately adjusted depending on the use and method, but may be 10 to 5000 ⁇ m, 25 to 200 ⁇ m, 25 to 180 ⁇ m, or 25 to 150 ⁇ m. When used in this range, it is possible to obtain an interlayer for laminated glass which is further excellent in split resistance against an externally applied impact.
  • the light transmittance of the resin layer 11 to light in the visible light range (wavelength: 380 nm to 780 nm) is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more .
  • the haze of the resin layer 11 is preferably 10% or less, more preferably 5% or less, still more preferably 3% or less, and particularly preferably 1% or less.
  • appearance defects such as environmental foreign matter mixed in the manufacturing process of the film material for interlayer and laminated glass can be easily detected, and sufficient visibility as laminated glass is secured. can do.
  • the resin layer 11 can bond, for example, glass, a transparent substrate (or transparent film) made of glass and resin, or transparent substrates (or transparent film) made of resin as an intermediate film.
  • the intermediate film of laminated glass according to the present embodiment (hereinafter, sometimes simply referred to as “intermediate film”) can be applied to various kinds of laminated glass.
  • the laminated glass includes two opposing glass plates and an intermediate film sandwiched between the two glass plates, and the intermediate film is a film made of the resin film according to the present embodiment.
  • the method for producing a laminated glass according to the present embodiment includes the steps of bonding two glass plates via the above-described resin film to obtain a laminate, and conditions of 30 to 150 ° C. and 0.3 to 1.5 MPa. Heating and pressing the laminate.
  • the glass examples include float glass, air-cooled tempered glass, chemically tempered glass and double-layered glass.
  • the thickness of the glass may be, for example, 0.1 to 50 mm, 0.5 to 30 mm, 1 to 20 mm, or 2 to 10 mm.
  • FIG. 2 is a side sectional view schematically showing an embodiment of the laminated glass.
  • a float glass 20 In the laminated glass 2 shown in FIG. 2, a float glass 20, an intermediate film 21 and a float glass 22 are laminated in this order.
  • the laminated glass 2 shown in FIG. 2 can be manufactured, for example, by the following method.
  • the base material 10 in the film material 1 for intermediate films is peeled from the resin layer 11 to expose the surface of the resin layer 11.
  • the surface of the resin layer 11 to be the intermediate film 21 is attached to the first adherend float glass 20 and pressed by a roller or the like, and then the substrate 12 is peeled off from the resin layer 11 to expose the surface.
  • the surface of the resin layer 11 is attached to the float glass 22 as a second adherend, heat and pressure treatment (autoclave treatment) is performed, and the float glass 20 and the interlayer film 21 (resin layer 11) are interposed.
  • the laminated glass 2 which bonded together 21 is produced.
  • adherends can be easily bonded without wrinkles.
  • the heat and pressure treatment can also be performed at a low temperature and in a short time.
  • stable transparency of the laminated glass 2 can be maintained without the intermediate film 21 being whitened.
  • the conditions of the heat and pressure treatment are a temperature of 30 to 150 ° C. and a pressure of 0.3 to 1.5 MPa, but from the viewpoint of being able to further remove entrapped air bubbles, it is 0.3 to 0 at 50 to 70 ° C. It may be 0.5 MPa.
  • the treatment time is preferably 5 to 60 minutes, and more preferably 10 to 30 minutes.
  • the second adherend may be a transparent substrate made of resin.
  • transparent plastic substrates such as an acrylic resin substrate, a polycarbonate substrate, a cycloolefin polymer substrate, a polyester substrate, are mentioned, for example.
  • the interlayer film according to the present embodiment is attached by combining a laminated glass with a functional layer having functionality such as an antireflective layer, an antifouling layer, a dye layer, a hard coat layer, a sound insulation layer, a heat shield layer or other resin layers. You may use it to match. That is, in the intermediate film according to the present embodiment, the resin layer may have a single layer structure of one layer, or may have a multilayer structure in which two or more layers are laminated.
  • the antireflection layer may be a layer having an antireflection property such that the visible light reflectance is 5% or less.
  • As the antireflective layer a layer obtained by treating a transparent substrate such as a transparent plastic film by a known antireflective method can be used.
  • the antifouling layer is for making it difficult for the surface to be contaminated.
  • a known layer composed of a fluorine-based resin, a silicone-based resin or the like can be used to lower the surface tension.
  • the dye layer is used to increase color purity, and is used to reduce light of unnecessary wavelengths transmitted through the laminated glass.
  • the dye layer can be obtained by dissolving a dye that absorbs light of unnecessary wavelength in a resin, and forming or laminating it on a base film such as a polyethylene film or a polyester film.
  • the hard coat layer is used to increase the surface hardness.
  • an acrylic resin such as urethane acrylate and epoxy acrylate; a film obtained by forming an epoxy resin or the like on a base film such as a polyethylene film or the like can be used.
  • a hard coat layer formed or laminated on a transparent protective plate of glass, acrylic resin, polycarbonate or the like can also be used.
  • the sound insulation layer may be any known film layer as long as it has a function of controlling the loss coefficient (dB) when sound having a frequency of 100 to 10000 Hz passes through the laminated glass.
  • the heat shielding layer may have any function to absorb or reflect light in the infrared region (wavelength 780 nm or more), and known film layers can be used.
  • the other resin layer is not particularly limited as long as the effects of the present invention are not impaired.
  • resin used for such a resin layer polyvinyl acetal resin, such as polyvinyl butyral resin, ethyl vinyl alcohol resin, an ionomer, etc. are mentioned.
  • the resin layer 11 can be laminated
  • the weight average molecular weight (Mw) of the polymer produced in the production example was measured according to the GPC method using a calibration curve with standard polystyrene and using the following GPC measurement apparatus and measurement conditions.
  • RI Detector L-3350 (Hitachi High-Tech Science, Product Name) Eluent: THF Column: Gelpac GL-R420 + R430 + R440 (product name of Hitachi Chemical Co., Ltd.) Column temperature: 40 ° C Flow rate: 2.0 mL / min
  • Production Example 2 The solid content concentration is the same as in Production Example 1 except that 80.0 g of 2-ethylhexyl acrylate, 10.0 g of 2-hydroxyethyl acrylate, 10.0 g of acryloyl morpholine and 145.0 g of ethyl acetate are added to a reaction vessel A solution of 40% of polymer A-2 (Mw 700000) was obtained.
  • Production Example 3 Same as Production Example 1 except that 80.0 g of 2-ethylhexyl acrylate, 15.0 g of 2-hydroxyethyl acrylate, 5.0 g of one end methacryloyl-modified polysiloxane compound (Mw 12000) and 145.0 g of ethyl acetate were added to a reaction vessel A solution of polymer A-3 (Mw 850000) having a solid content concentration of 40% was obtained.
  • Production Example 4 A polymer A having a solid content concentration of 40% is operated in the same manner as in Production Example 1 except that 80.0 g of n-butyl acrylate, 20.0 g of 4-hydroxybutyl acrylate and 145.0 g of ethyl acetate are added to a reaction vessel. A solution of -4 (Mw 1250000) was obtained.
  • Production Example 5 90.0 g of 2-ethylhexyl acrylate, 10.0 g of 2-hydroxyethyl acrylate and 145.0 g of ethyl acetate were added to a reaction vessel, and the reaction was carried out in the same manner as in Production Example 1 except that the reaction time was 6 hours. A solution of polymer A-5 (Mw 100000) having a concentration of 40% was obtained.
  • Production Example 6 78.5 g of n-butyl acrylate, 19.5 g of 2-ethylhexyl acrylate, 2.0 g of acrylic acid and 100.0 g of ultrapure water in a reaction vessel equipped with a condenser, thermometer, stirrer, dropping funnel and nitrogen inlet pipe And 1.0 g of polyvinyl alcohol as a stabilizer, and heated from normal temperature (25.degree. C.) to 65.degree. C. for 15 minutes while performing nitrogen substitution with a flow rate of 100 ml / min.
  • Example 1 To 100 parts by mass of the polymer of solution A-1 obtained in Production Example 1, 0.2 part by mass of polyisocyanate compound (Tosoh Corp., product name “Coronato HL”) is mixed as a thermal crosslinking agent, A coating solution of the resin composition was prepared.
  • polyisocyanate compound Tosoh Corp., product name “Coronato HL”
  • a coating liquid of the above resin composition is coated on a 75 ⁇ m-thick PET film (base 12) that has been subjected to a release treatment using a bar coater so that the thickness after drying is 100 ⁇ m. It heat-dried for 10 minutes, and formed the resin layer (resin film). Thereafter, a 75 ⁇ m-thick release-treated PET film (base material 10) was covered on the resin layer and attached with a 1.0 kgf hand roller to prepare an interlayer film material of laminated glass.
  • Example 2 A coating solution and a film material of a resin composition were obtained in the same manner as in Example 1 except that the solution of the polymer A-2 obtained in Production Example 2 was used.
  • Example 3 The same procedure as in Example 1 is repeated except that the solution of polymer A-3 obtained in Production Example 3 is applied twice so that the thickness after drying is 200 ⁇ m, and the total thickness is 400 ⁇ m. The coating liquid and film material of the resin composition were obtained.
  • Example 4 A coating solution and a film material of a resin composition were obtained in the same manner as in Example 1 except that the solution of the polymer A-4 obtained in Production Example 4 was used.
  • Comparative Example 1 The same procedure as in Example 1 is repeated except that the solution of the polymer A-5 obtained in Production Example 5 is applied twice so that the thickness after drying is 200 ⁇ m, and the total thickness is 400 ⁇ m. The coating liquid and film material of the resin composition were obtained.
  • Comparative example 2 A coating solution and a film material of a resin composition were obtained in the same manner as in Example 1 except that the solution of the polymer A-6 obtained in Production Example 6 was used.
  • Comparative example 3 Polyvinyl butyral resin (the degree of acetalization 68.0 mol%, the proportion of vinyl acetate component 0.6 mol%) of which the half width of the peak corresponding to a hydroxyl group obtained when the infrared absorption spectrum is measured is 245 cm -1 A part by mass and 38 parts by mass of triethylene glycol di-2-ethylhexanoate as a plasticizer are mixed, sufficiently melt-kneaded with a mixing roll, and press-molded for 30 minutes at 150 ° C. with a press molding machine, A resin film having a thickness of 380 ⁇ m was obtained, and this was used as an intermediate film for glass.
  • the obtained sample is set in a dynamic viscoelasticity measuring instrument (TA Instruments Inc., product name “RSA-G2”) so that the measurement length is 20 mm, ⁇ 70 to 100 ° C., 0.05
  • the measurement was performed in a tensile measurement mode under a condition of 1 / 0.5 / 5/50 Hz and a strain amount of 1%.
  • a master curve was created with a reference temperature of 25 ° C. using Arrhenius law, and the maximum value of tan ⁇ in a frequency range of 100 to 100,000 Hz was read from the obtained master curve .
  • the film material for an intermediate film of Examples 1 to 4 and Comparative Examples 1 to 2 was cut out to a size of 50 mm ⁇ 50 mm, the base material 10 was peeled off, and one surface of the resin layer was exposed and then exposed. A double-sided tape was attached to the frame portion of the resin layer, and set via a double-sided tape at the measurement site of a turbidity meter (Nippon Denshoku Kogyo Co., Ltd., product name "NDH-5000"). Next, the base 12 was peeled off from the resin layer to expose the other surface of the resin layer, and the haze of the resin layer was measured.
  • Comparative Example 3 the resin film is cut out to a size of 50 mm ⁇ 50 mm, a double-sided tape is attached to the frame, and set at the measurement site of a turbidimeter (Nippon Denshoku Kogyo Co., Ltd., product name “NDH-5000”) Then the haze was measured.
  • a turbidimeter Nippon Denshoku Kogyo Co., Ltd., product name “NDH-5000”.
  • Comparative Example 3 the resin film was sandwiched with float glass and autoclaved under conditions of temperature 135 ° C., pressure 115 N / cm 2 MPa, and holding for 60 minutes to obtain laminated glass.
  • SYMBOLS 1 Film material for intermediate films, 2 ... Laminated glass, 10, 12 ... Base material, 11 ... Resin layer, 20, 22 ... Float glass, 21 ... Intermediate film.

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention pertains to a resin film to be used as an interlayer of a laminated glass, wherein the maximum tanδ of the resin film within a frequency range of 100-100,000 Hz at 25°C is 0.5-4.0.

Description

合わせガラスの中間膜に用いられる樹脂膜、合わせガラスの中間膜用フィルム材、合わせガラス及び合わせガラスの製造方法Resin film used for interlayer film of laminated glass, film material for interlayer film of laminated glass, laminated glass, and method of manufacturing laminated glass
 本発明は、合わせガラスの中間膜に用いられる樹脂膜、合わせガラスの中間膜用フィルム材、合わせガラス及び合わせガラスの製造方法に関する。 The present invention relates to a resin film used for an interlayer film of laminated glass, a film material for interlayer film of laminated glass, laminated glass, and a method of manufacturing laminated glass.
 現在、自動車等の車輌の窓、サンルーフ、内装パネルなどのガラスとしては、外部衝撃を受けて破損してもガラスの破片が飛散することが少なく安全であるため、合わせガラスが広く用いられている。合わせガラスは、電車、航空機、建設機械、建築物等の窓にも用いられている。 At present, laminated glass is widely used as glass for windows of vehicles such as automobiles, sunroofs, interior panels, etc., since it is safe that fragments of the glass are not scattered even if it is damaged due to external impact. . Laminated glass is also used in windows of trains, aircraft, construction machines, buildings and the like.
 合わせガラスの一例として、少なくとも一対のガラス板間に、可塑剤により可塑化されたポリビニルブチラール樹脂等のポリビニルアセタール樹脂からなる合わせガラス用中間膜を介在させ、一体化させて得られるものが挙げられる(例えば、特許文献1~3参照)。 As an example of laminated glass, an interlayer film for laminated glass made of polyvinyl acetal resin such as polyvinyl butyral resin plasticized with a plasticizer is interposed between at least a pair of glass plates, and obtained by integrating them. (For example, see Patent Documents 1 to 3).
特開昭62-100463号公報JP-A-62-100463 特開2005-206445号公報JP, 2005-206445, A 国際公開第2012/091117号International Publication No. 2012/091117
 従来の合わせガラスの多くは、同等の厚みのガラスに比べて同等程度の防割性を有しているが、外部から加えられた衝撃に対して、より割れ難く、防割性の高い合わせガラスが求められている。 Most conventional laminated glass has the same level of fracture resistance as glass of the same thickness, but it is harder to break against an external impact and has high fracture resistance. Is required.
 本発明は、外部から加えられた衝撃に対して、防割性に優れる合わせガラスを作製することが可能な、合わせガラスの中間膜に用いられる樹脂膜及び合わせガラスの中間膜用フィルム材を提供することを目的とする。本発明はまた、当該樹脂膜を用いて、耐衝撃性及び防割性に優れる合わせガラス及び合わせガラスの製造方法を提供することを目的とする。 The present invention provides a resin film used for an interlayer film of laminated glass and a film material for an interlayer film of laminated glass which can produce laminated glass excellent in cracking resistance against an impact applied from the outside. The purpose is to Another object of the present invention is to provide a laminated glass excellent in impact resistance and cracking resistance and a method for producing the laminated glass using the resin film.
 本発明は、25℃で、周波数100~100000Hzの範囲におけるtanδの最大値が、0.5~4.0である、合わせガラスの中間膜に用いられる樹脂膜を提供する。 The present invention provides a resin film used for an interlayer film of laminated glass, which has a maximum value of tan δ at 25 ° C. and a frequency range of 100 to 100,000 Hz of 0.5 to 4.0.
 樹脂膜は、(メタ)アクリロイル化合物を含有するモノマーの重合体を含む樹脂組成物から形成されてもよく、その場合、重合体の重量平均分子量は200000~2000000であってもよい。 The resin film may be formed from a resin composition containing a polymer of a monomer containing a (meth) acryloyl compound, and in that case, the weight average molecular weight of the polymer may be 200,000 to 2,000,000.
 (メタ)アクリロイル化合物は、アルキル(メタ)アクリレートと、水酸基を有する(メタ)アクリレートとを含有してもよい。アルキル(メタ)アクリレートの含有量は、モノマーの合計量100質量部に対して、50~95質量部であってもよい。 The (meth) acryloyl compound may contain an alkyl (meth) acrylate and a (meth) acrylate having a hydroxyl group. The content of the alkyl (meth) acrylate may be 50 to 95 parts by mass with respect to 100 parts by mass of the total amount of monomers.
 樹脂組成物は、熱架橋剤を更に含んでもよい。 The resin composition may further comprise a thermal crosslinking agent.
 樹脂膜は、ヘーズが10%以下であってもよい。 The resin film may have a haze of 10% or less.
 本発明はまた、基材と、基材上に設けられた樹脂層と、を備え、樹脂層が、上述した本発明に係る樹脂膜からなる層である、合わせガラスの中間膜用フィルム材を提供する。 The present invention also provides a film material for laminated film of laminated glass, comprising a base material and a resin layer provided on the base material, wherein the resin layer is a layer comprising the resin film according to the present invention described above. provide.
 本発明はまた、対向する2枚のガラス板と、2枚のガラス板の間に挟まれた中間膜と、を備え、中間膜が、上述した本発明に係る樹脂膜である、合わせガラスを提供する。 The present invention also provides a laminated glass comprising two opposing glass plates and an intermediate film sandwiched between two glass plates, wherein the intermediate film is the resin film according to the present invention described above. .
 本発明はさらに、対向する2枚のガラス板と、2枚のガラス板の間に挟まれた中間膜と、を備える合わせガラスの製造方法であって、上述した本発明に係る樹脂膜を介して、2枚のガラス板を貼り合わせて積層体を得る工程と、30~150℃及び0.3~1.5MPaの条件で、積層体を加熱加圧処理する工程と、を含む、合わせガラスの製造方法を提供する。 The present invention is further a method of producing laminated glass comprising two opposing glass plates and an intermediate film sandwiched between two glass plates, and the resin film according to the present invention described above, Producing laminated glass comprising the steps of bonding two glass plates to obtain a laminate, and heating and pressing the laminate under conditions of 30 to 150 ° C. and 0.3 to 1.5 MPa. Provide a way.
 本発明によれば、外部から加えられた衝撃に対して、防割性に優れる合わせガラスを作製することが可能な合わせガラスの中間膜に用いられる樹脂膜及び中間膜用フィルム材を提供することができる。本発明はまた、当該樹脂膜を用いて、耐衝撃性及び防割性に優れる合わせガラス及び合わせガラスの製造方法を提供することができる。 According to the present invention, it is possible to provide a resin film and a film material for an interlayer used as an interlayer of laminated glass capable of producing laminated glass having excellent split resistance against an impact applied from the outside. Can. The present invention can also provide a laminated glass excellent in impact resistance and cracking resistance and a method of producing laminated glass using the resin film.
合わせガラスの中間膜用フィルム材の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the film material for intermediate films of laminated glass. 合わせガラスの一実施形態を示す模式断面図である。It is a schematic cross section which shows one embodiment of a laminated glass. 実施例2及び比較例3の樹脂膜のtanδ値について作成されたマスターカーブを示す図である。It is a figure which shows the master curve created about the tan-delta value of the resin film of Example 2 and Comparative Example 3. FIG.
 以下、場合により図面を参照しつつ本発明の好適な実施形態について説明する。ただし、本発明は以下の実施形態に何ら限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings as the case may be. However, the present invention is not limited to the following embodiments.
<定義>
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
<Definition>
In the present specification, a numerical range indicated by using “to” indicates a range including numerical values described before and after “to” as the minimum value and the maximum value, respectively. The upper limit or lower limit of the numerical range of one step may be replaced with the upper limit or lower limit of the numerical range of another step in the numerical range described stepwise in the present specification. In the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples. “A or B” may contain either A or B, and may contain both. In the present specification, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition. means.
 本明細書において、「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」の少なくとも一方を意味する。(メタ)アクリロイル等の他の類似表現についても同様である。 As used herein, "(meth) acrylate" means at least one of "acrylate" and the corresponding "methacrylate". The same applies to other similar expressions such as (meth) acryloyl.
<合わせガラスの中間膜に用いられる樹脂膜>
 本実施形態の合わせガラスの中間膜に用いられる樹脂膜は、25℃で、周波数100~100000Hzの範囲におけるtanδの最大値が0.5~4.0である。樹脂膜は、例えば、対向する2枚のガラス板と2枚のガラス板の間に挟まれた中間膜とを備える合わせガラスの中間膜を形成するために用いられる。
<Resin film used for interlayer film of laminated glass>
The resin film used for the interlayer film of the laminated glass of the present embodiment has a maximum value of tan δ of 0.5 to 4.0 at a frequency of 100 to 100,000 Hz at 25 ° C. The resin film is used, for example, to form an intermediate film of laminated glass including two opposing glass plates and an intermediate film sandwiched between the two glass plates.
 このような樹脂膜を用いて、合わせガラスの中間膜を形成することにより、外部から衝撃が加わった場合であっても中間膜が衝撃によるエネルギーを散逸させることができ、合わせガラスの高い防割性を発現することができる。 By forming an interlayer film of laminated glass using such a resin film, the interlayer film can dissipate energy due to the impact even when an impact is applied from the outside, and the high breakage resistance of the laminated glass Sex can be expressed.
 より具体的には、上記tanδの最大値が0.5以上であると、衝撃によるエネルギーの散逸性が向上し、合わせガラスの防割性を向上させることができる。このような観点から、上記tanδの最大値は、0.7以上であることが好ましく、0.8以上であることがより好ましく、1.0以上であることが更に好ましい。一方、上記tanδの最大値が4.0以下であると、塑性変形性が抑制されることで衝撃が加わった際の合わせガラスの変形量を抑えることができ、合わせガラスの高い防割性を向上させることができる。このような観点から、上記tanδの最大値は、3.0以下であることが好ましく、2.0以下であることがより好ましく、1.6以下であることが更に好ましく、1.4以下であることが特に好ましい。 More specifically, when the maximum value of tan δ is 0.5 or more, the energy dissipation due to impact is improved, and the break resistance of the laminated glass can be improved. From such a point of view, the maximum value of tan δ is preferably 0.7 or more, more preferably 0.8 or more, and still more preferably 1.0 or more. On the other hand, when the maximum value of tan δ is 4.0 or less, the amount of deformation of the laminated glass when an impact is applied can be suppressed by suppressing the plastic deformation, and the high split resistance of the laminated glass can be obtained. It can be improved. From such a viewpoint, the maximum value of the above-mentioned tan δ is preferably 3.0 or less, more preferably 2.0 or less, still more preferably 1.6 or less, and 1.4 or less. Being particularly preferred.
 ここで、tanδ値は、動的粘弾性測定法と時間-温度換算則から得られる合成曲線(マスターカーブ)から算出することができる。より具体的には、例えば、JIS K 0129:2005に準拠した方法に従い、まず、動的粘弾性測定器(TAインスツルメント株式会社、製品名「RSA-G2」)を用い、-70~100℃、0.05/0.5/5/50Hz、ひずみ量1%の条件下、引張測定モードにて樹脂膜の測定を行う。次に、得られた測定結果から、WLF法又はアレニウス則を用いて、基準温度を25℃としてマスターカーブを作成する。そして、作成したマスターカーブから、周波数100~100000Hzの範囲内におけるtanδの最大値を読み取ることができる。なお、ここでの周波数の範囲100~100000Hzとは、数センチメートルから1メートル数十センチメートルの変位高さから剛球を自由落下させ、合わせガラスを形成する2枚のガラスのうち、いずれか一方のガラスに剛球が衝突したときに発生するひずみ速度を想定して選定された周波数範囲である。 Here, the tan δ value can be calculated from a composite curve (master curve) obtained from the dynamic viscoelasticity measurement method and the time-temperature conversion rule. More specifically, for example, in accordance with the method according to JIS K 0129: 2005, first, using a dynamic viscoelasticity measuring instrument (TA Instruments Inc., product name “RSA-G2”), −70 to 100 The resin film is measured in a tensile measurement mode under the conditions of ° C., 0.05 / 0.5 / 5/50 Hz, and a strain amount of 1%. Next, from the obtained measurement results, a master curve is created at a reference temperature of 25 ° C. using the WLF method or the Arrhenius rule. Then, it is possible to read the maximum value of tan δ within the frequency range of 100 to 100000 Hz from the created master curve. Here, the frequency range of 100 to 100000 Hz means that one of two sheets of glass that forms a laminated glass by freely dropping a hard ball from a displacement height of several centimeters to one meter and several tens of centimeters. Is a frequency range selected on the assumption of the strain rate generated when a hard sphere collides with the glass of.
 以下、マスターカーブを作成する際の具体的手段について説明する。まず、上記で得られた動的粘弾性の測定結果から、それぞれの温度の値に対して時間-温度換算因子αを下記のWLF式又はアレニウス式によって計算する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 その後、任意の温度Tにおける角周波数ωの値から下記式Aにより基準温度Tに対する角周波数ω’を算出することができ、角周波数ω’と計測されている動的粘弾性との関係を描くことにより、横軸を周波数に改めたマスターカーブを得ることができる。
   α=ω’/ω  ・・・(A)
 なお、上述した一連の計算は、「RSA-G2」に付帯のTRIOS Software(TAインスツルメント、製品名)を用いて算出することが可能である。
Hereafter, the specific means at the time of producing a master curve is demonstrated. First, from the measurement results of the dynamic viscoelasticity obtained above, the time-temperature conversion factor α T is calculated for each temperature value by the following WLF equation or Arrhenius equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
After that, from the value of the angular frequency ω at an arbitrary temperature T, the angular frequency ω ′ with respect to the reference temperature T 0 can be calculated by the following equation A, and the relationship between the angular frequency ω ′ and the measured dynamic viscoelasticity is By drawing, it is possible to obtain a master curve in which the horizontal axis is changed to frequency.
α T = ω '/ ω (A)
The series of calculations described above can be calculated using TRIOS Software (TA Instruments, product name) attached to “RSA-G2”.
(樹脂組成物)
 本実施形態に係る樹脂膜は、樹脂組成物から形成することができる。樹脂組成物の組成は、樹脂膜における上記tanδの最大値が所望の範囲内である限り特に制限されるものではない。樹脂組成物は、例えば、ゴム弾性を有する重合体を含んでいてもよい。
(Resin composition)
The resin film according to the present embodiment can be formed from a resin composition. The composition of the resin composition is not particularly limited as long as the maximum value of the above-mentioned tan δ in the resin film is within the desired range. The resin composition may contain, for example, a polymer having rubber elasticity.
(重合体)
 ゴム弾性を有する重合体としては、ウレタン系重合体、スチレン系重合体、アクリル系重合体、塩化ビニル系重合体、アミド系重合体、オレフィン系重合体等が挙げられる。これらの重合体は単独で又は2種類以上を組み合わせて使用してもよい。中でも、樹脂膜における上記tanδの最大値をより効率的に所望の範囲内に調整することができる観点から、ウレタン系重合体、スチレン系重合体及びアクリル系重合体からなる群より選ばれる少なくとも1種を含むことが好ましく、アクリル系重合体を含むことがより好ましい。
(Polymer)
Examples of the polymer having rubber elasticity include urethane polymers, styrene polymers, acrylic polymers, vinyl chloride polymers, amide polymers, and olefin polymers. These polymers may be used alone or in combination of two or more. Among them, at least one selected from the group consisting of a urethane-based polymer, a styrene-based polymer, and an acrylic-based polymer, from the viewpoint of being able to adjust the maximum value of the above-mentioned tan δ in the resin film more efficiently into a desired range. It is preferable to contain a seed, and it is more preferable to contain an acrylic polymer.
 樹脂組成物に含まれる重合体は、(メタ)アクリロイル化合物を含むモノマーの重合体、すなわち、(メタ)アクリロイル化合物に由来する構造単位を有する重合体であってよい。(メタ)アクリロイル化合物は、(メタ)アクリロイル基を分子内に有する化合物を意味し、好ましくは(メタ)アクリロイル基を分子内に1つ有する化合物である。ただし、本明細書において、(メタ)アクリロイル化合物は、後述するエチレン性不飽和基を有するケイ素化合物に該当するものは含まれないものとする。 The polymer contained in the resin composition may be a polymer of a monomer containing a (meth) acryloyl compound, that is, a polymer having a structural unit derived from the (meth) acryloyl compound. The (meth) acryloyl compound means a compound having a (meth) acryloyl group in the molecule, preferably a compound having one (meth) acryloyl group in the molecule. However, in the present specification, the (meth) acryloyl compound does not include the one corresponding to a silicon compound having an ethylenically unsaturated group described later.
 (メタ)アクリロイル化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリルアミド、(メタ)アクリルアミド誘導体、直鎖状又は分岐状のアルキル基を有するアルキル(メタ)アクリレート、アルキレングリコール鎖を有する(メタ)アクリレート、水酸基を有する(メタ)アクリレート、芳香環を有する(メタ)アクリレート、脂環式基を有する(メタ)アクリレート、(メタ)アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート及びイソシアネート基を有する(メタ)アクリレートが挙げられる。 Examples of (meth) acryloyl compounds include (meth) acrylic acid, (meth) acrylamide, (meth) acrylamide derivatives, alkyl (meth) acrylates having a linear or branched alkyl group, and alkylene glycol chains ( Meta) Acrylate, (Meth) acrylate having hydroxyl group, (Meth) acrylate having aromatic ring, (meth) acrylate having alicyclic group, (meth) acryloyl morpholine, tetrahydrofurfuryl (meth) acrylate and having isocyanate group (Meth) acrylate is mentioned.
 アルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ドデシル(メタ)アクリレート及びステアリル(メタ)アクリレート等の炭素数1~18のアルキル基を有するアルキル(メタ)アクリレートが挙げられる。中でも、アルキル(メタ)アクリレートとしては、n-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びn-オクチル(メタ)アクリレートが好ましく、2-エチルヘキシル(メタ)アクリレートがより好ましい。また、アルキルメタクリレートよりもアルキルアクリレートの方が好ましい。アルキル(メタ)アクリレートは、単独で又は2種類以上を組み合わせて使用してもよい。 Examples of alkyl (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) Acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, dodecyl (meth) acrylate and stearyl (meth) acrylate And alkyl (meth) acrylates having an alkyl group having 1 to 18 carbon atoms. Among them, as the alkyl (meth) acrylate, n-butyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and n-octyl (meth) acrylate are preferable, and 2-ethylhexyl (meth) acrylate is preferable. More preferable. Also, alkyl acrylates are preferred to alkyl methacrylates. The alkyl (meth) acrylates may be used alone or in combination of two or more.
 水酸基を有する(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、1-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、1-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート及び1-ヒドロキシブチル(メタ)アクリレートが挙げられる。 As the (meth) acrylate having a hydroxyl group, for example, 2-hydroxyethyl (meth) acrylate, 1-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 1- There may be mentioned hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate and 1-hydroxybutyl (meth) acrylate.
 アルキレングリコール鎖を有する(メタ)アクリレートとしては、例えば、ジエチレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート等のポリエチレングリコールモノ(メタ)アクリレート;ジプロピレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のポリプロピレングリコールモノ(メタ)アクリレート;ジブチレングリコールモノ(メタ)アクリレート、トリブチレングリコールモノ(メタ)アクリレート等のポリブチレングリコールモノ(メタ)アクリレート;メトキシトリエチレングリコール(メタ)アクリレート、メトキシテトラエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレート、メトキシオクタエチレングリコール(メタ)アクリレート、メトキシノナエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシヘプタプロピレングリコール(メタ)アクリレート、エトキシテトラエチレングリコール(メタ)アクリレート、ブトキシエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート等のアルコキシポリアルキレングリコール(メタ)アクリレートが挙げられる。また、これらのアルキレングリコール鎖含有(メタ)アクリレートは、単独で又は2種類以上を組み合わせて使用してもよい。 Examples of (meth) acrylates having an alkylene glycol chain include polyethylenes such as diethylene glycol mono (meth) acrylate, triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate and hexaethylene glycol mono (meth) acrylate. Glycol mono (meth) acrylate; Polypropylene glycol mono (meth) acrylate such as dipropylene glycol mono (meth) acrylate, tripropylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate; Dibutylene glycol mono (meth) Polybutylene glycol mono (meth) acrylates such as acrylate and tributylene glycol mono (meth) acrylate; methoxy Triethylene glycol (meth) acrylate, methoxytetraethylene glycol (meth) acrylate, methoxyhexaethylene glycol (meth) acrylate, methoxyoctaethylene glycol (meth) acrylate, methoxynona ethylene glycol (meth) acrylate, methoxy polyethylene glycol (meth) Alkoxy polyalkylene glycol (meth) acrylates such as acrylate, methoxy hepta propylene glycol (meth) acrylate, ethoxytetraethylene glycol (meth) acrylate, butoxy ethylene glycol (meth) acrylate, butoxy diethylene glycol (meth) acrylate and the like can be mentioned. In addition, these alkylene glycol chain-containing (meth) acrylates may be used alone or in combination of two or more.
 芳香環を有する(メタ)アクリレートとしては、例えば、ベンジル(メタ)アクリレート及びフェノキシエチル(メタ)アクリレートが挙げられる。脂環式基を有する(メタ)アクリレートとしては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート及びジシクロペンタニル(メタ)アクリレートが挙げられる。(メタ)アクリルアミド誘導体としては、例えば、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド及びN-ヒドロキシエチル(メタ)アクリルアミドが挙げられる。イソシアネート基を有する(メタ)アクリレートとしては、例えば、2-(2-メタクリロイルオキシエチルオキシ)エチルイソシアネート及び2-(メタ)アクリロイルオキシエチルイソシアネートが挙げられる。 Examples of aromatic ring-containing (meth) acrylates include benzyl (meth) acrylate and phenoxyethyl (meth) acrylate. Examples of (meth) acrylates having an alicyclic group include cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate. Examples of (meth) acrylamide derivatives include N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-isopropyl (meth) Acrylamide, N, N-diethyl (meth) acrylamide and N-hydroxyethyl (meth) acrylamide are included. Examples of (meth) acrylates having an isocyanate group include 2- (2-methacryloyloxyethyloxy) ethyl isocyanate and 2- (meth) acryloyloxyethyl isocyanate.
 本実施形態に係る重合体は、アルキル(メタ)アクリレートに由来する構造単位を含むことが好ましい。アルキル(メタ)アクリレートの重合割合は、重合体の全質量に対して、50~95質量%であることが好ましく、50~90質量%であることがより好ましく、50~85質量%であることが更に好ましい。アルキル(メタ)アクリレートの重合割合がこのような範囲であると、樹脂層と被着体との密着性を向上させることができるため、合わせガラスの防割性をより向上させることができる。このような重合体は、アルキル(メタ)アクリレートを上記重合割合と同じ含有割合で含有するモノマーを重合させることで得ることができる。 The polymer according to the present embodiment preferably contains a structural unit derived from an alkyl (meth) acrylate. The polymerization ratio of the alkyl (meth) acrylate is preferably 50 to 95% by mass, more preferably 50 to 90% by mass, and 50 to 85% by mass with respect to the total mass of the polymer. Is more preferred. Since the adhesiveness of a resin layer and a to-be-adhered body can be improved as the polymerization ratio of an alkyl (meth) acrylate is such a range, the break resistance of laminated glass can be improved more. Such a polymer can be obtained by polymerizing a monomer containing an alkyl (meth) acrylate in the same content ratio as the above-mentioned polymerization ratio.
 本実施形態に係る重合体は、水酸基を有する(メタ)アクリレートに由来する構造単位を含むことが好ましい。水酸基を有する(メタ)アクリレートの重合割合は、重合体の全質量に対して、5~40質量%であることが好ましく、10~35質量%であることがより好ましく、10~30質量%であることが更に好ましい。水酸基を有する(メタ)アクリレートの重合割合がこのような範囲であると、合わせガラスの防割性をより向上させることができるとともに、得られる樹脂膜の透明性を向上させることができる。 It is preferable that the polymer which concerns on this embodiment contains the structural unit derived from the (meth) acrylate which has a hydroxyl group. The polymerization ratio of the (meth) acrylate having a hydroxyl group is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, and more preferably 10 to 30% by mass with respect to the total mass of the polymer. It is further preferred that When the polymerization ratio of the (meth) acrylate having a hydroxyl group is in such a range, the break resistance of the laminated glass can be further improved, and the transparency of the obtained resin film can be improved.
 透明性は、ヘーズ(Haze)を指標として用いることができる。ヘーズとは、濁度を表す値(%)であり、ランプにより照射され、試料中を投下した光の全透過率Tと、試料中で拡散され散乱した光の透過率Tより、(T/T)×100として求められる。これらはJIS K 7136により規定されており、市販の濁度計、例えば、日本電色工業株式会社製、製品名「NDH-5000」により測定可能である。 Transparency can use haze as an index. The haze is a value (%) representing the turbidity, which is given by the total transmittance T t of the light emitted by the lamp and dropped in the sample and the transmittance T d of the light diffused and scattered in the sample ((t It is calculated as T d / T t ) × 100. These are defined by JIS K 7136, and can be measured by a commercially available turbidity meter, for example, Nippon Denshoku Kogyo Co., Ltd., product name “NDH-5000”.
 本実施形態に係る(メタ)アクリロイル化合物は、合わせガラスの透明性を向上する観点から、アルキル(メタ)アクリレートと、水酸基を有する(メタ)アクリレートとを含有することが好ましい。この場合、モノマーの合計量100質量部に対する、アルキル(メタ)アクリレートの含有量は、50~95質量部であってよく、50~90質量部であってよく、50~85質量部であってよい。水酸基を有する(メタ)アクリレートの含有量は、モノマーの合計量100質量部に対して、5~40質量部であってよく、10~30質量部であってよい。 The (meth) acryloyl compound according to the present embodiment preferably contains an alkyl (meth) acrylate and a (meth) acrylate having a hydroxyl group from the viewpoint of improving the transparency of the laminated glass. In this case, the content of the alkyl (meth) acrylate may be 50 to 95 parts by mass, may be 50 to 90 parts by mass, and is 50 to 85 parts by mass with respect to 100 parts by mass of the total amount of monomers. Good. The content of the (meth) acrylate having a hydroxyl group may be 5 to 40 parts by mass, and may be 10 to 30 parts by mass with respect to 100 parts by mass of the total amount of monomers.
 (メタ)アクリロイル化合物は、(メタ)アクリロイル基と、モルホリノ基、アミノ基、カルボキシル基、シアノ基、カルボニル基、ニトロ基、アルキレングリコール基由来の基等の極性基と、を有する化合物を更に含有してもよい。極性基を有する(メタ)アクリレートを含有することで、樹脂層と被着体との密着性を向上させることができる。 The (meth) acryloyl compound further contains a compound having a (meth) acryloyl group and a polar group such as a morpholino group, an amino group, a carboxyl group, a cyano group, a carbonyl group, a nitro group or a group derived from an alkylene glycol group. You may By containing the (meth) acrylate having a polar group, the adhesion between the resin layer and the adherend can be improved.
 本実施形態に係るモノマーは、上記(メタ)アクリロイル化合物のほかに、エチレン性不飽和基を有するケイ素化合物を含んでもよい。エチレン性不飽和基を有するケイ素化合物としては、(メタ)アクリロイル基、スチリル基、ケイ皮酸エステル基、ビニル基、アリル基等の不飽和結合を有する基を有し、かつ、構成原子としてケイ素を有する化合物であれば、特に限定されない。本実施形態に係るケイ素化合物としては、シロキサン化合物又はシラン化合物であってもよく、例えば、式(a)、(b)又は(c)で表される化合物を単独又は2種類以上組み合わせて使用してもよい。 The monomer which concerns on this embodiment may also contain the silicon compound which has an ethylenically unsaturated group other than the said (meth) acryloyl compound. As a silicon compound having an ethylenically unsaturated group, it has a group having an unsaturated bond such as (meth) acryloyl group, styryl group, cinnamic acid ester group, vinyl group or allyl group, and silicon as a constituent atom It is not particularly limited as long as it is a compound having The silicon compound according to the present embodiment may be a siloxane compound or a silane compound, and for example, the compounds represented by the formulas (a), (b) or (c) are used alone or in combination of two or more. May be
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、Rは水素原子又はメチル基を示し、R、R、R、R、R及びRはそれぞれ独立に水素原子又はメチル基を示し、Rは1価の炭化水素基を示し、Lは酸素原子が介在してもよい2価の炭化水素基又は単結合を示し、mは1~300の整数を示す。 In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 , R 3 , R 4 , R 5 , R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and R 8 represents monovalent carbon L 1 represents a hydrogen group, L 1 represents a divalent hydrocarbon group or a single bond which may be interrupted by an oxygen atom, and m represents an integer of 1 to 300.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、Rは水素原子又はメチル基を示し、R、R、R、R、R及びRはそれぞれ独立に水素原子又はメチル基を示し、L及びLはそれぞれ独立に酸素原子が介在してもよい2価の炭化水素基又は単結合を示し、nは1~300の整数を示す。 In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 , R 3 , R 4 , R 5 , R 6 and R 7 each independently represent a hydrogen atom or a methyl group, and L 1 and L 2 each represent It independently represents a divalent hydrocarbon group or a single bond which may be intervened by an oxygen atom, and n represents an integer of 1 to 300.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、Rは水素原子又はメチル基を示し、R、R10及びR11はそれぞれ独立に水素原子又は1価の炭化水素基を示し、Lは酸素原子が介在してもよい2価の炭化水素基又は単結合を示す。 In the formula, R 1 represents a hydrogen atom or a methyl group, R 9 , R 10 and R 11 each independently represent a hydrogen atom or a monovalent hydrocarbon group, and L 3 may be an oxygen atom 2 Represents a valent hydrocarbon group or a single bond.
 1価の炭化水素基としては、例えば、炭素数1~6のアルキル基又はフェニル基が挙げられる。2価の炭化水素基としては、例えば、炭素数1~20のアルキレン基が挙げられる。 Examples of the monovalent hydrocarbon group include an alkyl group having 1 to 6 carbon atoms and a phenyl group. Examples of the divalent hydrocarbon group include an alkylene group having 1 to 20 carbon atoms.
 本実施形態に係る重合体において、ケイ素化合物に由来するモノマー単位の重合割合は、重合体の全質量に対して、2~20質量%であることが好ましく、4~10質量%であることがより好ましい。ケイ素化合物の重合割合がこのような範囲であると、樹脂膜と被着体との密着性が向上し、積層体の強靭性が向上することで、合わせガラスの防割性をよりいっそう向上させることができる。 In the polymer according to this embodiment, the polymerization ratio of the monomer unit derived from the silicon compound is preferably 2 to 20% by mass, and preferably 4 to 10% by mass, with respect to the total mass of the polymer. More preferable. When the polymerization ratio of the silicon compound is in such a range, the adhesion between the resin film and the adherend is improved, and the toughness of the laminate is improved, thereby further improving the split resistance of the laminated glass. be able to.
 モノマーは、本発明の奏する効果を損なわない範囲であれば、(メタ)アクリロイル基を2以上有する化合物、(メタ)アクリロイル基以外の重合性基を有する化合物を含有してもよい。(メタ)アクリロイル基以外の重合性基を有する化合物としては、例えば、アクリロニトリル、スチレン、酢酸ビニル、エチレン、プロピレン及びジビニルベンゼンが挙げられる。 The monomer may contain a compound having two or more (meth) acryloyl groups or a compound having a polymerizable group other than the (meth) acryloyl group, as long as the effects of the present invention are not impaired. As a compound which has polymeric groups other than a (meth) acryloyl group, an acrylonitrile, styrene, vinyl acetate, ethylene, propylene, and divinylbenzene are mentioned, for example.
 重合体の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)法により標準ポリスチレンの検量線を用いて換算した値が、200000~2000000であることが好ましく、500000~1500000であることがより好ましく、600000~1300000であることが更に好ましい。重合体のMwが200000以上であると、被着体に対して密着性が向上することで、合わせガラスの防割性がよりいっそう向上し、2000000以下であると、樹脂組成物の粘度が高くなり過ぎず、樹脂膜を形成する際の加工性が良好となり、結果として合わせガラスの防割性がよりいっそう向上する。 The weight-average molecular weight (Mw) of the polymer is preferably 200,000 to 2,000,000, preferably 500,000 to 1,500,000, as determined by gel permeation chromatography (GPC) using a calibration curve of standard polystyrene. It is more preferable, and more preferably 600000 to 1300000. When the Mw of the polymer is 200,000 or more, the adhesion to the adherend is improved, so that the split resistance of the laminated glass is further improved, and when it is 2,000,000 or less, the viscosity of the resin composition is high. In addition, the processability at the time of forming the resin film becomes good, and as a result, the split resistance of the laminated glass is further improved.
 本実施形態に係る重合体は、例えば、溶液重合、乳化重合、懸濁重合、塊状重合等の既知の重合方法を用いて合成することができる。 The polymer according to the present embodiment can be synthesized, for example, using a known polymerization method such as solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization and the like.
 重合体を合成する際の重合開始剤として、熱によりラジカルを発生する化合物を用いることができる。重合開始剤としては、例えば、過酸化ベンゾイル、ラウロイルパーオキシド等の有機過酸化物;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)等のアゾ系化合物が挙げられる。 As a polymerization initiator at the time of synthesizing a polymer, a compound which generates a radical by heat can be used. Examples of the polymerization initiator include organic peroxides such as benzoyl peroxide and lauroyl peroxide; 2,2'-azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile) and the like Azo compounds may be mentioned.
(その他の添加剤)
 樹脂組成物には必要に応じて、上記重合体と共に、各種添加剤を含有させてもよい。
(Other additives)
The resin composition may, if necessary, contain various additives together with the above-mentioned polymer.
 添加剤としては、例えば、樹脂組成物の凝集力を高めるために、架橋剤を用いてもよい。架橋剤の具体例としては、光架橋剤及び熱架橋剤が挙げられる。 As the additive, for example, a crosslinking agent may be used to increase the cohesion of the resin composition. Specific examples of the crosslinking agent include photocrosslinking agents and thermal crosslinking agents.
 光架橋剤としては、例えば、炭素数1~20のアルキレン基を有するアルキレンジオールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、ビスフェノールA型エポキシ(メタ)アクリレート等のビスフェノール型ジ(メタ)アクリレート;及びウレタン結合を有するウレタンジ(メタ)アクリレートが挙げられる。 As the photocrosslinking agent, for example, an alkylene diol di (meth) acrylate having an alkylene group having 1 to 20 carbon atoms; an alkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate Bisphenol type di (meth) acrylates such as ethoxylated bisphenol A di (meth) acrylate, ethoxylated bisphenol F di (meth) acrylate, bisphenol A type epoxy (meth) acrylate; and urethane di (meth) acrylates having a urethane bond It can be mentioned.
 ウレタン結合を有するウレタンジ(メタ)アクリレートは、他の成分との相溶性が良好である観点から、ポリアルキレングリコール鎖を有していてもよく、透明性を確保する観点から、脂環式構造を有していてもよい。光架橋剤と、重合体との相溶性が高ければ、樹脂組成物から形成される樹脂膜の白濁を抑制し易くなる傾向にある。 The urethane di (meth) acrylate having a urethane bond may have a polyalkylene glycol chain from the viewpoint of good compatibility with other components, and from the viewpoint of securing transparency, it has an alicyclic structure. You may have. If the compatibility between the photocrosslinking agent and the polymer is high, clouding of the resin film formed from the resin composition tends to be easily suppressed.
 高温又は高温高湿下における気泡及び剥がれの発生をより抑制できる観点から、光架橋剤の重量平均分子量は、100000以下であることが好ましく、300~100000であることがより好ましく、500~80000であることが更に好ましい。 The weight average molecular weight of the photocrosslinking agent is preferably 100,000 or less, more preferably 300 to 100,000, and more preferably 500 to 80,000 from the viewpoint of being able to further suppress the generation of air bubbles and peeling under high temperature or high temperature and high humidity. It is further preferred that
 光架橋剤を用いる場合の含有割合は、重合体の全質量に対して、15質量%以下であることが好ましく、10質量%以下であることがより好ましく、7質量%以下であることが更に好ましい。このような範囲であると、十分な密着性を有する樹脂膜を得ることができる。光架橋剤の含有割合の下限については特に制限はないが、フィルム形成性を良好にする観点から、0.1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることが更に好ましい。 The content ratio in the case of using a photocrosslinking agent is preferably 15% by mass or less, more preferably 10% by mass or less, and further preferably 7% by mass or less based on the total mass of the polymer. preferable. A resin film which has sufficient adhesiveness can be obtained as it is such a range. The lower limit of the content of the photocrosslinking agent is not particularly limited, but is preferably 0.1% by mass or more, more preferably 2% by mass or more, from the viewpoint of making the film forming property favorable. It is more preferable that the content is at least% by mass.
 熱架橋剤としては、例えば、イソシアネート化合物、メラミン化合物、エポキシ化合物等の熱架橋剤を用いることができる。熱架橋剤としては、樹脂膜中に緩やかに広がった網目状構造を形成し、樹脂膜の柔軟性を適度に調整する観点から、3官能、4官能といった多官能の熱架橋剤がより好ましい。 As a thermal crosslinking agent, thermal crosslinking agents, such as an isocyanate compound, a melamine compound, an epoxy compound, can be used, for example. As the thermal crosslinking agent, a trifunctional or tetrafunctional polyfunctional thermal crosslinking agent is more preferable from the viewpoint of forming a gradually spread network structure in the resin film and appropriately adjusting the flexibility of the resin film.
 反応性の観点から、熱架橋剤として、イソシアネート化合物が好ましく、ポリイソシアネート化合物がより好ましい。ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネートの三量体、トリメチロールプロパン等のトリオール、ジオール又は単官能アルコールと、ヘキサメチレンジイソシアネートとの反応生成物である多官能性ヘキサメチレンジイソシアネート化合物が挙げられる。 From the viewpoint of reactivity, an isocyanate compound is preferable as the thermal crosslinking agent, and a polyisocyanate compound is more preferable. Examples of the polyisocyanate compound include a trimer of hexamethylene diisocyanate, a triol such as trimethylolpropane, a polyfunctional hexamethylene diisocyanate compound which is a reaction product of a diol or a monofunctional alcohol and hexamethylene diisocyanate. .
 熱架橋剤を用いる場合の含有割合は、重合体の全質量に対して、5質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることが更に好ましい。このような範囲であると、十分な密着性を有する樹脂膜を得ることができる。熱架橋剤の含有割合の下限については特に制限はないが、フィルム形成性を良好にする観点から、0.01質量%以上であることが好ましい。 The content ratio in the case of using a thermal crosslinking agent is preferably 5% by mass or less, more preferably 2% by mass or less, and further preferably 1% by mass or less based on the total mass of the polymer. preferable. A resin film which has sufficient adhesiveness can be obtained as it is such a range. The lower limit of the content of the thermal crosslinking agent is not particularly limited, but is preferably 0.01% by mass or more from the viewpoint of improving the film formability.
 重合体又は架橋剤のいずれかが活性エネルギー線による硬化系である場合、光重合開始剤を含んでいてもよい。光重合開始剤は、活性エネルギー線の照射により硬化反応を促進させるものである。活性エネルギー線とは、紫外線、電子線、α線、β線、γ線等をいう。 When either the polymer or the crosslinking agent is an active energy curing system, a photopolymerization initiator may be included. The photopolymerization initiator promotes the curing reaction by irradiation of active energy rays. Active energy rays refer to ultraviolet rays, electron beams, α rays, β rays, γ rays and the like.
 光重合開始剤としては、特に限定されるものではなく、ベンゾフェノン化合物、アントラキノン化合物、ベンゾイル化合物、スルホニウム塩、ジアゾニウム塩、オニウム塩等の公知の材料を使用することが可能である。 The photopolymerization initiator is not particularly limited, and it is possible to use known materials such as benzophenone compounds, anthraquinone compounds, benzoyl compounds, sulfonium salts, diazonium salts, onium salts and the like.
 光重合開始剤として、例えば、ベンゾフェノン、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N,N’,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、α-ヒドロキシイソブチルフェノン、2-エチルアントラキノン、t-ブチルアントラキノン、1,4-ジメチルアントラキノン、1-クロロアントラキノン、2,3-ジクロロアントラキノン、3-クロロ-2-メチルアントラキノン、1,2-ベンゾアントラキノン、2-フェニルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、チオキサントン、2-クロロチオキサントン、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,2-ジエトキシアセトフェノン等の芳香族ケトン化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジル、ベンジルジメチルケタール等のベンジル化合物;β-(アクリジン-9-イル)(メタ)アクリル酸等のエステル化合物;9-フェニルアクリジン、9-ピリジルアクリジン、1,7-ジアクリジノヘプタン等のアクリジン化合物;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メチルメルカプトフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;2-ベンジル-2-ジメチルアミノ-1-(4-モリホリノフェニル)-1-ブタノン;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-1-プロパン;ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド;オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)が挙げられる。これらの化合物は複数を組み合わせて使用してもよい。 As a photopolymerization initiator, for example, benzophenone, N, N, N ', N'-tetramethyl-4,4'-diaminobenzophenone (Michler's ketone), N, N, N', N'-tetraethyl-4,4 ' -Diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, α-hydroxyisobutylphenone, 2-ethylanthraquinone, t-butylanthraquinone, 1,4-dimethylanthraquinone, 1-chloroanthraquinone, 2,3-dichloroanthraquinone, 3-chloro-2-methylanthraquinone, 1,2-benzoanthraquinone, 2-phenylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, thioxanthone, 2-chlorothioxanthone, 1-hydroxycyclohexyl phenyl ketone, 2, 2 Aromatic ketone compounds such as dimethoxy-1,2-diphenylethan-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2,2-diethoxyacetophenone; benzoin, methylbenzoin, ethyl Benzoin compounds such as benzoin; benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isobutyl ether, benzoin phenyl ether; benzyl compounds such as benzyl, benzyl dimethyl ketal; β- (acridin-9-yl) (meth) acrylic Ester compounds such as acids; 9-phenylacridine, 9-pyridylacridine, acridine compounds such as 1,7-diaclidinoheptane; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- ( o-k Rophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5 -Diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p-methoxyphenyl) 5-phenylimidazole dimer, 2- (2, 2,4,5-Triarylimidazole dimers such as 4-dimethoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methylmercaptophenyl) -4,5-diphenylimidazole dimer; 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone; 2-methyl-1- [4- (methylthio) phenyl] -2 Morpholino-1-propane; bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide; oligo (2-hydroxy-2-methyl-1- (4- (1-methylvinyl) phenyl) propanone) . These compounds may be used in combination of two or more.
 光重合開始剤としては、樹脂組成物を着色させない観点から、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のα-ヒドロキシアルキルフェノン化合物;ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド化合物;オリゴ(2-ヒドロキシ-2-メチル-1-(4-(1-メチルビニル)フェニル)プロパノン)が挙げられる。 As a photopolymerization initiator, from the viewpoint of not coloring the resin composition, for example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 1- [4- (2) Α-hydroxyalkylphenone compounds such as -hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one; bis (2,4,6-trimethylbenzoyl) -phenyl phosphine oxide, Acyl phosphine oxide compounds such as 2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentyl phosphine oxide, 2,4,6-trimethyl benzoyl-diphenyl phosphine oxide; oligo (2-hydroxy-2-methyl-1) -(4- (1-Methylvinyl) phenyl) propanone And the like.
 光重合開始剤は、特に厚い樹脂膜を形成する観点から、例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド等のアシルホスフィンオキサイド化合物を含んでもよい。 The photopolymerization initiator is, for example, bis (2,4,6-trimethyl benzoyl) -phenyl phosphine oxide, bis (2,6-dimethoxy benzoyl) -2,4,4- from the viewpoint of particularly forming a thick resin film. Acyl phosphine oxide compounds such as trimethyl-pentyl phosphine oxide and 2,4,6-trimethyl benzoyl diphenyl phosphine oxide may be included.
 光重合開始剤の含有割合は、樹脂組成物の全質量に対して、0.05~5質量%であることが好ましく、0.1~3質量%がより好ましく、0.1~0.5質量%が更に好ましい。光重合開始剤の含有割合を5質量%以下とすることで、透過率が高く、また色相も黄色味を帯びにくくなり、透明性に優れる樹脂膜が得られ易くなる傾向にある。 The content ratio of the photopolymerization initiator is preferably 0.05 to 5% by mass, and more preferably 0.1 to 3% by mass, with respect to the total mass of the resin composition. % By mass is more preferred. By setting the content ratio of the photopolymerization initiator to 5% by mass or less, the transmittance tends to be high, and the hue is not likely to be yellowish, and a resin film having excellent transparency tends to be easily obtained.
 樹脂組成物には、必要に応じて、架橋剤とは別の添加剤を含有させてもよい。添加剤としては、例えば、樹脂組成物の保存安定性を高める目的で添加するパラメトキシフェノール等の重合禁止剤、樹脂組成物を光硬化させて得られる中間膜の耐熱性を高める目的で添加するトリフェニルホスファイト等の酸化防止剤、紫外線等の光に対する樹脂組成物の耐性を高める目的で添加するHALS(Hindered Amine Light Stabilizer)等の光安定化剤、ガラスに対する樹脂組成物の密着性を高めるために添加するシランカップリング剤が挙げられる。 The resin composition may optionally contain an additive other than the crosslinking agent. As the additive, for example, a polymerization inhibitor such as paramethoxyphenol added for the purpose of enhancing the storage stability of the resin composition, or for the purpose of enhancing the heat resistance of the interlayer obtained by photocuring the resin composition. An antioxidant such as triphenyl phosphite, a light stabilizer such as HALS (Hindered Amine Light Stabilizer) added for the purpose of enhancing the resistance of the resin composition to light such as ultraviolet light, and an adhesive property of the resin composition to glass And silane coupling agents to be added.
 樹脂組成物には、無機充填剤を含有していてもよく、例えば、破砕シリカ、溶融シリカ、マイカ、粘土鉱物、ガラス短繊維又は微粉末、中空ガラス、炭酸カルシウム、石英粉末、金属水和物等が挙げられる。無機充填剤の含有量は、固形分全量基準で、樹脂組成物100質量部に対し、0.01~100質量部が好ましく、0.05~50質量部がより好ましく、0.1~30質量部が更に好ましい。無機充填剤の含有量が0.01~100質量部であれば、充分な、低収縮性、機械強度の向上、低熱膨張率等が得られる。無機充填剤は、カップリング剤等の市販の表面処理剤による処理、三本ロール、ビーズミル、ナノマイザー等の分散機での処理などによって、分散性を向上させてもよい。 The resin composition may contain an inorganic filler, for example, crushed silica, fused silica, mica, clay mineral, short glass fiber or fine powder, hollow glass, calcium carbonate, quartz powder, metal hydrate Etc. The content of the inorganic filler is preferably 0.01 to 100 parts by mass, more preferably 0.05 to 50 parts by mass, and more preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the resin composition on the basis of the total solid content. Parts are more preferred. When the content of the inorganic filler is 0.01 to 100 parts by mass, sufficient low shrinkage, improvement in mechanical strength, low coefficient of thermal expansion and the like can be obtained. The dispersibility of the inorganic filler may be improved by treatment with a commercially available surface treatment agent such as a coupling agent, or treatment with a triple roll, bead mill, or a disperser such as a nanomizer.
 <合わせガラスの中間膜用フィルム材>
 本実施形態の合わせガラスの中間膜用フィルム材は、基材と、該基材上に設けられた樹脂層と、有している。樹脂層は、上述した本実施形態に係る樹脂膜からなる層である。
<Interlayer film film material for laminated glass>
The film material for an intermediate film of the laminated glass of the present embodiment has a substrate and a resin layer provided on the substrate. A resin layer is a layer which consists of a resin film concerning this embodiment mentioned above.
 図1は、合わせガラスの中間膜用フィルム材の一実施形態を示す模式断面図である。図1に示されるように、本実施形態の中間膜用フィルム材1は、樹脂層11と、樹脂層11を挟むように積層された一方の基材10及び他方の基材12とを備えていてもよい。 FIG. 1 is a schematic cross-sectional view showing an embodiment of an intermediate film film material of laminated glass. As shown in FIG. 1, the film material 1 for an intermediate film of the present embodiment includes a resin layer 11 and one base 10 and the other base 12 laminated so as to sandwich the resin layer 11. May be
 基材10としては、基材12よりも軽剥離性の基材を用いることが好ましい。基材10としては、例えば、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン等の重合体フィルムが挙げられ、中でも、ポリエチレンテレフタレートフィルム(以下、「PETフィルム」という場合もある)が好ましい。基材10の厚みは、作業性の観点から、25~150μmであることが好ましく、30~100μmであることがより好ましく、40~80μmであることが更に好ましい。 As the substrate 10, it is preferable to use a substrate which is lightly releasable than the substrate 12. As the base material 10, polymer films, such as a polyethylene terephthalate, a polypropylene, polyethylene, are mentioned, for example, Especially, a polyethylene terephthalate film (Hereinafter, it may be mentioned "PET film") is preferable. The thickness of the substrate 10 is preferably 25 to 150 μm, more preferably 30 to 100 μm, and still more preferably 40 to 80 μm from the viewpoint of workability.
 基材10の平面形状は、樹脂層11の平面形状よりも大きく、基材10の外縁は樹脂層11の外縁よりも外側に張り出していることが好ましい。基材10の外縁が樹脂層11の外縁よりも張り出す幅は、取り扱い易さ、剥がし易さ、埃等の付着をより低減できる観点から、2~20mmであることが好ましく、4~10mmであることがより好ましい。樹脂層11及び基材10の平面形状が略長方形等の略矩形状である場合には、基材10の外縁が樹脂層11の外縁よりも張り出す幅は、少なくとも1つの辺において2~20mmであることが好ましく、少なくとも1つの辺において4~10mmであることがより好ましく、全ての辺において2~20mmであることが更に好ましく、全ての辺において4~10mmであることが特に好ましい。 The planar shape of the substrate 10 is preferably larger than the planar shape of the resin layer 11, and the outer edge of the substrate 10 preferably protrudes outward beyond the outer edge of the resin layer 11. The width of the outer edge of the base 10 overhanging the outer edge of the resin layer 11 is preferably 2 to 20 mm, and is preferably 4 to 10 mm, from the viewpoint of ease of handling, ease of peeling, and reduction of adhesion of dust and the like. It is more preferable that When the planar shape of the resin layer 11 and the base material 10 is a substantially rectangular shape such as a substantially rectangular shape, the width of the outer edge of the base material 10 overhangs the outer edge of the resin layer 11 is 2 to 20 mm in at least one side. It is preferably 4 to 10 mm on at least one side, more preferably 2 to 20 mm on all sides, and particularly preferably 4 to 10 mm on all sides.
 基材12としては、基材10よりも重剥離性の基材を用いることが好ましい。基材12としては、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレン、ポリエチレン等の重合体フィルムが挙げられ、中でも、PETフィルムが好ましい。基材12の厚みは、作業性の観点から、50~200μmであることが好ましく、60~150μmであることがより好ましく、70~130μmであることが更に好ましい。 As the substrate 12, it is preferable to use a substrate that is heavier releasable than the substrate 10. Examples of the substrate 12 include polymer films such as polyethylene terephthalate (PET), polypropylene, and polyethylene. Among them, PET films are preferable. The thickness of the substrate 12 is preferably 50 to 200 μm, more preferably 60 to 150 μm, and still more preferably 70 to 130 μm from the viewpoint of workability.
 基材12の平面形状は、樹脂層11の平面形状よりも大きく、基材12の外縁は樹脂層11の外縁よりも外側に張り出していることが好ましい。基材12の外縁が樹脂層11の外縁よりも張り出す幅は、取り扱い易さ、剥がし易さ、埃等の付着をより低減できる観点から、2~20mmであることが好ましく、4~10mmであることがより好ましい。樹脂層11及び基材12の平面形状が略長方形等の略矩形状である場合には、基材12の外縁が樹脂層11の外縁よりも張り出す幅は、少なくとも1つの辺において2~20mmであることが好ましく、少なくとも1つの辺において4~10mmであることがより好ましく、全ての辺において2~20mmであることが更に好ましく、全ての辺において4~10mmであることが特に好ましい。 The planar shape of the substrate 12 is preferably larger than the planar shape of the resin layer 11, and the outer edge of the substrate 12 preferably protrudes outward beyond the outer edge of the resin layer 11. The width of the outer edge of the base 12 protruding beyond the outer edge of the resin layer 11 is preferably 2 to 20 mm, more preferably 4 to 10 mm, from the viewpoint of ease of handling, ease of peeling, and reduction of adhesion of dust and the like. It is more preferable that When the planar shape of the resin layer 11 and the base 12 is a substantially rectangular shape such as a substantially rectangular shape, the outer edge of the base 12 protrudes more than the outer edge of the resin layer 11 by 2 to 20 mm in at least one side. It is preferably 4 to 10 mm on at least one side, more preferably 2 to 20 mm on all sides, and particularly preferably 4 to 10 mm on all sides.
 基材10と樹脂層11との間の剥離強度は、基材12と樹脂層11との間の剥離強度よりも低いことが好ましい。これにより、基材12は基材10よりも樹脂層11から剥離し難くなる。剥離強度は、例えば、基材12及び基材10の表面処理を施すことによって調整することができる。表面処理方法としては、例えば、シリコーン系化合物又はフッ素系化合物で、基材を離型処理することが挙げられる。 The peel strength between the base 10 and the resin layer 11 is preferably lower than the peel strength between the base 12 and the resin layer 11. As a result, the base 12 becomes more difficult to peel from the resin layer 11 than the base 10. The peel strength can be adjusted, for example, by subjecting the substrate 12 and the substrate 10 to a surface treatment. As the surface treatment method, for example, release treatment of the substrate with a silicone compound or a fluorine compound is mentioned.
 樹脂層11を形成する方法としては、公知の技術を使用することができる。例えば、まず、本実施形態に係る樹脂組成物を、2-ブタノン、シクロヘキサノン、メチルエチルケトン、酢酸エチル、トルエン等の揮発性溶剤で希釈して塗液を調製する。次いで、上記塗液を、基材12上に塗布し、溶剤を乾燥することにより除去して、任意の厚みを有する樹脂層を形成することができる。上記塗液の調製に際しては、各成分を配合した後に溶剤で希釈してもよく、各成分の配合前に予め溶剤で希釈しておいてもよい。塗布方法としては、例えば、フローコート法、ロールコート法、グラビアコート法、ワイヤーバーコート法、リップダイコート法等の公知の方法を用いることができる。 A known technique can be used as a method of forming the resin layer 11. For example, first, the resin composition according to the present embodiment is diluted with a volatile solvent such as 2-butanone, cyclohexanone, methyl ethyl ketone, ethyl acetate, toluene or the like to prepare a coating liquid. Next, the coating solution is applied onto the substrate 12 and the solvent is removed by drying to form a resin layer having an arbitrary thickness. In the preparation of the coating solution, each component may be blended and then diluted with a solvent, or may be previously diluted with a solvent prior to blending each component. As a coating method, for example, known methods such as a flow coating method, a roll coating method, a gravure coating method, a wire bar coating method, and a lip die coating method can be used.
 基材12上に樹脂層11を形成した後、樹脂層11上に基材10を積層することで、本実施形態に係る中間膜用フィルム材が作製される。樹脂層11は基材10及び基材12で挟まれる構成となる。樹脂層11と、基材10及び基材12との剥離性を制御するために、樹脂組成物に、ポリジメチルシロキサン系界面活性剤、フッ素系界面活性剤等の界面活性剤を含有させてもよい。 After forming the resin layer 11 on the substrate 12, the substrate 10 is laminated on the resin layer 11 to produce a film material for an intermediate film according to the present embodiment. The resin layer 11 is configured to be sandwiched between the base 10 and the base 12. In order to control the releasability between the resin layer 11 and the base material 10 and the base material 12, even if the resin composition contains a surfactant such as a polydimethylsiloxane surfactant or a fluorine surfactant. Good.
 樹脂層11の厚みは、使用用途及び方法により適宜調整されるため特に限定されないが、10~5000μm、25~200μm、25~180μm、又は、25~150μmであってもよい。この範囲で使用した場合、外部から加えられた衝撃に対して、防割性によりいっそう優れる合わせガラス用中間膜が得られる。 The thickness of the resin layer 11 is not particularly limited because it is appropriately adjusted depending on the use and method, but may be 10 to 5000 μm, 25 to 200 μm, 25 to 180 μm, or 25 to 150 μm. When used in this range, it is possible to obtain an interlayer for laminated glass which is further excellent in split resistance against an externally applied impact.
 樹脂層11の可視光領域(波長:380nm~780nm)の光線に対する光透過率は、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましい。 The light transmittance of the resin layer 11 to light in the visible light range (wavelength: 380 nm to 780 nm) is preferably 80% or more, more preferably 90% or more, and still more preferably 95% or more .
 樹脂層11のヘーズは、10%以下であることが好ましく、5%以下であることがより好ましく、3%以下であることが更に好ましく、1%以下であることが特に好ましい。樹脂層11のヘーズが10%以下であることにより、中間膜用フィルム材及び合わせガラスの製造工程で混入した環境異物等の外観欠陥が検出し易くなるとともに、合わせガラスとしての視認性を充分確保することができる。 The haze of the resin layer 11 is preferably 10% or less, more preferably 5% or less, still more preferably 3% or less, and particularly preferably 1% or less. When the haze of the resin layer 11 is 10% or less, appearance defects such as environmental foreign matter mixed in the manufacturing process of the film material for interlayer and laminated glass can be easily detected, and sufficient visibility as laminated glass is secured. can do.
 本実施形態に係る中間膜用フィルム材1によれば、樹脂層11を傷つけることなく、保管及び運搬を容易にすることができる。 According to the film material 1 for interlayers which concerns on this embodiment, storage and conveyance can be made easy, without damaging the resin layer 11. FIG.
 樹脂層11は、中間膜として、例えば、ガラス同士、ガラスと樹脂製の透明基板(又は透明フィルム)、又は、樹脂製の透明基板(又は透明フィルム)同士を貼り合わせることが可能である。 The resin layer 11 can bond, for example, glass, a transparent substrate (or transparent film) made of glass and resin, or transparent substrates (or transparent film) made of resin as an intermediate film.
<合わせガラス>
 本実施形態に係る合わせガラスの中間膜(以下、単に「中間膜」という場合がある)は、各種合わせガラスに適用することができる。合わせガラスは、対向する2枚のガラス板と、2枚のガラス板の間に挟まれた中間膜と、を備えており、中間膜は、上記本実施形態に係る樹脂膜からなる膜である。本実施形態に係る合わせガラスの製造方法は、上述した樹脂膜を介して、2枚のガラス板を貼り合わせて積層体を得る工程と、30~150℃及び0.3~1.5MPaの条件で、積層体を加熱加圧処理する工程と、を含む。
<Laminated glass>
The intermediate film of laminated glass according to the present embodiment (hereinafter, sometimes simply referred to as “intermediate film”) can be applied to various kinds of laminated glass. The laminated glass includes two opposing glass plates and an intermediate film sandwiched between the two glass plates, and the intermediate film is a film made of the resin film according to the present embodiment. The method for producing a laminated glass according to the present embodiment includes the steps of bonding two glass plates via the above-described resin film to obtain a laminate, and conditions of 30 to 150 ° C. and 0.3 to 1.5 MPa. Heating and pressing the laminate.
 ガラスとしては、例えば、フロートガラス、風冷強化ガラス、化学強化ガラス及び複層ガラスが挙げられる。 Examples of the glass include float glass, air-cooled tempered glass, chemically tempered glass and double-layered glass.
 ガラスの厚みは、例えば、0.1~50mm、0.5~30mm、1~20mm、又は2~10mmであってもよい。 The thickness of the glass may be, for example, 0.1 to 50 mm, 0.5 to 30 mm, 1 to 20 mm, or 2 to 10 mm.
 図2は、合わせガラスの一実施形態を模式的に示す側面断面図である。図2に示す合わせガラス2は、フロートガラス20、中間膜21、フロートガラス22がこの順で積層されている。図2に示す合わせガラス2は、例えば、下記の方法により製造することができる。 FIG. 2 is a side sectional view schematically showing an embodiment of the laminated glass. In the laminated glass 2 shown in FIG. 2, a float glass 20, an intermediate film 21 and a float glass 22 are laminated in this order. The laminated glass 2 shown in FIG. 2 can be manufactured, for example, by the following method.
 まず、中間膜用フィルム材1における基材10を樹脂層11から剥離して樹脂層11の表面を露出させる。次いで、中間膜21となる樹脂層11の表面を第1の被着体であるフロートガラス20に貼り付け、ローラー等で押し付けた後、基材12を樹脂層11から剥離して表面を露出させる。続いて、樹脂層11の表面を第2の被着体であるフロートガラス22に貼り付け、加熱加圧処理(オートクレーブ処理)して、中間膜21(樹脂層11)を介してフロートガラス20及び21を貼り合わせた合わせガラス2が作製される。 First, the base material 10 in the film material 1 for intermediate films is peeled from the resin layer 11 to expose the surface of the resin layer 11. Next, the surface of the resin layer 11 to be the intermediate film 21 is attached to the first adherend float glass 20 and pressed by a roller or the like, and then the substrate 12 is peeled off from the resin layer 11 to expose the surface. . Subsequently, the surface of the resin layer 11 is attached to the float glass 22 as a second adherend, heat and pressure treatment (autoclave treatment) is performed, and the float glass 20 and the interlayer film 21 (resin layer 11) are interposed. The laminated glass 2 which bonded together 21 is produced.
 樹脂層11を用いることにより、シワがなく容易に被着体同士を貼り合せることができる。また、加熱加圧処理する工程を、低温短時間で行うこともできる。樹脂層11を用いることにより、中間膜21が白化することなく、合わせガラス2の安定した透明性を維持することができる。 By using the resin layer 11, adherends can be easily bonded without wrinkles. The heat and pressure treatment can also be performed at a low temperature and in a short time. By using the resin layer 11, stable transparency of the laminated glass 2 can be maintained without the intermediate film 21 being whitened.
 加熱加圧処理の条件は、温度が30~150℃であり、圧力が0.3~1.5MPaであるが、巻き込み気泡をより除去できる観点から、50~70℃で、0.3~0.5MPaであってもよい。また、処理時間は、5~60分間が好ましく、10~30分間であることがより好ましい。 The conditions of the heat and pressure treatment are a temperature of 30 to 150 ° C. and a pressure of 0.3 to 1.5 MPa, but from the viewpoint of being able to further remove entrapped air bubbles, it is 0.3 to 0 at 50 to 70 ° C. It may be 0.5 MPa. The treatment time is preferably 5 to 60 minutes, and more preferably 10 to 30 minutes.
 なお、上記では、第2の被着体としてガラスを用いているが、第2の被着体は、樹脂製の透明基板であってもよい。透明基板としては、例えば、アクリル樹脂基板、ポリカーボネート基板、シクロオレフィンポリマー基板、ポリエステル基板等の透明プラスチック基板が挙げられる。 Although glass is used as the second adherend in the above description, the second adherend may be a transparent substrate made of resin. As a transparent substrate, transparent plastic substrates, such as an acrylic resin substrate, a polycarbonate substrate, a cycloolefin polymer substrate, a polyester substrate, are mentioned, for example.
 本実施形態に係る中間膜は、合わせガラスに反射防止層、防汚層、色素層、ハードコート層、遮音層、遮熱層等の機能性を有する機能層又はその他の樹脂層を組み合わせて貼り合わせるために使用してもよい。すなわち、本実施形態に係る中間膜は、樹脂層が一層の単層構造を有していてもよく、二層以上が積層した多層構造を有していてもよい。 The interlayer film according to the present embodiment is attached by combining a laminated glass with a functional layer having functionality such as an antireflective layer, an antifouling layer, a dye layer, a hard coat layer, a sound insulation layer, a heat shield layer or other resin layers. You may use it to match. That is, in the intermediate film according to the present embodiment, the resin layer may have a single layer structure of one layer, or may have a multilayer structure in which two or more layers are laminated.
 反射防止層は、可視光反射率が5%以下となる反射防止性を有している層であればよい。反射防止層としては、透明なプラスチックフィルム等の透明基材に既知の反射防止方法で処理された層を用いることができる。 The antireflection layer may be a layer having an antireflection property such that the visible light reflectance is 5% or less. As the antireflective layer, a layer obtained by treating a transparent substrate such as a transparent plastic film by a known antireflective method can be used.
 防汚層は、表面に汚れがつきにくくするためのものである。防汚層としては、表面張力を下げるためにフッ素系樹脂又はシリコーン系樹脂等で構成される既知の層を用いることができる。 The antifouling layer is for making it difficult for the surface to be contaminated. As the antifouling layer, a known layer composed of a fluorine-based resin, a silicone-based resin or the like can be used to lower the surface tension.
 色素層は、色純度を高めるために使用されるものであり、合わせガラスで透過する不要な波長の光を低減するために使用される。色素層は、不要な波長の光を吸収する色素を樹脂に溶解させ、ポリエチレンフィルム、ポリエステルフィルム等の基材フィルムに製膜又は積層して得ることができる。 The dye layer is used to increase color purity, and is used to reduce light of unnecessary wavelengths transmitted through the laminated glass. The dye layer can be obtained by dissolving a dye that absorbs light of unnecessary wavelength in a resin, and forming or laminating it on a base film such as a polyethylene film or a polyester film.
 ハードコート層は、表面硬度を高くするために使用される。ハードコート層としては、例えば、ウレタンアクリレート、エポキシアクリレート等のアクリル樹脂;エポキシ樹脂などをポリエチレンフィルム等の基材フィルムに製膜又は積層したものを使用することができる。同様に表面硬度を高めるために、ガラス、アクリル樹脂、ポリカーボネート等の透明保護板に製膜又は積層したハードコート層を使用することもできる。 The hard coat layer is used to increase the surface hardness. As the hard coat layer, for example, an acrylic resin such as urethane acrylate and epoxy acrylate; a film obtained by forming an epoxy resin or the like on a base film such as a polyethylene film or the like can be used. Similarly, in order to increase the surface hardness, a hard coat layer formed or laminated on a transparent protective plate of glass, acrylic resin, polycarbonate or the like can also be used.
 遮音層は、周波数100~10000Hzの音が合わせガラスを透過する際、損失係数(dB)を制御する機能を有しているものであればよく、既知のフィルム層を用いることができる。 The sound insulation layer may be any known film layer as long as it has a function of controlling the loss coefficient (dB) when sound having a frequency of 100 to 10000 Hz passes through the laminated glass.
 遮熱層は、赤外線領域(波長780nm以上)の光線を吸収又は反射する機能を有しているものであればよく、既知のフィルム層を用いることができる。 The heat shielding layer may have any function to absorb or reflect light in the infrared region (wavelength 780 nm or more), and known film layers can be used.
 その他の樹脂層としては、本発明の奏する効果を損なわない範囲であれば、特に制限されない。このような樹脂層に用いられる樹脂としては、ポリビニルブチラール樹脂等のポリビニルアセタール樹脂、エチルビニルアルコール樹脂、アイオノマーなどが挙げられる。 The other resin layer is not particularly limited as long as the effects of the present invention are not impaired. As resin used for such a resin layer, polyvinyl acetal resin, such as polyvinyl butyral resin, ethyl vinyl alcohol resin, an ionomer, etc. are mentioned.
 このような積層体とする場合、樹脂層11は、ロールラミネート、真空貼合機又は枚葉貼合機を用いて積層することができる。 When setting it as such a laminated body, the resin layer 11 can be laminated | stacked using a roll lamination, a vacuum bonding machine, or a sheet-fee bonding machine.
 本実施形態に係る合わせガラスの製造方法により、外部から加えられた衝撃に対して、防割性に優れる合わせガラスを作製することができる。 By the method for producing laminated glass according to the present embodiment, it is possible to produce laminated glass having excellent split resistance against an impact applied from the outside.
 以下、実施例により本発明を説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to the following examples.
 製造例で作製する重合体の重量平均分子量(Mw)は、GPC法に従って標準ポリスチレンによる検量線を使用し、下記のGPC測定装置及び測定条件を用いて測定した。 The weight average molecular weight (Mw) of the polymer produced in the production example was measured according to the GPC method using a calibration curve with standard polystyrene and using the following GPC measurement apparatus and measurement conditions.
 RI検出器:L-3350(株式会社日立ハイテクサイエンス、製品名)
 溶離液:THF
 カラム:Gelpac GL-R420+R430+R440(日立化成株式会社、製品名)
 カラム温度:40℃
 流量:2.0mL/分
RI Detector: L-3350 (Hitachi High-Tech Science, Product Name)
Eluent: THF
Column: Gelpac GL-R420 + R430 + R440 (product name of Hitachi Chemical Co., Ltd.)
Column temperature: 40 ° C
Flow rate: 2.0 mL / min
<重合体の作製>
製造例1
 冷却管、温度計、攪拌装置、滴下漏斗及び窒素導入管の付いた反応容器に、2-エチルヘキシルアクリレート80.0g、2-ヒドロキシエチルアクリレート20.0g及び酢酸エチル145.0gを加え、100mL/分の風量で窒素置換しながら、15分間で常温(25℃)から65℃まで加熱した。その後、65℃に保ちながら、酢酸エチル5.0gにラウロイルパーオキシド0.1gを溶解した溶液を投入し、8時間反応させ、固形分濃度40%の重合体A-1(Mw900000)の溶液を得た。
<Preparation of polymer>
Production Example 1
Add 80.0 g of 2-ethylhexyl acrylate, 20.0 g of 2-hydroxyethyl acrylate and 145.0 g of ethyl acetate to a reaction vessel equipped with a condenser, thermometer, stirrer, dropping funnel and nitrogen inlet, and add 100 mL / min. It heated from normal temperature (25 degreeC) to 65 degreeC for 15 minutes, substituting nitrogen by the airflow volume. Thereafter, while maintaining the temperature at 65 ° C., a solution of 0.1 g of lauroyl peroxide in 5.0 g of ethyl acetate is added and reacted for 8 hours to obtain a solution of 40% solid content concentration of polymer A-1 (Mw 900000) Obtained.
製造例2
 反応容器に、2-エチルヘキシルアクリレート80.0g、2-ヒドロキシエチルアクリレート10.0g、アクリロイルモルホリン10.0g及び酢酸エチル145.0gを加えた以外は製造例1と同様に操作して、固形分濃度40%の重合体A-2(Mw700000)の溶液を得た。
Production Example 2
The solid content concentration is the same as in Production Example 1 except that 80.0 g of 2-ethylhexyl acrylate, 10.0 g of 2-hydroxyethyl acrylate, 10.0 g of acryloyl morpholine and 145.0 g of ethyl acetate are added to a reaction vessel A solution of 40% of polymer A-2 (Mw 700000) was obtained.
製造例3
 反応容器に、2-エチルヘキシルアクリレート80.0g、2-ヒドロキシエチルアクリレート15.0g、片末端メタクリロイル変性ポリシロキサン化合物(Mw12000)5.0g及び酢酸エチル145.0gを加えた以外は製造例1と同様に操作して、固形分濃度40%の重合体A-3(Mw850000)の溶液を得た。
Production Example 3
Same as Production Example 1 except that 80.0 g of 2-ethylhexyl acrylate, 15.0 g of 2-hydroxyethyl acrylate, 5.0 g of one end methacryloyl-modified polysiloxane compound (Mw 12000) and 145.0 g of ethyl acetate were added to a reaction vessel A solution of polymer A-3 (Mw 850000) having a solid content concentration of 40% was obtained.
製造例4
 反応容器に、n-ブチルアクリレート80.0g、4-ヒドロキシブチルアクリレート20.0g及び酢酸エチル145.0gを加えた以外は製造例1と同様に操作して、固形分濃度40%の重合体A-4(Mw1250000)の溶液を得た。
Production Example 4
A polymer A having a solid content concentration of 40% is operated in the same manner as in Production Example 1 except that 80.0 g of n-butyl acrylate, 20.0 g of 4-hydroxybutyl acrylate and 145.0 g of ethyl acetate are added to a reaction vessel. A solution of -4 (Mw 1250000) was obtained.
製造例5
 反応容器に、2-エチルヘキシルアクリレート90.0g、2-ヒドロキシエチルアクリレート10.0g及び酢酸エチル145.0gを加え、反応時間を6時間とした以外は製造例1と同様に操作して、固形分濃度40%の重合体A-5(Mw100000)の溶液を得た。
Production Example 5
90.0 g of 2-ethylhexyl acrylate, 10.0 g of 2-hydroxyethyl acrylate and 145.0 g of ethyl acetate were added to a reaction vessel, and the reaction was carried out in the same manner as in Production Example 1 except that the reaction time was 6 hours. A solution of polymer A-5 (Mw 100000) having a concentration of 40% was obtained.
製造例6
 冷却管、温度計、撹拌装置、滴下漏斗及び窒素導入管の付いた反応容器に、n-ブチルアクリレート78.5g、2-エチルヘキシルアクリレート19.5g、アクリル酸2.0g及び超純水100.0gと安定剤としてポリビニルアルコール1.0gを加え、100ml/分の風量で窒素置換しながら、15分間で常温(25℃)から65℃まで加熱した。その後、65℃に保ちながら、t-ブチルパーオキシ-2-エチルヘキサノエート0.1gを投入し、6時間反応させ、水を留去することにより、重合体A-6(Mw2200000)を得た。
Production Example 6
78.5 g of n-butyl acrylate, 19.5 g of 2-ethylhexyl acrylate, 2.0 g of acrylic acid and 100.0 g of ultrapure water in a reaction vessel equipped with a condenser, thermometer, stirrer, dropping funnel and nitrogen inlet pipe And 1.0 g of polyvinyl alcohol as a stabilizer, and heated from normal temperature (25.degree. C.) to 65.degree. C. for 15 minutes while performing nitrogen substitution with a flow rate of 100 ml / min. Thereafter, while maintaining at 65 ° C., 0.1 g of t-butylperoxy-2-ethylhexanoate is charged, reacted for 6 hours, and water is distilled off to obtain a polymer A-6 (Mw: 2200000). The
<合わせガラスの中間膜用フィルム材の作製>
実施例1
 製造例1で得られたA-1溶液の重合体100質量部に対して、熱架橋剤としてポリイソシアネート化合物(東ソー株式会社、製品名「コロネートHL」)0.2質量部を混合して、樹脂組成物の塗液を調製した。
<Preparation of film material for interlayer film of laminated glass>
Example 1
To 100 parts by mass of the polymer of solution A-1 obtained in Production Example 1, 0.2 part by mass of polyisocyanate compound (Tosoh Corp., product name “Coronato HL”) is mixed as a thermal crosslinking agent, A coating solution of the resin composition was prepared.
 次いで、表面に離型処理された厚み75μmのPETフィルム(基材12)に、上記樹脂組成物の塗液を乾燥後の厚みが100μmとなるようにバーコーターを用いて塗布し、100℃で10分間加熱乾燥して、樹脂層(樹脂膜)を形成した。その後、樹脂層上に、離型処理された厚み75μmのPETフィルム(基材10)を被せ、1.0kgfのハンドローラーにて貼り付け、合わせガラスの中間膜用フィルム材を作製した。 Next, a coating liquid of the above resin composition is coated on a 75 μm-thick PET film (base 12) that has been subjected to a release treatment using a bar coater so that the thickness after drying is 100 μm. It heat-dried for 10 minutes, and formed the resin layer (resin film). Thereafter, a 75 μm-thick release-treated PET film (base material 10) was covered on the resin layer and attached with a 1.0 kgf hand roller to prepare an interlayer film material of laminated glass.
実施例2
 製造例2で得られた重合体A-2の溶液を用いた以外は、実施例1と同様にして樹脂組成物の塗液及びフィルム材を得た。
Example 2
A coating solution and a film material of a resin composition were obtained in the same manner as in Example 1 except that the solution of the polymer A-2 obtained in Production Example 2 was used.
実施例3
 製造例3で得られた重合体A-3の溶液を用い、乾燥後の厚みが200μmとなるように塗布する操作を2回繰り返し、合計で400μmの厚みとした以外は、実施例1と同様にして樹脂組成物の塗液及びフィルム材を得た。
Example 3
The same procedure as in Example 1 is repeated except that the solution of polymer A-3 obtained in Production Example 3 is applied twice so that the thickness after drying is 200 μm, and the total thickness is 400 μm. The coating liquid and film material of the resin composition were obtained.
実施例4
 製造例4で得られた重合体A-4の溶液を用いた以外は、実施例1と同様にして樹脂組成物の塗液及びフィルム材を得た。
Example 4
A coating solution and a film material of a resin composition were obtained in the same manner as in Example 1 except that the solution of the polymer A-4 obtained in Production Example 4 was used.
比較例1
 製造例5で得られた重合体A-5の溶液を用い、乾燥後の厚みが200μmとなるように塗布する操作を2回繰り返し、合計で400μmの厚みとした以外は、実施例1と同様にして樹脂組成物の塗液及びフィルム材を得た。
Comparative Example 1
The same procedure as in Example 1 is repeated except that the solution of the polymer A-5 obtained in Production Example 5 is applied twice so that the thickness after drying is 200 μm, and the total thickness is 400 μm. The coating liquid and film material of the resin composition were obtained.
比較例2
 製造例6で得られた重合体A-6の溶液を用いた以外は、実施例1と同様にして樹脂組成物の塗液及びフィルム材を得た。
Comparative example 2
A coating solution and a film material of a resin composition were obtained in the same manner as in Example 1 except that the solution of the polymer A-6 obtained in Production Example 6 was used.
比較例3
 赤外吸収スペクトルを測定したときに得られる水酸基に対応するピークの半値幅が245cm-1であるポリビニルブチラール樹脂(アセタール化度68.0モル% 、ビニルアセテート成分の割合0.6モル% )100質量部と、可塑剤としてトリエチレングリコールジ-2-エチルヘキサノエート38質量部とを混合し、ミキシングロールで充分に溶融混練した後、プレス成形機で150℃、30分間プレス成形して、厚み380μmの樹脂膜を得、これを合わせガラス用中間膜とした。
Comparative example 3
Polyvinyl butyral resin (the degree of acetalization 68.0 mol%, the proportion of vinyl acetate component 0.6 mol%) of which the half width of the peak corresponding to a hydroxyl group obtained when the infrared absorption spectrum is measured is 245 cm -1 A part by mass and 38 parts by mass of triethylene glycol di-2-ethylhexanoate as a plasticizer are mixed, sufficiently melt-kneaded with a mixing roll, and press-molded for 30 minutes at 150 ° C. with a press molding machine, A resin film having a thickness of 380 μm was obtained, and this was used as an intermediate film for glass.
<樹脂膜についての評価>
 各実施例及び比較例で得られた樹脂膜について、以下の方法により評価を行った。結果を表1に示す。
<Evaluation of resin film>
The resin films obtained in the respective examples and comparative examples were evaluated by the following method. The results are shown in Table 1.
1.最大tanδ値の測定
 実施例1~4及び比較例1~2で得られた中間膜用フィルム材を、10mm×40mmのサイズに切り出し、基材10及び基材12を剥離して、tanδ値測定用サンプル(樹脂膜)を得た。また、比較例3では、樹脂膜を10mm×40mmのサイズに切り出して、tanδ値測定用サンプルを得た。
1. Measurement of Maximum Tan δ Value The film material for an intermediate film obtained in Examples 1 to 4 and Comparative Examples 1 and 2 is cut out to a size of 10 mm × 40 mm, and the base material 10 and the base material 12 are peeled off to measure tan δ value. A sample (resin film) was obtained. Moreover, in the comparative example 3, the resin film was cut out to the size of 10 mm x 40 mm, and the sample for tan-delta value measurement was obtained.
 測定長さが20mmとなるように、得られたサンプルを動的粘弾性測定器(TAインスツルメント株式会社、製品名「RSA-G2」)にセットし、-70~100℃、0.05/0.5/5/50Hz、ひずみ量1%の条件下、引張測定モードにて測定を行った。次に、得られた測定結果から、アレニウス則を用いて、基準温度を25℃としてマスターカーブを作成し、得られたマスターカーブから、周波数100~100000Hzの範囲内におけるtanδの最大値を読み取った。なお、マスターカーブの作成は、「RSA-G2」に付帯のTRIOS Software(TAインスツルメント、製品名)を用いて算出した。図3に、実施例2及び比較例3の樹脂膜のtanδ値について作成されたマスターカーブを示す。 The obtained sample is set in a dynamic viscoelasticity measuring instrument (TA Instruments Inc., product name “RSA-G2”) so that the measurement length is 20 mm, −70 to 100 ° C., 0.05 The measurement was performed in a tensile measurement mode under a condition of 1 / 0.5 / 5/50 Hz and a strain amount of 1%. Next, from the obtained measurement results, a master curve was created with a reference temperature of 25 ° C. using Arrhenius law, and the maximum value of tan δ in a frequency range of 100 to 100,000 Hz was read from the obtained master curve . In addition, preparation of a master curve was calculated using TRIOS Software (TA instrument, product name) attached to "RSA-G2." The master curve created about the tan-delta value of the resin film of Example 2 and the comparative example 3 in FIG. 3 is shown.
2.ヘーズの測定
 実施例1~4及び比較例1~2の中間膜用フィルム材を50mm×50mmのサイズに切り出し、基材10を剥離して樹脂層の一方の表面を露出させた後、露出した樹脂層の枠部に両面テープを取り付け、濁度計(日本電色工業株式会社、製品名「NDH-5000」)の測定部位に両面テープを介してセットした。次いで、基材12を樹脂層から剥離して樹脂層の他方の表面を露出させ、樹脂層のヘーズを測定した。また、比較例3では、樹脂膜を50mm×50mmのサイズに切り出し、枠部に両面テープを取り付け、濁度計(日本電色工業株式会社、製品名「NDH-5000」)の測定部位にセットしてヘーズを測定した。
2. Measurement of haze The film material for an intermediate film of Examples 1 to 4 and Comparative Examples 1 to 2 was cut out to a size of 50 mm × 50 mm, the base material 10 was peeled off, and one surface of the resin layer was exposed and then exposed. A double-sided tape was attached to the frame portion of the resin layer, and set via a double-sided tape at the measurement site of a turbidity meter (Nippon Denshoku Kogyo Co., Ltd., product name "NDH-5000"). Next, the base 12 was peeled off from the resin layer to expose the other surface of the resin layer, and the haze of the resin layer was measured. Further, in Comparative Example 3, the resin film is cut out to a size of 50 mm × 50 mm, a double-sided tape is attached to the frame, and set at the measurement site of a turbidimeter (Nippon Denshoku Kogyo Co., Ltd., product name “NDH-5000”) Then the haze was measured.
<合わせガラスの作製>
 実施例1~4及び比較例1~2では、作製した中間膜用フィルム材から基材10を剥離して樹脂層の表面を露出させた後、樹脂層の表面を縦110mm、横110mm、厚み2.7mmのフロートガラスに貼り付け、ローラーで押し付けた。次いで、基材12を樹脂層から剥離して樹脂層の表面を露出させ、真空積層機を用いて、真空状態で樹脂層の表面を縦110mm、横110mm、厚み2.7mmのフロートガラスに貼り付けて積層体を作製した。その後、積層体を、温度50℃、圧力0.5MPa、30分間保持の条件でオートクレーブを用いて加熱加圧処理し、合わせガラスを得た。
<Production of laminated glass>
In Examples 1 to 4 and Comparative Examples 1 to 2, after the substrate 10 is peeled off from the produced film material for an intermediate film to expose the surface of the resin layer, the surface of the resin layer is 110 mm long, 110 mm wide, and thickness It stuck on a 2.7 mm float glass, and pressed with the roller. Next, the substrate 12 is peeled off from the resin layer to expose the surface of the resin layer, and the surface of the resin layer is attached to float glass 110 mm long, 110 mm wide, and 2.7 mm thick using a vacuum laminating machine in a vacuum state Then, a laminate was prepared. Thereafter, the laminate was subjected to heat and pressure treatment using an autoclave under the conditions of a temperature of 50 ° C. and a pressure of 0.5 MPa for 30 minutes to obtain a laminated glass.
 また、比較例3では、樹脂膜をフロートガラスで挟み込み、温度135℃、圧力115N/cmMPa、60分間保持の条件でオートクレーブ処理し、合わせガラスを得た。 Further, in Comparative Example 3, the resin film was sandwiched with float glass and autoclaved under conditions of temperature 135 ° C., pressure 115 N / cm 2 MPa, and holding for 60 minutes to obtain laminated glass.
<合わせガラスについての評価>
 各実施例及び比較例で得られた合わせガラスについて、以下の方法により評価を行った。結果を表1に示す。
<Evaluation of laminated glass>
The laminated glass obtained in each Example and Comparative Example was evaluated by the following method. The results are shown in Table 1.
3.耐衝撃試験
 作製した縦110mm、横110mm角の、周辺を支持された合わせガラスの中心点から25mm以内の位置に質量1040g、直径63.5mmの鋼球を5cmの高さから5cm刻みで高さを高くして順次落下させ、ガラスが割れたときの高さを記録した。それぞれの合わせガラスを6枚試験し、その平均高さを算出し、50cm以上の値を示した合わせガラスを、防割性の高い合わせガラスとした。
3. Impact resistance test A steel ball with a mass of 1040 g and a diameter of 63.5 mm at a position within 25 mm of the 110 mm long and 110 mm wide, supported peripheral laminated glass, height 5 cm in steps from 5 cm in height Were raised sequentially and dropped, and the height at which the glass broke was recorded. Six sheets of each laminated glass were tested, the average height was calculated, and the laminated glass which showed the value of 50 cm or more was made into the laminated glass with high fracture resistance.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 1…中間膜用フィルム材、2…合わせガラス、10,12…基材、11…樹脂層、20,22…フロートガラス、21…中間膜。 DESCRIPTION OF SYMBOLS 1 ... Film material for intermediate films, 2 ... Laminated glass, 10, 12 ... Base material, 11 ... Resin layer, 20, 22 ... Float glass, 21 ... Intermediate film.

Claims (9)

  1.  25℃で、周波数100~100000Hzの範囲におけるtanδの最大値が、0.5~4.0である、合わせガラスの中間膜に用いられる樹脂膜。 A resin film used for an interlayer of laminated glass, wherein the maximum value of tan δ at 25 ° C. and in the frequency range of 100 to 100,000 Hz is 0.5 to 4.0.
  2.  (メタ)アクリロイル化合物を含有するモノマーの重合体を含む樹脂組成物から形成され、
     前記重合体の重量平均分子量が200000~2000000である、請求項1に記載の樹脂膜。
    It is formed from a resin composition containing a polymer of a monomer containing a (meth) acryloyl compound,
    The resin film according to claim 1, wherein the weight average molecular weight of the polymer is 200,000 to 2,000,000.
  3.  前記(メタ)アクリロイル化合物が、アルキル(メタ)アクリレートと、水酸基を有する(メタ)アクリレートとを含有する、請求項2に記載の樹脂膜。 The resin film according to claim 2, wherein the (meth) acryloyl compound contains an alkyl (meth) acrylate and a (meth) acrylate having a hydroxyl group.
  4.  前記モノマーの合計量100質量部に対する、前記アルキル(メタ)アクリレートの含有量が、50~95質量部である、請求項3に記載の樹脂膜。 The resin film according to claim 3, wherein the content of the alkyl (meth) acrylate is 50 to 95 parts by mass with respect to 100 parts by mass of the total amount of the monomers.
  5.  前記樹脂組成物が、熱架橋剤を更に含む、請求項2~4のいずれか一項に記載の樹脂膜。 The resin film according to any one of claims 2 to 4, wherein the resin composition further comprises a thermal crosslinking agent.
  6.  ヘーズが10%以下である、請求項1~5のいずれか一項に記載の樹脂膜。 The resin film according to any one of claims 1 to 5, wherein the haze is 10% or less.
  7.  基材と、前記基材上に設けられた樹脂層と、を備え、前記樹脂層が、請求項1~6のいずれか一項に記載の樹脂膜からなる層である、合わせガラスの中間膜用フィルム材。 An intermediate film of laminated glass, comprising: a base material; and a resin layer provided on the base material, wherein the resin layer is a layer comprising the resin film according to any one of claims 1 to 6. Film material.
  8.  対向する2枚のガラス板と、前記2枚のガラス板の間に挟まれた中間膜と、を備え、前記中間膜が、請求項1~6のいずれか一項に記載の樹脂膜である、合わせガラス。 A resin film according to any one of claims 1 to 6, comprising: two opposing glass plates; and an intermediate film sandwiched between the two glass plates. Glass.
  9.  対向する2枚のガラス板と、前記2枚のガラス板の間に挟まれた中間膜と、を備える合わせガラスの製造方法であって、
     請求項1~6のいずれか一項に記載の樹脂膜を介して、前記2枚のガラス板を貼り合わせて積層体を得る工程と、
     30~150℃及び0.3~1.5MPaの条件で、前記積層体を加熱加圧処理する工程と、
    を含む、合わせガラスの製造方法。
    A method for producing laminated glass, comprising: two opposing glass plates; and an intermediate film sandwiched between the two glass plates,
    A process of laminating the two glass plates via the resin film according to any one of claims 1 to 6 to obtain a laminate,
    Heating and pressing the laminate under conditions of 30 to 150 ° C. and 0.3 to 1.5 MPa;
    A method of producing laminated glass, including:
PCT/JP2017/036004 2017-10-03 2017-10-03 Resin film to be used as interlayer of laminated glass, film material for interlayer of laminated glass, laminated glass and method for manufacturing laminated glass WO2019069373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019546442A JPWO2019069373A1 (en) 2017-10-03 2017-10-03 Resin film used for laminated glass interlayer film, laminated glass interlayer film material, laminated glass and method for manufacturing laminated glass
PCT/JP2017/036004 WO2019069373A1 (en) 2017-10-03 2017-10-03 Resin film to be used as interlayer of laminated glass, film material for interlayer of laminated glass, laminated glass and method for manufacturing laminated glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036004 WO2019069373A1 (en) 2017-10-03 2017-10-03 Resin film to be used as interlayer of laminated glass, film material for interlayer of laminated glass, laminated glass and method for manufacturing laminated glass

Publications (1)

Publication Number Publication Date
WO2019069373A1 true WO2019069373A1 (en) 2019-04-11

Family

ID=65994441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036004 WO2019069373A1 (en) 2017-10-03 2017-10-03 Resin film to be used as interlayer of laminated glass, film material for interlayer of laminated glass, laminated glass and method for manufacturing laminated glass

Country Status (2)

Country Link
JP (1) JPWO2019069373A1 (en)
WO (1) WO2019069373A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104652A (en) * 2017-12-13 2019-06-27 日立化成株式会社 Resin composition for intermediate film of laminated glass, film material for intermediate film of laminated glass, laminated glass, and method for manufacturing laminated glass

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267692A (en) * 1994-03-25 1995-10-17 Sekisui Chem Co Ltd Interlayer for laminated glass
JP2002080808A (en) * 2000-06-30 2002-03-22 Kuraray Co Ltd Adhesive
JP2012031059A (en) * 2011-09-05 2012-02-16 Mitsubishi Plastics Inc Method of manufacturing transparent laminated body
JP2014530923A (en) * 2011-10-14 2014-11-20 スリーエム イノベイティブプロパティズカンパニー Primerless multilayer adhesive film for glass substrate adhesion
JP2015009372A (en) * 2013-06-26 2015-01-19 積水化学工業株式会社 Thermoplastic resin sheet and glass laminate
JP2016041634A (en) * 2014-08-15 2016-03-31 日本板硝子株式会社 Laminated glass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267692A (en) * 1994-03-25 1995-10-17 Sekisui Chem Co Ltd Interlayer for laminated glass
JP2002080808A (en) * 2000-06-30 2002-03-22 Kuraray Co Ltd Adhesive
JP2012031059A (en) * 2011-09-05 2012-02-16 Mitsubishi Plastics Inc Method of manufacturing transparent laminated body
JP2014530923A (en) * 2011-10-14 2014-11-20 スリーエム イノベイティブプロパティズカンパニー Primerless multilayer adhesive film for glass substrate adhesion
JP2015009372A (en) * 2013-06-26 2015-01-19 積水化学工業株式会社 Thermoplastic resin sheet and glass laminate
JP2016041634A (en) * 2014-08-15 2016-03-31 日本板硝子株式会社 Laminated glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019104652A (en) * 2017-12-13 2019-06-27 日立化成株式会社 Resin composition for intermediate film of laminated glass, film material for intermediate film of laminated glass, laminated glass, and method for manufacturing laminated glass

Also Published As

Publication number Publication date
JPWO2019069373A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6065002B2 (en) Adhesive sheet for image display device, method for manufacturing image display device, and image display device
JP5870933B2 (en) Adhesive sheet for image display device, image display device and adhesive resin composition
JP6246469B2 (en) Adhesive sheet for image display device, method for manufacturing image display device, and image display device
WO2014061611A1 (en) Adhesive sheet for image display device, method for manufacturing image display device, and image display device
WO2018078952A1 (en) Resin composition for use in interlayer of laminate glass, film material for use in interlayer, and laminate glass manufacturing method
WO2017209013A1 (en) Photocurable resin composition for interlayer film for laminated glass, film material for interlayer film for laminated glass, and method for manufacturing laminated glass
JP6048137B2 (en) Adhesive sheet for image display device and image display device
JP6733740B2 (en) Process for producing resin composition for interlayer film, film material for interlayer film and laminated glass
JP2014125524A (en) Pressure-sensitive adhesive sheet for image display device, method for producing image display device, and image display device
WO2016148208A1 (en) Adhesive sheet for image display device, adhesive layered body for image display device, and image display device
WO2015140900A1 (en) Adhesive sheet for image display device, method for manufacturing image display device using same, and image display device
JP2014094977A (en) Pressure-sensitive adhesive sheet for image display device, method for manufacturing image display device, and image display device
WO2019069373A1 (en) Resin film to be used as interlayer of laminated glass, film material for interlayer of laminated glass, laminated glass and method for manufacturing laminated glass
WO2018079720A1 (en) Laminated glass and production method therefor, and photocurable resin composition for laminated-glass interlayer
JP2019108247A (en) Laminated glass, and production method thereof
JP2017218477A (en) Photocurable resin composition for curved surface coating, image display device and method for manufacturing the same
JP2015229687A (en) Adhesive sheet for image display device, method for manufacturing image display device, and image display device
JP2019164293A (en) Image display device, copolymer solution, and film material
JP2019011222A (en) Glass laminate, film for interlayer for glass laminate, and manufacturing method of glass laminate
JP2019064878A (en) Resin film used for intermediate film of laminated glass, film material for intermediate film and method for manufacturing laminated glass
WO2015132876A1 (en) Adhesive sheet for image display device, and method for producing image display device and image display device using same
JP2019196284A (en) Resin composition and film each for glass laminate interlayer, and glass laminate and production method thereof
JP2019164294A (en) Image display device, light curable resin composition, and film material
JP2021050108A (en) Resin composition for intermediate film, film material for intermediate film, laminated glass and method for producing the same, and image display device
WO2016104525A1 (en) Photocurable resin composition, and image display device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928025

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928025

Country of ref document: EP

Kind code of ref document: A1