WO2019066494A1 - 복합 고분자 전해질막 제조방법 및 연료전지 - Google Patents

복합 고분자 전해질막 제조방법 및 연료전지 Download PDF

Info

Publication number
WO2019066494A1
WO2019066494A1 PCT/KR2018/011430 KR2018011430W WO2019066494A1 WO 2019066494 A1 WO2019066494 A1 WO 2019066494A1 KR 2018011430 W KR2018011430 W KR 2018011430W WO 2019066494 A1 WO2019066494 A1 WO 2019066494A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
electrolyte membrane
polymer electrolyte
acid group
ionic
Prior art date
Application number
PCT/KR2018/011430
Other languages
English (en)
French (fr)
Inventor
윤영수
니툴카카티
우성필
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2019066494A1 publication Critical patent/WO2019066494A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a composite polymer electrolyte membrane and a fuel cell, and more particularly, to a method for producing a composite polymer electrolyte membrane and a fuel cell that can be used under low humidity or no humidification conditions.
  • a fuel cell is a power generation device that utilizes a technique in which the chemical energy of a fuel is directly changed into electrical energy by an electrochemical reaction and supplies hydrogen and oxygen in the air to the fuel and air electrodes provided on both sides of the polymer electrolyte membrane, It is an electrochemical power generation device that produces electricity.
  • the polymer electrolyte membrane of the fuel cell plays an important role in separating the fuel electrode and the air electrode together with the movement of the hydrogen ion.
  • the polymer electrolyte membrane should have high hydrogen ion conductivity, low fuel permeability, and water migration.
  • a commonly used polymer electrolyte membrane is a Nafion membrane using perfluorosulfonic acid. Since conventional Nafion membranes maintain ionic conduction by using water as a medium, there is a problem that the fuel cell operating temperature can be used only at 90 ° C or less. Particularly, at a temperature of 100 ° C or more and a humidification condition of 50% or less, mechanical and thermal stability , Hydrogen ion conductivity, and the like, the performance of the fuel cell deteriorates sharply.
  • Patent Document 1 Korean Patent Registration No. 10-0787865
  • the present invention provides a method for producing a composite polymer electrolyte membrane and a fuel cell which can be used under low humidity or no humidification conditions.
  • a method for preparing a composite polymer electrolyte membrane according to an embodiment of the present invention includes the steps of preparing an ionic solution containing a phosphoric acid group; Adding a solution having a sulfonic acid group to the ionic solution, and then stirring to prepare a mixed solution; And casting and drying the mixed solution.
  • the polymer solution may include at least one of a polyimide-based polymer, a polyether-based polymer, a polyarylene-based polymer, and a polyphenylene-based polymer.
  • the solution containing the sulfonic acid group may be a perfluorosulfonic acid solution.
  • the process for preparing an ionic solution containing the phosphoric acid group comprises the steps of stirring 1,2-dimethylimidazole and 1-bromobutane and drying to form a product; Dissolving the product in an acetonitrile and a phosphoric acid solution, and stirring the resultant; And a step of volatilizing the acetanthrityl.
  • the ionic solution containing the phosphate group may be a DMBulmH 2 PO 4 ionic solution.
  • the process of stirring the 1,2-dimethylimidazole and 1-bromobutane, and dissolving and stirring the product may be performed at room temperature and in an inert gas atmosphere.
  • a fuel cell comprising: a fuel electrode to which a fuel gas is supplied and an oxidation reaction of hydrogen is performed; An air electrode corresponding to the fuel electrode and performing a reduction reaction of oxygen; And a composite polymer electrolyte membrane including a hydrogen-ion conductive polymer having both a phosphoric acid group and a sulfonic acid group, and a polymer imparting mechanical properties, and disposed between the fuel electrode and the air electrode and moving hydrogen ions from the fuel electrode to the air electrode .
  • the composite polymer electrolyte membrane may be formed by casting and drying a mixed solution obtained by mixing an ionic solution containing a phosphate group, a solution having a sulfonic acid group, and a polymer solution.
  • the fuel gas may be supplied to the fuel electrode without further humidification for supplying moisture to the fuel electrode.
  • the composite polymer electrolyte membrane may be used at a temperature ranging from room temperature to 200 ° C.
  • the hydrogen ions can move under the low humidification condition or the no humidification condition by the composite polyelectrolyte membrane.
  • the composite polymer electrolyte membrane may have a thickness of 150 ⁇ to 250 ⁇ .
  • the cation exchange exchange through the sulfonic acid group and the phosphoric acid group can be facilitated even at a temperature of 100 ° C or higher and no humidification or low humidity. Since the mechanism for ion conduction does not depend on water, a separate humidifier is not necessary and a simple fuel cell system configuration can be made possible.
  • the composite polymer electrolyte membrane can be used at a temperature of 100 ° C or higher, the operating temperature of the fuel cell can be increased to increase the output value of the fuel cell due to higher fuel efficiency.
  • FIG. 1 is a flow chart showing a method of manufacturing a composite polymer electrolyte membrane according to an embodiment of the present invention.
  • FIG. 2 is a graph showing ionic conductivity of a composite polymer electrolyte membrane according to an embodiment of the present invention.
  • FIG 3 is a graph showing voltage and power density according to current density of a composite polymer electrolyte membrane according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the temperature versus ionic conductivity of a composite polymer electrolyte membrane according to the content of an ionic solution containing a phosphate group according to an embodiment of the present invention.
  • FIG. 5 is a graph showing current density versus voltage and power density of a composite polymer electrolyte membrane according to the content of an ionic solution including a phosphate group according to an embodiment of the present invention.
  • FIG. 1 is a flowchart showing a method for producing a composite polymer electrolyte membrane according to an embodiment of the present invention.
  • a method of fabricating a composite polymer electrolyte membrane includes the steps of (S100) preparing an ionic solution containing a phosphoric acid group; A step S200 of adding a solution having a sulfonic acid group to the ionic solution and stirring to prepare a mixed solution; And casting and drying the mixed solution (S300).
  • a solution containing a phosphoric acid group and a solution containing a sulfonic acid group A composite polymer electrolyte membrane capable of allowing cation exchange exchange even in an environment where water is not present at 100 ° C or higher was prepared.
  • an ionic solution containing a phosphate group may be prepared to prepare a composite polymer electrolyte membrane (S100).
  • the process for preparing an ionic solution containing a phosphoric acid group is a process in which 1,2-dimethylimidazole and 1-bromobutane are stirred and dried to form a product; Dissolving the product in an acetonitrile and a phosphoric acid solution, and stirring the resultant; And a step of volatilizing the acetanthrityl.
  • reflux and stirring were carried out for 1 hour at room temperature and an inert gas such as argon gas atmosphere in 1,2-dicetylimidazole and 1-bromobutane for 12 hours, Washed and dried to form the product.
  • the product produced by drying was dissolved in an acetonitrile and a phosphoric acid solution and stirred for 48 hours at room temperature and argon gas atmosphere.
  • acetonitrile as a solvent was volatilized and DMBulmH 2 PO 4 Ionic solution.
  • an organic solvent such as DMF solvent is dispersed in an ionic solution to prepare a composite polymer electrolyte membrane using an ionic solution, and the mixture is stirred for 24 hours.
  • the solution having a sulfonic acid group may be a perfluorosulfonic acid solution.
  • a phosphate ion and a sulfonic acid group which are hydrogen ion exchangers, are simultaneously present.
  • the sulfonic acid group may cause cation exchange exchange such as hydrogen ion through a hydrophilic part called a complex ion present in a hydrophilic sulfonic acid group (or a sulfate group).
  • the Nafion membrane maintains ion conduction by using water as a medium, so that the fuel cell operating temperature can be used only at 90 ° C or lower.
  • the performance of the fuel cell is drastically deteriorated due to the decrease in characteristics such as mechanical and thermal stability and hydrogen ion conductivity at a temperature of 100 ° C or more and a humidification condition of 50% or less.
  • a separate humidifier is provided to supply the fuel gas to the fuel electrode .
  • a separate humidifier is provided to supply the fuel gas to the fuel electrode .
  • an ionic solution containing a phosphate group capable of exhibiting thermal and electrochemical properties, ion conduction, Sulfonic acid solution to form a composite polymer electrolyte membrane.
  • the sulfonic acid group of the ionic solution and the sulfonic acid group of the perfluorosulfonic acid solution are involved in the migration of ions, and thus it is possible to exhibit high ion conductivity even at a temperature of 100 ° C or more and under low humidification or humidification conditions.
  • the polymer solution may include at least one of a polyimide-based polymer, a polyether-based polymer, a polyarylene-based polymer, and a polyphenylene-based polymer.
  • a mixed solution obtained by mixing an ionic solution containing a phosphoric acid group, a solution having a sulfonic acid group, and a polymer solution is prepared, and then the mixed solution is cast in a glass Petri dish and dried (S300). Finally, A polymer electrolyte membrane can be produced.
  • the solution-casting method of casting and drying the prepared solution is performed according to a conventional method, and a separate explanation will be omitted.
  • a fuel cell comprising: a fuel electrode to which a fuel gas is supplied and an oxidation reaction of hydrogen is performed; An air electrode corresponding to the fuel electrode and performing a reduction reaction of oxygen; And a composite polymer electrolyte membrane including a hydrogen-ion conductive polymer having both a phosphoric acid group and a sulfonic acid group, and a polymer imparting mechanical properties, and disposed between the fuel electrode and the air electrode and moving hydrogen ions from the fuel electrode to the air electrode .
  • the fuel cell comprises a fuel electrode, an air electrode, and a composite polymer electrolyte membrane between the fuel electrode and the air electrode.
  • the composite polymer electrolyte membrane of the fuel cell is prepared by mixing an ionic solution containing sulfonic acid group, And may be a composite polymer electrolyte membrane formed by casting and drying one mixed solution.
  • the composite polymer electrolyte membrane may have a thickness of 150 ⁇ to 250 ⁇ . If the thickness of the composite polyelectrolyte membrane is less than 150 mu m, gas cross-over phenomenon in which the fuel permeates the electrolyte membrane in addition to hydrogen ions may occur. If the thickness exceeds 250 mu m, excellent cation conductivity characteristics may be difficult to manifest.
  • the fuel electrode has a function of converting hydrogen contained in the fuel gas supplied to the fuel electrode into hydrogen ions and electrons and converting the hydrogen into hydrogen ions and electrons.
  • the composite polymer electrolyte membrane has a function of ion exchange for moving the hydrogen ions generated in the fuel electrode to the air electrode, Reacts with hydrogen ions and oxygen to generate heat at a predetermined temperature and water.
  • a general fuel cell system is provided with a humidifier for humidification.
  • the polymer electrolyte membrane for fuel cell which is used conventionally, exhibits excellent battery performance under humidifying conditions.
  • the peripheral parts required for the humidifier and the humidifier There is a problem that the size of the battery becomes large and the structure becomes complex and the manufacturing and maintenance cost increases.
  • a phosphate group and a sulfate group are involved in the movement of hydrogen ions, Cation exchange exchange through the phosphate group and the sulfate group can be made very easy even at a temperature of 200 ° C, more preferably at a temperature of 100 ° C or more in the absence of water.
  • the polymer electrolyte membrane according to the embodiment of the present invention does not depend on water for the mechanism of ion conduction, unlike a general polymer electrolyte membrane in which water is not present at 100 ° C or higher and cation exchange is difficult to transfer, It can be used in various temperature ranges. From this, the fuel gas can be supplied directly to the fuel electrode without further humidification for supplying moisture to the fuel electrode, and a simple fuel cell system configuration without a humidifier can be made possible.
  • FIG. 2 is a graph showing ionic conductivity according to temperature of a composite polymer electrolyte membrane according to an embodiment of the present invention
  • FIG. 3 is a graph showing voltage and power density according to current density of a composite polymer electrolyte membrane according to an embodiment of the present invention .
  • the ionic conductivity of the composite polymer electrolyte membrane of the present invention increased sharply with increasing H 2 PO 4 - , which is a phosphoric acid group, at a high temperature of 100 ° C or higher, The higher the ionic conductivity than the higher ionic conductivity. Particularly, at a temperature of 110 ° C, excellent ion conductivity of 0.055 S / cm was exhibited.
  • Fig. 3 shows fuel cell characteristics by measuring the change in voltage and power density of Example 1 as a function of current density as data showing the power density measured at a temperature of 110 deg. C and no humidification condition.
  • FIG. 3 can determine what seems a composite polymer electrolyte membrane when used as a fuel cell, compared to the Pre-contrast with the maximum power density of 0.002W / cm 2 0.011W / cm 2 or more maximum power density produced by the present invention have.
  • the efficiency of the fuel cell can be improved by obtaining an excellent power density of about 5 times the power density as compared with the conventional polymer electrolyte membrane (comparative example).
  • FIG. 4 is a graph showing the temperature versus ionic conductivity of the composite polymer electrolyte membrane according to the content of the ionic solution including the phosphoric acid group according to the embodiment of the present invention.
  • Example 1 is a graph showing ionic conductivity according to temperature when an ionic solution containing a phosphoric acid group is added in a 1: 1 ratio with a solution having a sulfonic acid group.
  • Example 3 is a graph showing the ionic conductivity when the ionic solution is added at a lower content than that of the solution having the sulfonic acid group.
  • Fig. As shown in FIG. 4, when the ionic solution is added at a content equal to or greater than that of a solution having a sulfonic acid group, that is, when the number of phosphate groups is larger than that of a sulfonic acid group, the ionic conductivity can be improved.
  • FIG. 5 is a graph showing power densities measured at a temperature of 110.degree. C. and no humidification condition in the same manner as FIG. 3, and the characteristics of the fuel cell were confirmed by measuring changes in voltage and power density depending on the content of the ionic solution. As shown in FIG. 5, the higher the ionic solution content, the more the output density of the composite polymer electrolyte membrane was increased. As the number of phosphoric acid groups increases, sulfonic acid groups have higher output densities and the efficiency of the fuel cell can be improved.
  • the composite polymer electrolyte membrane according to the embodiment of the present invention when used in a fuel cell, phosphate and sulfonic acid groups are simultaneously involved in the movement of hydrogen ions, It exhibits high ionic conductivity and can be used not only at a temperature of room temperature to 90 ° C but also at a high temperature of 100 ° C or more.
  • the hydrogen ions generated in the fuel electrode can move to the air electrode through the composite polymer electrolyte membrane even under low humidity or no humidification condition by the composite polymer electrolyte membrane.
  • the power density of the fuel cell can be improved by about 5 times that of the conventional polymer electrolyte membrane.
  • the mechanism for ion conduction is not highly dependent on water, the fuel cell does not need a humidifier to humidify the gas supplied to the fuel electrode or the air electrode to supply water, and thus a simple fuel cell system configuration is possible .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명에 따른 복합 고분자 전해질막 제조방법은 인산기를 포함하는 이온성 용액을 제조하는 과정; 상기 이온성 용액에 술폰산기를 갖는 용액을 첨가한 후 교반하여 혼합용액을 제조하는 과정; 및 상기 혼합용액을 주조한 후 건조시키는 과정을 포함할 수 있다.

Description

복합 고분자 전해질막 제조방법 및 연료전지
본 발명은 복합 고분자 전해질막 제조방법 및 연료전지에 관한 것으로, 더욱 상세하게는 저가습 또는 무가습 조건에서도 사용 가능한 복합 고분자 전해질막 제조방법 및 연료전지에 관한 것이다.
연료전지는 연료의 화학에너지가 전기화학반응에 의해 전기에너지로 직접 변화하는 기술을 이용하는 발전장치로서, 수소와 공기 중의 산소를 각각 고분자 전해질막 양측에 제공되는 연료극과 공기극에 공급하여 연속적으로 전기를 생산하는 전기화학적 발전장치이다.
연료전지의 고분자 전해질막은 수소이온의 이동과 함께 연료극과 공기극을 분리시키는 중요한 역할을 하며, 이를 위하여 높은 수소이온 전도, 낮은 연료 투과도 및 물의 이동 등의 특성을 가져야한다. 일반적으로 사용되는 고분자 전해질막으로는 퍼플루오르술폰산을 사용한 나피온 막이 있다. 종래의 나피온 막은 물을 매개체로 하여 이온 전도를 유지하기 때문에 연료전지 작동 온도가 90℃ 이하에서만 사용 가능하다는 문제가 있으며, 특히 100℃ 이상의 온도와 50% 이하의 낮은 가습 조건에서 기계적 및 열적 안정성, 수소 이온 전도도 등의 특성 감소로 인하여 연료전지의 성능이 급격하게 저하되는 문제점이 있다.
나피온 막의 수소이온의 전도성을 유지하기 위해서는 가습으로 인한 수분 공급 및 유지가 필수적이며, 일반적인 연료전지 시스템에서는 수분 공급 및 나피온 막의 습도를 유지하기 위해 연료가스가 수분을 포함한 상태로 연료극에 공급되도록 별도의 가습기를 구비하고 있다. 하지만, 가습기의 설치 및 가습기에 필요한 주변부품으로 인해 연료전지의 규격이 커지면서 구조가 복합해지고 제작 및 유지 보수 비용이 증가하게 되는 문제점이 존재하게 된다.
(특허문헌 1) 한국등록특허공보 제10-0787865호
본 발명은 저가습 또는 무가습 조건에서도 사용 가능한 복합 고분자 전해질막 제조방법 및 연료전지를 제공한다.
본 발명의 실시예에 따른 복합 고분자 전해질막 제조방법은 인산기를 포함하는 이온성 용액을 제조하는 과정; 상기 이온성 용액에 술폰산기를 갖는 용액을 첨가한 후 교반하여 혼합용액을 제조하는 과정; 및 상기 혼합용액을 주조한 후 건조시키는 과정;을 포함할 수 있다.
상기 건조시키는 과정 이전에, 상기 혼합용액에 상기 복합 고분자 전해질막에 기계적 물성을 부여하는 고분자 용액을 추가하는 과정;을 더 포함할 수 있다.
상기 고분자 용액은 폴리이미드계 고분자, 폴리에테르계 고분자, 폴리아릴렌계 고분자 및 폴리페닐렌계 고분자 중 적어도 어느 하나를 포함할 수 있다.
상기 술폰산기를 갖는 용액은 퍼플루오로설폰산 용액일 수 있다.
상기 인산기를 포함하는 이온성 용액을 제조하는 과정은, 1,2-디메틸이미다졸과 1-브로모부탄을 교반한 후 건조시켜 생성물을 형성하는 과정; 상기 생성물을 아세토아니트릴과 인산 용액에 용해시킨 후 교반시키는 과정; 및 상기 아세토아니트릴을 휘발시키는 과정을 포함할 수 있다.
상기 인산기를 포함하는 이온성 용액은 DMBulmH2PO4 이온성 용액일 수 있다.
상기 1,2-디메틸이미다졸과 1-브로모부탄을 교반하는 과정 및 상기 생성물을 용해시킨 후 교반시키는 과정은 상온 및 불활성 가스 분위기에서 수행될 수 있다.
본 발명의 다른 실시예에 따른 연료전지는 연료가스를 공급받고, 수소의 산화반응이 이루어지는 연료극; 상기 연료극과 대응되며 산소의 환원반응이 이루어지는 공기극; 및 인산기와 술폰산기를 동시에 가지는 수소이온 전도성 고분자 및 기계적 물성을 부여하는 고분자를 포함하고, 상기 연료극과 공기극 사이에 배치되어 상기 연료극으로부터 공기극으로 수소 이온이 이동하는 복합 고분자 전해질막;을 포함할 수 있다.
상기 복합 고분자 전해질막은 인산기를 포함하는 이온성 용액, 술폰산기를 갖는 용액 및 고분자 용액을 혼합한 혼합용액을 주조 및 건조시켜 형성될 수 있다.
상기 연료가스는 상기 연료극에 수분을 공급하기 위한 추가 가습 없이 상기 연료극에 공급될 수 있다.
상기 복합 고분자 전해질막은 상온 내지 200℃의 온도 범위에서 사용될 수 있다.
상기 수소 이온은 상기 복합 고분자 전해질막에 의해 저가습 또는 무가습 조건에서도 이동할 수 있다.
상기 복합 고분자 전해질막은 150μm 내지 250μm의 두께를 가질 수 있다.
본 발명에서는 술폰산기와 인산기를 동시에 가지는 복합 고분자 전해질막을 제조함으로써 100℃ 이상의 온도와 무가습 또는 저가습 조건에서도 술폰산기 및 인산기를 통한 양이온 교환 전달이 매우 용이해질 수 있다. 이온 전도를 위한 메커니즘이 물에 의존하지 않으므로 별도의 가습기가 필요하지 않으며 이에 단순한 연료전지 시스템 구성이 가능해질 수 있다.
또한, 복합 고분자 전해질막을 100℃ 이상의 온도에서도 사용할 수 있음으로써 연료전지의 작동 온도를 높여 더 높은 연료 효율로 인한 연료전지의 출력값을 높일 수 있다.
도 1은 본 발명의 실시예에 따른 복합 고분자 전해질막의 제조방법을 나타내는 순서도.
도 2는 본 발명의 실시예에 따른 복합 고분자 전해질막의 온도에 따른 이온 전도도를 나타내는 그래프.
도 3은 본 발명의 실시예에 따른 복합 고분자 전해질막의 전류 밀도에 따른 전압 및 출력 밀도를 나타내는 그래프.
도 4는 본 발명의 실시예에 따른 인산기를 포함하는 이온성 용액의 함량에 따른 복합 고분자 전해질막의 온도 대 이온 전도도를 나타내는 그래프.
도 5는 본 발명의 실시예에 따른 인산기를 포함하는 이온성 용액의 함량에 따른 복합 고분자 전해질막의 전류 밀도 대 전압 및 출력 밀도를 나타내는 그래프.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 발명을 상세하게 설명하기 위해 도면은 과장될 수 있고, 도면상에서 동일 부호는 동일한 요소를 지칭한다.
도 1은 본 발명의 실시예에 따른 복합 고분자 전해질막의 제조방법을 나타내는 순서도이다.
도 1을 참조하면, 본 발명의 실시예에 따른 복합 고분자 전해질막 제조방법은 인산기를 포함하는 이온성 용액을 제조하는 과정(S100); 상기 이온성 용액에 술폰산기를 갖는 용액을 첨가한 후 교반하여 혼합용액을 제조하는 과정(S200); 및 상기 혼합용액을 주조한 후 건조시키는 과정(S300);을 포함할 수 있다.
본 발명에서는 이온 전도를 위한 메커니즘이 물에 의존하지 않고, 100℃ 이상의 온도와 저가습 또는 무가습 조건에서도 이온 전도가 가능한 고분자 전해질막을 제조하기 위하여 인산기를 포함하는 이온성 용액 및 술폰산기를 갖는 용액을 사용하여 100℃ 이상에서 물이 존재하지 않은 환경에서도 양이온 교환 전달을 가능하게 할 수 있는 복합 고분자 전해질막을 제조하였다.
먼저, 복합 고분자 전해질막을 제조하기 위해 인산기를 포함하는 이온성 용액을 제조할 수 있다(S100). 이때, 인산기를 포함하는 이온성 용액을 제조하는 과정은 1,2-디메틸이미다졸과 1-브로모부탄을 교반한 후 건조시켜 생성물을 형성하는 과정; 상기 생성물을 아세토아니트릴과 인산 용액에 용해시킨 후 교반시키는 과정; 및 상기 아세토아니트릴을 휘발시키는 과정을 포함할 수 있다.
보다 자세히 살펴보면, 상온 및 불활성 가스 예를 들어, 아르곤 가스 분위기에서 1,2-디케틸이미다졸과 1-브로모부탄을 1:1로 리플럭스 및 교반을 12시간 진행하였으며, 교반이 완료되면 세척 및 건조시켜 생성물을 형성하였다. 건조에 의해 생성된 생성물을 아세토아니트릴과 인산 용액에 용해시킨 후 상온 및 아르곤 가스 분위기에서 48시간 교반을 진행하였으며, 교반이 완료되면 용매인 아세토아니트릴을 휘발시켜 인산기가 포함된 DMBulmH2PO4 이온성 용액을 제조하였다.
인산기를 포함하는 이온성 용액이 최종적으로 제조되면, 이온성 용액을 이용한 복합 고분자 전해질막을 제조하기 위해 이온성 용액에 유기용매 예를들어 DMF 용매를 분산시켜 24시간 교반하였으며, 교반이 완료되면 술폰산기를 갖는 용액을 첨가하여 24시간 교반을 추가로 진행하여 혼합용액을 제조하였다(S200). 이때, 술폰산기를 갖는 용액은 퍼플루오로술폰산 용액일 수 있다. 인산기를 포함하는 이온성 용액에 퍼플루오로술폰산 용액이 첨가되어 제조된 혼합용액에는 수소 이온 교환기인 인산기와 술폰산기가 동시에 존재하게 된다. 여기서, 술폰산기는 가습 등으로 인한 물이 존재할 시 친수성의 술폰산기(또는 황산기)에 존재하는 복합 이온이라 불리는 친수성 부분을 통해 수소 이온 등의 양이온 교환 전달이 일어날 수 있다.
하지만, 친수성의 술폰산기만을 가지는 나피온 막이 연료전지의 고분자 전해질막으로 사용될 경우 나피온 막은 물을 매개체로 하여 이온 전도를 유지하기 때문에 연료전지 작동 온도가 90℃ 이하에서만 사용가능하다는 문제가 있다. 특히, 100℃ 이상의 온도와 50% 이하의 낮은 가습 조건에서 기계적 및 열적 안정성, 수소 이온 전도도 등의 특성 감소로 인하여 연료전지의 성능이 급격하게 저하되는 문제점이 존재하게 된다. 100℃ 이상의 온도와 저가습 또는 무가습 조건에서 수소이온의 전도성을 유지하기 위해 수분 공급 및 나피온 막의 습도 유지는 필수적이며 이를 위해 연료가스가 수분을 포함한 상태로 연료극에 공급되도록 별도의 가습기를 구비하게 된다. 하지만, 가습기의 설치 및 가습기에 필요한 주변부품으로 인해 연료전지의 부피 및 무게 증가에 따른 불편함이 발생하는 문제점이 발생한다.
본 발명에서는 술폰산기 뿐만 아니라 인산기를 동시에 가지는 복합 고분자 전해질막을 제조하기 위해서 열적 및 전기화학적 성질, 이온 전도 등이 가능하여 높은 전해질 특성을 나타낼 수 있는 인산기를 포함하는 이온성 용액을 제조한 뒤 퍼플루오로술폰산 용액에 혼합하여 복합 고분자 전해질막을 형성하였다. 이로부터 이온성 용액의 인산기와 퍼플루오로설폰산 용액의 술폰산기가 이온의 이동에 관여하게 되어 100℃ 이상의 온도 및 저가습 또는 무가습 조건에서도 높은 이온 전도를 나타낼 수 있게 된다.
인산기를 포함하는 이온성 용액, 술폰산기를 갖는 용액이 혼합된 혼합용액을 제조한 뒤, 복합 고분자 전해질막을 형성할 때 구조적으로 막을 형성하고, 전해질막에 기계적 물성을 부여하여 형성된 막이 높은 기계적 강도를 가질 수 있도록 혼합용액에 고분자 용액을 추가하였다. 여기서, 고분자 용액은 폴리이미드계 고분자, 폴리에테르계 고분자, 폴리아릴렌계 고분자 및 폴리페닐렌계 고분자 중 적어도 어느 하나를 포함할 수 있다.
인산기를 포함하는 이온성 용액, 술폰산기를 갖는 용액 및 고분자 용액을 혼합한 혼합용액을 제조한 뒤, 혼합용액을 유리 페트리 접시에 주조한 후 건조하면(S300) 최종적으로 본 발명의 실시예에 따른 복합 고분자 전해질막이 제조될 수 있다. 제조된 용액을 주조한 후 건조하는 용액-주조 방식은 통상의 방식에 따라 이루어지는 바, 별도의 설명은 생략하기로 한다.
본 발명의 다른 실시예에 따른 연료전지는 연료가스를 공급받고, 수소의 산화반응이 이루어지는 연료극; 상기 연료극과 대응되며 산소의 환원반응이 이루어지는 공기극; 및 인산기와 술폰산기를 동시에 가지는 수소이온 전도성 고분자 및 기계적 물성을 부여하는 고분자를 포함하고, 상기 연료극과 공기극 사이에 배치되어 상기 연료극으로부터 공기극으로 수소 이온이 이동하는 복합 고분자 전해질막;을 포함할 수 있다.
연료전지는 크게 연료극, 공기극 및 연료극과 공기극 사이에 복합 고분자 전해질막을 구비하는 구조로 이루어져 있으며, 연료전지에 구비되는 복합 고분자 전해질막은 인산기를 포함하는 이온성 용액, 술폰산기를 갖는 용액 및 고분자 용액을 혼합한 혼합용액을 주조 및 건조시켜 형성되는 복합 고분자 전해질막일 수 있다. 또한, 복합 고분자 전해질막은 150μm 내지 250μm 두께를 가질 수 있다. 여기서, 복합 고분자 전해질막의 두께가 150μm 미만이면 수소 이온 이외에 연료가 전해질막을 투과하는 기체 크로스오버 현상이 발생할 수 있고, 250μm을 초과하면 우수한 양이온 전도도 특성 발현이 어려울 수 있다.
연료극은 연료극으로 공급되는 연료가스에 포함된 수소를 산화 반응시켜 수소 이온과 전자로 변환시키는 기능을 하며, 복합 고분자 전해질막은 연료극에서 생성된 수소 이온을 공기극으로 이동시키는 이온 교환의 기능을 하고, 공기극은 수소 이온과 산소를 환원 반응시켜 소정 온도의 열과 물을 발생시키는 기능을 한다. 이러한 구조를 가지는 연료전지의 원활한 작동을 위해서는 가습으로 인한 수분 공급 및 고분자 전해질막의 습도 유지가 필수적이며, 이를 위해 일반적인 연료전지 시스템에는 가습을 위한 가습기가 구비되어 있다. 즉, 연료극으로 공급되는 연료가스는 가습기를 거쳐 수분을 포함한 상태로 연료극으로 공급되기 때문에 기존에 사용되는 연료전지용 고분자 전해질막은 가습 조건에서 우수한 전지 성능을 나타내지만 가습기 및 가습기에 필요한 주변부품으로 인해 연료전지의 규격이 커지면서 구조가 복합해지고 제작 및 유지 보수 비용이 증가하게 되는 문제가 있다.
반면에, 본 발명에서는 인산기와 술폰산기를 동시에 포함하는 수소이온 전도성 고분자 및 기계적 물성을 부여하는 고분자를 포함하는 복합 고분자 전해질막을 연료전지에 제공함으로써 인산기와 황산기가 수소 이온의 이동에 관여하게 되어 상온 내지 200℃의 온도 범위, 보다 바람직하게는 물이 존재하지 않는 100℃ 이상의 온도에서도 인산기 및 황산기를 통해 양이온 교환 전달이 매우 용이해질 수 있다. 다시 말해, 100℃ 이상에서는 물이 존재하지 않아 양이온 교환 전달이 어려운 일반적인 고분자 전해질막과 달리 본 발명의 실시예에 따른 복합 고분자 전해질막은 이온 전도를 위한 메커니즘이 물에 의존하지 않으므로 상온 내지 200℃의 온도 범위에서 다양하게 사용할 수 있다. 이로부터 연료가스는 연료극에 수분을 공급하기 위한 추가 가습 없이 연료극에 바로 공급되어 가습기가 구비되지 않은 단순한 연료전지 시스템 구성이 가능해질 수 있다.
도 2는 본 발명의 실시예에 따른 복합 고분자 전해질막의 온도에 따른 이온 전도도를 나타내는 그래프이고, 도 3은 본 발명의 실시예에 따른 복합 고분자 전해질막의 전류 밀도에 따른 전압 및 출력 밀도를 나타내는 그래프이다.
도 2를 참조하면, 본 발명의 복합 고분자 전해질막(실시예1)이 100℃ 이상의 고온에서는 술폰산기에 비해 인산기인 H2PO4 - 수 증가에 따라 이온 전도도가 급격히 향상되어 일반적인 고분자 전해질막(비교예)의 이온 전도도보다 고온에서 더욱 높은 이온 전도도를 나타내었다. 특히, 110℃의 온도에서는 0.055S/cm의 우수한 이온 전도도를 나타내었다. 도 3은 110℃의 온도 및 무가습 조건에서 측정된 출력 밀도를 나타낸 데이터로서 전류 밀도의 함수로 실시예1의 전압과 출력 밀도의 변화를 측정하여 연료전지 특성을 확인하였다. 도 3에서 보는 바와 같이 본원 발명에 의해 제조된 복합 고분자 전해질막을 연료전지용으로 사용할 경우 0.002W/cm2의 최대 출력 밀도를 가지는 비교예과는 달리 0.011W/cm2 이상의 최대 출력 밀도를 보이는 것을 확인할 수 있다. 기존 고분자 전해질막(비교예)에 비해 출력 밀도가 약 5배에 달하는 우수한 출력 밀도를 얻을 수 있음으로써 연료전지의 효율을 향상시킬 수 있다.
또한, 도 4는 본 발명의 실시예에 따른 인산기를 포함하는 이온성 용액의 함량에 따른 복합 고분자 전해질막의 온도 대 이온 전도도를 나타내는 그래프이고, 도 5는 본 발명의 실시예에 따른 인산기를 포함하는 이온성 용액의 함량에 따른 복합 고분자 전해질막의 전류 밀도 대 전압 및 출력 밀도를 나타내는 그래프이다.
도 4를 참조하면, 실시예1은 인산기를 포함하는 이온성 용액이 술폰산기를 갖는 용액과 1:1의 함량으로 첨가되었을 때 온도에 따른 이온 전도도를 나타내는 그래프이고, 실시예2는 인산기를 포함하는 이온성 용액이 술폰산기를 갖는 용액보다 적은 함량으로 첨가되었을 때 온도에 따른 이온 전도도를 나타내는 그래프이며, 실시예3은 인산기를 포함하는 이온성 용액이 술폰산기를 갖는 용액보다 많은 함량으로 첨가되었을 때 온도에 따른 이온 전도도를 나타내는 그래프이다. 도 4에서 보는 바와 같이 이온성 용액이 술폰산기를 갖는 용액과 같은 함량이거나 더 많은 함량으로 첨가되었을 경우 즉, 술폰산기에 비해 인산기의 수가 더 많아지게 되면 이온 전도도가 향상될 수 있다.
도 5는 도 3과 마찬가지로 110℃의 온도 및 무가습 조건에서 측정된 출력 밀도를 나타낸 데이터로서 이온성 용액의 함량에 따른 전압과 출력 밀도의 변화를 측정하여 연료전지 특성을 확인하였다. 도 5에서 보는 바와 같이 이온성 용액의 함량이 높을수록 제조된 복합 고분자 전해질막의 출력 밀도가 더 증가하는 경향성을 나타내었다. 이에 술폰산기에 비해 인산기의 수가 증가할수록 높은 출력 밀도를 가져 연료전지의 효율이 향상될 수 있다.
상기 살펴본 바와 같이, 본 발명의 실시예에 따른 복합 고분자 전해질막이 연료전지에 사용될 경우 인산기와 술폰산기가 수소 이온의 이동에 동시에 관여하게 되어 물이 존재하지 않는 100℃ 이상 및 저가습 또는 무가습 조건에서도 높은 이온 전도도를 나타내어 상온 내지 90℃의 온도 뿐만 아니라 100℃ 이상의 고온에서도 사용할 수 있다. 이에 연료극에서 생성되는 수소 이온은 복합 고분자 전해질막에 의해 저가습 또는 무가습 조건에서도 복합 고분자 전해질막을 통해 공기극으로 이동할 수 있다. 뿐만 아니라, 기존 고분자 전해질막(비교예)에 비해 출력 밀도가 약 5배에 달하는 우수한 출력 밀도를 얻을 수 있음으로써 연료전지의 효율을 향상시킬 수 있다. 더욱이, 복합 고분자 전해질막은 이온 전도를 위한 메커니즘이 물에 크게 의존하지 않으므로 연료전지는 연료극 또는 공기극으로 공급되는 가스를 가습시켜 수분을 공급하는 가습기가 필요하지 않게 되며, 이에 단순한 연료전지 시스템 구성이 가능해질 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (13)

  1. 인산기를 포함하는 이온성 용액을 제조하는 과정;
    상기 이온성 용액에 술폰산기를 갖는 용액을 첨가한 후 교반하여 혼합용액을 제조하는 과정; 및
    상기 혼합용액을 주조한 후 건조시키는 과정;을 포함하는 복합 고분자 전해질막 제조방법.
  2. 청구항 1에 있어서,
    상기 건조시키는 과정 이전에,
    상기 혼합용액에 상기 복합 고분자 전해질막에 기계적 물성을 부여하는 고분자 용액을 추가하는 과정;을 더 포함하는 복합 고분자 전해질막 제조방법.
  3. 청구항 2에 있어서,
    상기 고분자 용액은 폴리이미드계 고분자, 폴리에테르계 고분자, 폴리아릴렌계 고분자 및 폴리페닐렌계 고분자 중 적어도 어느 하나를 포함하는 복합 고분자 전해질막 제조방법.
  4. 청구항 1에 있어서,
    상기 술폰산기를 갖는 용액은 퍼플루오로설폰산 용액인 복합 고분자 전해질막 제조방법.
  5. 청구항 1에 있어서,
    상기 인산기를 포함하는 이온성 용액을 제조하는 과정은,
    1,2-디메틸이미다졸과 1-브로모부탄을 교반한 후 건조시켜 생성물을 형성하는 과정;
    상기 생성물을 아세토아니트릴과 인산 용액에 용해시킨 후 교반시키는 과정; 및
    상기 아세토아니트릴을 휘발시키는 과정을 포함하는 복합 고분자 전해질막 제조방법.
  6. 청구항 1에 있어서,
    상기 인산기를 포함하는 이온성 용액은 DMBulmH2PO4 이온성 용액인 복합 고분자 전해질막 제조방법.
  7. 청구항 5에 있어서,
    상기 1,2-디메틸이미다졸과 1-브로모부탄을 교반하는 과정 및 상기 생성물을 용해시킨 후 교반시키는 과정은 상온 및 불활성 가스 분위기에서 수행되는 복합 고분자 전해질막 제조방법.
  8. 연료가스를 공급받고, 수소의 산화반응이 이루어지는 연료극;
    상기 연료극과 대응되며 산소의 환원반응이 이루어지는 공기극; 및
    인산기와 술폰산기를 동시에 가지는 수소이온 전도성 고분자 및 기계적 물성을 부여하는 고분자를 포함하고, 상기 연료극과 공기극 사이에 배치되어 상기 연료극으로부터 공기극으로 수소 이온이 이동하는 복합 고분자 전해질막;을 포함하는 연료전지.
  9. 청구항 8에 있어서,
    상기 복합 고분자 전해질막은 인산기를 포함하는 이온성 용액, 술폰산기를 갖는 용액 및 고분자 용액을 혼합한 혼합용액을 주조 및 건조시켜 형성되는 연료전지.
  10. 청구항 8에 있어서,
    상기 연료가스는 상기 연료극에 수분을 공급하기 위한 가습 없이 상기 연료극에 공급되는 연료전지.
  11. 청구항 8에 있어서,
    상기 복합 고분자 전해질막은 상온 내지 200℃의 온도 범위에서 사용되는 연료전지.
  12. 청구항 8에 있어서,
    상기 수소 이온은 상기 복합 고분자 전해질막에 의해 저가습 또는 무가습 조건에서도 이동하는 연료전지.
  13. 청구항 8에 있어서,
    상기 복합 고분자 전해질막은 150μm 내지 250μm의 두께를 가지는 연료전지.
PCT/KR2018/011430 2017-09-29 2018-09-27 복합 고분자 전해질막 제조방법 및 연료전지 WO2019066494A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170126693A KR20190037412A (ko) 2017-09-29 2017-09-29 복합 고분자 전해질막 제조방법 및 연료전지
KR10-2017-0126693 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019066494A1 true WO2019066494A1 (ko) 2019-04-04

Family

ID=65903411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011430 WO2019066494A1 (ko) 2017-09-29 2018-09-27 복합 고분자 전해질막 제조방법 및 연료전지

Country Status (2)

Country Link
KR (1) KR20190037412A (ko)
WO (1) WO2019066494A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883617A (zh) * 2022-06-29 2022-08-09 山西农业大学 一种新型阳离子交换膜及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050052328A (ko) * 2003-11-28 2005-06-02 삼성에스디아이 주식회사 프로톤 전도체 및 이를 이용한 연료전지
JP2007002054A (ja) * 2005-06-22 2007-01-11 Toyobo Co Ltd 複合イオン交換膜およびその製造方法
JP2009016344A (ja) * 2007-06-07 2009-01-22 Samsung Yokohama Research Institute Co Ltd 複合プロトン伝導体、プロトン伝導性電解質膜、及び燃料電池
KR20090056507A (ko) * 2007-11-30 2009-06-03 한국화학연구원 술폰산 및 포스폰산이 함유된 수소이온 전도성 공중합체,그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막연료전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100787865B1 (ko) 2005-04-19 2007-12-27 한국과학기술연구원 제한된 두께의 나피온 캐스트 막을 구비하는 고분자전해질막 연료전지 및 그 작동 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050052328A (ko) * 2003-11-28 2005-06-02 삼성에스디아이 주식회사 프로톤 전도체 및 이를 이용한 연료전지
JP2007002054A (ja) * 2005-06-22 2007-01-11 Toyobo Co Ltd 複合イオン交換膜およびその製造方法
JP2009016344A (ja) * 2007-06-07 2009-01-22 Samsung Yokohama Research Institute Co Ltd 複合プロトン伝導体、プロトン伝導性電解質膜、及び燃料電池
KR20090056507A (ko) * 2007-11-30 2009-06-03 한국화학연구원 술폰산 및 포스폰산이 함유된 수소이온 전도성 공중합체,그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막연료전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LALIA, BOOR SINGH ET AL.: "Polymer Electrolytes Containing Ionic Liquids with Acidic Counteranion (DMRImH2PO4, R = ethyl, butyl and octyl", CHEMICAL PHYSICS LETTERS, vol. 425, no. 4-6, 2006, pages 294 - 300, XP027876663 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883617A (zh) * 2022-06-29 2022-08-09 山西农业大学 一种新型阳离子交换膜及其制备方法、应用

Also Published As

Publication number Publication date
KR20190037412A (ko) 2019-04-08

Similar Documents

Publication Publication Date Title
CN100353603C (zh) 质子导体
US20060263661A1 (en) Proton conductor and electrochemical device
EP2156493B1 (en) Novel electrolyte utilizing a lewis acid/bronsted acid complex
US20080026276A1 (en) Proton-Conducting Material, Solid Polymer Electrolyte Membrane, and Fuel Cell
US7592086B2 (en) Polymer membrane, method of preparing the same, and fuel cell using the same
US20030194593A1 (en) Composite polymer electrolyte membrane for polymer electrolyte membrane fuel cells
WO2023249360A1 (ko) 산화 그래핀-세륨 폴리인산염 나노복합체 기반 산화방지제 및 그의 제조 방법
US20060121333A1 (en) Electrode for fuel cell, method for manufacturing the same, and fuel cell using the same
KR20130118075A (ko) 술폰산기를 가지는 실세스퀴옥산을 이용한 양성자 전도성 고분자나노복합막
WO2019139320A1 (ko) 강화 분리막 제조방법, 이에 의하여 제조된 강화 분리막 및 레독스 흐름 전지
WO2019066494A1 (ko) 복합 고분자 전해질막 제조방법 및 연료전지
WO2018199545A1 (ko) 폴리페닐렌계 음이온 전도체, 이의 제조방법 및 용도
KR20100055185A (ko) 실란계 화합물을 포함하는 탄화수소계 고분자막, 이의 제조방법, 이를 포함하는 막-전극 어셈블리 및 연료전지
WO2016006869A1 (ko) 술폰산기를 포함하는 다면체 올리고머형 실세스퀴옥산을 포함하는 나노 복합막 및 이의 제조방법
KR101070015B1 (ko) 고분자 전해질 복합막 제조 방법 및 이를 이용하여 형성한 고분자 전해질 복합막을 포함하는 고분자 전해질 연료전지
CN112786935A (zh) 耐久性和质子传导性优异的膜电极组件及其制造方法
WO2021137514A1 (ko) 연료전지용 촉매, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리
WO2021137513A1 (ko) 고내구성을 갖는 연료전지용 전극, 그 제조방법, 및 그것을 포함하는 막-전극 어셈블리
US7115334B2 (en) Gel electrolyte and fuel cell employing the same
US20100068594A1 (en) Polymer electrolyte membrane, method of preparing the same, and fuel cell including the polymer electrolyte membrane
US20110091793A1 (en) Proton conducting electrolyte
KR100696460B1 (ko) 수소이온 전도성 폴리머
WO2019146959A1 (ko) 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지
WO2019132053A1 (ko) 보론기가 도입된 카본펠트 및 카본펠트 표면처리방법
WO2018236094A1 (ko) 고분자 전해질막, 이를 포함하는 전기화학 전지 및 흐름 전지, 고분자 전해질막용 조성물, 및 고분자 전해질막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863231

Country of ref document: EP

Kind code of ref document: A1