WO2019066417A1 - 전기기기의 절연열화 진단장치 및 진단방법 - Google Patents

전기기기의 절연열화 진단장치 및 진단방법 Download PDF

Info

Publication number
WO2019066417A1
WO2019066417A1 PCT/KR2018/011274 KR2018011274W WO2019066417A1 WO 2019066417 A1 WO2019066417 A1 WO 2019066417A1 KR 2018011274 W KR2018011274 W KR 2018011274W WO 2019066417 A1 WO2019066417 A1 WO 2019066417A1
Authority
WO
WIPO (PCT)
Prior art keywords
calculated
winding
capacitance
primary winding
following equation
Prior art date
Application number
PCT/KR2018/011274
Other languages
English (en)
French (fr)
Inventor
전명수
Original Assignee
전명수
주식회사 엠에스그리드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전명수, 주식회사 엠에스그리드 filed Critical 전명수
Publication of WO2019066417A1 publication Critical patent/WO2019066417A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings

Definitions

  • the present invention relates to an apparatus and method for diagnosing insulation deterioration of an electric apparatus.
  • electrical devices such as transformers, generators, and motors are produced by winding insulated coils around an iron core.
  • the inductance, resistance, interlayer capacitance, and leakage resistance of the winding are present.
  • the insulation of the equipment deteriorates or the structure is deformed, .
  • the value of these elements is changed beyond the reference value, the insulation breaks down and causes an accident.
  • there are signs such as partial discharge (PD) or generation of gas in insulating oil. Therefore, PD diagnosis and gas analysis are used for preventive diagnosis.
  • PD partial discharge
  • gas analysis are used for preventive diagnosis.
  • PD partial discharge
  • the present invention analyzes the fundamental wave component and the harmonic component of a current flowing into and / or out of a winding and a voltage applied thereto, and detects a value of capacitance, inductance, resistance, ground capacitance, and leakage resistance between ground
  • the present invention provides an apparatus and method for diagnosing an insulation deterioration of an electric device capable of diagnosing insulation deterioration in real time.
  • a method of diagnosing an electrical deterioration of an electric device comprising: detecting a current and a voltage flowing in a winding; Calculating an inter-layer capacitance, an inductance, a resistance, a ground-to-ground composite capacitance, and a ground-to-ground composite leakage resistance by substituting the current and voltage detected in the detection step into a deterioration detection algorithm; And a storage determining step of storing the values calculated in the calculating step in real time and determining that the winding is deteriorated when each calculated value is out of a reference range.
  • the electric machine has a primary winding or a secondary winding
  • the inductance (L 1 ) of the primary winding is calculated by the following equation
  • the resistance (R 1 ) of the primary winding is calculated by the following equation,
  • the interlayer capacitance (C 1 ) of the primary winding is calculated by the following equation,
  • Y 11 is the primary wave primary winding admittance
  • Y 13 is the tertiary primary winding admittance
  • the fundamental wave primary winding admittance (Y 11 ) is calculated by the following equation,
  • the third harmonic primary winding admittance (Y 13 ) is calculated by the following equation,
  • I 011 is the fundamental wave a primary excitation current
  • ⁇ I 011 is phase angle of the I 011
  • E 11 is the phase angle of the fundamental primary winding voltage
  • ⁇ E 11 is E 11
  • ⁇ I is the phase angle 013
  • ⁇ E 13 may represent a phase angle E of 13.
  • the composite leakage resistance Rg 1 between the primary windings is calculated by the following equation,
  • the ground-to-ground composite capacitance (Cg 1 ) of the primary winding is calculated by the following equation,
  • Yg 11 may be a fundamental wave a primary winding leakage admittance.
  • the resistance (R 2 ) of the secondary winding is calculated by the following equation,
  • the interlayer capacitance (C 2 ) of the secondary winding is calculated by the following equation,
  • Y 21 is the fundamental wave secondary winding admittance
  • Y 23 is the tertiary secondary winding admittance
  • the fundamental wave secondary winding admittance (Y 21 ) is calculated by the following equation,
  • the third harmonic secondary winding admittance (Y 23 ) is calculated by the following equation,
  • I 021 is the fundamental wave secondary side excitation current
  • ⁇ I 021 is phase angle of the I 021
  • E 21 is a fundamental wave secondary winding voltage
  • ⁇ E 21 is the phase angle
  • ⁇ I 023 has a phase angle of 023 I
  • ⁇ E 23 may represent a phase angle E of 23.
  • the ground-to-ground composite capacitance (Cg 2 ) of the secondary winding is calculated by the following equation,
  • Yg 21 may be the fundamental wave secondary winding leakage admittance.
  • the electric device is provided with both of the primary winding and the secondary winding when the electric device is a transformer, and in the calculating step, the interlayer capacitance, inductance, resistance, interground mass composite capacitance and interground earth combined leakage resistance of the primary winding,
  • the deterioration can be determined by calculating the interlayer capacitance, inductance, resistance, ground capacitance, and ground leakage resistance of the secondary winding.
  • the fundamental wave primary exciting current (I 011 ) is changed to the fundamental wave primary winding output current (I 11 ), and the triple wave primary electromotive force current (I 013 ) (I 13 ) of the primary winding.
  • the deterioration can be determined by calculating the composite leakage resistance Rg 1 and the intergrounding composite capacitance Cg 1 of the primary winding.
  • deterioration can be determined by calculating the composite leakage resistance Rg 2 and the intergrounding composite capacitance Cg 2 of the secondary winding.
  • the apparatus for diagnosing an electric deterioration of an electric device analyzes a fundamental wave component and a harmonic component of an electric current flowing into and / or out of a coil and a voltage applied thereto and determines the capacitance, inductance, resistance, It is possible to detect the leakage resistance value of the composite capacitance and the earth leakage current, and thereby to detect the deterioration of the winding in real time. Accordingly, the apparatus for diagnosing an electric deterioration of an electric device according to the present invention can reduce deterioration measurement time and cost, and can improve the safety of the electric device.
  • FIG. 1 is a block diagram showing an apparatus for diagnosing an electrical deterioration of an electric device according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing an equivalent circuit of a transformer in an electric machine
  • FIG. 2B is a diagram showing a more simplified equivalent circuit in FIG. 2A.
  • FIG. 3 is a circuit diagram showing a state for measuring the insulation deterioration of the secondary winding of the transformer in the electric equipment.
  • FIG. 1 is a block diagram showing an apparatus for diagnosing an electrical deterioration of an electric device according to an embodiment of the present invention.
  • an apparatus for diagnosing an electrical deterioration of an electric apparatus 100 includes a detecting unit 110, an operation unit 120, a storage determination unit 140, and a signal output unit 150 do.
  • the electric device refers to an electric device that is made by winding an insulated coil on an iron core, that is, having an electric wire.
  • the electric device may include a transformer, a generator, a motor, a shunt reactor or an electric motor.
  • the detection unit 110 detects in real time the current flowing into and / or outflow from the windings and the applied voltage in the electric device for diagnosing deterioration.
  • the current and voltage detected by the detecting unit 110 are transmitted to the calculating unit 120.
  • the detector may measure a current flowing in and / or out of the winding and a voltage applied thereto using a separate measuring device, but the present invention is not limited thereto.
  • the operation unit 120 analyzes the fundamental wave component and the harmonic wave component of the current and voltage detected by the detection unit 110. Meanwhile, in the present invention, the deterioration is detected by analyzing the third harmonic component of the harmonic components. However, the harmonic components may be harmonics of any order such as 5th, 7th and 9th harmonics. Specifically, the calculation unit 120 substitutes the detected current and voltage for the deterioration detection algorithm to calculate the values of the interlayer capacitance, inductance, resistance, inter-site composite capacitance, and inter-site composite leakage resistance of the winding.
  • the degradation detection algorithm includes a primary winding algorithm and a secondary winding algorithm.
  • the electric device having the windings may have only the primary side or the secondary side windings, or both the primary side and the secondary side windings, so that different algorithms can be used depending on the winding state of the applied electric device.
  • the degradation detection algorithm will be described in more detail below.
  • the storage determination unit 130 stores in real time the values of the capacitance, inductance, resistance, inter-site composite capacitance, and inter-site composite leakage resistance calculated in the calculation unit 120 and analyzes the stored values, . Specifically, the storage determination unit 130 may determine that deterioration has occurred if the measured capacitance, inductance, resistance, inter-site composite capacitance, and ground-to-ground combined leakage resistance values are out of the reference range. Here, the storage determination unit 130 preliminarily stores the values of the capacitance, inductance, resistance, ground capacitance, and the reference range of the ground leakage resistance.
  • the signal output unit 140 outputs a signal according to the determination result of the storage determination unit 130. For example, the signal output unit 140 determines that any one of the capacitance, inductance, resistance, inter-site composite capacitance, and ground-to-ground composite leakage resistance of the winding is out of the reference range in the storage determination unit 130 An alarm can be generated.
  • FIG. 2A is a diagram showing an equivalent circuit of a transformer in an electric machine
  • FIG. 2B is a diagram showing a more simplified equivalent circuit in FIG. 2A.
  • the transformer includes a primary winding and a secondary winding. Therefore, in the apparatus for diagnosing an electrical deterioration of an electric apparatus 100 according to the present invention, the calculating unit 120 applies a primary winding algorithm to measure the insulation deterioration of the primary winding of the transformer, Apply a secondary winding algorithm to measure degradation.
  • E 11 is the fundamental primary winding voltage
  • C 1 is the primary winding interlayer capacitance
  • R 1 is the primary winding resistance
  • L 1 is the primary winding inductance
  • I '11 is the fundamental primary winding flows current
  • I 11 denotes a fundamental wave a primary winding leakage current
  • Ig 11 is the fundamental primary composite capacitance between wires between grounds leakage current
  • Rg 1 is the primary composite leakage between wires ground resistance
  • Cg 1 is the primary winding Property .
  • E 21 is a fundamental wave secondary winding voltage
  • C 2 is the secondary winding interlayer capacitance
  • R 2 is a secondary winding resistance
  • L 2 is a secondary winding inductance
  • I '21 is the fundamental wave secondary winding leakage current
  • I 21 is the fundamental wave secondary winding current
  • Ig 21 is the fundamental wave secondary winding earth leakage current
  • Rg 2 is the composite leakage resistance between the secondary windings
  • Cg 2 is the composite capacitance between the secondary windings.
  • the primary winding algorithm is calculated in the order of the following equations (1) to (13), and finally the inductance L1 of the primary winding, the resistance R1, the interlayer capacitance C1, And the ground-to-ground composite capacitance (Cg1).
  • Y 11 is the phase angle of the fundamental primary winding admittance
  • I 011 is the fundamental wave a primary excitation current
  • ⁇ I 011 is phase angle of the I 011
  • E 11 is the fundamental primary winding voltage
  • ⁇ E 11 is E 11 .
  • I 011 I 11 -I 21 can be obtained.
  • Y 13 is a three-wave primary winding admittance
  • ⁇ I 013 is the phase angle
  • ⁇ E 13 is a phase angle E 13 .
  • I 013 I 13 -I 23 can be obtained.
  • I 13 is the third harmonic primary winding out current
  • I 23 is the third harmonic secondary winding inrush current.
  • Equation (2) From Equation (2) and Equation (5), the following Equation (7) can be obtained.
  • Equation (10) From Equation (8) and Equation (9), the following Equation (10) can be obtained.
  • Equation (7) Substituting Equation (7) into Equation (10) results in the following.
  • the inductance (L 1 ) of the primary winding is as follows.
  • the interlayer capacitance (C 1 ) of the primary winding can be obtained.
  • Yg 11 is a fundamental wave a primary winding leakage admittance
  • Ig 11 is the phase angle between the fundamental primary winding earth leakage current
  • ⁇ Ig 11 is Ig 11
  • E 11 is the fundamental primary winding voltage
  • ⁇ E 11 is E 11 Respectively.
  • Ig 11 I '11 - can be determined as I 11.
  • the composite capacitance Cg 1 between the primary windings can be obtained from Equation (13).
  • Fig. 3 is a circuit diagram showing a state for measuring the insulation deterioration of the secondary winding of the transformer in the electric equipment.
  • the secondary winding algorithm is calculated in the order of the following equations (14) to (22), and finally the inductance L 2 , the resistance R 2 , the interlayer capacitance C 2 , (Rg 2 ) and ground-to-ground composite capacitance (Cg 2 ).
  • the inductance (L 2 ), the resistance (R 2 ) and the interlayer capacitance (C 2 ) associated with the interlayer deterioration of the secondary winding are measured, it is difficult to detect the state when power is supplied from the primary side. As shown, the circuit breaker on the primary side is opened and power is supplied from the secondary side to measure. Also, when measuring the combined leakage resistance (Rg 2 ) and ground-to-ground composite capacitance (Cg 2 ) associated with deterioration of the ground between secondary windings, it is possible to monitor at all times in the primary power supply state.
  • Y 21 is the phase angle of the fundamental wave secondary winding admittance
  • I 021 is the fundamental wave secondary side excitation current
  • ⁇ I 021 is phase angle of the I 021
  • E 21 is a fundamental wave secondary winding voltage
  • ⁇ E 21 is E 21 .
  • I 021 I 21 - I 11 can be obtained.
  • Y 23 is a three-wave secondary winding admittance
  • ⁇ I 023 phase angle of the I 023
  • E 23 is a three-wave secondary winding voltage
  • ⁇ E 23 is a phase angle E 23 .
  • I 023 I 23 - I 13 can be obtained.
  • the inductance (L 2 ), the resistance (R 2 ), and the interlayer capacitance (C 2 ) of the secondary winding are obtained from the equations (14) to (19) through the same calculation process as the primary winding algorithm .
  • Yg 21 is a fundamental wave secondary winding leakage admittance
  • Ig 21 is a fundamental wave secondary winding between grounds leakage current
  • ⁇ Ig 21 is the phase angle of the Ig
  • E 21 is a fundamental wave secondary winding voltage
  • ⁇ E 21 is E 21 Respectively.
  • Ig 21 I 21 - can be obtained by I '21.
  • Equation (22) the composite capacitance (Cg 2 ) between the secondary windings can be obtained from Equation (22).
  • the deterioration diagnosis apparatus for electrical equipment can measure deterioration of shunt reactors, motors, and generators in addition to a transformer.
  • the primary winding algorithm is used in the same manner, but in the above equation, I 011 is changed to I 11 , and I 013 is changed to I 13 .
  • the degree of deterioration can be measured by applying only the portions related to intergranular deterioration in the primary winding algorithm and the secondary winding algorithm have.
  • the composite leakage resistance between the ground and the inter-site composite capacitance of the motor can be obtained by applying Equations (11) to (13) in the primary winding algorithm.
  • the combined leakage resistance and ground-to-ground combined capacitance of the generator can be obtained by applying Equations (20) to (22) in the secondary winding algorithm.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

본 발명은 권선에 유입 및/또는 유출되는 전류와 인가되는 전압의 기본파 성분과 고조파 성분을 분석하여, 권선의 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설 저항의 값을 검출하여, 실시간으로 절연열화를 진단할 수 있는 전기기기의 절연열화 진단방법에 관한 것이다. 일례로, 권선에 흐르는 전류와 전압을 검출하는 검출 단계; 상기 검출 단계에서 검출된 전류와 전압을 열화검출 알고리즘에 대입하여, 상기 권선의 층간 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설저항을 계산하는 연산 단계; 및 상기 연산 단계에서 계산된 값을 각각 실시간으로 저장하고, 각각의 계산된 값이 기준 범위를 벗어나면 상기 권선이 열화된 것으로 판단하는 저장 판단 단계;를 포함하는 전기기기의 절연열화 진단방법을 개시한다.

Description

전기기기의 절연열화 진단장치 및 진단방법
발명은 전기기기의 절연열화 진단장치 및 진단방법에 관한 것이다.
일반적으로 변압기, 발전기, 전동기 등 절연된 코일을 철심에 감아서 만들어지는 전기기기는 권선의 인덕턴스, 저항과 층간 캐패시턴스 및 누설저항이 존재하며, 설비의 절연이 열화되거나 구조가 변형되면 이러한 소자들의 값이 변화게 된다. 또한, 이러한 소자들의 값이 기준값 이상으로 변화되면 절연이 파괴되어 사고를 유발하게 된다. 한편, 사고에 도달하기 전에 부분방전(PD) 또는 절연유에 가스가 발생하는 등의 징후가 나타나므로, PD측정, 가스분석을 통해 예방진단을 하고 있다. 그러나, 코일의 내부 코어와 인접부근에서 PD가 발생하면 코어로 흡수되므로 검출이 어렵고, 가스가 절연유로 흡수되어 검출되기까지는 시간이 오래 걸리므로, 절연 파괴에 대한 효과적인 예방진단에 어려움이 있다.
본 발명은 권선에 유입 및/또는 유출되는 전류와 인가되는 전압의 기본파 성분과 고조파 성분을 분석하여, 권선의 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설 저항의 값을 검출하여, 실시간으로 절연열화를 진단할 수 있는 전기기기의 절연열화 진단장치 및 진단방법을 제공한다.
본 발명에 의한 전기기기의 절연열화 진단방법은 권선에 흐르는 전류와 전압을 검출하는 검출 단계; 상기 검출 단계에서 검출된 전류와 전압을 열화검출 알고리즘에 대입하여, 상기 권선의 층간 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설저항을 계산하는 연산 단계; 및 상기 연산 단계에서 계산된 값을 각각 실시간으로 저장하고, 각각의 계산된 값이 기준 범위를 벗어나면 상기 권선이 열화된 것으로 판단하는 저장 판단 단계;를 포함한다.
상기 전기기기는 1차권선 또는 2차권선을 구비하고, 상기 1차권선의 인덕턴스(L1)는 다음 수학식에 의해 계산되며,
Figure PCTKR2018011274-appb-I000001
상기 1차권선의 저항(R1)은 다음 수학식에 의해 계산되고,
Figure PCTKR2018011274-appb-I000002
상기 1차권선의 층간 캐패시턴스(C1)는 다음 수학식에 의해 계산되며,
Figure PCTKR2018011274-appb-I000003
여기서,
Figure PCTKR2018011274-appb-I000004
이고,
Y11은 기본파 1차권선 어드미턴스, Y13은 3조파 1차권선 어드미턴스일 수 있다.
상기 기본파 1차권선 어드미턴스(Y11)는 다음 수학식에 의해 계산되고,
Figure PCTKR2018011274-appb-I000005
상기 3조파 1차권선 어드미턴스(Y13)는 다음 수학식에 의해 계산되며,
Figure PCTKR2018011274-appb-I000006
여기서, I011은 기본파 1차측 여자전류, θI011은 I011의 위상각, E11은 기본파 1차권선 전압, θE11은 E11의 위상각, I013은 3조파 1차측 여자전류, θI013은 I013의 위상각, E13은 3조파 1차권선 전압, θE13은 E13의 위상각을 나타낼 수 있다.
상기 1차권선의 대지간 합성 누설저항(Rg1)은 다음 수학식에 의해 계산되고,
Figure PCTKR2018011274-appb-I000007
상기 1차권선의 대지간 합성 캐패시턴스(Cg1)는 다음 수학식에 의해 계산되며,
Figure PCTKR2018011274-appb-I000008
여기서, Yg11은 기본파 1차권선 누설 어드미턴스일 수 있다.
상기 2차권선의 인덕턴스(L2)는 다음 수학식에 의해 계산되며,
Figure PCTKR2018011274-appb-I000009
상기 2차권선의 저항(R2)은 다음 수학식에 의해 계산되고,
Figure PCTKR2018011274-appb-I000010
상기 2차권선의 층간 캐패시턴스(C2)는 다음 수학식에 의해 계산되고,
Figure PCTKR2018011274-appb-I000011
여기서,
Figure PCTKR2018011274-appb-I000012
Y21은 기본파 2차권선 어드미턴스, Y23은 3조파 2차권선 어드미턴스일 수 있다.
상기 기본파 2차권선 어드미턴스(Y21)은 다음 수학식에 의해 계산되고,
Figure PCTKR2018011274-appb-I000013
상기 3조파 2차권선 어드미턴스(Y23)은 다음 수학식에 의해 계산되며,
Figure PCTKR2018011274-appb-I000014
여기서, I021은 기본파 2차측 여자전류, θI021은 I021의 위상각, E21은 기본파 2차권선 전압, θE21은 E21의 위상각, I023은 3조파 2차측 여자전류, θI023은 I023의 위상각, E23은 3조파 2차권선 전압, θE23은 E23의 위상각을 나타낼 수 있다.
상기 2차권선의 대지간 합성 누설저항(Rg2)은 다음 수학식에 의해 계산되고,
Figure PCTKR2018011274-appb-I000015
상기 2차권선의 대지간 합성 캐패시턴스(Cg2)는 다음 수학식에 의해 계산되며,
Figure PCTKR2018011274-appb-I000016
여기서, Yg21은 기본파 2차권선 누설 어드미턴스일 수 있다.
상기 전기기기가 변압기인 경우 상기 1차권선 및 상기 2차권선을 모두 구비하고, 상기 연산 단계에서는 상기 1차권선의 층간 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설저항과, 상기 2차권선의 층간 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설저항을 계산하여 열화를 판단할 수 있다.
상기 전기기기가 분로리액터인 경우, 상기 기본파 1차측 여자전류(I011)를 기본파 1차권선 유출전류(I11)로 변경하고, 상기 3조파 1차측 여자전류(I013)를 3조파 1차권선 유입전류(I13)으로 변경하여 적용할 수 있다.
상기 전기기기가 모터인 경우, 상기 연산 단계에서는 상기 1차권선의 대지간 합성 누설저항(Rg1) 및 대지간 합성 캐패시턴스(Cg1)를 계산하여 열화를 판단할 수 있다.
상기 전기기기가 발전기인 경우, 상기 연산 단계에서는 상기 2차권선의 대지간 합성 누설저항(Rg2) 및 대지간 합성 캐패시턴스(Cg2)를 계산하여 열화를 판단할 수 있다.
본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치는 권선에 유입 및/또는 유출되는 전류와 인가되는 전압의 기본파 성분과 고조파 성분을 분석하여, 권선의 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설 저항의 값을 검출하고, 이를 통해 권선을 열화를 실시간으로 판단할 수 있다. 이에 따라, 본 발명에 따른 전기기기의 절연열화 진단장치는 열화측정 시간 및 비용을 절감할 수 있으며, 전기기기의 안전성을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치를 도시한 블럭도이다.
도 2a는 전기기기 중 변압기의 등가회로를 나타낸 도면이고, 도 2b는 도 2a의 등가회로를 보다 간략하게 나타낸 도면이다.
도 3은 전기기기 중 변압기의 2차권선의 절연열화를 측정하기 위한 상태를 도시한 회로도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
도 1은 본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치를 도시한 블럭도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치(100)는 검출부(110), 연산부(120), 저장 판단부(140) 및 신호 출력부(150)를 포함한다. 여기서, 전기기기는 절연된 코일을 철심에 감아서 만들어지는, 즉, 권선을 구비하는 전기기기를 말한다. 구체적으로, 상기 전기기기는 변압기, 발전기, 모터, 분로리액터 또는 전동기를 포함할 수 있다.
상기 검출부(110)는 열화를 진단하려는 전기기기에서 권선에 유입 및/또는 유출되는 전류와 인가되는 전압을 실시간으로 검출한다. 또한, 상기 검출부(110)에서 검출된 전류 및 전압은 연산부(120)로 전달된다. 여기서, 상기 검출부는 별도의 측정기를 사용하여 권선에 유입 및/또는 유출되는 전류와 인가되는 전압을 측정할 수 있으나, 본 발명에서 그 방법을 한정하는 것은 아니다.
상기 연산부(120)는 상기 검출부(110)에서 검출된 전류 및 전압의 기본파 성분 및 고조파 성분을 분석한다. 한편, 본 발명에서는 고조파 성분 중 3조파 성분을 분석하여 열화를 검출하였으나, 상기 고조파 성분은 5조파, 7조파, 9조파 등 어느 차수의 고조파를 사용하여도 무방하다. 구체적으로, 상기 연산부(120)는 검출된 전류 및 전압을 열화검출 알고리즘에 대입하여, 권선의 층간 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설 저항의 값을 계산한다. 상기 열화검출 알고리즘은 1차권선 알고리즘 및 2차권선 알고리즘을 포함한다. 이는 권선을 갖는 전기기기가 1차측 또는 2차측 권선만 가지거나 혹은 1차측 및 2차측 권선을 모두 가질 수 있기 때문에 적용되는 전기기기의 권선 상태에 따라 다른 알고리즘을 사용할 수 있다. 이러한 열화검출 알고리즘은 하기에서 보다 자세히 설명하기로 한다.
상기 저장 판단부(130)는 상기 연산부(120)에서 계산된 권선의 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설 저항의 값을 실시간으로 저장하고, 저장된 값의 분석하여 열화 상태를 판단한다. 구체적으로, 상기 저장 판단부(130)는 측정된 각각의 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설 저항의 값이 기준 범위를 벗어나면 열화가 발생된 것으로 판단할 수 있다. 여기서, 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설 저항의 기준 범위에 대한 값은 저장 판단부(130)에 미리 저장되어 있다.
상기 신호 출력부(140)는 상기 저장 판단부(130)의 판단 결과에 따른 신호를 출력한다. 예를 들어, 상기 신호 출력부(140)는 상기 저장 판단부(130)에서 권선의 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설 저항의 값 중 어느 하나가 기준 범위를 벗어난 것으로 판단되면 알람을 발생시킬 수 있다.
다음으로 본 발명의 일 실시예에 따른 전기기기의 절연열화 진단장치가 변압기의 열화를 진단하는 방법을 설명하기로 한다.
도 2a는 전기기기 중 변압기의 등가회로를 나타낸 도면이고, 도 2b는 도 2a의 등가회로를 보다 간략하게 나타낸 도면이다.
도 2a 및 도 2b에 도시된 바와 같이, 변압기는 1차권선과 2차권선을 포함한다. 따라서, 본 발명에 따른 전기기기의 절연열화 진단장치(100)에서 상기 연산부(120)는 변압기의 1차권선의 절연열화를 측정하기 위해 1차권선 알고리즘을 적용하고, 변압기의 2차권선의 절연열화를 측정하기 위해 2차권선 알고리즘을 적용한다.
먼저, 도 2b에서 E11은 기본파 1차권선 전압, C1은 1차권선 층간 커패시턴스, R1은 1차권선 저항, L1은 1차권선 인덕턴스, I'11은 기본파 1차권선 유입전류, I11은 기본파 1차권선 유출전류, Ig11은 기본파 1차권선 대지간 유출전류, Rg1은 1차권선 대지간 합성누설저항, Cg1은 1차권선 대지간 합성캐패시턴스를 나타낸다. 또한, E21은 기본파 2차권선 전압, C2은 2차권선 층간 커패시턴스, R2은 2차권선 저항, L2은 2차권선 인덕턴스, I'21은 기본파 2차권선 유출전류, I21은 기본파 2차권선 유입전류, Ig21은 기본파 2차권선 대지간 유출전류, Rg2은 2차권선 대지간 합성누설저항, Cg2은 2차권선 대지간 합성 캐패시턴스를 나타낸다.
상기 1차권선 알고리즘은 다음 수학식 1 내지 수학식 13의 순서로 연산되어, 최종적으로 1차권선의 인덕턴스(L1), 저항(R1), 층간 캐패시턴스(C1), 대지간 합성 누설 저항(Rg1) 및 대지간 합성 캐패시턴스(Cg1)를 구할 수 있다.
Figure PCTKR2018011274-appb-M000001
여기서, Y11은 기본파 1차권선 어드미턴스, I011은 기본파 1차측 여자전류, θI011은 I011의 위상각, E11은 기본파 1차권선 전압, θE11은 E11의 위상각을 나타낸다. 또한, I011 = I11-I21으로 구할 수 있다.
Figure PCTKR2018011274-appb-M000002
Figure PCTKR2018011274-appb-M000003
Figure PCTKR2018011274-appb-M000004
여기서, Y13은 3조파 1차권선 어드미턴스, I013은 3조파 1차측 여자전류, θI013은 I013의 위상각, E13은 3조파 1차권선 전압, θE13은 E13의 위상각을 나타낸다. 또한, I013 = I13-I23으로 구할 수 있다. 여기서, I13은 3조파 1차권선 유출전류, I23은 3조파 2차권선 유입전류를 말한다.
Figure PCTKR2018011274-appb-M000005
Figure PCTKR2018011274-appb-M000006
상기 수학식 2와 수학식 5로부터 다음 수학식 7을 구할 수 있다.
Figure PCTKR2018011274-appb-M000007
여기서,
Figure PCTKR2018011274-appb-I000017
이다.
또한, 상기 수학식 3과 수학식 6으로부터 다음 수학식 8과 수학식 9를 구할 수 있다.
Figure PCTKR2018011274-appb-M000008
Figure PCTKR2018011274-appb-M000009
상기 수학식 8과 수학식 9로부터 다음 수학식 10을 구할 수 있다.
Figure PCTKR2018011274-appb-M000010
그리고, 수학식 10에 수학식 7을 대입하면 다음과 같다.
Figure PCTKR2018011274-appb-I000018
따라서, 1차권선의 인덕턴스(L1)는 다음과 같다.
Figure PCTKR2018011274-appb-I000019
상기 L1 값을 수학식 7에 대입하면, 1차권선의 저항(R1)을 구할 수 있다.
Figure PCTKR2018011274-appb-I000020
또한, 상기 L1과 R1 값을 수학식 8에 대입하면, 1차권선의 층간 캐패시턴스(C1)를 구할 수 있다.
Figure PCTKR2018011274-appb-I000021
Figure PCTKR2018011274-appb-M000011
여기서, Yg11은 기본파 1차권선 누설 어드미턴스, Ig11은 기본파 1차권선 대지간 유출전류, θIg11은 Ig11의 위상각, E11은 기본파 1차권선 전압, θE11은 E11의 위상각을 나타낸다. 또한, Ig11 = I'11 - I11으로 구할 수 있다.
Figure PCTKR2018011274-appb-M000012
Figure PCTKR2018011274-appb-M000013
상기 수학식 12로부터 1차권선 대지간 합성 누설저항(Rg1)을 구할 수 있다.
Figure PCTKR2018011274-appb-I000022
또한, 상기 수학식 13으로부터 1차권선 대지간 합성 캐패시턴스(Cg1)을 구할 수 있다.
Figure PCTKR2018011274-appb-I000023
다음으로, 도 3은 전기기기 중 변압기의 2차권선의 절연열화를 측정하기 위한 상태를 도시한 회로도이다.
상기 2차권선 알고리즘은 다음 수학식 14 내지 수학식 22 의 순서로 연산되어, 최종적으로 2차권선의 인덕턴스(L2), 저항(R2), 층간 캐패시턴스(C2), 대지간 합성 누설 저항(Rg2) 및 대지간 합성 캐패시턴스(Cg2)를 구할 수 있다. 여기서, 2차권선의 층간 열화와 관련된 인덕턴스(L2), 저항(R2), 층간 캐패시턴스(C2)를 측정할 때, 1차측에서 전력을 공급한 상태에서는 검출이 곤란하므로, 도 3 도시된 바와 같이, 1차측의 차단기를 개방하고 2차측에서 전력을 공급하여 측정한다. 또한, 2차권선의 대지간 열화와 관련된 대지간 합성 누설 저항(Rg2) 및 대지간 합성 캐패시턴스(Cg2)를 측정할 때는 1차측 전력 공급상태에서도 상시 감시가 가능하다.
Figure PCTKR2018011274-appb-M000014
여기서, Y21은 기본파 2차권선 어드미턴스, I021은 기본파 2차측 여자전류, θI021은 I021의 위상각, E21은 기본파 2차권선 전압, θE21은 E21의 위상각을 나타낸다. 또한, I021 = I21 - I11으로 구할 수 있다.
Figure PCTKR2018011274-appb-M000015
Figure PCTKR2018011274-appb-M000016
Figure PCTKR2018011274-appb-M000017
여기서, Y23은 3조파 2차권선 어드미턴스, I023은 3조파 2차측 여자전류, θI023은 I023의 위상각, E23은 3조파 2차권선 전압, θE23은 E23의 위상각을 나타낸다. 또한, I023 = I23 - I13으로 구할 수 있다.
Figure PCTKR2018011274-appb-M000018
Figure PCTKR2018011274-appb-M000019
더불어, 상기 1차권선 알고리즘과 동일한 연산과정을 통하여 상기 수학식 14 내지 수학식 19로부터, 하기와 같이 2차권선의 인덕턴스(L2), 저항(R2), 층간 캐패시턴스(C2)를 구할 수 있다.
Figure PCTKR2018011274-appb-I000024
Figure PCTKR2018011274-appb-I000025
Figure PCTKR2018011274-appb-I000026
Figure PCTKR2018011274-appb-M000020
여기서, Yg21은 기본파 2차권선 누설 어드미턴스, Ig21은 기본파 2차권선 대지간 유출전류, θIg21은 Ig21의 위상각, E21은 기본파 2차권선 전압, θE21은 E21의 위상각을 나타낸다. 또한, Ig21 = I21 - I'21으로 구할 수 있다.
Figure PCTKR2018011274-appb-M000021
Figure PCTKR2018011274-appb-M000022
상기 수학식 21로부터 2차권선 대지간 합성 누설저항(Rg2)을 구할 수 있다.
Figure PCTKR2018011274-appb-I000027
또한, 상기 수학식 22로부터 2차권선 대지간 합성 캐패시턴스(Cg2)을 구할 수 있다.
Figure PCTKR2018011274-appb-I000028
더불어, 본 발명의 일 실시예에 따른 전기기기 절연열화 진단장치는 변압기 외에도 분로리액터, 모터 및 발전기의 열화도 측정할 수 있다.
예를 들어, 분로리액터의 열화를 측정할 때에는 상기 1차권선 알고리즘을 동일하게 사용하되, 상기 수학식에서 I011을 I11으로 변경하고, I013을 I13으로만 변경하여 그대로 적용 가능하다.
또한, 모터나 발전기와 같은 회전기는 변압기와는 다르게 층간 열화보다는 대지간 열화가 주요인이므로, 상기 1차권선 알고리즘 및 2차권선 알고리즘에서 대지간 열화와 관련된 부분만 적용하여 열화의 정도를 측정할 수 있다.
모터의 대지간 열화를 측정할 때는 상기 1차권선 알고리즘에서 수학식 11 내지 수학식 13을 적용하여, 모터의 대지간 합성 누설저항 및 대지간 합성 캐패시턴스를 구할 수 있다.
또한, 발전기의 열화를 측정할 때는 상기 2차권선 알고리즘에서 수학식 20 내지 수학식 22를 적용하여, 발전기의 대지간 합성 누설저항 및 대지간 합성 캐패시턴스를 구할 수 있다.
이상에서 설명한 것은 본 발명에 의한 전기기기의 절연열화 진단장치를 실시하기 위한 하나의 실시예에 불과한 것으로서, 본 발명은 상기한 실시예에 한정되지 않고, 이하의 특허청구범위에서 청구하는 바와 같이 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변경 실시가 가능한 범위까지 본 발명의 기술적 정신이 있다고 할 것이다.

Claims (11)

  1. 권선에 흐르는 전류와 전압을 검출하는 검출 단계;
    상기 검출 단계에서 검출된 전류와 전압을 열화검출 알고리즘에 대입하여, 상기 권선의 층간 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설저항을 계산하는 연산 단계; 및
    상기 연산 단계에서 계산된 값을 각각 실시간으로 저장하고, 각각의 계산된 값이 기준 범위를 벗어나면 상기 권선이 열화된 것으로 판단하는 저장 판단 단계;를 포함하고,
    상기 전기기기는 1차권선 또는 2차권선을 구비하고,
    상기 1차권선의 인덕턴스(L1)는 다음 수학식에 의해 계산되며,
    Figure PCTKR2018011274-appb-I000029
    상기 1차권선의 저항(R1)은 다음 수학식에 의해 계산되고,
    Figure PCTKR2018011274-appb-I000030
    상기 1차권선의 층간 캐패시턴스(C1)는 다음 수학식에 의해 계산되며,
    Figure PCTKR2018011274-appb-I000031
    여기서,
    Figure PCTKR2018011274-appb-I000032
    이고,
    Y11은 기본파 1차권선 어드미턴스, Y13은 3조파 1차권선 어드미턴스인 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  2. 제 1 항에 있어서,
    상기 기본파 1차권선 어드미턴스(Y11)는 다음 수학식에 의해 계산되고,
    Figure PCTKR2018011274-appb-I000033
    상기 3조파 1차권선 어드미턴스(Y13)는 다음 수학식에 의해 계산되며,
    Figure PCTKR2018011274-appb-I000034
    여기서, I011은 기본파 1차측 여자전류, θI011은 I011의 위상각, E11은 기본파 1차권선 전압, θE11은 E11의 위상각, I013은 3조파 1차측 여자전류, θI013은 I013의 위상각, E13은 3조파 1차권선 전압, θE13은 E13의 위상각을 나타내는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  3. 제 1 항에 있어서,
    상기 1차권선의 대지간 합성 누설저항(Rg1)은 다음 수학식에 의해 계산되고,
    Figure PCTKR2018011274-appb-I000035
    상기 1차권선의 대지간 합성 캐패시턴스(Cg1)는 다음 수학식에 의해 계산되며,
    Figure PCTKR2018011274-appb-I000036
    여기서, Yg11은 기본파 1차권선 누설 어드미턴스인 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  4. 제 1 항에 있어서,
    상기 2차권선의 인덕턴스(L2)는 다음 수학식에 의해 계산되며,
    Figure PCTKR2018011274-appb-I000037
    상기 2차권선의 저항(R2)은 다음 수학식에 의해 계산되고,
    Figure PCTKR2018011274-appb-I000038
    상기 2차권선의 층간 캐패시턴스(C2)는 다음 수학식에 의해 계산되고,
    Figure PCTKR2018011274-appb-I000039
    여기서,
    Figure PCTKR2018011274-appb-I000040
    Y21은 기본파 2차권선 어드미턴스, Y23은 3조파 2차권선 어드미턴스인 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  5. 제 4 항에 있어서,
    상기 기본파 2차권선 어드미턴스(Y21)은 다음 수학식에 의해 계산되고,
    Figure PCTKR2018011274-appb-I000041
    상기 3조파 2차권선 어드미턴스(Y23)은 다음 수학식에 의해 계산되며,
    Figure PCTKR2018011274-appb-I000042
    여기서, I021은 기본파 2차측 여자전류, θI021은 I021의 위상각, E21은 기본파 2차권선 전압, θE21은 E21의 위상각, I023은 3조파 2차측 여자전류, θI023은 I023의 위상각, E23은 3조파 2차권선 전압, θE23은 E23의 위상각을 나타내는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  6. 제 1 항에 있어서,
    상기 2차권선의 대지간 합성 누설저항(Rg2)은 다음 수학식에 의해 계산되고,
    Figure PCTKR2018011274-appb-I000043
    상기 2차권선의 대지간 합성 캐패시턴스(Cg2)는 다음 수학식에 의해 계산되며,
    Figure PCTKR2018011274-appb-I000044
    여기서, Yg21은 기본파 2차권선 누설 어드미턴스인 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  7. 제 1 항에 있어서,
    상기 전기기기가 변압기인 경우 상기 1차권선 및 상기 2차권선을 모두 구비하고, 상기 연산 단계에서는 상기 1차권선의 층간 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설저항과, 상기 2차권선의 층간 캐패시턴스, 인덕턴스, 저항, 대지간 합성 캐패시턴스 및 대지간 합성 누설저항을 계산하여 열화를 판단하는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  8. 제 2 항에 있어서,
    상기 전기기기가 분로리액터인 경우, 상기 기본파 1차측 여자전류(I011)를 기본파 1차권선 유출전류(I11)로 변경하고, 상기 3조파 1차측 여자전류(I013)를 3조파 1차권선 유입전류(I13)으로 변경하여 적용하는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  9. 제 3 항에 있어서,
    상기 전기기기가 모터인 경우, 상기 연산 단계에서는 상기 1차권선의 대지간 합성 누설저항(Rg1) 및 대지간 합성 캐패시턴스(Cg1)를 계산하여 열화를 판단하는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  10. 제 6 항에 있어서,
    상기 전기기기가 발전기인 경우, 상기 연산 단계에서는 상기 2차권선의 대지간 합성 누설저항(Rg2) 및 대지간 합성 캐패시턴스(Cg2)를 계산하여 열화를 판단하는 것을 특징으로 하는 전기기기의 절연열화 진단방법.
  11. 상기 제 1 항 내지 제 10 항 중 어느 한 항에 기재된 진단방법으로 전기기기의 절연열화를 진단하는 것을 특징으로 하는 전기기기의 절연열화 진단장치.
PCT/KR2018/011274 2017-09-29 2018-09-21 전기기기의 절연열화 진단장치 및 진단방법 WO2019066417A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0126712 2017-09-29
KR1020170126712A KR101840980B1 (ko) 2017-09-29 2017-09-29 전기기기의 절연열화 진단장치 및 진단방법

Publications (1)

Publication Number Publication Date
WO2019066417A1 true WO2019066417A1 (ko) 2019-04-04

Family

ID=62199429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011274 WO2019066417A1 (ko) 2017-09-29 2018-09-21 전기기기의 절연열화 진단장치 및 진단방법

Country Status (2)

Country Link
KR (1) KR101840980B1 (ko)
WO (1) WO2019066417A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166425A (zh) * 2022-05-12 2022-10-11 国网安徽省电力有限公司马鞍山供电公司 一种干式空心电抗器匝间绝缘缺陷监测系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102167770B1 (ko) 2020-07-29 2020-10-19 (주)오앤엠 코리아 Sfra 신호분석을 통한 고정자 권선 층간 절연 열화 진단 시스템
KR102406425B1 (ko) * 2020-09-29 2022-06-08 전명수 전기기기의 절연열화 진단장치 및 진단 방법
KR102518001B1 (ko) 2022-10-12 2023-04-05 (주)오앤엠 코리아 Sfra 측정기법을 이용한 고정자 권선의 절연 열화 진단 및 부분방전 측정시스템
CN116299048B (zh) * 2023-05-15 2023-08-25 山东海鲲数控设备有限公司 一种基于路边变压器漏电预警系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0172603B1 (ko) * 1989-07-31 1999-03-30 다께바야시 쇼오고 전기설비의 절연열화 감시장치
JP2006524332A (ja) * 2003-04-23 2006-10-26 パワートロン エンジニアリング カンパニー リミテッド 非常電源システムの劣化診断システム
KR100817890B1 (ko) * 2006-08-16 2008-03-31 김보경 전선로의 절연검출장치 및 절연검출방법
KR101226474B1 (ko) * 2012-12-12 2013-01-28 주식회사유성계전 콘덴서 뱅크의 열화 예측 장치 및 그 방법
KR20170074986A (ko) * 2014-12-10 2017-06-30 미쓰비시덴키 가부시키가이샤 전동기의 진단 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0172603B1 (ko) * 1989-07-31 1999-03-30 다께바야시 쇼오고 전기설비의 절연열화 감시장치
JP2006524332A (ja) * 2003-04-23 2006-10-26 パワートロン エンジニアリング カンパニー リミテッド 非常電源システムの劣化診断システム
KR100817890B1 (ko) * 2006-08-16 2008-03-31 김보경 전선로의 절연검출장치 및 절연검출방법
KR101226474B1 (ko) * 2012-12-12 2013-01-28 주식회사유성계전 콘덴서 뱅크의 열화 예측 장치 및 그 방법
KR20170074986A (ko) * 2014-12-10 2017-06-30 미쓰비시덴키 가부시키가이샤 전동기의 진단 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115166425A (zh) * 2022-05-12 2022-10-11 国网安徽省电力有限公司马鞍山供电公司 一种干式空心电抗器匝间绝缘缺陷监测系统及方法
CN115166425B (zh) * 2022-05-12 2024-04-16 国网安徽省电力有限公司马鞍山供电公司 一种干式空心电抗器匝间绝缘缺陷监测系统及方法

Also Published As

Publication number Publication date
KR101840980B1 (ko) 2018-05-04

Similar Documents

Publication Publication Date Title
WO2019066417A1 (ko) 전기기기의 절연열화 진단장치 및 진단방법
US7154279B2 (en) Partial discharge detection test link, partial discharge detection system and methods for detecting partial discharge on a power cable
WO2013015556A2 (ko) 자기진단 기능을 구비한 수배전반의 이상 검출 방법
WO2017043750A1 (ko) 마이크로그리드용 인버터 장치 및 이를 제어하는 방법
WO2021201369A1 (ko) 화재발생 예측 시스템 및 그 방법
CN1920721A (zh) 水电站微机监控保护系统调试方法
WO2012043938A1 (ko) 전력조류 제어 시스템 및 방법
WO2018199659A1 (ko) 변전소 자산 관리 방법
JP3355905B2 (ja) 絶縁監視システム
CN106530182A (zh) 基于三防手段的电气火灾的防护方法
WO2020159026A1 (ko) 누전 차단기 및 그 누설 전류 검출 방법
CN105974226A (zh) 一种便携式电力设备试验电源装置及其检测方法
WO2020013619A1 (ko) 전력계통 신뢰도 지수를 토대로 한 변전소 자산 관리 방법 및 장치
US11740271B2 (en) Insulation resistance monitoring device
CN206649116U (zh) 水内冷发电机绝缘检测用直流高压发生装置
WO2012030015A1 (ko) 초전도 케이블의 고장점 탐지 시스템 및 방법
WO2014046467A1 (ko) 직류고전압 초전도케이블 부하시험 장치
US7142403B2 (en) Method for detection of a ground fault, which occurs in the vicinity of a neutral point in an electrical device, as well as an apparatus for carrying out the method
WO2019112258A1 (ko) 케이블의 열화상태 진단장치 및 진단방법
JPH08136597A (ja) 油入変圧器の絶縁診断装置
WO2024090638A1 (ko) Hvdc 전력케이블의 가속열화 모니터링 시스템
CN110632375A (zh) 一种差分式剩余电流检测方法
WO2023229149A1 (ko) 배터리 장치 및 이를 포함하는 배터리 시스템
CN109617017A (zh) 一种发电机定子接地保护系统、方法和装置
WO2020251246A1 (ko) 직류계통의 차단 장치 및 이의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861671

Country of ref document: EP

Kind code of ref document: A1