WO2019065605A1 - 金属造形物の製造装置及び金属造形物の製造方法 - Google Patents

金属造形物の製造装置及び金属造形物の製造方法 Download PDF

Info

Publication number
WO2019065605A1
WO2019065605A1 PCT/JP2018/035387 JP2018035387W WO2019065605A1 WO 2019065605 A1 WO2019065605 A1 WO 2019065605A1 JP 2018035387 W JP2018035387 W JP 2018035387W WO 2019065605 A1 WO2019065605 A1 WO 2019065605A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal powder
shaped article
tank
closed container
Prior art date
Application number
PCT/JP2018/035387
Other languages
English (en)
French (fr)
Inventor
佐々木 智章
佐藤 豊幸
宏紀 天野
祐典 山口
Original Assignee
大陽日酸株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陽日酸株式会社 filed Critical 大陽日酸株式会社
Priority to JP2019545119A priority Critical patent/JPWO2019065605A1/ja
Publication of WO2019065605A1 publication Critical patent/WO2019065605A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to an apparatus for producing a metal shaped article and a method for producing a metal shaped article.
  • Additive Manufacturing There is an additive manufacturing technology called Additive Manufacturing.
  • Additive manufacturing technology is attracting attention as a promising technology in the aerospace industry and advanced technology fields such as medical care because structures of any shape can be manufactured in a short time.
  • a 3D metal printer As an example of a manufacturing apparatus using an additional manufacturing technology, a 3D metal printer is known which sinters metal powder stored in a modeling stage with a laser or the like.
  • a 3D metal printer can sequentially stack layers of sintered metal on a build stage to produce a metal build.
  • Patent Document 1 discloses a technique of storing and atomizing a powder only in a dry protective shielding gas atmosphere to adjust the content of a specific element.
  • metal powder is often enclosed in a resin-made closed container.
  • the closed container is placed in the device of the 3D metal printer after opening the lid of the closed container. Thereafter, the metal powder is conveyed to the shaping stage in the device of the 3D metal printer, and sintered by a laser or the like on the shaping stage.
  • the oxidation reaction of the surface of the metal particles of the metal powder inside starts, and the oxidation reaction of the metal powder continues until it is sintered by a laser or the like.
  • the powder of an easily oxidizable metal such as titanium immediately oxidizes the surface when the sealed container is opened.
  • the metal powder since the metal powder has the property of absorbing moisture in the atmosphere, it can not prevent the moisture absorption of the metal powder that occurs between the opening of the closed container and the sintering of the laser.
  • the present invention has been made in view of the above circumstances, and provides an apparatus and a method for producing a metal shaped article capable of producing a metal shaped article excellent in toughness and cracking resistance without impairing the flowability of the metal powder. To be a task.
  • this invention provides the manufacturing apparatus of the following metal shaped objects, and the manufacturing method of metal shaped objects.
  • a device for sintering a metal powder stored in a shaping stage or for solidifying the metal powder to form a metal layer, and laminating the layers to produce a metal shaped article which is a metal
  • a method of producing a metal shaped article characterized in that [6] The method for producing a metal shaped article according to [5], wherein the closed container has a desiccant. [7] The method for producing a metal shaped article according to [6], wherein the desiccant is calcium chloride. [8] The method for producing a metallic object according to any one of [5] to [7], wherein the closed container is made of stainless steel and the inner surface of the closed container is passivated.
  • a metal shaped article excellent in toughness and crack resistance can be produced without impairing the flowability of the metal powder.
  • the apparatus for producing a metal shaped article refers to an apparatus for supplying heat to a metal powder to form a metal layer, and laminating the shaped layers to produce a metal shaped article.
  • a device for producing a metal shaped article may be abbreviated as a "production device”.
  • the apparatus for producing a metal shaped article sinters or melts and solidifies the metal powder by irradiation with a laser and an electron beam or the like to form a metal layer and laminate the formed layer.
  • sintering metal powder etc. when “sintering metal powder etc.” is described, it means to sinter metal powder or to solidify metal powder.
  • the metal layer formed by sintering the metal powder may be simply referred to as “sintered layer”.
  • the shield gas means a gas supplied to the periphery of the metal powder for the purpose of reducing the concentration of oxygen gas around the metal powder when the metal powder is sintered or the like.
  • FIG. 1 is a schematic view showing an example of the configuration of the manufacturing apparatus 20.
  • the manufacturing apparatus 20 includes a laser oscillator 1, an optical system 2, a transport unit 3, and a modeling unit 4.
  • the manufacturing apparatus 20 includes a laser oscillator 1, an optical system 2, a transport unit 3, and a modeling unit 4.
  • each component of the manufacturing apparatus 20 of a metal shaped article will be described in detail.
  • the laser oscillator 1 is not particularly limited as long as it can emit a laser.
  • the laser oscillator 1 irradiates a laser to the metal powder M in the shaping unit 4 via the optical system 2. Thereby, the manufacturing apparatus 20 can sinter etc. the metal powder M of the position where the laser was irradiated, and can model a metal layer.
  • the optical system 2 is not particularly limited as long as the reflection position of the laser irradiated from the laser oscillator 1 to the metal powder M can be controlled according to previously input data.
  • the optical system 2 can be configured by, for example, one or more reflecting mirrors.
  • the manufacturing apparatus 20 can control the position of the laser irradiated to the metal powder M by controlling the optical system 2 according to the data input in advance, and can form a metal layer of an arbitrary shape.
  • the transport unit 3 accommodates the sealed container in which the metal powder M is sealed, in an internal space under an inert gas atmosphere. Since the internal space of the transport unit 3 is in the inert gas atmosphere, oxidation and moisture absorption of the metal powder M can be prevented even after the sealed container housed in the internal space of the transport unit 3 is opened.
  • the internal space of the transport unit 3 is shut off from the outside air.
  • the internal space of the transport unit 3 can be easily maintained under an inert gas atmosphere.
  • the inert gas is supplied from the supply source of inert gas (not shown) to the internal space of the transport unit 3 and the internal space of the transport unit 3 is The purge method to purge is illustrated.
  • the oxygen gas concentration and the water concentration in the internal space of the transport unit 3 can be easily reduced.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of the sealed container 30 housed in the internal space of the transport unit 3.
  • the closed container 30 includes a container lid 30 a and a container body 30 b.
  • the container lid 30a is a lid for sealing the container body 30b.
  • the material of the container lid 30a and the container body 30b is stainless steel such as SUS.
  • the container lid 30 a has a packing material 31 and a getter material 32.
  • the packing material 31 is not particularly limited as long as the inside of the container body 30b can be sealed. By the packing material 31, the closed container 30 is kept airtight, and the oxidation of the metal powder M can be further prevented.
  • the getter material 32 is an example of a desiccant. The getter material 32 can further prevent moisture absorption of the metal powder M in the sealed state. Examples of the getter material 32 include silica gel, lime, calcium chloride and the like. Among these, calcium chloride is preferred. Calcium chloride is preferable because it absorbs water to easily form a stable hydrate, has a very high hygroscopic ability, and can absorb about 10 g of water with respect to 1 g of calcium chloride.
  • the container body 30b stores the metal powder M.
  • the container body 30 b has an oxide film 33 on the inner surface of the container.
  • the oxide film 33 is a film formed by a passivating method in which the rust prevention performance is improved by a nitric acid-based oxidizing agent.
  • As the oxide film 33 a film by chromium rich passivation is particularly preferable.
  • the chromium rich passivation treatment is a treatment to form a Cr 2 O 3 oxide film with a high concentration by performing a thermal oxidation treatment in a low oxygen atmosphere after applying a process-altered layer by electrolytic composite polishing.
  • Examples of the metal powder M include powders of various metals such as carbon, boron, magnesium, calcium, chromium, copper, iron, manganese, molybdenum, cobalt, nickel, hafnium, niobium, titanium, aluminum, and alloys thereof. .
  • the particle diameter of the metal particles of the metal powder M is about 10 to 200 ⁇ m.
  • the transport unit 3 (see FIG. 1) has an unillustrated unsealing device for unsealing the above-mentioned closed container 30 in the internal space of the transport unit 3.
  • an unsealing apparatus As an unsealing apparatus, the operation arm which penetrates the interior space of conveyance part 3, and the exterior space is illustrated.
  • the operation arm is not particularly limited as long as the operation of opening the sealed container 30 can be controlled from the external space of the transport unit 3.
  • An arm type robot is illustrated as an operation arm.
  • the transport unit 3 includes a transport device (not shown) that transports the metal powder M in the sealed container 30 that has been opened to the modeling unit 4.
  • the transport device is not particularly limited as long as the metal powder M can be transported in the internal space of the transport unit 3.
  • the forming unit 4 is a case for forming a sintered layer by sintering the metal powder M or the like, and laminating the sintered layer.
  • the shaping unit 4 accommodates the shaping stage 5, the first supply tank 6, and the supply path 7.
  • the shaping unit 4 supplies the metal powder M to the shaping stage 5 from the first supply tank 6 through the supply path 7.
  • the shaping unit 4 repeats an operation of sintering the metal powder M to model the sintered layer into an arbitrary shape on the modeling stage 5 and an operation of laminating the sintered layer formed into an arbitrary shape.
  • a metal shaped article X having a three-dimensional structure of
  • the modeling unit 4 is connected to a shield gas supply unit (not shown).
  • the shield gas supply unit is not particularly limited as long as it can supply the shield gas into the modeling unit 4 and purge the oxygen gas from the modeling unit 4.
  • the first supply tank 6 is a tank for temporarily storing the metal powder M.
  • the metal powder M transported from the transport unit 3 is stored in the first supply tank 6.
  • the bottom of the first supply tank 6 is connected to the supply path 7.
  • the supply path 7 is connected at a first end to the bottom of the first supply tank 6 and at a second end to the shaping stage 5.
  • the metal powder M is supplied from the first supply tank 6 to the modeling stage 5 through the supply path 7.
  • the supply device for supplying the metal powder M in the sealed container 30 to the modeling stage 5 is configured by the above-described transfer device, the first supply tank 6, and the supply path 7. .
  • the shaping stage 5 is a place where shaping of the sintered layer and lamination of the shaped sintered layer are performed.
  • the modeling stage 5 has a second supply tank 8, a modeling tank 9, a recoater 10, and a recess 11.
  • the second supply tank 8 is a tank for storing the metal powder M and supplying the metal powder M to the shaping tank 9.
  • the second supply tank 8 is connected to the second end of the supply path 7. Thereby, the metal powder M is supplied to the second supply tank 8.
  • the metal powder M supplied from the first supply tank 6 is spread in the second supply tank 8.
  • the bottom surface of the second supply tank 8 is supported by the first elevator 13.
  • the first elevator 13 is movable upward in the figure. Thus, the bottom surface of the second supply tank 8 can move upward in the figure.
  • the shaping tank 9 is a tank for storing the metal powder M and for shaping the metal shaped article X.
  • the metal powder M supplied from the second supply tank 8 is spread in the modeling tank 9. Further, in the shaping tank 9, a metal shaped article X in the process of shaping is formed.
  • the bottom surface of the modeling tank 9 is supported by the second elevator 12.
  • the second elevator 12 is movable downward in FIG. Thus, the bottom surface of the modeling tank 9 can move downward in the drawing.
  • the recoater 10 supplies the metal powder M stored in the second supply tank 8 to the forming tank 9 and makes the upper surfaces of the second supply tank 8 and the forming tank 9 uniform with the upper surface of the forming stage 5.
  • the recoater 10 is movable in the horizontal direction in FIG. 1 along the upper surface of the forming stage 5.
  • the tip 10 a of the recoater 10 is in contact with the upper surface of the forming stage 5. Therefore, when the recoater 10 moves in the left direction in FIG. 1, the metal powder on the upper surface of the forming stage 5 is transported in the left direction in FIG. 1, and the upper surfaces of the second supply tank 8 and the forming tank 9 It becomes uniform with the upper surface of the modeling stage 5.
  • the recess 11 is provided on the upper surface of the modeling stage 5. Of the metal powder M transported by the recoater 10, the remaining metal powder M not supplied to the modeling tank 9 is stored in the recess 11 by the recoater 10 moving to the position of the recess 11 shown in FIG. .
  • the transport unit for housing the sealed container in which the metal powder is enclosed in the internal space under the inert gas atmosphere since the transport unit for housing the sealed container in which the metal powder is enclosed in the internal space under the inert gas atmosphere is provided, the metal powder and Contact with the atmosphere can be prevented, and oxidation and moisture absorption of the metal powder can be reduced. Therefore, since metal powder in which oxidation and moisture absorption are reduced can be used as a raw material, the metal powder can be smoothly supplied to the shaping stage without impairing the fluidity of the metal powder, and the metal is excellent in toughness and crack resistance. Can produce a shaped object.
  • the method for producing a metal shaped article according to the present embodiment is a method for producing a metal shaped article using the apparatus for producing a metal shaped article having the above-described configuration.
  • the manufacturing method of the metal shaped article which concerns on 1st Embodiment is demonstrated concretely.
  • the closed container 30 in which the metal powder M is enclosed is accommodated in the transport unit 3 whose internal space is under an inert gas atmosphere.
  • the inert gas is supplied from the supply source of inert gas (not shown) to the internal space of the transport unit 3 and the internal space of the transport unit 3 is A method of purging is illustrated.
  • the sealed container 30 is opened in the internal space of the transfer unit 3 under the inert gas atmosphere by the opening device of the transfer unit 3. Thereafter, the metal powder M in the sealed container 30 is transferred from the inner space of the transfer unit 3 to the first supply tank 6 in the outer space of the transfer unit 3 by the transfer device of the transfer unit 3. The metal powder M transported to the first supply tank 6 is temporarily stored in the first supply tank 6, and then supplied to the second supply tank 8 through the supply path 7.
  • the metal powder M supplied to the second supply tank 8 is supplied to the modeling tank 9 included in the modeling stage 5.
  • the supply of the metal powder M from the second supply tank 8 to the shaping tank 9 is performed, for example, as follows. First, the first elevator 13 is moved upward. As a result, the upper surface of the metal powder M stored in the second supply tank 8 moves above the upper surface of the modeling stage 5. Since the supply amount of the metal powder M to the modeling tank 9 is determined by the rising distance of the first lifting and lowering stand 13, it is preferable to adjust the rising distance according to the storage amount of the metal powder M in the modeling tank 9 .
  • the recoater 10 moves in the left direction in FIG. Thereby, the metal powder M stored in the second supply tank 8 and located above the upper surface of the modeling stage 5 is supplied to the modeling tank 9. More specifically, the metal powder M located above the upper surface of the modeling stage 5 is transported to the modeling tank 9 by the tip 10 a of the recoater 10. At this time, the top surface of the metal powder M is flattened by the tip 10 a of the recoater 10 so that the top surface of the metal powder M matches the top surface of the modeling stage 5, and the metal powder M is spread in the modeling tank 9.
  • the recoater 10 supplies the metal powder M from the second supply tank 8 to the modeling tank 9, and then moves to the position of the recess 11 shown in FIG.
  • fumes generated by laser irradiation, sputtering, agglomerated particles of metal particles, and oxides of metal powder M are transported to the recess 11 by the recoater 10.
  • fumes, spatters, aggregated particles of metal particles and metal generated by laser irradiation The oxide of powder M is stored.
  • the manufacturing apparatus 20 After supplying the metal powder M to the modeling tank 9, the manufacturing apparatus 20 irradiates the laser to the metal powder M spread in the modeling tank 9 according to previously input data.
  • the laser is irradiated, the metal powder M in the portion irradiated with the laser is sintered, and the sintered layer is shaped into an arbitrary shape along the drawing line of the laser.
  • the second elevator 12 is moved downward, and the upper surface of the metal powder M spread in the forming tank 9 is moved lower than the upper surface of the forming stage 5.
  • the thickness of the sintered layer of the metal powder M is determined by the lowering distance of the second elevator 12.
  • the shield gas supply unit (not shown) into the modeling unit 4 and purge oxygen gas from inside the modeling unit 4.
  • the mechanical physical properties of the metal structure X can be further enhanced, and the deterioration of the shape can be further prevented.
  • the first elevator 13 is moved upward, and the upper surface of the metal powder M spread in the second supply tank 8 is moved above the upper surface of the modeling stage 5.
  • the recoater 10 is moved leftward in FIG.
  • the metal powder M located above the upper surface of the modeling stage 5 is conveyed to the modeling tank 9 by the tip 10 a of the recoater 10 and spread in the modeling tank 9.
  • the top surface of the metal powder M is flattened by the tip 10 a of the recoater 10 so that the top surface of the metal powder M matches the top surface of the shaping stage 5.
  • the metal shaped article X is shaped by repeating the laser irradiation and the supply of the metal powder M on the shaping stage 5.
  • the metal object X is completed.
  • the finished metal object is taken out of the forming tank 9.
  • the closed container in which the metal powder is enclosed is contained in the transport section in which the internal space is under the inert gas atmosphere, Contact with the atmosphere can be prevented, and oxidation and moisture absorption of the metal powder can be reduced. Therefore, since metal powder in which oxidation and moisture absorption are reduced can be supplied as a raw material, metal powder can be smoothly supplied to a modeling stage without impairing the fluidity of the metal powder, and a metal shaped article excellent in toughness and crack resistance Can produce
  • the manufacturing apparatus 20 which concerns on 1st Embodiment described above is a structure provided with the conveyance part 3 out of the modeling part 4, the conveyance part 3 may be accommodated in the modeling part 4.
  • FIG. 1 the manufacturing apparatus 20 which concerns on 1st Embodiment described above is a structure provided with the conveyance part 3 out of the modeling part 4, the conveyance part 3 may be accommodated in the modeling part 4.
  • FIG. 3 is a schematic diagram which shows an example of a structure of the manufacturing apparatus 50 of the metal molded article which concerns on 2nd Embodiment.
  • the transport unit 3 described above is replaced with the transport unit 53
  • the modeling unit 4 described above is replaced with the modeling unit 21. Is the same as that of the manufacturing apparatus 20 according to the first embodiment except that it is housed in the shaping unit 21.
  • the transport unit 53 accommodates the sealed container in which the metal powder M is sealed in the internal space under the inert gas atmosphere. Since the internal space of the transport unit 53 is under an inert gas atmosphere, oxidation and moisture absorption of the metal powder M can be prevented even after the sealed container housed in the internal space of the transport unit 53 is opened.
  • FIG. 4 is a cross-sectional view showing an example of the configuration of the sealed container 40 housed in the internal space of the transport unit 53 provided in the manufacturing apparatus 50.
  • the closed container 40 includes a container lid 40 a and a container body 40 b.
  • the container lid 40a is a lid for sealing the container body 40b.
  • the material of the container lid 40a and the container body 40b is stainless steel such as SUS.
  • the container lid 40 a has a packing material 41 and a getter material 42.
  • the packing material 41 and the getter material 42 the same ones as the packing material 31 and the getter material 32 described in the first embodiment are exemplified.
  • the container body 40b stores the metal powder M.
  • the container body 40b has an oxide film 43 on the inner surface of the container.
  • the oxide film 43 is similar to the oxide film 33 described in the first embodiment in its function and performance.
  • the transport unit 53 (see FIG. 3) has an unillustrated unsealing device for unsealing the above-mentioned closed container 40 in the internal space of the transport unit 53.
  • an unsealing apparatus the operation arm which penetrates the interior space of conveyance part 53, and the exterior space is illustrated.
  • the operation arm is not particularly limited as long as the operation of opening the sealed container 40 can be controlled from the external space of the transport unit 53.
  • An arm type robot is illustrated as an operation arm.
  • the container main body 40 b is accommodated in the transport unit 53 with the opening surface 44 shown in FIG. 4 facing downward.
  • the metal powder M in the container body 40 b is conveyed to the first supply tank 22 under the influence of gravity.
  • the forming unit 21 repeats the operation of forming the sintered layer into an arbitrary shape by sintering the metal powder M and the operation of laminating the formed sintered layer, thereby forming a three-dimensional structure of an arbitrary shape.
  • It is a housing
  • the shaping unit 21 accommodates the first supply tank 22, the supply path 23, the second supply tank 24, the recoater 25, and the modeling stage 28.
  • the transport unit 53 is provided at the upper part of the internal space of the modeling unit 21.
  • the first supply tank 22 is a tank for temporarily storing the metal powder M.
  • the metal powder M transported from the transport unit 53 is stored in the first supply tank 22.
  • the bottom of the first supply tank 22 is connected to the supply path 23.
  • the supply path is connected at a first end to the bottom of the first supply reservoir 22 and at a second end to a second supply reservoir 24. Thereby, the metal powder M is supplied from the first supply tank 22 to the second supply tank 24 via the supply path 23.
  • the recoater 25 supplies the metal powder M stored in the second supply tank 24 to the shaping stage 28.
  • the recoater 25 is provided below the second supply tank 24.
  • the recoater 25 can supply the metal powder M stored in the second supply tank 24 to the modeling stage 28 while moving in the horizontal direction in FIG. 3 along the upper surface of the modeling stage 5.
  • the supply device for supplying the metal powder M in the sealed container 40 to the modeling stage 28 includes the first supply tank 22, the supply path 23, the second supply tank 24, and the recoater 25. And is configured.
  • the recoater 25 makes the upper surface of the forming tank 26 described later uniform with the upper surface of the forming stage 28.
  • the tip 25 a of the recoater 25 is in contact with the upper surface of the forming stage 28. Accordingly, when the recoater 25 moves in the right direction in FIG. 3, the upper surface of the metal powder M stored in the modeling tank 26 becomes uniform with the upper surface of the modeling stage 28.
  • the shaping stage 28 is a place where shaping of the sintered layer and lamination of the shaped sintered layer are performed.
  • the modeling stage 28 has a modeling tank 26 and a lift 27.
  • the shaping tank 26 is a tank for storing the metal powder M and for shaping the metal shaped article X.
  • the metal powder M supplied from the tip 25 a of the recoater 25 is spread in the shaping tank 26. Further, in the shaping tank 26, a metal shaped article X in the process of shaping is formed.
  • the bottom surface of the modeling tank 26 is supported by the elevating table 27.
  • the lifting platform 27 is movable downward in the figure. Thereby, the bottom surface of the modeling tank 26 can move downward in FIG.
  • the apparatus 50 for producing a metallurgical object according to the second embodiment having the configuration described above has the same effects as the apparatus for producing a metal 3D object according to the first embodiment but also utilizes gravity. Since the metal powder M can be transported from the transport unit 53 to the first supply tank 22, the manufacturing apparatus 50 can omit and simplify the transport device of the transport unit 3, which is an essential component of the manufacturing apparatus 20.
  • the method for producing a metal object according to the present embodiment is a method for producing a metal object using the apparatus 50 for producing a metal object having the above-described configuration.
  • the manufacturing method of the metal shaped article which concerns on 2nd Embodiment is demonstrated concretely.
  • the closed container 40 (see FIG. 4) in which the metal powder M is sealed is accommodated in the transport unit 53 whose internal space is under an inert gas atmosphere. At this time, the closed container 40 is accommodated in the transport unit 53 with the opening surface 44 of the closed container 40 directed downward in FIG. 4.
  • the sealed container 40 is unsealed by the unsealing device of the transport unit 53 in the internal space of the transport unit 53 under the inert gas atmosphere.
  • the metal powder M in the closed container 40 is transported from the internal space of the transport unit 53 to the first supply tank 22 in the external space of the transport unit 53 under the influence of gravity.
  • the metal powder M transported to the first supply tank 22 is temporarily stored in the first supply tank 22 and then supplied to the second supply tank 24 via the supply path 23.
  • the metal powder M supplied to the second supply tank 24 is supplied to the forming tank 26 included in the forming stage 28.
  • the supply of the metal powder M from the second supply tank 24 to the modeling tank 26 is performed, for example, as follows.
  • the metal powder M supplied to the second supply tank 24 is temporarily stored in the second supply tank 24, and then supplied to the shaping tank 26 by the recoater 25.
  • the metal powder M is supplied from the second supply tank 24 to the shaping tank 26 by supplying the metal powder M from the tip 25 a of the recoater 25 while the recoater 25 moves in the right direction in FIG. 3.
  • the top surface of the metal powder M is flattened by the tip 25 a of the recoater 25 so that the top surface of the metal powder M coincides with the top surface of the shaping stage 28. Are laid in the modeling tank 26.
  • the manufacturing apparatus 50 irradiates the laser to the metal powder M spread in the modeling tank 26 in accordance with previously input data.
  • the laser is irradiated
  • the metal powder M in the portion irradiated with the laser is sintered, and the sintered layer is shaped into an arbitrary shape along the drawing line of the laser.
  • the lift table 27 moves downward, and the upper surface of the metal powder M placed in the forming tank 26 moves downward from the upper surface of the forming stage 28.
  • the thickness of the sintered layer of the metal powder M is determined by the descent distance of the lifting table 27.
  • the recoater 25 returns to the position shown in FIG. 3 and moves in the right direction shown in FIG. 3 again while supplying the metal powder M to the shaping tank 26. At this time, the top surface of the metal powder M is flattened by the tip 25 a of the recoater 25 so that the top surface of the metal powder M stored in the modeling tank 26 matches the top surface of the modeling stage 28.
  • the metal shaped article X is shaped by repeating the irradiation of the laser on the shaping stage 28 and the supply of the metal powder M.
  • the method for producing a metal object according to the second embodiment described above exerts the same function and effect as the method for producing a metal object according to the first embodiment. Since the metal powder M can be transported to the first supply tank 22 and the metal powder M can be supplied to the shaping unit stage 28, the operation can be simplified as compared with the method of manufacturing a metal shaped article according to the first embodiment.
  • the metal powder is sintered by laser irradiation in the manufacturing apparatus according to the embodiment described above
  • the above-described manufacturing apparatus is configured to melt and solidify the metal powder by laser or electron beam irradiation. It is also good.
  • a titanium alloy Ti6Al4V ( ⁇ 10 to 45 ⁇ m) was used as the metal powder.
  • a general resin container was used as a powder sealed container. It was stored in an environment of a temperature of 18 to 25 ° C. and a humidity of 35 to 70%. The oxygen content of the unused powder and the powder stored for one to five weeks under the above conditions was measured.
  • the “oxygen content [wt%]” was measured for metal powder using an oxygen analyzer TC-600 manufactured by LECO.
  • Comparative Example 2 In Comparative Example 2, a closed container 30 shown in FIG. 2 was used as a powder closed container. The material was stainless steel, and calcium chloride was used as a desiccant. The inside is passivated. The other conditions were the same as in Comparative Example 1, and the oxygen content of the metal powder was measured.
  • the manufacturing apparatus of the metal shaped article which can manufacture the metal shaped article which is excellent in toughness and crack resistance, and its manufacturing method can be provided, without impairing the flowability of metal powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は、金属粉末の流動性を損なうことなく、靱性及び耐割れ性に優れる金属造形物を製造できる金属造形物の製造装置及びその製造方法を提供することを目的とし、造形ステージ(5)に貯蔵された金属粉末(M)を焼結して又は金属粉末(M)を溶融固化させて金属の層を造形し、金属の層を積層して金属造形物(X)を製造する装置であって、金属粉末(M)が封入された密閉容器を、不活性ガス雰囲気下にある内部空間に収容する搬送部(3)と、密閉容器を搬送部(3)の内部空間で開封する開封装置と、密閉容器内の金属粉末(M)を造形ステージ(5)に供給する供給装置とを備えることを特徴とする、金属造形物の製造装置(20)を提供する。

Description

金属造形物の製造装置及び金属造形物の製造方法
 本発明は、金属造形物の製造装置及び金属造形物の製造方法に関する。
 Additive Manufacturingと称される付加製造技術がある。付加製造技術は、任意の形状の構造物を短時間で製造できるため、航空機産業及び医療等の先端技術分野で有望な技術として注目されている。
 付加製造技術を利用する製造装置の一例として、造形ステージに貯蔵された金属粉末をレーザー等で焼結する3D金属プリンターが知られている。3D金属プリンターは、焼結された金属の層を造形ステージ上で順次積層し、金属造形物を製造できる。
 金属造形物の原料となる金属粉末は、種々の特性が要求される金属造形物の性質を決定する要因として重要である。先端技術分野のニーズに応えるために、多種多様の粉末製造技術が開発されている。
 例えば、3D金属プリンターに関する技術分野では、金属造形物の製造に使用しなかった金属粉末を回収して再利用することも望まれている(特許文献1)。特許文献1は、粉末を乾燥した保護遮蔽ガス雰囲気下のみで保管及びアトマイズし、特定の元素の含有量を調整する技術を開示している。
特開2017-82324号公報
 一般に、市販の金属粉末は樹脂製の密閉容器に封入されていることが多い。密閉容器は、密閉容器のふたを開封してから、3D金属プリンターの装置内に設置される。その後、金属粉末は、3D金属プリンターの装置内で造形ステージに搬送され、造形ステージ上でレーザー等によって焼結される。
 ところが、密閉容器のふたを開封したときから、内部の金属粉末の金属粒子の表面の酸化反応が始まり、レーザー等により焼結されるまで金属粉末の酸化反応が継続する。特に、チタン等の酸化しやすい金属の粉末は、密閉容器を開封したときから即座に表面が酸化されてしまう。また、金属粉末は大気中の水分を吸湿する性質があるため、密閉容器の開封からレーザーの焼結までの間に起きる金属粉末の吸湿を防止できない。
 その結果、3D金属プリンターによる金属造形物の造形にあっては、特許文献1に記載の技術等で処理された金属粉末を原料として用いても、金属造形物の靱性及び耐割れ性が低下しやすいという課題があった。
 また、金属粉末の吸湿及び酸化によって金属粉末の流動性が低下すると、造形ステージに金属粉末を供給しにくくなるという課題があった。
 本発明は、上記事情に鑑みてなされたものであって金属粉末の流動性を損なうことなく、靱性及び耐割れ性に優れる金属造形物を製造できる金属造形物の製造装置及びその製造方法を提供することを課題とする。
 上記課題を解決するため、本発明は以下の金属造形物の製造装置および金属造形物の製造方法を提供する。
[1] 造形ステージに貯蔵された金属粉末を焼結して又は前記金属粉末を溶融固化させて金属の層を造形し、前記層を積層して金属造形物を製造する装置であって、金属粉末が封入された密閉容器を、不活性ガス雰囲気下にある内部空間に収容する搬送部と、前記密閉容器を前記内部空間で開封する開封手段と、前記密閉容器内の金属粉末を前記造形ステージに供給する供給手段とを備えることを特徴とする、金属造形物の製造装置。
[2] 前記密閉容器が乾燥剤を有する、[1]の金属造形物の製造装置。
[3] 前記乾燥剤が塩化カルシウムである、[2]の金属造形物の製造装置。
[4] 前記密閉容器がステンレス製であるとともに、前記密閉容器の内面がパシベート処理されている、[1]~[3]のいずれかの金属造形物の製造装置。
[5] 造形ステージに貯蔵された金属粉末を焼結して又は前記金属粉末を溶融固化させて金属の層を造形し、前記層を積層して金属造形物を製造する方法であって、金属粉末が封入された密閉容器を、内部空間が不活性ガス雰囲気下にある搬送部に収容し、前記密閉容器を前記内部空間で開封し、前記密閉容器内の金属粉末を前記造形ステージに供給することを特徴とする、金属造形物の製造方法。
[6] 前記密閉容器が乾燥剤を有する、[5]の金属造形物の製造方法。
[7] 前記乾燥剤が塩化カルシウムである、[6]の金属造形物の製造方法。
[8] 前記密閉容器がステンレス製であるとともに、前記密閉容器の内面がパシベート処理されている、[5]~[7]のいずれかの金属造形物の製造方法。
 本発明によれば、金属粉末の流動性を損なうことなく、靱性及び耐割れ性に優れる金属造形物を製造できる。
本発明を適用した一実施形態に係る金属造形物の製造装置の構成の一例を示す模式図である。 図1の金属造形物の製造装置が備える搬送部の内部空間に収容される密閉容器の構成の一例を示す断面図である。 本発明を適用した一実施形態に係る金属造形物の製造装置の構成の一例を示す模式図である。 図3の金属造形物の製造装置が備える搬送部の内部空間に収容される密閉容器の構成の一例を示す断面図である。 異なる密閉容器に保管された金属粉末の酸素含有量の変化を示すグラフである。
 本明細書において、金属造形物の製造装置とは、金属粉末に熱を供給して金属の層を造形し、造形された層を積層して金属造形物を製造する装置を意味する。本明細書において、金属造形物の製造装置を「製造装置」と省略して記すこともある。
 製造装置における金属粉末に熱を供給する方法としては、レーザー、電子ビーム等を金属粉末に照射すること等が例示されるがこれらに限定されない。金属造形物の製造装置は、レーザー及び電子ビーム等の照射によって金属粉末を焼結して又は溶融固化させて、金属の層を造形し、造形された層を積層する。
 本明細書において、「金属粉末を焼結等する」と記載した場合、金属粉末を焼結すること又は金属粉末を溶融固化させることを意味する。なお、金属粉末を焼結等して造形される金属の層を単に、「焼結層」とも記すことがある。
 本明細書において、シールドガスとは、金属粉末を焼結等する際に、金属粉末の周囲の酸素ガス濃度を低減すること等を目的として金属粉末の周囲に供給されるガスを意味する。
<第1の実施形態>
 以下、本発明を適用した一実施形態の金属造形物の製造装置及び金属造形物の製造方法について、図面を参照しながら詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
[金属造形物の製造装置]
 以下、本発明を適用した一実施形態である第1の実施形態に係る金属造形物の製造装置20の構成について説明する。
 図1は、製造装置20の構成の一例を示す模式図である。図1に示すように、製造装置20は、レーザー発振器1と、光学系2と、搬送部3と、造形部4とを備える。
 以下に金属造形物の製造装置20の各構成要素に関して詳しく説明を行う。
 レーザー発振器1はレーザーを照射できる形態であれば特に限定されない。レーザー発振器1は光学系2を経由させて、レーザーを造形部4内の金属粉末Mに照射する。これにより製造装置20はレーザーが照射された位置の金属粉末Mを焼結等でき、金属の層を造形できる。
 光学系2はレーザー発振器1から金属粉末Mに照射されるレーザーの反射位置をあらかじめ入力されたデータにしたがって制御できる形態であれば特に限定されない。光学系2は、例えば一以上の反射鏡で構成できる。製造装置20は、あらかじめ入力されたデータにしたがって光学系2を制御することで、金属粉末Mに照射されるレーザーの位置を制御し、任意の形状の金属の層を造形できる。
 搬送部3は、金属粉末Mが封入された密閉容器を、不活性ガス雰囲気下にある内部空間に収容する。搬送部3の内部空間が不活性ガス雰囲気下にあることにより、搬送部3の内部空間に収容された密閉容器を開封した後でも、金属粉末Mの酸化及び吸湿を防止できる。
 本実施形態では、搬送部3の内部空間が外気と遮断されている。外気と遮断されていることにより、搬送部3の内部空間が不活性ガス雰囲気下に維持しやすくなる。
 搬送部3の内部空間を不活性ガス雰囲気下に維持する方法としては、図示略の不活性ガスの供給源から搬送部3の内部空間に不活性ガスを供給し、搬送部3の内部空間をパージするパージ方法が例示される。搬送部3の内部空間をパージすると、搬送部3の内部空間の酸素ガス濃度と水分濃度を十分に下げやすくなる。
 図2は、搬送部3の内部空間に収容される密閉容器30の構成の一例を示す断面図である。図2に示すように密閉容器30は、容器蓋30aと、容器本体30bとを備える。容器蓋30aは容器本体30bを密閉するための蓋である。本実施形態では、容器蓋30a及び容器本体30bの材質がSUS等のステンレス製である。
 容器蓋30aはパッキン材31と、ゲッター材32とを有している。
 パッキン材31は、容器本体30b内を密閉できる形態であれば特に限定されない。パッキン材31により、密閉容器30が気密状態に保たれ、金属粉末Mの酸化をさらに防止できる。
 ゲッター材32は乾燥剤の一例である。ゲッター材32により、密閉状態にある金属粉末Mの吸湿をさらに防止できる。ゲッター材32としては、シリカゲル、石灰、塩化カルシウム等が例示される。これらの中でも塩化カルシウムが好ましい。塩化カルシウムは水分を吸収して安定な水和物となりやすく、吸湿能力が非常に強く、塩化カルシウム1gに対して10g程度の水分を吸湿できるため好ましい。
 容器本体30bは金属粉末Mを貯蔵している。容器本体30bは、容器の内側の表面に酸化被膜33を有している。酸化被膜33は、硝酸系の酸化剤により防錆性能を向上させるパシベート処理方法によって形成される膜である。酸化被膜33としては、クロムリッチパッシベート処理による膜が特に好ましい。クロムリッチパッシベート処理は、電解複合研磨により加工変質層を付与した後、低酸素雰囲気中で加熱酸化処理を催し、高濃度のCr酸化皮膜を生成させる処理である。このように容器本体30bがステンレス製であるとともに、容器本体30bの内面がパシベート処理されていると、容器本体30bの内表面に水分子が吸着しにくく、水分子が吸着しても脱離しやすくなる。
 金属粉末Mとしては、カーボン、ホウ素、マグネシウム、カルシウム、クロム、銅、鉄、マンガン、モリブテン、コバルト、ニッケル、ハフニウム、ニオブ、チタン、アルミ等の各種の金属及びこれらの合金の粉末が例示される。
 金属粉末Mの金属粒子の粒径としては、10~200μm程度である。
 搬送部3(図1参照)は、上述の密閉容器30を搬送部3の内部空間で開封する図示略の開封装置を有している。開封装置としては、搬送部3の内部空間と外部空間とを貫通する操作アームが例示される。操作アームとしては、密閉容器30を開封する操作を搬送部3の外部空間から制御できる形態であれば特に限定されない。操作アームとしてはアーム型ロボットが例示される。
 搬送部3は、開封された密閉容器30内の金属粉末Mを造形部4に搬送する図示略の搬送装置を有している。搬送装置としては、搬送部3の内部空間で金属粉末Mを搬送できる形態であれば特に限定されない。
 造形部4は金属粉末Mを焼結等して焼結層を造形し、焼結層を積層するための筐体である。図1に示すように、造形部4は造形ステージ5と、第1の供給槽6と、供給経路7とを収容している。造形部4は、第1の供給槽6から供給経路7を介して造形ステージ5に金属粉末Mを供給する。
 造形部4は、金属粉末Mを焼結等して造形ステージ5上に焼結層を任意の形状に造形する操作と、造形した焼結層を積層する操作とを繰り返すことで、任意の形状の三次元構造を有する金属造形物Xを製造できる。
 造形部4は、図示略のシールドガス供給部と接続されている。シールドガス供給部は、造形部4内にシールドガスを供給して、造形部4内から酸素ガスをパージできる形態であれば特に限定されない。造形部4がシールドガス供給部と接続されていることにより、金属粉末Mが酸化しにくくなり、金属粉末Mの変性を防止しやすくなる。そのため、金属構造物Xの機械的物性がさらに向上し、金属造形物Xの形状の劣化がさらに低減される。
 第1の供給槽6は、金属粉末Mを一時的に貯蔵する槽である。第1の供給槽6には搬送部3から搬送された金属粉末Mが貯蔵されている。第1の供給槽6の底部は、供給経路7と接続されている。供給経路7は第1の端部が第1の供給槽6の底部と接続され、第2の端部が造形ステージ5と接続されている。これにより、第1の供給槽6から、供給経路7を介して造形ステージ5に金属粉末Mが供給される。このように本実施形態では、密閉容器30内の金属粉末Mを造形ステージ5に供給する供給装置が、上述の搬送装置と、第1の供給槽6と、供給経路7とで構成されている。
 造形ステージ5は、焼結層の造形と、造形した焼結層の積層とが行われる場である。造形ステージ5は、第2の供給槽8と、造形槽9と、リコーター10と、凹部11とを有している。
 第2の供給槽8は、金属粉末Mを貯蔵するとともに、金属粉末Mを造形槽9に供給するための槽である。第2の供給槽8は、供給経路7の第2の端部と接続されている。これにより、第2の供給槽8に金属粉末Mが供給される。
 第2の供給槽8には第1の供給槽6から供給された金属粉末Mが敷き詰められている。第2の供給槽8の底面は、第1の昇降台13に支持されている。第1の昇降台13は、図中上方向に移動可能である。これにより、第2の供給槽8の底面は図中上方向に移動できる。
 造形槽9は、金属粉末Mを貯蔵するとともに、金属造形物Xの造形を行うための槽である。造形槽9には第2の供給槽8から供給された金属粉末Mが敷き詰められている。また、造形槽9では造形途中の金属造形物Xが形成されている。
 造形槽9の底面は、第2の昇降台12に支持されている。第2の昇降台12は、図1中下方向に移動可能である。これにより、造形槽9の底面は図中下方向に移動できる。
 リコーター10は、第2の供給槽8に貯蔵された金属粉末Mを造形槽9に供給するとともに、第2の供給槽8及び造形槽9の上面を造形ステージ5の上面と均一にする。
 リコーター10は、造形ステージ5の上面に沿って、図1中の水平方向に移動可能である。リコーター10の先端10aは、造形ステージ5の上面と接している。そのため、リコーター10が図1中の左方向に移動すると、造形ステージ5の上面にある金属粉末が図1中の左方向に搬送されるとともに、第2の供給槽8及び造形槽9の上面が造形ステージ5の上面と均一になる。
 凹部11は、造形ステージ5の上面に設けられている。リコーター10によって搬送される金属粉末Mのうち、造形槽9に供給されなかった残りの金属粉末Mは、リコーター10が図1に示す凹部11の位置まで移動することにより、凹部11に貯留される。
 以上説明した第1の実施形態に係る金属造形物の製造装置によれば、金属粉末が封入された密閉容器を不活性ガス雰囲気下にある内部空間に収容する搬送部を備えるため、金属粉末と大気との接触を防止でき、金属粉末の酸化及び吸湿を低減できる。よって、酸化及び吸湿が低減された金属粉末を原料として用いることができるため、金属粉末の流動性を損なうことなく、金属粉末を造形ステージにスムーズに供給できるとともに、靱性及び耐割れ性に優れる金属造形物を製造できる。
[金属造形物の製造方法]
 以下、第1の実施形態に係る金属造形物の製造方法について説明する。
 本実施形態の金属造形物の製造方法は、上述した構成を備える金属造形物の製造装置20を用いた金属造形物の製造方法である。以下、図1を参照して、第1の実施形態に係る金属造形物の製造方法について、具体的に説明する。
 まず、第1の実施形態に係る金属造形物の製造方法では、金属粉末Mが封入された密閉容器30(図2参照)を、内部空間が不活性ガス雰囲気下にある搬送部3に収容する。搬送部3の内部空間を不活性ガス雰囲気下に維持する方法としては、図示略の不活性ガスの供給源から搬送部3の内部空間に不活性ガスを供給し、搬送部3の内部空間をパージする方法が例示される。
 次に、密閉容器30を、搬送部3が有する開封装置によって不活性ガス雰囲気下にある搬送部3の内部空間で開封する。その後、密閉容器30内の金属粉末Mを、搬送部3が有する搬送装置によって、搬送部3の内部空間から搬送部3の外部空間にある第1の供給槽6に搬送する。第1の供給槽6に搬送された金属粉末Mは、一時的に第1の供給槽6で貯蔵された後、供給経路7を経て第2の供給槽8に供給される。
 次に、第2の供給槽8に供給された金属粉末Mを造形ステージ5が有する造形槽9に供給する。第2の供給槽8から造形槽9への金属粉末Mの供給は、例えば下記の様にして行われる。
 まず、第1の昇降台13が上方に移動する。これにより、第2の供給槽8に貯蔵された金属粉末Mの上面が造形ステージ5の上面より上方に移動する。第1の昇降台13の上昇距離によって造形槽9への金属粉末Mの供給量が決定されるため、造形槽9の金属粉末Mの貯蔵量に応じて、前記上昇距離を調節することが好ましい。
 次に、リコーター10が図1中の左方向に移動する。これにより、第2の供給槽8に貯蔵された金属粉末Mであって、造形ステージ5の上面より上方に位置する金属粉末Mが造形槽9に供給される。より具体的には、リコーター10の先端10aによって、造形ステージ5の上面より上方に位置する金属粉末Mが造形槽9に搬送される。この際、金属粉末Mの上面が造形ステージ5の上面と一致するように、金属粉末Mの上面がリコーター10の先端10aによって平坦化され、金属粉末Mが造形槽9に敷き詰められる。
 リコーター10は、金属粉末Mを第2の供給槽8から造形槽9に供給した後、図1中に示す凹部11の位置まで移動する。これにより、レーザーの照射により生じたヒューム、スパッタ、金属粒子の凝集粒子及び金属粉末Mの酸化物がリコーター10によって凹部11に搬送される。その結果、凹部11には、第2の供給槽8から造形槽9に敷き詰めることができなかった未使用の金属粉末Mとともに、レーザーの照射により生じたヒューム、スパッタ、金属粒子の凝集粒子及び金属粉末Mの酸化物が貯留される。
 造形槽9に金属粉末Mを供給した後、製造装置20はあらかじめ入力されたデータにしたがい、造形槽9に敷き詰められている金属粉末Mにレーザーを照射する。レーザーが照射されると、レーザーが照射された部分の金属粉末Mが焼結され、焼結層がレーザーの描画線に沿って任意の形状に造形される。焼結が終わると、第2の昇降台12が下方に移動し、造形槽9に敷き詰められた金属粉末Mの上面が造形ステージ5の上面より下方に移動する。ここで、金属粉末Mの焼結層の厚さは、第2の昇降台12の下降距離によって決定される。
 レーザーの照射に際しては、図示略のシールドガス供給部から造形部4内にシールドガスを供給して、造形部4内から酸素ガスをパージすることが好ましい。これにより、金属構造物Xの機械的物性をさらに高め、形状の劣化をさらに防止できる。造形部4内の酸素ガスの濃度が0.8%以下になるまでパージを行うことが好ましい。造形部4内の酸素ガスの濃度が0.8%以下であると、金属粉末Mが酸化しにくく、金属粉末Mの変質を防止しやすい。
 次に、第1の昇降台13が上方に移動し、第2の供給槽8に敷き詰められた金属粉末Mの上面が造形ステージ5の上面より上方に移動する。第1の昇降台13が上方に移動した後、リコーター10が図1中左方向に移動する。これにより、造形ステージ5の上面より上方に位置する金属粉末Mが造形槽9にリコーター10の先端10aによって搬送され、造形槽9に敷き詰められる。この際、金属粉末Mの上面が造形ステージ5の上面と一致するように、金属粉末Mの上面がリコーター10の先端10aによって平坦化される。
 金属粉末Mの上面が平坦化された後、レーザーを再度照射すると、すでに造形した焼結層の上方に新たな焼結層が任意の形状で造形されるとともに、新たに造形された焼結層が、すでに造形された焼結層の上方に積層される。
 このように造形部4では、造形ステージ5上におけるレーザーの照射と金属粉末Mの供給とを繰り返して金属造形物Xが造形される。
 あらかじめデータが入力されたすべての焼結層の造形と、積層とが完了すると、金属造形物Xが完成する。完成した金属造形物は、造形槽9から取り出される。
 以上説明した第1の実施形態に係る金属造形物の製造方法によれば、金属粉末が封入された密閉容器を、内部空間が不活性ガス雰囲気下にある搬送部に収容するため、金属粉末と大気との接触を防止でき、金属粉末の酸化及び吸湿を低減できる。よって、酸化及び吸湿が低減された金属粉末を原料として供給できるため、金属粉末の流動性を損なうことなく、金属粉末を造形ステージにスムーズに供給できるとともに、靱性及び耐割れ性に優れる金属造形物を製造できる
 なお、以上説明した第1の実施形態に係る製造装置20は、造形部4外に搬送部3を備える構成であるが、搬送部3は造形部4内に収容されていてもよい。
<第2の実施形態>
 以下、本発明を適用した一実施形態である第2の実施形態について説明する。第2の実施形態の説明において、第1の実施形態で説明した構成と、同一の構成については、同一の語及び同一の符号を用い、その説明を省略する。
[金属造形物の製造装置]
 以下、第2の実施形態に係る金属造形物の製造装置50の構成について説明する。
 図3は、第2の実施形態に係る金属造形物の製造装置50の構成の一例を示す模式図である。図3に示すように、第2の実施形態に係る製造装置50は、上述した搬送部3が搬送部53に、上述した造形部4が造形部21にそれぞれ置換されているとともに、搬送部53が造形部21内に収容されている点以外は、第1の実施形態に係る製造装置20と同一の構成を備えている。
 搬送部53は、金属粉末Mが封入された密閉容器を、不活性ガス雰囲気下にある内部空間に収容する。搬送部53の内部空間が不活性ガス雰囲気下にあることにより、搬送部53の内部空間に収容された密閉容器を開封した後でも、金属粉末Mの酸化及び吸湿を防止できる。
 図4は、製造装置50が備える搬送部53の内部空間に収容される密閉容器40の構成の一例を示す断面図である。図4に示すように密閉容器40は、容器蓋40aと、容器本体40bとを備える。容器蓋40aは容器本体40bを密閉するための蓋である。容器蓋40a及び容器本体40bの材質はSUS等のステンレス製である。
 容器蓋40aはパッキン材41と、ゲッター材42とを有している。パッキン材41及びゲッター材42については、第1の実施形態で説明したパッキン材31及びゲッター材32と同様のものが例示される。
 容器本体40bは金属粉末Mを貯蔵している。容器本体40bは、容器の内側の表面に酸化被膜43を有している。酸化被膜43は、その機能及び性能において、第1の実施形態で説明した酸化被膜33と同様である。
 搬送部53(図3参照)は、上述の密閉容器40を搬送部53の内部空間で開封する図示略の開封装置を有している。開封装置としては、搬送部53の内部空間と外部空間とを貫通する操作アームが例示される。操作アームとしては、密閉容器40を開封する操作を搬送部53の外部空間から制御できる形態であれば特に限定されない。操作アームとしてはアーム型ロボットが例示される。
 図3に示す製造装置50では、容器本体40bが図4に示す開口面44を下方向に向けた状態で搬送部53に収容されている。これにより、容器本体40b内の金属粉末Mが重力の影響を受け、第1の供給槽22に搬送される。
 造形部21は、金属粉末Mを焼結等して焼結層を任意の形状に造形する操作と、造形した焼結層を積層する操作とを繰り返すことで、任意の形状の三次元構造を有する金属造形物を製造するための筐体である。
 図3に示すように、造形部21は第1の供給槽22と、供給経路23と、第2の供給槽24と、リコーター25と、造形ステージ28とを収容している。また、第2の実施形態では、搬送部53が造形部21の内部空間の上部に設けられている。
 第1の供給槽22は、金属粉末Mを一時的に貯蔵する槽である。第1の供給槽22には搬送部53から搬送された金属粉末Mが貯蔵されている。第1の供給槽22の底部は、供給経路23と接続されている。供給経路は第1の端部が第1の供給槽22の底部と接続され、第2の端部が第2の供給槽24と接続されている。これにより、第1の供給槽22から、供給経路23を介して第2の供給槽24に金属粉末Mが供給される。
 第2の実施形態では、リコーター25は、第2の供給槽24に貯蔵された金属粉末Mを造形ステージ28に供給する。
 リコーター25は、第2の供給槽24の下方に設けられている。リコーター25は、造形ステージ5の上面に沿って、図3中の水平方向に移動しながら第2の供給槽24に貯蔵された金属粉末Mを造形ステージ28に供給できる。
 このように本実施形態では、密閉容器40内の金属粉末Mを造形ステージ28に供給する供給装置が、第1の供給槽22と、供給経路23と、第2の供給槽24と、リコーター25とを備えて構成されている。
 リコーター25は後述する造形槽26の上面を造形ステージ28の上面と均一にする。リコーター25の先端25aは、造形ステージ28の上面と接している。これにより、リコーター25が図3中の右方向に移動すると、造形槽26に貯蔵された金属粉末Mの上面が造形ステージ28の上面と均一になる。
 造形ステージ28は、焼結層の造形と、造形した焼結層の積層とが行われる場である。造形ステージ28は、造形槽26と、昇降台27とを有している。
 造形槽26は、金属粉末Mを貯蔵するとともに、金属造形物Xの造形を行うための槽である。造形槽26にはリコーター25の先端25aから供給された金属粉末Mが敷き詰められている。また、造形槽26では造形途中の金属造形物Xが形成されている。
 造形槽26の底面は、昇降台27に支持されている。昇降台27は、図中下方向に移動可能である。これにより、造形槽26の底面は図3中の下方向に移動できる。
 以上説明した構成を備える第2の実施形態に係る金属造形物の製造装置50は、第1の実施形態に係る金属造形物の製造装置20と同様の作用効果を奏するほか、重力を利用して搬送部53から第1の供給槽22に金属粉末Mを搬送できるため、製造装置50は、製造装置20では必須の構成である搬送部3が有する搬送装置を省略し簡略化できる。
[金属造形物の製造方法]
 以下、第2の実施形態に係る金属造形物の製造方法の一例について説明する。
 本実施形態の金属造形物の製造方法は、上述した構成を備える金属造形物の製造装置50を用いた金属造形物の製造方法である。以下、図3を参照して、第2の実施形態に係る金属造形物の製造方法について、具体的に説明する。
 まず、本実施形態の金属造形物の製造方法では、金属粉末Mが封入された密閉容器40(図4参照)を、内部空間が不活性ガス雰囲気下にある搬送部53に収容する。この際、密閉容器40の開口面44を図4中下方向に向けた状態で、搬送部53に密閉容器40を収容する。
 次に、密閉容器40を、搬送部53が有する開封装置によって不活性ガス雰囲気下にある搬送部53の内部空間で開封する。密閉容器40内の金属粉末Mは、重力の影響を受けて、搬送部53の内部空間から搬送部53の外部空間にある第1の供給槽22に搬送される。第1の供給槽22に搬送された金属粉末Mは、一時的に第1の供給槽22で貯蔵された後、供給経路23を経て第2の供給槽24に供給される。
 次に、第2の供給槽24に供給された金属粉末Mを造形ステージ28が有する造形槽26に供給する。第2の供給槽24から造形槽26への金属粉末Mの供給は、例えば下記の様にして行われる。
 第2の供給槽24に供給された金属粉末Mは、一時的に第2の供給槽24で貯蔵された後、リコーター25によって、造形槽26に供給される。第2の供給槽24から造形槽26への金属粉末Mの供給は、リコーター25が図3中の右方向に移動しながら、リコーター25の先端25aから金属粉末Mを供給して行わる。
 リコーター25が図3中の右方向に移動する際、金属粉末Mの上面が造形ステージ28の上面と一致するように、金属粉末Mの上面がリコーター25の先端25aによって平坦化され、金属粉末Mが造形槽26に敷き詰められる。
 造形槽26に金属粉末Mが貯蔵された後、製造装置50はあらかじめ入力されたデータにしたがい、造形槽26に敷き詰められている金属粉末Mにレーザーを照射する。レーザーが照射されると、レーザーが照射された部分の金属粉末Mが焼結され、焼結層がレーザーの描画線に沿って任意の形状に造形される。焼結が終わると、昇降台27が下方に移動し、造形槽26に敷き詰められた金属粉末Mの上面が造形ステージ28の上面より下方に移動する。ここで、金属粉末Mの焼結層の厚さは、昇降台27の下降距離によって決定される。
 次に、リコーター25が図3に示す位置に戻り、再度、造形槽26に金属粉末Mを供給しながら図3に示す右方向に移動する。この際、造形槽26に貯蔵された金属粉末Mの上面が造形ステージ28の上面と一致するように、金属粉末Mの上面がリコーター25の先端25aによって平坦化される。
 金属粉末Mの上面が平坦化された後、レーザーを再度照射すると、すでに造形した焼結層の上方に新たな焼結層が任意の形状で造形されるとともに、新たに造形された焼結層が、すでに造形された焼結層の上方に積層される。
 このようにして造形部21では、造形ステージ28上におけるレーザーの照射と金属粉末Mの供給とを繰り返して金属造形物Xが造形される。
 以上説明した第2の実施形態に係る金属造形物の製造方法は、第1の実施形態に係る金属造形物の製造方法と同様の作用効果を奏するほか、重力を利用して搬送部53から第1の供給槽22に金属粉末Mを搬送し、金属粉末Mを造形部ステージ28に供給できるため、第1の実施形態に係る金属造形物の製造方法に比べて操作を簡略化できる。
 以上本発明のいくつかの実施形態を説明したが、本発明はかかる特定の実施の形態に限定されない。また、本発明は特許請求の範囲に記載された本発明の要旨の範囲内で、構成の付加、省略、置換、及びその他の変更が加えられてよい。
 例えば、以上説明した実施形態に係る製造装置では、金属粉末をレーザーの照射によって焼結していたが、上述した製造装置は金属粉末をレーザー又は電子ビームの照射によって、溶融固化させる形態であってもよい。
 
(参考例1)
 金属粉末として、チタン合金Ti6Al4V(Φ10~45μm)を使用した。粉末密閉容器として、一般的な樹脂製の容器を使用した。温度18~25℃、湿度35~70%の環境で保管した。
 未使用粉末および上記条件で一週間~五週間保管した粉末について酸素含有量を測定した。
(測定方法)
 「酸素含有量[wt%]」は、金属粉末について、LECO社製酸素分析計TC-600を用いて測定した。
(参考例2)
 比較例2では、粉末密閉容器として、図2に示す密閉容器30を使用した。材質はステンレス、乾燥剤として塩化カルシウムを用いた。内面はパシベート処理を行っている。その他の条件は、比較例1と同条件で金属粉末の酸素含有量測定を行った。
 得られた測定結果を図5に示す。図5に示す参考例1および参考例2の結果より、通常容器を用いて金属粉末を保管した場合と比較して、容器30を用いて金属粉末を保管した場合、粉末の含有酸素量はより長期間にわたり一定に保たれることが確認された。これは、大気中の水分の吸着および酸化が抑制されたためであると考えられる。
 またこの結果から、容器30を用いて金属造形物製造装置内に金属粉末を供給した場合にも、同様の効果が得られ、造形物の品質にも一定の効果が見込める。
 本発明によれば、金属粉末の流動性を損なうことなく、靱性及び耐割れ性に優れる金属造形物を製造できる金属造形物の製造装置及びその製造方法を提供できる。
1…レーザー発振器、2…光学系、3,53…搬送部、4,21…造形部、5,28…造形ステージ、6,22…第1の供給槽、7,23…供給経路、8,24…第2の供給槽、9,26…造形槽、10,25…リコーター、11…凹部、12…第2の昇降台、13…第1の昇降台、20…金属造形物の製造装置、27…昇降台、30,40…密閉容器、31,41…パッキン材、32,42…ゲッター材、33,43…酸化被膜、M…金属粉末、X…金属造形物

Claims (8)

  1.  造形ステージに貯蔵された金属粉末を焼結して又は前記金属粉末を溶融固化させて金属の層を造形し、前記層を積層して金属造形物を製造する装置であって、
     金属粉末が封入された密閉容器を、不活性ガス雰囲気下にある内部空間に収容する搬送部と、
     前記密閉容器を前記内部空間で開封する開封装置と、
     前記密閉容器内の金属粉末を前記造形ステージに供給する供給装置と、
     を備えることを特徴とする、金属造形物の製造装置。
  2.  前記密閉容器が乾燥剤を有する、請求項1に記載の金属造形物の製造装置。
  3.  前記乾燥剤が塩化カルシウムである、請求項2に記載の金属造形物の製造装置。
  4.  前記密閉容器がステンレス製であるとともに、前記密閉容器の内面がパシベート処理されている、請求項1~3のいずれか一項に記載の金属造形物の製造装置。
  5.  造形ステージに貯蔵された金属粉末を焼結して又は前記金属粉末を溶融固化させて金属の層を造形し、前記層を積層して金属造形物を製造する方法であって、
     金属粉末が封入された密閉容器を、内部空間が不活性ガス雰囲気下にある搬送部に収容し、
     前記密閉容器を前記内部空間で開封し、
     前記密閉容器内の金属粉末を前記造形ステージに供給することを特徴とする、金属造形物の製造方法。
  6.  前記密閉容器が乾燥剤を有する、請求項5に記載の金属造形物の製造方法。
  7.  前記乾燥剤が塩化カルシウムである、請求項6に記載の金属造形物の製造方法。
  8.  前記密閉容器がステンレス製であるとともに、前記密閉容器の内面がパシベート処理されている、請求項5~7のいずれか一項に記載の金属造形物の製造方法。
PCT/JP2018/035387 2017-09-28 2018-09-25 金属造形物の製造装置及び金属造形物の製造方法 WO2019065605A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019545119A JPWO2019065605A1 (ja) 2017-09-28 2018-09-25 金属造形物の製造装置及び金属造形物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-188741 2017-09-28
JP2017188741 2017-09-28

Publications (1)

Publication Number Publication Date
WO2019065605A1 true WO2019065605A1 (ja) 2019-04-04

Family

ID=65902832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035387 WO2019065605A1 (ja) 2017-09-28 2018-09-25 金属造形物の製造装置及び金属造形物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2019065605A1 (ja)
WO (1) WO2019065605A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180342A (ja) * 2019-04-25 2020-11-05 芝浦機械株式会社 積層造形監視システム
JP2021130870A (ja) * 2020-02-19 2021-09-09 大陽日酸株式会社 金属3dプリンタ用原料粉末の保管庫、および金属3dプリンタ用原料粉末の保管方法
US11776072B2 (en) 2019-04-25 2023-10-03 Shibaura Machine Co., Ltd. Machine learning method, information processing device, computer program product, and additive manufacturing monitoring system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117041A (ja) * 1998-08-12 2000-04-25 Sanwa:Kk 乾燥剤
JP2004217278A (ja) * 2003-01-16 2004-08-05 Kazuto Uchida 耐食性容器及びこの耐食性容器の製造方法
JP2016052777A (ja) * 2014-09-03 2016-04-14 エスエルエム ソルーションズ グループ アーゲー 乾燥手段を有するワークピースの製造装置
JP2016522312A (ja) * 2013-03-15 2016-07-28 マターファブ, コーポレイションMatterfab Corp. 添加剤製造装置及び方法のためのカートリッジ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4209689B2 (ja) * 2003-01-07 2009-01-14 三菱電機株式会社 超音波探傷装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117041A (ja) * 1998-08-12 2000-04-25 Sanwa:Kk 乾燥剤
JP2004217278A (ja) * 2003-01-16 2004-08-05 Kazuto Uchida 耐食性容器及びこの耐食性容器の製造方法
JP2016522312A (ja) * 2013-03-15 2016-07-28 マターファブ, コーポレイションMatterfab Corp. 添加剤製造装置及び方法のためのカートリッジ
JP2016052777A (ja) * 2014-09-03 2016-04-14 エスエルエム ソルーションズ グループ アーゲー 乾燥手段を有するワークピースの製造装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020180342A (ja) * 2019-04-25 2020-11-05 芝浦機械株式会社 積層造形監視システム
JP7221777B2 (ja) 2019-04-25 2023-02-14 芝浦機械株式会社 積層造形監視システム
US11776072B2 (en) 2019-04-25 2023-10-03 Shibaura Machine Co., Ltd. Machine learning method, information processing device, computer program product, and additive manufacturing monitoring system
JP2021130870A (ja) * 2020-02-19 2021-09-09 大陽日酸株式会社 金属3dプリンタ用原料粉末の保管庫、および金属3dプリンタ用原料粉末の保管方法
JP7290676B2 (ja) 2020-02-19 2023-06-13 大陽日酸株式会社 金属3dプリンタ用原料粉末の保管庫、および金属3dプリンタ用原料粉末の保管方法

Also Published As

Publication number Publication date
JPWO2019065605A1 (ja) 2020-04-02

Similar Documents

Publication Publication Date Title
WO2019065605A1 (ja) 金属造形物の製造装置及び金属造形物の製造方法
JP6895974B2 (ja) 反応性流体を使用する付加製造及びこれを使用して作る製品
JP6662381B2 (ja) 立体造形物の製造方法
CA3014690C (en) Copper powder, method for manufacturing copper powder, and method for manufacturing solid shaped object
JP5995202B2 (ja) 粉末積層造形装置及び粉末積層造形方法
US9757802B2 (en) Additive manufacturing methods and systems with fiber reinforcement
US20200101534A1 (en) Base plate in additive manufacturing
Wegewitz et al. Oxygen‐Free Production—From Vision to Application
JP7169255B2 (ja) 積層構造物の製造方法
JP2020059902A (ja) 粉末材料の製造方法
JP6827553B2 (ja) 金属造形物の製造装置、金属造形物の製造方法、及び金属粉末回収方法
JP6912927B2 (ja) 積層構造物の製造方法
JP6889744B2 (ja) レーザ積層造形装置及びレーザ積層造形方法
JP7074737B2 (ja) 積層造形装置、積層造形方法
EP4043124A1 (en) Additive manufacturing powder, method for producing same, additive manufactured product, and metal sintered body
WO2024101222A1 (ja) 積層構造物の製造装置及び積層構造物の製造方法
EP4434654A1 (en) Metal solid production method
WO2019203272A1 (ja) 金属造形物の製造方法
JP7189099B2 (ja) 金属造形物の製造方法
WO2019203275A1 (ja) 金属造形物の製造方法
EP3834962A1 (en) Method and system for generating a three-dimensional workpiece
CN116871514A (zh) 一种易氧化金属材料的固化工艺、及其3d打印产品的后处理工艺
KR20210101418A (ko) 타이타늄 조형물 적층방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019545119

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861079

Country of ref document: EP

Kind code of ref document: A1