WO2019065543A1 - 熱間鍛造材の製造方法 - Google Patents

熱間鍛造材の製造方法 Download PDF

Info

Publication number
WO2019065543A1
WO2019065543A1 PCT/JP2018/035215 JP2018035215W WO2019065543A1 WO 2019065543 A1 WO2019065543 A1 WO 2019065543A1 JP 2018035215 W JP2018035215 W JP 2018035215W WO 2019065543 A1 WO2019065543 A1 WO 2019065543A1
Authority
WO
WIPO (PCT)
Prior art keywords
forging
hot forging
mold
hot
temperature
Prior art date
Application number
PCT/JP2018/035215
Other languages
English (en)
French (fr)
Inventor
翔悟 鈴木
友典 上野
信一 小林
▲高▼橋 正一
孝憲 松井
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2019539316A priority Critical patent/JP6631862B2/ja
Priority to EP18863051.1A priority patent/EP3689493B1/en
Priority to US16/650,296 priority patent/US11358209B2/en
Priority to CN201880063367.4A priority patent/CN111148583B/zh
Publication of WO2019065543A1 publication Critical patent/WO2019065543A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/04Shaping in the rough solely by forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/06Heating or cooling methods or arrangements specially adapted for performing forging or pressing operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J13/00Details of machines for forging, pressing, or hammering
    • B21J13/02Dies or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J3/00Lubricating during forging or pressing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Definitions

  • the present invention relates to a method of manufacturing a hot forging material performed using a heated mold.
  • the forging material is heated to a predetermined temperature in order to reduce the deformation resistance. Since a heat-resistant alloy has high strength even at high temperatures, a hot forging die used for forging is required to have high mechanical strength at high temperatures. In addition, when the temperature of the hot forging die is about the same as room temperature in hot forging, the processability of the forging material is reduced due to heat removal, so, for example, forging of a difficult-to-work material such as Alloy 718 or Ti alloy. Is performed by heating a hot forging die together with the material. Therefore, the hot forging die should have high mechanical strength at a temperature as high as or near the temperature to which the forging material is heated.
  • a Ni-based super heat-resistant alloy that can be used for hot forging with a mold temperature of 1000 ° C. or higher in the atmosphere has been proposed as a hot forging die that satisfies this requirement (see, for example, Patent Documents 1 to 3).
  • hot forging of difficult-to-process materials for example, hot die forging forging at a strain rate of about 0.01 to 0.1 / sec using a mold heated to a temperature close to that of the forging material, or forging material
  • the constant temperature forging which is capable of forging at a strain rate of, for example, 0.001 / sec or less, which is slower than the hot die forging, is applied by using a die heated isothermally.
  • Patent Documents 1 to 3 As hot forging performed in the atmosphere using a Ni-based super heat resistant alloy mold proposed in Patent Documents 1 to 3, an example of constant temperature forging is disclosed in Non-Patent Document 1 and an example of hot die forging is disclosed in Patent Documents It is shown in 4.
  • the hot forging material close to the final shape, it is possible to improve the yield and to reduce the processing cost.
  • the cost of the forging material the non-uniformly deformed portion associated with heat extraction by the die for the hot forging material. Isothermal forging in which there is no is advantageous.
  • the lower the temperature of the mold the higher the high temperature strength of the mold and the longer the mold life. Therefore, in terms of mold cost, hot die forging having a relatively low mold temperature is advantageous.
  • the operating cost depends on the equipment cost and the number of forging steps etc. The one with lower manufacturing cost is selected.
  • the upper limit temperature of a general mold in hot die forging of difficult-to-work materials in actual machines is It is about 900 ° C. from the viewpoint of mold life. Since the general heating temperature of the difficult-to-work material is 1000 to 1150 ° C., the mold temperature is 100 to 250 ° C. lower than the material for hot forging.
  • the temperature difference between the mold temperature and the material for hot forging be small, and high temperature strength as proposed in Patent Documents 1 to 3
  • the temperature difference with the material for hot forging can be reduced by applying a Ni-based super heat-resistant alloy which is excellent in terms of mold life and advantageous for mold life to a die for hot die forging.
  • the mold temperature in this case needs to be 950 ° C. or higher in order to sufficiently obtain the effect of increasing the mold temperature.
  • the temperature in the vicinity of the surface of the hot forging material heated in the heating furnace decreases during transportation.
  • the upper and lower molds (a pair of upper and lower molds is referred to as a “mold”) during hot forging are gold near the upper and lower bottom surfaces of the material for hot forging While the temperature is doubled by being heated by the mold, the temperature of the side surface of the hot forging material not in contact with the mold remains lowered.
  • the upper and lower bottom surfaces said by this invention mean the surface which contacts the upper mold
  • the double valerizing-like forging defect referred to in the present invention means that the material for hot forging bulges in a curved shape in the outer peripheral direction on the side surface of the forging material after general upset forging for the cylindrical forging material.
  • FIG. 1 illustrates the double valling-like forging defect according to the present invention, including the hot forging step. Generally, when this forging defect occurs, the volume of the cut-off portion other than the final shape in the hot forging material increases and the yield decreases.
  • Patent Document 4 discloses hot die forging in which a forging material is covered with a metal material having a melting point higher than the forging temperature and forged. If this method is used, it is possible to carry out hot die forging which does not produce a double valerial forging defect even at a mold temperature of 950 ° C. or higher. However, in the method of Patent Document 4, the coating on the material for hot forging before forging and the coating removing step after forging are required, and the productivity is lowered. In the hot die forging where the mold temperature is 950 ° C. or more, it is a reality that no proposal has been made for a method of manufacturing a hot forging material which prevents the occurrence of double valling-like forging defects without causing a decrease in productivity. An object of the present invention is to provide a method of manufacturing a hot forging material capable of preventing the occurrence of double valling-like forging defects.
  • both the upper mold and the lower mold are made of a Ni-based super heat resistant alloy, and the material for hot forging is made into a hot forging material by pressing in the air with the lower mold and the upper mold.
  • a hot forging material comprising: a conveying step of conveying to the upper side of the lower mold, and a value obtained by subtracting the heating temperatures of the upper and lower molds from the heating temperature of the material for hot forging It is a manufacturing method.
  • the composition of the Ni-based super heat-resistant alloy is, by mass%, W: 7.0 to 15.0%, Mo: 2.5 to 11.0%, Al: 5.0 to 7.5%, selection As elements, Cr: 7.5% or less, Ta: 7.0% or less, Ti: 7.0% or less, Nb: 7.0% or less, Co: 15.0% or less, C: 0.25% or less , B: 0.05% or less, Zr: 0.5% or less, Hf: 0.5% or less, rare earth elements: 0.2% or less, Y: 0.2% or less, Mg: 0.03% or less, The balance is preferably Ni and unavoidable impurities.
  • the lower limit of the content of the selective element described above includes 0%.
  • the surface of the material for hot forging is preferably provided with a lubricating coating by application of a liquid lubricant.
  • the present invention is suitable for the production of a hot forging material for a hot forging material made of a difficult-to-work material.
  • Typical difficult-to-process materials are Ni-based super heat-resistant alloys containing Ni as a main component, Ti alloys containing Ti as a main component, and the like.
  • the main component said by this invention refers to the element with the highest content by mass%.
  • the shape and the internal structure of the material for hot forging are not particularly limited, but in general, the shape and the internal structure suitable as a material for hot forging may be used.
  • Ni-based super heat-resistant alloy refers to a Ni-based alloy used in a high temperature region of 600 ° C. or higher, also referred to as a superalloy, a heat resistant superalloy, or a superalloy.
  • An alloy that is strengthened by the precipitation phase Since the shape of the material for hot forging in the present invention prevents the occurrence of double valling-like forging defects, the height of the material when the material for hot forging is placed on the mold is the maximum width of the material The value divided by (diameter) is preferably 3.0 or less, more preferably 2.8 or less.
  • the surface of the material for hot forging may be a surface state in which scales are formed, but in order to apply a lubricant uniformly, it is preferable that the metal surface is degreased and cleaned after machining.
  • a glass-based liquid lubricant in which a glass frit is dispersed in a dispersant such as water from the viewpoint of molding load reduction and coating workability.
  • the glass frit is preferably borosilicate glass having an advantageous viscosity in terms of forming load reduction.
  • the alkali component content of the glass of the liquid lubricant be low, from the viewpoint of suppressing a chemical reaction that promotes oxidation corrosion in the material for hot forging and the mold.
  • the above-described glass-based liquid lubricant is applied to the surface of the material for hot forging, for example, by spray coating on the entire surface of the material for hot forging, brush coating, immersion coating, spray on the mold surface, brush coating, etc. Is supplied between the material for hot forging and the mold. Of these, spray application is most preferable as the application method from the viewpoint of control of the thickness of the lubricating coating.
  • the material for hot forging before applying the lubricant may be heated to a temperature above room temperature before the application operation in order to promote the volatilization of the dispersant such as water contained in the liquid lubricant.
  • the thickness of the glass-based lubricating film by coating is preferably 100 ⁇ m or more for the formation of a continuous lubricating film during forging. If the thickness is less than 100 ⁇ m, the lubricating film may be partially damaged, and in addition to the deterioration of the lubricity due to the direct contact between the material for hot forging and the mold, wear and seizing of the mold may easily occur. Moreover, in order to suppress the temperature drop during conveyance of the material for hot forging, the thickness of the lubricating film is preferably larger.
  • the thickness of the lubricating coating is preferably 500 ⁇ m or less.
  • the material of the mold used in the present invention is a Ni-based super heat-resistant alloy which is excellent in high temperature strength and advantageous in terms of mold life.
  • Ni-based super heat-resistant alloys fine ceramics and Mo-based alloys can be mentioned as materials of molds excellent in high temperature strength.
  • molds made of fine ceramics are expensive.
  • a dedicated large-scale special equipment is required. Therefore, these are disadvantageous in terms of manufacturing cost as compared to Ni-based super heat-resistant alloys.
  • the material of the mold used in the present invention is a Ni-based super heat-resistant alloy.
  • Ni-based super heat-resistant alloys excellent in high-temperature strength Ni-based super-heat-resistant alloys having the alloy composition described below not only have excellent high-temperature compressive strength but also for hot forging It is an alloy that has sufficient strength to be used as a mold.
  • the composition of a preferred Ni-based super heat-resistant alloy for a hot forging die is described below.
  • the unit of chemical composition is mass%.
  • the composition of a preferable Ni-based super heat resistant alloy is, by mass%, W: 7.0 to 15.0%, Mo: 2.5 to 11.0%, Al: 5.0 to 7.5%, as a selection element Cr: 7.5% or less, Ta: 7.0% or less, Ti: 7.0% or less, Nb: 7.0% or less, Co: 15.0% or less, C: 0.25% or less, B : 0.05% or less, Zr: 0.5% or less, Hf: 0.5% or less, rare earth element: 0.2% or less, Y: 0.2% or less, Mg: 0.03% or less, the balance is Ni and unavoidable impurities.
  • W forms a solid solution in an austenite matrix and also forms a solid solution in a gamma prime phase ( ⁇ ′ phase) having Ni 3 Al as a precipitation strengthening phase as a basic type to enhance the high temperature strength of the alloy.
  • W has an action of reducing oxidation resistance and an action of facilitating precipitation of harmful phases such as TCP (Topologically Close Packed) phase.
  • TCP Topicologically Close Packed
  • the content of W in the Ni-based super heat-resistant alloy in the present invention is set to 7.0 to 15.0%.
  • the preferable lower limit for obtaining the effect of W more reliably is 10.0%
  • the preferable upper limit of W is 12.0%
  • the more preferable upper limit is 11.0%.
  • Mo forms a solid solution in the austenite matrix and also forms a solid solution in the gamma prime phase having Ni 3 Al, which is a precipitation strengthening phase, as a basic type, thereby enhancing the high temperature strength of the alloy.
  • Mo has the effect of reducing the oxidation resistance. From the viewpoint of enhancing the high temperature strength and further suppressing the decrease in oxidation resistance, the content of Mo in the Ni-based super heat resistant alloy in the present invention is set to 2.5 to 11.0%.
  • the lower limit of the preferable Mo is set in view of the balance of W and the Ta, Ti, Nb content described later.
  • the lower limit is preferably 4.0%, and more preferably 4.5%, in order to obtain the effect of Mo more reliably when Ta is contained.
  • the preferable lower limit of Mo in the case where Ta, Ti and Nb are not added is preferably 7.0%, and more preferably 9.5%.
  • the upper limit of preferable Mo is 10.5, and the still more preferable upper limit is 10.2%.
  • Al combines with Ni to precipitate a gamma prime phase consisting of Ni 3 Al, to increase the high temperature strength of the alloy, to form an alumina film on the surface of the alloy, and to impart oxidation resistance to the alloy.
  • the content of Al in the Ni-based super heat-resistant alloy in the present invention is set to 5.0 to 7.5%.
  • a preferable lower limit is 5.5% for obtaining the effect of Al more reliably, and a further preferable lower limit is 6.1%.
  • the upper limit of Al is preferably 6.7%, and more preferably 6.5%.
  • the Ni-based super heat-resistant alloy in the present invention can contain Cr. Cr promotes the formation of a continuous layer of alumina on or in the alloy and has the effect of improving the oxidation resistance of the alloy.
  • Cr is added as needed. Also, when the addition of Cr is required, the addition of Cr in the range of more than 7.5% should be avoided as it also reduces the compressive strength of the alloy at 1000 ° C. and above.
  • a preferred lower limit for ensuring the effect of Cr is 0.5%, a further preferred lower limit is 1.3%, and a preferred upper limit of Cr is 3.0%.
  • the Ni-based super heat-resistant alloy in the present invention can contain Ta.
  • Ta forms a solid solution in the form of substituting Al site in the gamma prime phase consisting of Ni 3 Al to increase the high temperature strength of the alloy and to improve the adhesion and oxidation resistance of the oxide film formed on the alloy surface. It has the effect of improving the oxidation resistance of the alloy.
  • the dimensional tolerance of the hot forging material is larger than that of constant temperature forging, and in the case of hot die forging where the mold heating temperature is low, the addition of Ta is not essential because the importance of oxidation resistance and high temperature strength is low.
  • Ta is expensive, and if added in large amounts, the mold cost becomes expensive. Therefore, in the Ni-based super heat-resistant alloy of the present invention, Ta is added as needed.
  • too high a content of Ta causes an action of facilitating precipitation of harmful phase such as TCP phase and the like, excessive formation of eutectic gamma prime phase and lowering high temperature strength of the alloy. Additions in the range of more than 7.0% should be avoided as it also works.
  • a preferred lower limit for ensuring the effect of Ta is 0.5%, and a further preferred lower limit is 2.5%.
  • the upper limit of preferable Ta is 6.5%.
  • the total content of these elements is preferably 7.0% or less.
  • the Ni-based super heat-resistant alloy in the present invention can contain Ti.
  • Ti like Ta, forms a solid solution in the form of substitution of Al site in the gamma prime phase consisting of Ni 3 Al to enhance the high temperature strength of the alloy.
  • it is an element cheaper than Ta, it is advantageous in terms of mold cost.
  • the dimensional tolerance of the hot forging material is larger than that of constant temperature forging, and in the case of hot die forging where the mold heating temperature is low, the addition of Ti is not essential because the importance of high temperature strength is relatively low. Therefore, Ti is added as needed in the Ni-based super heat-resistant alloy in the present invention.
  • the addition of Ti when the addition of Ti is necessary, if the content of Ti is too large, the function of facilitating precipitation of harmful phases such as TCP phase and the like, excessive formation of eutectic gamma prime phase, and lowering the high temperature strength of the alloy Additions in the range of more than 7.0% should be avoided as it also works.
  • the preferred lower limit for ensuring the effect of Ti is 0.5%, and the more preferred lower limit is 2.5%.
  • the upper limit of Ti is preferably 6.5%.
  • Ni-based super heat-resistant alloy in the present invention can contain Nb.
  • Nb like Ta and Ti, dissolves in the form of substitution of Al site in the gamma prime phase consisting of Ni 3 Al to enhance the high temperature strength of the alloy.
  • it is an element cheaper than Ta, it is advantageous in terms of mold cost.
  • the dimensional tolerance of the hot forging material is larger than that of constant temperature forging, and in the case of hot die forging where the mold heating temperature is low, the addition of Nb is not essential because the importance of high temperature strength is relatively low. Therefore, in the Ni-based super heat-resistant alloy in the present invention, Nb is added as needed. When Nb addition is required, too much Nb content causes the harmful phase such as TCP phase to precipitate easily, and excessive formation of eutectic gamma prime phase, thereby lowering the high temperature strength of the alloy. Additions in the range of more than 7.0% should be avoided as it also works.
  • the lower limit is preferably 0.5% to ensure the effect of Nb, and more preferably 2.5%.
  • the upper limit of Ti is preferably 6.5%.
  • Ni-based super heat-resistant alloy in the present invention can contain Co. Co dissolves in the austenite matrix and enhances the high temperature strength of the alloy.
  • the dimensional tolerance of a hot forging material is larger than that of constant temperature forging, and in the case of hot die forging where the mold heating temperature is low, addition of Co is not essential because high-temperature strength is relatively low.
  • Co is added as needed. Further, when the content of Co is too large, since Co is an expensive element compared to Ni, the cost of the mold is increased, and there is also an effect of facilitating precipitation of harmful phase such as TCP phase. Therefore, the addition of more than 15.0% should be avoided.
  • the preferred lower limit for ensuring the effect of Co is 0.5%, and the more preferred lower limit is 2.5%.
  • the preferred upper limit is 13.0%.
  • the Ni-based super heat-resistant alloy in the present invention can contain one or two elements selected from C and B.
  • C and B improve the strength of the grain boundaries of the alloy and enhance the high temperature strength and ductility. Therefore, in the Ni-based super heat-resistant alloy in the present invention, one or two elements selected from C and B are also added as needed.
  • the C and B contents are too high, coarse carbides and borides are formed, which also has the effect of reducing the strength of the alloy.
  • the upper limit of the content of C in the present invention is 0.25%
  • the upper limit of the content of B is 0.05%. It is.
  • the preferred lower limit for ensuring the effect of C is 0.005%, and the more preferred lower limit is 0.01%. Moreover, a preferable upper limit is 0.15%.
  • the preferred lower limit for ensuring the effect of B is 0.005%, and the more preferred lower limit is 0.01%. Moreover, a preferable upper limit is 0.03%. It is preferable to add only C when economics and high temperature strength are particularly required, and it is preferable to add only B when ductility is particularly required. When both high temperature strength and ductility are particularly required, it is preferable to add C and B simultaneously.
  • the Ni-based super heat-resistant alloy in the present invention can contain one or more elements selected from Zr, Hf, rare earth elements, Y and Mg. Zr, Hf, rare earth elements, and Y suppress the diffusion of metal ions and oxygen at grain boundaries by segregation to the grain boundaries of the oxide film formed on the alloy surface.
  • the suppression of the grain boundary diffusion reduces the growth rate of the oxide film, and improves the adhesion between the oxide film and the alloy by changing the growth mechanism that promotes the exfoliation of the oxide film. That is, these elements have the effect of improving the oxidation resistance of the alloy by reducing the growth rate of the oxide film described above and improving the adhesion of the oxide film.
  • S sulfur
  • Mg forms a sulfide with S and prevents segregation of S, thereby improving the adhesion of the oxide film and improving the oxidation resistance of the alloy.
  • La it is preferable to use La. It is because La has a large effect of improving oxidation resistance. La has the function of preventing segregation of S in addition to the suppression of diffusion described above, and since these functions are excellent, it is better to select La among rare earth elements.
  • Y also has the same effect as La and is preferably added, and it is particularly preferable to use two or more of La and Y.
  • Hf or Zr particularly preferably Hf.
  • Hf has a small effect of preventing segregation of S. Therefore, adding Mg simultaneously with Hf further improves the oxidation resistance. Therefore, when mechanical properties as well as oxidation resistance are required, it is more preferable to use two or more elements including Hf and Mg.
  • the upper limit of the content of each of Zr and Hf in the present invention is 0.5% from the viewpoint of enhancing the oxidation resistance and suppressing the decrease in toughness.
  • the preferable upper limit of each content of Zr and Hf is 0.2%, more preferably 0.15%, and more preferably 0.1%. Since the function of reducing the toughness is higher than that of Zr and Hf, the upper limit of the content of each of these elements in the present invention is 0.2%, and the upper limit is preferably 0.1%.
  • the preferable lower limit is 0.001%.
  • the preferable lower limit for sufficiently exhibiting the effects of containing Zr, Hf, rare earth elements, and Y is 0.005%, and more preferably 0.01% or more.
  • the content of Mg is made 0.03% or less because it is sufficient to contain only the amount of Mg necessary to form the sulfide with the impurity S contained in the alloy.
  • the upper limit of Mg is preferably 0.02%, more preferably 0.01%. On the other hand, in order to exhibit the effect by Mg addition more certainly, it is good to make 0.005% a minimum.
  • Ni is a main element constituting the gamma phase, and constitutes the gamma prime phase together with Al, Ta, Ti, Nb, Mo and W.
  • P, N, O, S, Si, Mn, Fe, etc. are assumed as unavoidable impurities, and P, N, O, S may be contained as long as they are each 0.003% or less.
  • Si, Mn, and Fe may be contained as long as each is 0.03% or less.
  • the Ni-based alloy of the present invention can also be called a Ni-based heat-resistant alloy.
  • the shape of the mold used in the present invention is not limited, and the shape according to the shape of the material for hot forging or the material for hot forging may be selected.
  • at least one of the molding surface or the side surface of the mold may be a surface having an applied layer of an antioxidant, as required, from the viewpoint of improvement of workability and the like.
  • the above-mentioned antioxidant is preferably an inorganic material composed of at least one of a nitride, an oxide and a carbide.
  • the coating layer may be a single layer of any of nitride, oxide and carbide, or may have a laminated structure of any two or more of nitride, oxide and carbide in combination. Furthermore, the coating layer may be a mixture of two or more of nitride, oxide, and carbide.
  • the “material heating process” and the “die heating process” will be described.
  • (1) the heating temperature of the material for hot forging, (2) the heating temperature of the die and (3) their temperature difference become very important.
  • the present inventor examined the occurrence of double valling-like forging defects in hot die forging where the mold temperature is 950 ° C. or higher, and the main reason for the occurrence was the temperature drop near the surface of the material for hot forging during conveyance and gold. It was found that it was a preferential deformation near the bottom of the material during forging due to recuperation near the bottom of the material due to the mold. Therefore, it is important to properly manage the above (1) to (3).
  • the material for hot forging is heated to a predetermined temperature using the material for hot forging described above.
  • the subsequent steps are illustrated by way of example in FIG.
  • the mold heating step and the material heating step may be performed simultaneously.
  • the transfer step is performed after all these steps are completed, and the forging step is performed after this transfer step is completed.
  • the material for hot forging is heated to a target material temperature using a heating furnace.
  • the material for hot forging is heated to a heating temperature in the range of 1025 to 1150 ° C. in a heating furnace. By this heating, the temperature of the material for hot forging becomes the heating temperature.
  • the heating time should just be the time which the whole raw material for hot forging becomes uniform temperature, or more.
  • the lower limit of the heating temperature is set slightly higher at 1025 ° C. in anticipation of the temperature decrease in the vicinity of the surface of the material for hot forging during conveyance to the hot forging apparatus (hot press). If the heating temperature is less than 1025 ° C., double valering-like forging defects tend to occur. On the other hand, when the temperature exceeds 1150 ° C., there arises a problem that the metal structure of the material for hot forging becomes coarse.
  • the actual heating temperature may be determined within the range of 1025 to 1150 ° C. depending on the material of the material for hot forging.
  • the mold used for hot forging is also heated to a heating temperature in the range of 950 to 1075.degree.
  • the temperature of the mold becomes the heating temperature.
  • it is a Ni-based super heat-resistant alloy mold having the above-mentioned preferable composition, it can be heated to a target temperature in the air.
  • the heating temperature of the mold is set to 950 ° C. to 1075 ° C. in order to prevent the double valling-like forging defect from the temperature necessary for hot die forging. Outside the range of 950 ° C. to 1075 ° C., there is a possibility that double valerial-like forging defects may occur.
  • At least the surface temperature of the pressing surface of the mold may be the target temperature.
  • die from the heating temperature of the raw material for hot forging shall be 75 degreeC or more.
  • a heating furnace a method of conveying the mold heated to a predetermined temperature by induction heating, resistance heating or the like to a hot forging device, a heating furnace provided for the hot forging device, induction heating
  • the temperature may be set to a predetermined temperature by a method of heating to a predetermined temperature by a device, a resistance heating device or the like, or a method of combining them.
  • the material for hot forging is heated to a target temperature and then conveyed by the manipulator to the upper part of the heated lower die.
  • the manipulator As a manipulator used for conveying a material for hot forging, the manipulator has a pair of holding fingers for holding and holding the material for hot forging from the left and right, and holding and conveying a predetermined weight It is preferred to use a manipulator that is capable and, in the present invention, a similar function.
  • the one where conveyance time is short is preferable.
  • a double-barrier is attached by attaching a holding jig having a cover for covering the side surface of the material for hot forging to the holding portion of the manipulator. It is possible to more reliably prevent the occurrence of the forging defects in the shape of a circle.
  • Hot forging is performed using the hot forging material and mold (lower and upper dies) heated to the predetermined temperature described above. Hot forging is performed by placing a material for hot forging on a lower die and pressing the material for hot forging with the lower die and the upper die in the atmosphere. Thereby, the hot forging material which prevented generation
  • Ni-based super heat-resistant alloy preferable as a mold material used in the present invention
  • a Ni-based super heat-resistant alloy ingot shown in Table 1 was manufactured by vacuum melting.
  • the Ni-based super heat-resistant alloy having the composition shown in Table 1 has excellent high-temperature compressive strength properties as shown in Table 2.
  • P, N, and O which are contained in the ingot shown in Table 1 were 0.003% or less, respectively.
  • Si, Mn and Fe are each 0.03% or less.
  • P, N, and O which are contained in the ingot shown in Table 1 were 0.003% or less, respectively.
  • Si, Mn and Fe are each 0.03% or less.
  • the high-temperature compressive strength (compression resistance) shown in Table 2 was obtained under the condition of a strain rate of 10 ⁇ 3 / sec at 1100 ° C. If it is 300 MPa or more on this condition, it can be said that it has sufficient strength as a die for hot forging.
  • the compression resistance of the Ni-based super heat resistant alloy having the composition shown in Table 1 shown in Table 2 is 489 MPa at the highest value and 332 MPa at the lowest value. Therefore, it is understood that all of them have sufficient strength as a die for hot forging. No.
  • Hot die forging with a heating temperature of about 1000 ° C and a heating temperature of about 1100 ° C for hot forging is performed in the atmosphere using the Ni-based super heat-resistant alloy mold (lower and upper molds) shown in 1.
  • the material for hot forging is made of a Ni-based super heat resistant alloy, and the high temperature compressive strength of the material for hot forging is equal to or less than the Ni-based super heat resistant alloy shown in Table 1.
  • its shape is a cylinder with a diameter of about 300 mm and a height of about 600 mm, and the surface of the material for hot forging is machined, and a liquid glass system lubrication containing a frit of borosilicate glass against the machined surface.
  • the agent was applied by brush coating, and the lubricant was coated to a thickness of about 400 ⁇ m. Thereafter, the material for hot forging and the mold were heated to a predetermined temperature.
  • the heated material for hot forging was taken out of the heating furnace by a manipulator and placed on the lower mold. Thereafter, hot die forging was performed in which the material for hot forging was pressed by the lower die and the upper die.
  • the compression rate was about 70%
  • the strain rate was about 0.01 / sec, in which excessive heat generation was suppressed
  • the deformation resistance was relatively low
  • the maximum load was about 4,000 tons.
  • the die heating temperature was 1040 ° C., and the other conditions were the same, and hot die forging was performed.
  • the mold heating temperature is 1000 ° C.
  • the difference between the material for hot forging and the mold heating temperature is about 100 ° C.
  • the mold heating temperature is 1040 ° C.
  • it is about 60 ° C.
  • the hot forging material of the comparative example was placed on the lower die, the temperature near the surface of the hot forging material was less than the temperature of the mold surface.
  • FIGS. 3 (a) and 3 (b) shows a conceptual view of the appearance under the condition that the difference in heating temperature between the material for hot forging and the mold is about 60 ° C.
  • the difference between the inventive example and the comparative example is only the mold heating temperature, and although the productivity of both is almost the same, as is apparent from FIGS. 3 (a) and 3 (b),
  • By hot die forging to which temperature conditions are applied it is possible to obtain a hot forged material free of forging defects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Forging (AREA)

Abstract

ダブルバレリング状の鍛造欠陥の発生を防止可能な熱間鍛造材の製造方法を提供する。 上型と下型の両方がNi基超耐熱合金製であり、熱間鍛造用素材を前記下型と前記上型とにより大気中で押圧することにより熱間鍛造材とする熱間鍛造工程を含む熱間鍛造材の製造方法において、前記熱間鍛造用素材を加熱炉内で1025~1150℃の範囲内の加熱温度に加熱する素材加熱工程と、前記上型と前記下型を950~1075℃の範囲内の加熱温度に加熱する金型加熱工程と、マニピュレータにより前記熱間鍛造用素材を前記加熱炉内から前記下型上まで搬送する搬送工程とを含み、且つ、前記熱間鍛造用素材の加熱温度から前記上型と前記下型の加熱温度を引いた値が75℃以上である熱間鍛造材の製造方法。

Description

熱間鍛造材の製造方法
 本発明は、加熱した金型を用いて行われる熱間鍛造材の製造方法に関する。
 耐熱合金の鍛造において、鍛造用素材は変形抵抗を低くするため所定の温度に加熱される。耐熱合金は高温でも高い強度を有するため、その鍛造に用いる熱間鍛造用金型には高温での高い機械的強度が必要とされる。また、熱間鍛造において熱間鍛造用金型の温度が室温と同程度である場合、抜熱により鍛造用素材の加工性が低下するため、例えばAlloy718やTi合金等の難加工性材の鍛造は、素材とともに熱間鍛造用金型を加熱して行われる。従って、熱間鍛造用金型は、鍛造用素材が加熱される温度と同じかもしくはそれに近い高温で、高い機械的強度を有したものでなければならない。この要求を満たす熱間鍛造用金型として、大気中での金型温度1000℃以上の熱間鍛造に使用できるNi基超耐熱合金が提案されている(例えば、特許文献1~3参照)。
 難加工性材の熱間鍛造には、鍛造用素材と近い温度に加熱した金型を用いて、例えば0.01~0.1/sec程度のひずみ速度で鍛造するホットダイ鍛造や、鍛造用素材と等温に加熱した金型を用いることでホットダイ鍛造より遅い、例えば0.001/sec以下のひずみ速度での鍛造が可能な恒温鍛造が適用される。特許文献1乃至3で提案されたNi基超耐熱合金製の金型を用いて大気中で行う熱間鍛造として、恒温鍛造の実施例が非特許文献1に、ホットダイ鍛造の実施例が特許文献4に示されている。熱間鍛造材を最終形状に近い形状とすることで歩留り向上と加工費低減が可能となるため、鍛造用素材費の点では、熱間鍛造材に金型による抜熱に伴う不均一変形部が存在しない恒温鍛造が有利である。一方、金型の温度が低い程金型の高温強度が高くなり型寿命が向上するため、金型費の点では、金型温度が比較的低いホットダイ鍛造が有利である。熱間鍛造材の組織に影響を及ぼすひずみ速度等の鍛造条件が許容範囲であるならば、ホットダイ鍛造と恒温鍛造との選択では、これらの費用に設備費や鍛造工程数等に依存する作業費などを加えた製造費が低い方が選ばれる。
特開昭62-50429号公報 特公昭63-21737号公報 米国特許第4740354号明細書 特開平3-174938号公報
Transactions of the Iron and Steel Institute of Japan Vol.28(1988) No.11 P.958-964
 特許文献2の実施例において従来合金として示されているMar-M200等のNi基合金を金型に用いた場合、実機での難加工性材のホットダイ鍛造における一般的な金型の上限温度は金型寿命の点から900℃程度である。難加工性材の一般的な加熱温度は1000~1150℃であるため、金型温度は熱間鍛造用素材より100~250℃低い。熱間鍛造材を最終形状に近い形状とするためには金型温度と熱間鍛造用素材の温度差は小さい方が有利であり、特許文献1~3で提案されているような、高温強度に優れ、金型耐用寿命の点で有利なNi基超耐熱合金をホットダイ鍛造の金型に適用することで、熱間鍛造用素材との温度差を小さくすることができる。金型温度を向上させることによる効果を十分に得るために、この場合の金型温度は950℃以上である必要がある。
 加熱炉内で加熱した熱間鍛造用素材の表面付近の温度は搬送中に低下する。熱間鍛造用素材と金型加熱温度の差が小さい場合、搬送中に表面付近が温度低下した熱間鍛造用素材を下型に載置すると、熱間鍛造用素材の表面付近の温度は金型の加熱温度以下となる。この状態で熱間鍛造すると、熱間鍛造中に上型と下型(一対の上型と下型のことを「金型」と記す)と接触する熱間鍛造用素材の上下底面付近では金型によって加熱されることで温度が複熱する一方、金型と接触していない熱間鍛造用素材の側面は温度が低下したままとなる。このような温度むらのある状態で熱間鍛造を行うと、変形抵抗の比較的低い上下底面付近が優先的に変形することによる、熱間鍛造材の側面におけるダブルバレリング状の鍛造欠陥の生じる可能性が高くなる。なお、本発明で言う上下底面とは、熱間鍛造用素材の上型と接する面、及び下型と接する面のことを言う。また、本発明で言うダブルバレリング状の鍛造欠陥とは、円柱状の鍛造用素材に対する一般的な据込み鍛造後の鍛造材の側面において、熱間鍛造用素材が外周方向に曲面状に膨出することで生じるバレリング部が上下底面付近に生じることでできる、鍛造材の側面における楕円状の凹みのことを言う。図1に、熱間鍛造工程も含め、本発明で言うダブルバレリング状の鍛造欠陥を図示する。
 一般的には、この鍛造欠陥が生じると、熱間鍛造材における最終形状以外の切り捨て部分の体積が増加するため歩留まりが低下する。
 先述した課題は特に大型の鍛造材を得る場合に顕著になる傾向がある。そのため、高温強度に優れた、金型耐用寿命で有利なNi基超耐熱合金を金型に適用したホットダイ鍛造では、金型材の変更とともに、ダブルバレリング状の鍛造欠陥の生じない製造方法を適用する必要が有る。
 そのための第1の方法として、熱間鍛造用素材の表面温度の搬送中の低下は搬送時間の短縮により抑制可能である。しかしながら、金型温度900℃以下の一般的なホットダイ鍛造でも搬送時間の短縮は図られている。そのため、搬送時間の短縮以外の方法を検討する方が効果的である。
 特許文献4には、鍛造用素材を鍛造温度以上の融点を有する金属材で被覆して鍛造するホットダイ鍛造が示されている。この方法を用いれば金型温度950℃以上でもダブルバレリング状の鍛造欠陥が生じないホットダイ鍛造を実施できる可能性がある。しかし、この特許文献4の方法では鍛造前の熱間鍛造用素材への被覆と鍛造後の被覆除去工程が必要となり、生産性が低下する。
 金型温度が950℃以上のホットダイ鍛造において、生産性の低下を招かずにダブルバレリング状の鍛造欠陥の発生を防止する熱間鍛造材の製造方法の提案は見当たらないのが現実である。
 本発明の目的は、ダブルバレリング状の鍛造欠陥の発生を防止可能な熱間鍛造材の製造方法を提供することである。
 本発明者は、金型温度が950℃以上であるホットダイ鍛造におけるダブルバレリング状の鍛造欠陥の発生を検討し、ダブルバレリング状の鍛造欠陥を抑制できる温度条件を見出し本発明に到達した。
 すなわち本発明は、上型と下型の両方がNi基超耐熱合金製であり、熱間鍛造用素材を前記下型と前記上型とにより大気中で押圧することにより熱間鍛造材とする熱間鍛造工程を含む熱間鍛造材の製造方法において、前記熱間鍛造用素材を加熱炉内で1025~1150℃の範囲内の加熱温度に加熱する素材加熱工程と、前記上型と前記下型を950~1075℃の範囲内の加熱温度に加熱する金型加熱工程と、前記素材加熱工程と前記金型加熱工程が終了した後に、マニピュレータにより前記熱間鍛造用素材を前記加熱炉内から前記下型上まで搬送する搬送工程とを含み、且つ、前記熱間鍛造用素材の加熱温度から前記上型と前記下型の加熱温度を引いた値が75℃以上である熱間鍛造材の製造方法である。
 また、前記Ni基超耐熱合金の組成は、質量%で、W:7.0~15.0%、Mo:2.5~11.0%、Al:5.0~7.5%、選択元素として、Cr:7.5%以下、Ta:7.0%以下、Ti:7.0%以下、Nb:7.0%以下、Co:15.0%以下、C:0.25%以下、B:0.05%以下、Zr:0.5%以下、Hf:0.5%以下、希土類元素:0.2%以下、Y:0.2%以下、Mg:0.03%以下、残部はNi及び不可避的不純物であることが好ましい。なお、前述した選択元素の含有量の下限は0%を含むものである。
 また、前記熱間鍛造用素材が前記加熱炉内で前記加熱温度に加熱される前に、前記熱間鍛造用素材の表面に液体潤滑剤の塗布による潤滑被覆を設けることが好ましい。
 本発明によればダブルバレリング状の鍛造欠陥の発生を防止することができる。
熱間鍛造により生じるダブルバレリング状の鍛造欠陥を示した図である。 本発明に係る熱間鍛造材の製造方法の各工程と、工程間の流れを例示した模式図である。 本発明に係る熱間鍛造材の製造方法の適用によるダブルバレリング状の鍛造欠陥の防止効果を示した模式図である。
 以下に、本発明を詳しく説明する。
 <熱間鍛造用素材>
 最初に、本発明の熱間鍛造材の製造方法で用いる熱間鍛造用素材について説明する。
 本発明は難加工性材からなる熱間鍛造用素材の熱間鍛造材の製造に好適である。難加工性材としてはNiを主成分とするNi基超耐熱合金やTiを主成分とするTi合金等が代表的である。なお、本発明で言う主成分とは、質量%で最も含有量の高い元素のことを指す。熱間鍛造用素材の形状と内部組織は特に限定しないが、一般的に熱間鍛造用素材として好適な形状や内部組織であればよい。なお、本発明で言う「Ni基超耐熱合金」とは、超合金、耐熱超合金、superalloyとも称される600℃以上の高温領域で使用されるNi基の合金であって、γ’などの析出相によって強化される合金を言う。
 本発明における熱間鍛造用素材の形状は、ダブルバレリング状の鍛造欠陥の発生を防止する点から、熱間鍛造用素材を金型に載置した時の素材の高さを素材の最大幅(直径)で割った値が3.0以下であることが好ましく、2.8以下であることがより好ましい。この値が3.0を超えると、ダブルバレリング状の鍛造欠陥の他に、座屈などの別の鍛造欠陥の生じる可能性が高くなるからである。
 また、熱間鍛造用素材の表面は、スケールが形成された表面状態でも良いが、潤滑剤を均一に塗布するため、機械加工後に脱脂洗浄した金属面であることが好ましい。
 また、熱間鍛造時においては、熱間鍛造用素材表面と金型が高温且つ高い応力負荷状態で接触するため、成形荷重の低減、金型と鍛造用素材間の拡散結合による焼き付き防止、金型の摩耗の抑制等のため潤滑剤ないしは離型剤が用いられる。本発明のような、大気中での金型温度950℃以上での熱間鍛造では、潤滑剤ないしは離型剤として、グラファイト系の潤滑剤、窒化硼素系の離型剤、ガラス系の潤滑剤兼離型剤等が使用される。
 本発明では、成形荷重低減の点と塗布作業性の点から、水などの分散剤にガラスフリットを分散させたガラス系液体潤滑剤を使用することが好ましい。ガラスフリットは、成形荷重低減の点で有利な粘度を有するホウケイ酸ガラスであることが好ましい。また、熱間鍛造用素材と金型における酸化腐食を助長する化学反応を抑制する点から、この液体潤滑剤のガラスのアルカリ成分含有量は低い方が好ましい。
 前述したガラス系液体潤滑剤は、例えば、熱間鍛造用素材全面へのスプレー、刷毛塗り、浸漬による塗布や、金型表面へのスプレー、刷毛塗りなどにより、熱間鍛造用素材の表面に付与され、熱間鍛造用素材と金型の間に供給される。このうち、潤滑被膜の厚さの制御の点からスプレーによる塗布が塗布方法として最も好ましい。潤滑剤を塗布する前の熱間鍛造用素材は、液体潤滑剤に含まれる水等の分散剤の揮発を促進するため、塗布作業の前に室温以上の温度に加熱されていても良い。
 塗布によるガラス系潤滑被膜の厚さは、鍛造中における連続的な潤滑膜の形成のため100μm以上が好ましい。100μm未満では潤滑膜が部分的に破損し、熱間鍛造用素材と金型の直接接触による潤滑性の悪化に加え、金型の摩耗や焼き付きが生じやすくなるおそれがある。また、熱間鍛造用素材の搬送中の温度低下を抑制する点では、潤滑被膜の厚さは厚い方が好ましい。しかし、潤滑被膜の厚さが厚すぎると、複雑な形状の型彫り面を有する金型を用いた鍛造の場合、ガラスの型彫り面への堆積による鍛造品の寸法公差外れが生じるおそれがある。そのため、潤滑被膜の厚さは500μm以下であることが好ましい。
 <金型>
 次に本発明で用いる金型について説明する。
 本発明で用いる金型の材質は、高温強度に優れ金型耐用寿命の点で有利なNi基超耐熱合金とする。高温強度に優れた金型の材質として、Ni基超耐熱合金の他にもファインセラミックスやMo基合金をあげることができる。しかし、ファインセラミックス製の金型は、そのコストが高額である。また、Mo基合金製の金型であると、不活性雰囲気で使用しなければならないため専用の大規模かつ特殊な設備が必要となる。そのため、これらはNi基超耐熱合金に比べ製造コストの点で不利である。前記の理由から本発明で用いる金型の材質をNi基超耐熱合金とする。
 前記高温強度に優れたNi基超耐熱合金の中でも、下記で説明する合金組成を有するNi基超耐熱合金は高温圧縮強度が優れているだけなく、高温の大気雰囲気中においても熱間鍛造用の金型として十分に使用できるだけの強度を有する合金である。
 以下に、好ましい熱間鍛造用金型用のNi基超耐熱合金の組成について説明する。なお、化学組成の単位は質量%である。好ましいNi基超耐熱合金の組成は、質量%で、W:7.0~15.0%、Mo:2.5~11.0%、Al:5.0~7.5%、選択元素として、Cr:7.5%以下、Ta:7.0%以下、Ti:7.0%以下、Nb:7.0%以下、Co:15.0%以下、C:0.25%以下、B:0.05%以下、Zr:0.5%以下、Hf:0.5%以下、希土類元素:0.2%以下、Y:0.2%以下、Mg:0.03%以下、残部はNi及び不可避的不純物である。
 <W:7.0~15.0%>
 Wは、オーステナイトマトリックスに固溶するとともに、析出強化相であるNiAlを基本型とするガンマプライム相(γ’相)にも固溶して合金の高温強度を高める。一方、Wは、耐酸化性を低下させる作用や、TCP(Topologically Close Packed)相等の有害相を析出しやすくする作用を有する。高温強度を高め、且つ、耐酸化性の低下と有害相の析出をより抑制する観点から、本発明におけるNi基超耐熱合金中のWの含有量は7.0~15.0%とする。Wの効果をより確実に得るための好ましい下限は10.0%であり、好ましいWの上限は12.0%であり、更に好ましい上限は11.0%である。
 <Mo:2.5~11.0%>
 Moは、オーステナイトマトリックスに固溶するとともに、析出強化相であるNiAlを基本型とするガンマプライム相にも固溶して合金の高温強度を高める。一方、Moは、耐酸化性を低下させる作用を有する。高温強度を高め、且つ、耐酸化性の低下をより抑制する観点から、本発明におけるNi基超耐熱合金中のMoの含有量は2.5~11.0%とする。なお、Wと後述するTa、Ti、Nbの添加に伴うTCP相等の有害相の析出を抑制するため、Wと後述するTa、Ti、Nb含有量との兼ね合いで好ましいMoの下限を設定するのが好ましく、Taを含有する場合のMoの効果をより確実に得るための好ましい下限は4.0%であり、更に好ましい下限は4.5%である。一方、Ta、Ti、Nbを添加しない場合のMoの好ましい下限は7.0%とすると良く、更に好ましい下限は9.5%である。また、好ましいMoの上限は10.5であり、更に好ましい上限は、10.2%である。
 <Al:5.0~7.5%>
 Alは、Niと結合してNiAlからなるガンマプライム相を析出し、合金の高温強度を高め、合金の表面にアルミナの被膜を生成し、合金に耐酸化性を付与する作用を有する。一方、Alの含有量が多過ぎると、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もある。耐酸化性及び高温強度を高める観点から、本発明におけるNi基超耐熱合金中のAlの含有量は5.0~7.5%とする。Alの効果をより確実に得るための好ましい下限は5.5%であり、更に好ましい下限は6.1%である。また、好ましいAlの上限は6.7%であり、更に好ましい上限は6.5%である。
 <Cr:7.5%以下>
 本発明におけるNi基超耐熱合金は、Crを含有することができる。Crは、合金表面もしくは内部におけるアルミナの連続層の形成を促進し、合金の耐酸化性を向上させる作用を有する。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、耐酸化性の重要性が比較的低くCrの添加は必須でないため、本発明におけるNi基超耐熱合金ではCrは必要に応じて添加される。また、Crの添加が必要な場合は、7.5%を超える範囲のCrの添加は1000℃以上における合金の圧縮強度も低下させるため避けなければならない。Crの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は1.3%であり、好ましいCrの上限は3.0%である。
 <Ta:7.0%以下>
 本発明におけるNi基超耐熱合金は、Taを含有することができる。Taは、NiAlからなるガンマプライム相にAlサイトを置換する形で固溶して合金の高温強度を高めるとともに、合金表面に形成された酸化物皮膜の密着性と耐酸化性を高め、合金の耐酸化性を向上させる作用を有する。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、耐酸化性と高温強度の重要性が低いためくTaの添加は必須でない。加えて、Taは高価あり、多量に添加すると金型費が高額となる。そのため、本発明におけるNi基超耐熱合金では、Taは必要に応じて添加される。また、Taの添加が必要な場合は、Taの含有量が多すぎると、TCP相等の有害相を析出しやすくする作用や、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もあるため、7.0%を超える範囲の添加は避けなければならない。Taの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は2.5%である。好ましいTaの上限は6.5%である。なお、後述するTi乃至はNbとともにTaを含有する場合は、これらの元素の含有量の総和が大きいと有害相の析出や共晶ガンマプライム相の過度な生成に伴い高温強度が低下するため、これらの元素の含有量の総和は7.0%以下であることが好ましい。
 <Ti:7.0%以下>
 本発明におけるNi基超耐熱合金は、Tiを含有することができる。Tiは、Taと同様にNiAlからなるガンマプライム相にAlサイトを置換する形で固溶して、合金の高温強度を高める。また、Taに比べて安価な元素であるため金型コストの点で有利である。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、高温強度の重要性が比較的低いためTiの添加は必須でない。そのため、本発明におけるNi基超耐熱合金では、Tiは必要に応じて添加される。また、Tiの添加が必要な場合は、Tiの含有量が多すぎると、TCP相等の有害相を析出しやすくする作用や、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もあるため、7.0%を超える範囲の添加は避けなければならない。Tiの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は2.5%である。好ましいTiの上限は6.5%である。なお、先述したTa乃至は後述するNbとともにTiを含有する場合は、これらの元素の含有量の総和が大きいと有害相の析出や共晶ガンマプライム相の過度な生成に伴い高温強度が低下するため、これらの元素の含有量の総和は7.0%以下であることが好ましい。
 <Nb:7.0%以下>
 本発明におけるNi基超耐熱合金は、Nbを含有することができる。Nbは、Ta、Tiと同様にNiAlからなるガンマプライム相にAlサイトを置換する形で固溶して、合金の高温強度を高める。また、Taに比べて安価な元素であるため金型コストの点で有利である。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、高温強度の重要性が比較的低いためNbの添加は必須でない。そのため、本発明におけるNi基超耐熱合金では、Nbは必要に応じて添加される。また、Nbの添加が必要な場合は、Nbの含有量が多すぎると、TCP相等の有害相を析出しやすくする作用や、共晶ガンマプライム相を過度に生成し、合金の高温強度を低める作用もあるため、7.0%を超える範囲の添加は避けなければならない。Nbの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は2.5%である。好ましいTiの上限は6.5%である。なお、先述したTa乃至はTiとともにNbを含有する場合は、これらの元素の含有量の総和が大きいと有害相の析出や共晶ガンマプライム相の過度な生成に伴い高温強度が低下するため、これらの元素の含有量の総和は7.0%以下であることが好ましい。
 <Co:15.0%以下>
 本発明におけるNi基超耐熱合金は、Coを含有することができる。Coは、オーステナイトマトリックスに固溶し、合金の高温強度を高める。恒温鍛造に比べて熱間鍛造材の寸法公差が大きく、また、金型加熱温度の低いホットダイ鍛造の場合は、高温強度の重要性が比較的低いためCoの添加は必須でない。そのため、本発明におけるNi基超耐熱合金では、Coは必要に応じて添加される。また、Coの含有量が多すぎると、CoはNiに比べて高価な元素であるため金型コストを高め、また、TCP相等の有害相を析出しやすくする作用もある。そのため、15.0%を超える範囲の添加は避けなければならない。Coの効果を確実に得るための好ましい下限は0.5%であり、更に好ましい下限は2.5%である。好ましい上限は13.0%である。
 <C及びB>
 本発明におけるNi基超耐熱合金は、C、Bから選択される1種または2種の元素を含有することができる。C、Bは、合金の結晶粒界の強度を向上させ、高温強度や延性を高める。そのため、本発明におけるNi基超耐熱合金では、C、Bから選択される1種または2種の元素も必要に応じて添加される。また、C、Bの含有量が多すぎると、粗大な炭化物やホウ化物が形成され、合金の強度を低下させる作用もある。合金の結晶粒界の強度を高め、粗大な炭化物やホウ化物の形成を抑制する観点から、本発明におけるCの含有量の上限は0.25%、Bの含有量の上限は0.05%である。Cの効果を確実に得るための好ましい下限は0.005%であり、更に好ましい下限は0.01%である。また、好ましい上限は0.15%である。Bの効果を確実に得るための好ましい下限は0.005%であり、更に好ましい下限は0.01%である。また、好ましい上限は0.03%である。
 経済性や高温強度が特に必要とされる場合はCのみを添加することが好ましく、延性が特に必要とされる場合はBのみを添加することが好ましい。高温強度と延性の両者が特に必要とされる場合は、CとBを同時に添加することが好ましい。
 <その他の任意の添加元素>
 本発明におけるNi基超耐熱合金は、Zr、Hf、希土類元素、Y及びMgから選択される1種または2種以上の元素を含有することができる。Zr、Hf、希土類元素、Yは、合金表面に形成される酸化物被膜の結晶粒界への偏析によりその粒界での金属イオンと酸素の拡散を抑制する。この粒界拡散の抑制は、酸化物被膜の成長速度を低下させ、また、酸化物被膜の剥離を促進するような成長機構を変化させることで酸化物被膜と合金との密着性を向上させる。すなわち、これらの元素は、前述した酸化物被膜の成長速度の低下と酸化物被膜の密着性の向上によって合金の耐酸化性を向上させる作用を有する。
 また、合金中にはS(硫黄)が不純物として少なからず含有される。このSは、合金表面に形成される酸化物被膜と合金との界面への偏析とそれらの化学結合の阻害により酸化物被膜の密着性を低下させる。Mgは、Sと硫化物を形成し、Sの偏析を防止することで酸化物被膜の密着性を向上させ、合金の耐酸化性を向上させる作用を有する。
 なお、前記希土類元素のなかでもLaを用いるのが好ましい。Laは耐酸化性の向上の効果が大きいためである。Laは前述した拡散の抑制に加えてSの偏析を防止する作用も有し、且つ、それらの作用が優れているため、希土類元素のなかではLaを選択するのが良い。また、YにおいてもLaと同じ作用効果を奏するためYの添加も好ましく、LaとYを含む2種以上を用いるのが特に好ましい。
 耐酸化性に加えて優れた機械的特性も必要な場合は、HfまたはZrを用いるのが好ましく、Hfを用いるのが特に好ましい。また、Hfを添加する場合は、HfはSの偏析を防止する作用が小さいため、Hfに加えてMgを同時に添加すると耐酸化性がより向上する。そのため、耐酸化性とともに機械的特性がもとめられる場合は、HfとMgを含む2種以上の元素を用いるのが更に好ましい。
 前述したZr、Hf、希土類元素、Y及びMgの元素の添加量が多すぎると、Ni等との金属間化合物を過度に生成して合金の靱性を低下させるため、これらの任意の添加元素は好適な含有量とすることが好ましい。
 耐酸化性を高め、且つ、靱性の低下を抑制する観点から、本発明におけるZr、Hfのそれぞれの含有量の上限は0.5%である。Zr、Hfのそれぞれの含有量の好ましい上限は0.2%であり、さらに好ましくは0.15%であり、より好ましくは0.1%である。希土類元素、YはZr、Hfよりも靱性を低める作用が高いため、本発明におけるこれらの元素のそれぞれの含有量の上限は0.2%であり、好ましい上限は0.1%であり、さらに好ましくは0.05%であり、より好ましくは0.02%である。Zr、Hf、希土類元素、Yを含有させる場合の好ましい下限は0.001%である。Zr、Hf、希土類元素、Yの含有の効果を十分に発揮する好ましい下限は0.005%であり、更に好ましくは0.01%以上含有するのがよい。
 また、Mgについては合金に含有される不純物Sと硫化物を形成させるために必要な量のみ含有すればよいため、Mgの含有量は0.03%以下とする。好ましいMgの上限は0.02%であり、さらに好ましくは0.01%である。一方、Mg添加による効果をより確実に発揮させるには0.005%を下限とするのがよい。
 以上説明する添加元素以外はNi及び不可避的不純物である。本発明におけるNi基超耐熱合金においてNiはガンマ相を構成する主要元素であるとともに、Al、Ta、Ti、Nb、Mo、Wとともにガンマプライム相を構成する。また、不可避的不純物としては、P、N、O、S、Si、Mn、Fe等が想定され、P、N、O、Sはそれぞれ0.003%以下であれば含有されていてもかまわなく、また、Si、Mn、Feはそれぞれ0.03%以下であれば含有されていてもかまわない。また、本発明のNi基合金は、Ni基耐熱合金と呼ぶこともできる。なお、前記不可避的不純物元素のうち、特にSについては0.001%以下とするのが好ましい。なお、前述の不純物元素の他に、特に制限すべき元素としてCaが挙げられる。本発明で規定する組成にCaが添加されるとシャルピー衝撃値を著しく低下させるため、Caの添加は避けるべきである。
 ところで、本発明で用いる金型の形状は制限されず、熱間鍛造用素材乃至は熱間鍛造材の形状に応じた形状を選択してよい。
 また、本発明では、作業性の向上等の点から、必要に応じて金型の成形面または側面の少なくとも一方の面を、酸化防止剤の塗布層を有する面とすることができる。これにより、高温での大気中の酸素と金型の母材の接触による金型表面の酸化とそれに伴うスケール飛散を防止し、作業環境の劣化及び形状劣化を防止できる。前述した酸化防止剤は、窒化物、酸化物、炭化物の何れか1種類以上でなる無機材料であることが好ましい。これは、窒化物や酸化物や炭化物の塗布層により緻密な酸素遮断膜を形成し、金型母材の酸化を防ぐためである。なお、塗布層は窒化物、酸化物、炭化物の何れかの単層でもよいし、窒化物、酸化物、炭化物の何れか2種以上の組み合わせの積層構造であってもよい。更に、塗布層は窒化物、酸化物、炭化物の何れか2種以上からなる混合物であってもよい。
 次に、「素材加熱工程」と「金型加熱工程」について説明する。上述したダブルバレリング状の鍛造欠陥を防止するには、(1)熱間鍛造用素材の加熱温度、(2)金型の加熱温度及び(3)それらの温度差が非常に重要となる。
 本発明者は、金型温度が950℃以上であるホットダイ鍛造におけるダブルバレリング状の鍛造欠陥の発生を検討し、発生の主因が、搬送中の熱間鍛造用素材表面付近における温度低下と金型による素材底面付近の復熱とによる鍛造中の素材底面付近の優先的な変形であることを知見した。従って、前述の(1)~(3)を適切に管理することが重要となる。
 <素材加熱工程>
 上述した熱間鍛造用素材を用いて、その熱間鍛造用素材を所定の温度に加熱する。以降の工程は図2にその一例を例示する。金型加熱工程と素材加熱工程はそれぞれ同時進行で行ってもよい。しかし、搬送工程はこれらの工程が全て完了した後に行われ、鍛造工程はこの搬送工程が完了した後に行われる。
 熱間鍛造用素材は、加熱炉を用いて目的とする素材温度まで加熱される。本発明では、熱間鍛造用素材を加熱炉内で1025~1150℃の範囲内の加熱温度に加熱する。この加熱によって、熱間鍛造用素材の温度は加熱温度となる。加熱時間は、熱間鍛造用素材全体が均一な温度となる時間以上であればよい。加熱温度の下限については、熱間鍛造装置(熱間プレス機)への搬送中の熱間鍛造用素材表面付近における温度低下を見越してやや高めの1025℃とする。加熱温度が1025℃未満であるとダブルバレリング状の鍛造欠陥が生じやすくなる。一方、1150℃を超える温度となると、熱間鍛造用素材の金属組織が粗大化する問題が生じる。なお、実際の加熱温度は、熱間鍛造用素材の材質に応じて1025~1150℃の範囲内で決定すると良い。
 <金型加熱工程>
 本発明においては熱間鍛造に用いる金型についても950~1075℃の範囲内の加熱温度に加熱する。この加熱によって、金型の温度は加熱温度となる。このとき、上記の好ましい組成を有するNi基超耐熱合金製の金型であると大気中で目的の温度まで加熱することができる。金型の加熱温度を950~1075℃としたのはホットダイ鍛造を行うのに必要な温度であることと、ダブルバレリング状の鍛造欠陥を防止するためである。この950~1075℃の範囲外ではダブルバレリング状の鍛造欠陥が生じるおそれがある。金型の加熱においては、少なくとも金型の押圧面の表面温度が目的の温度となっていれば良い。
 そして、熱間鍛造用素材の加熱温度から前記金型の加熱温度を引いた値が75℃以上とする。熱間鍛造用素材の加熱温度から金型の加熱温度を差し引いた温度差が75℃未満の場合、熱間鍛造用素材を下型に載置した時、搬送中の温度低下により熱間鍛造用素材の表面付近の温度が金型表面の温度以下となる。この状態で鍛造を行うと、鍛造中に熱間鍛造用素材の上下底面付近では金型の熱によって復熱する一方、復熱されない熱間鍛造用素材の側面の表面付近では温度が底面付近に比べて低くなり、温度むらとそれに伴う変形抵抗の差が生じ、変形抵抗の比較的低い上下底面付近が優先的に変形することによって、ダブルバレリング状の鍛造欠陥が生じることになる。そのため、熱間鍛造用素材を下型に載置した時に熱間鍛造用素材の表面付近の温度が金型表面の温度以上となるように、熱間鍛造用素材の加熱温度から金型の加熱温度を差し引いた温度差を75℃以上として、意図的に両者に温度差を設けてダブルバレリング状の鍛造欠陥の発生を防止する。
 なお、金型の加熱につては、加熱炉、誘導加熱及び抵抗加熱等で所定の温度に加熱した金型を熱間鍛造装置へ搬送する方法、熱間鍛造装置に備えた加熱炉、誘導加熱装置及び抵抗加熱装置等で所定の温度に加熱する方法、または、これらを組み合わせる方法により、所定の温度とすれば良い。
 <搬送工程>
 熱間鍛造用素材は、目的とする温度に加熱された後、マニピュレータによって加熱された下型上まで搬送される。一般的に、熱間鍛造用素材の搬送に使用されるマニピュレータとして、熱間鍛造用素材を左右から挟んで把持するための一対の挟持指を有し、且つ、所定の重量の把持と搬送が可能であるものが使用され、本発明でも同様の機能を有するマニピュレータを使用することが好ましい。
 なお、マニピュレータでの搬送については、ダブルバレリング状の鍛造欠陥の発生を抑制する点からは搬送時間は短い方が好ましい。本発明の前記温度差の条件に加えて、搬送中の温度低下を抑制するため、マニピュレータの挟持部に熱間鍛造用素材の側面を覆うカバーを有する把持治具を取り付けることで、ダブルバレリング状の鍛造欠陥の発生をより確実に防止することができる。
 <熱間鍛造工程>
 前述した所定の温度に加熱した熱間鍛造用素材及び金型(下型と上型)を用いて熱間鍛造する。熱間鍛造は、熱間鍛造用素材を下型上に載置し、その熱間鍛造用素材を下型と上型とにより大気中で押圧することにより行われる。これにより、ダブルバレリング状の鍛造欠陥の発生を防止した熱間鍛造材を得ることができる。
 以下の実施例で本発明をさらに詳しく説明する。
 まず、本発明で使用される金型材として好ましいNi基超耐熱合金についての実施例を示す。真空溶解にて表1に示すNi基超耐熱合金のインゴットを製造した。表1に示す組成を有するNi基超耐熱合金は、表2に示すような優れた高温圧縮強度の特性を有するものである。なお、表1に示すインゴットに含有されているP、N、Oはそれぞれ0.003%以下であった。また、Si、Mn、Feはそれぞれ0.03%以下である。
 なお、表1に示すインゴットに含有されているP、N、Oはそれぞれ0.003%以下であった。また、Si、Mn、Feはそれぞれ0.03%以下である。
 表2に示す高温圧縮強度(圧縮耐力)は1100℃での歪速度10-3/secの条件で行ったものである。この条件で300MPa以上あれば熱間鍛造用の金型として十分な強度を有すると言える。表2に示す表1に示した組成のNi基超耐熱合金の圧縮耐力は、最も高い値で489MPa、最も低い値で332MPaである。そのため、これら全てが熱間鍛造用の金型として十分な強度を有することがわかる。なお、No.1については歪速度10-2/secと歪速度10-1/secの試験条件でも試験を行い、前者での値は570MPa、後者での値は580MPaであり、歪速度の比較的大きな条件でも優れた圧縮耐力を有することを確認した。また、表1に示した組成の1100℃以下の温度で用いた場合の高温圧縮強度は、表2に示した値以上となる。
 この表1に示したNi基超耐熱合金から、代表例としてNo.1の組成の上型と下型とを作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1のNo.1に示したNi基超耐熱合金製の金型(下型と上型)を用いて、金型加熱温度約1000℃、熱間鍛造用素材加熱温度約1100℃のホットダイ鍛造を大気中で行った。
 熱間鍛造用素材はNi基超耐熱合金からなり、熱間鍛造用素材の高温圧縮強度は表1に示したNi基超耐熱合金以下である。また、その形状は直径約300mm、高さ約600mmの円柱であり、熱間鍛造用素材の表面を機械加工し、その機械加工面に対して、ホウケイ酸ガラスのフリットを含有した液体ガラス系潤滑剤を刷毛塗りにより塗布し、400μm程度の厚みで潤滑材を被覆した。その後、熱間鍛造用素材と金型を所定の温度に加熱した。
 熱間鍛造用素材の温度が1100℃に、金型の温度が1000℃に到達した後、加熱した熱間鍛造用素材をマニピュレータによって加熱炉から取り出して下型上に載置した。その後、下型と上型とにより熱間鍛造用素材を押圧するホットダイ鍛造を行った。圧縮率は約70%程度、ひずみ速度は過度な加工発熱が抑制され、また、比較的変形抵抗の低い約0.01/sec、であり、最大荷重は約4000トンであった。なお、熱間鍛造用素材を下型に載置した時に熱間鍛造用素材の表面付近の温度は金型表面の温度以上であった。
 また、比較のため、金型加熱温度を1040℃とし、他は同じ条件であるホットダイ鍛造を行った。金型加熱温度を1000℃とした場合の熱間鍛造用素材と金型加熱温度の差は約100℃、金型加熱温度を1040℃とした場合は約60℃である。比較例の熱間鍛造用素材を下型に載置した時に熱間鍛造用素材の表面付近の温度は金型表面の温度未満であった。
 本発明例の図3(a)に熱間鍛造用素材と金型との加熱温度の差が約100℃の条件のホットダイ鍛造により製造した熱間鍛造材の外観の概念図を、比較例の図3(b)に熱間鍛造用素材と金型との加熱温度の差が約60℃の条件での外観の概念図を示す。
 本発明例と比較例との違いは金型加熱温度のみであり、両者の生産性はほぼ同等であるにもかかわらず、図3(a)と(b)から明らかなように、本発明の温度条件を適用したホットダイ鍛造により、鍛造欠陥の生じない熱間鍛造材を得ることができる。

 

Claims (3)

  1.  上型と下型の両方がNi基超耐熱合金製であり、熱間鍛造用素材を前記下型と前記上型とにより大気中で押圧することにより熱間鍛造材とする熱間鍛造工程を含む熱間鍛造材の製造方法において、
     前記熱間鍛造用素材を加熱炉内で1025~1150℃の範囲内の加熱温度に加熱する素材加熱工程と、
     前記上型と前記下型を950~1075℃の範囲内の加熱温度に加熱する金型加熱工程と、
     前記素材加熱工程と前記金型加熱工程が終了した後に、マニピュレータにより前記熱間鍛造用素材を前記下型上まで搬送する搬送工程と、
     を含み、
     前記熱間鍛造用素材の加熱温度から前記上型と前記下型の加熱温度を引いた値が75℃以上であることを特徴とする熱間鍛造材の製造方法。
  2.  前記Ni基超耐熱合金が、質量%で、W:7.0~15.0%、Mo:2.5~11.0%、Al:5.0~7.5%、選択元素として、Cr:7.5%以下、Ta:7.0%以下、Ti:7.0%以下、Nb:7.0%以下、Co:15.0%以下、C:0.25%以下、B:0.05%以下、Zr:0.5%以下、Hf:0.5%以下、希土類元素:0.2%以下、Y:0.2%以下、Mg:0.03%以下、残部はNi及び不可避的不純物の組成を有することを特徴とする請求項1に記載の熱間鍛造材の製造方法。
  3.  前記熱間鍛造用素材が前記加熱炉内で前記加熱温度に加熱される前に、前記熱間鍛造用素材の表面に液体潤滑剤の塗布による潤滑被覆を設けることを特徴とする請求項1または2に記載の熱間鍛造材の製造方法。
PCT/JP2018/035215 2017-09-29 2018-09-21 熱間鍛造材の製造方法 WO2019065543A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019539316A JP6631862B2 (ja) 2017-09-29 2018-09-21 熱間鍛造材の製造方法
EP18863051.1A EP3689493B1 (en) 2017-09-29 2018-09-21 Method for producing hot-forged material
US16/650,296 US11358209B2 (en) 2017-09-29 2018-09-21 Method for producing hot forged material
CN201880063367.4A CN111148583B (zh) 2017-09-29 2018-09-21 热锻材的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190114 2017-09-29
JP2017-190114 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065543A1 true WO2019065543A1 (ja) 2019-04-04

Family

ID=65901326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035215 WO2019065543A1 (ja) 2017-09-29 2018-09-21 熱間鍛造材の製造方法

Country Status (5)

Country Link
US (1) US11358209B2 (ja)
EP (1) EP3689493B1 (ja)
JP (1) JP6631862B2 (ja)
CN (1) CN111148583B (ja)
WO (1) WO2019065543A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241585A1 (ja) 2020-05-26 2021-12-02 日立金属株式会社 熱間金型用Ni基合金およびそれを用いた熱間鍛造用金型

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114273575B (zh) * 2021-06-11 2023-04-18 宁夏中色金航钛业有限公司 一种大变形短流程锻造方法
PL443627A1 (pl) * 2023-01-30 2024-08-05 Schraner Polska Spółka Z Ograniczoną Odpowiedzialnością Matryce do produkcji precyzyjnych odkuwek małogabarytowych i sposób ich wytwarzania, odkuwka otrzymana tym sposobem

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127832U (ja) * 1985-01-30 1986-08-11
JPS6250429A (ja) 1985-08-30 1987-03-05 Hitachi Metals Ltd 高温鍛造金型用ニツケル基鋳造合金
US4740354A (en) 1985-04-17 1988-04-26 Hitachi, Metals Ltd. Nickel-base alloys for high-temperature forging dies usable in atmosphere
JPS6321737B2 (ja) 1984-04-17 1988-05-09 Hitachi Metals Ltd
JPH03174938A (ja) 1989-12-02 1991-07-30 Kobe Steel Ltd Ni基超耐熱合金の熱間鍛造方法
JP3227223B2 (ja) * 1992-10-05 2001-11-12 株式会社神戸製鋼所 恒温型鍛造方法
JP2016068134A (ja) * 2014-09-30 2016-05-09 日立金属株式会社 鍛造用金型及びその製造方法
JP2016529106A (ja) * 2013-07-10 2016-09-23 アルコア インコーポレイテッド 鍛造製品および他の加工製品の製造方法
JP2016196026A (ja) * 2015-04-06 2016-11-24 日立金属株式会社 熱間鍛造用金型及び熱間鍛造方法
JP6045434B2 (ja) * 2013-04-26 2016-12-14 株式会社神戸製鋼所 熱間鍛造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4569218A (en) 1983-07-12 1986-02-11 Alumax, Inc. Apparatus and process for producing shaped metal parts
JPH0441641A (ja) 1990-06-07 1992-02-12 Kobe Steel Ltd 金型用ニッケル基超耐熱合金
JPH05261465A (ja) 1992-03-19 1993-10-12 Mitsubishi Materials Corp 鍛造用素材の冷却防止具
JP3227269B2 (ja) * 1993-01-07 2001-11-12 株式会社神戸製鋼所 恒温型鍛造方法
US6908519B2 (en) * 2002-07-19 2005-06-21 General Electric Company Isothermal forging of nickel-base superalloys in air
US6932877B2 (en) * 2002-10-31 2005-08-23 General Electric Company Quasi-isothermal forging of a nickel-base superalloy
DE202004020404U1 (de) 2003-06-05 2005-05-25 Langenstein & Schemann Gmbh Handhabungsgerät zum Handhaben eines Werkstücks während eines Umformprozesses
DE10354434B4 (de) * 2003-11-21 2006-03-02 Daimlerchrysler Ag Werkzeug zum Herstellen von Werkstücken
JP4700364B2 (ja) 2005-02-07 2011-06-15 新日本製鐵株式会社 金属板材の熱間プレス成形方法
CN100467156C (zh) 2007-03-05 2009-03-11 贵州安大航空锻造有限责任公司 Gh4169合金盘形锻件在空气中的近等温锻造方法
US8511136B2 (en) 2012-01-09 2013-08-20 Firth Rixson Limited Gripper assembly for a manipulator and method of use
CN102825189B (zh) 2012-09-20 2015-04-01 江苏金源锻造股份有限公司 Gh4169合金管的制造方法
CN102873241A (zh) 2012-09-20 2013-01-16 江苏金源锻造股份有限公司 Gh4145合金带的制造方法
DE102013104229B3 (de) 2013-04-25 2014-10-16 N. Bättenhausen Industrielle Wärme- und Elektrotechnik GmbH Vorrichtung zum Presshärten von Bauteilen
CN103302214B (zh) 2013-06-14 2015-05-13 北京科技大学 一种难变形镍基高温合金超塑性成形方法
JP6476704B2 (ja) * 2014-09-30 2019-03-06 日立金属株式会社 ニッケル基鋳造合金及び熱間鍛造金型
CN105296802B (zh) 2015-11-03 2017-03-22 华南理工大学 一种高强韧双尺度结构钛合金及其制备方法与应用
JP6321737B2 (ja) 2016-08-15 2018-05-09 株式会社ユニバーサルエンターテインメント 遊技機
CN107008841A (zh) 2017-06-05 2017-08-04 威海多晶钨钼科技有限公司 一种钼及其合金t型零部件的制造装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321737B2 (ja) 1984-04-17 1988-05-09 Hitachi Metals Ltd
JPS61127832U (ja) * 1985-01-30 1986-08-11
US4740354A (en) 1985-04-17 1988-04-26 Hitachi, Metals Ltd. Nickel-base alloys for high-temperature forging dies usable in atmosphere
JPS6250429A (ja) 1985-08-30 1987-03-05 Hitachi Metals Ltd 高温鍛造金型用ニツケル基鋳造合金
JPH03174938A (ja) 1989-12-02 1991-07-30 Kobe Steel Ltd Ni基超耐熱合金の熱間鍛造方法
JP3227223B2 (ja) * 1992-10-05 2001-11-12 株式会社神戸製鋼所 恒温型鍛造方法
JP6045434B2 (ja) * 2013-04-26 2016-12-14 株式会社神戸製鋼所 熱間鍛造方法
JP2016529106A (ja) * 2013-07-10 2016-09-23 アルコア インコーポレイテッド 鍛造製品および他の加工製品の製造方法
JP2016068134A (ja) * 2014-09-30 2016-05-09 日立金属株式会社 鍛造用金型及びその製造方法
JP2016196026A (ja) * 2015-04-06 2016-11-24 日立金属株式会社 熱間鍛造用金型及び熱間鍛造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3689493A4
TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, vol. 28, no. 11, 1988, pages 958 - 964

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241585A1 (ja) 2020-05-26 2021-12-02 日立金属株式会社 熱間金型用Ni基合金およびそれを用いた熱間鍛造用金型

Also Published As

Publication number Publication date
US11358209B2 (en) 2022-06-14
US20200222969A1 (en) 2020-07-16
JP6631862B2 (ja) 2020-01-15
CN111148583A (zh) 2020-05-12
CN111148583B (zh) 2022-04-01
JPWO2019065543A1 (ja) 2019-11-21
EP3689493B1 (en) 2022-11-16
EP3689493A4 (en) 2021-06-30
EP3689493A1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
JP6635326B2 (ja) 熱間鍛造材の製造方法
JP7452172B2 (ja) 熱間鍛造材の製造方法
JP6631862B2 (ja) 熱間鍛造材の製造方法
JP5175470B2 (ja) マグネシウム合金材およびその製造方法
CN110337335B (zh) 热锻材的制造方法
US10875080B2 (en) Method of producing forged product
JP6645627B2 (ja) 熱間金型用Ni基合金及びそれを用いた熱間鍛造用金型
JP6646885B2 (ja) 熱間鍛造用金型、鍛造製品の製造方法
JP7452170B2 (ja) 熱間鍛造材の製造方法
WO2017057453A1 (ja) 熱間鍛造用金型及びそれを用いた鍛造製品の製造方法並びに熱間鍛造用金型の製造方法
JP5859175B2 (ja) 肉盛用溶接材料、矯正ロール、ガイドロール、搬送ロール及び金敷き
JP6566255B2 (ja) 熱間鍛造用金型
JP2008308745A (ja) 熱間鍛造金型及びその製造方法
TWI634217B (zh) 鎳基合金及其製造方法
Lozares et al. Semisolid forging of 250 automotive spindles of S48C steel
JP6784954B2 (ja) 熱間鍛造用金型及びそれを用いた鍛造製品の製造方法
JP4749554B2 (ja) 耐摩耗高靱性合金およびそれを用いた複合材料並びに機械部材
CN114309534A (zh) 一种压铸模及其制备方法
JP2017024051A (ja) 肉盛溶接用材料及び肉盛金属
JP2002038229A (ja) ダイカストマシンの鋳造用部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863051

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019539316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018863051

Country of ref document: EP

Effective date: 20200429