WO2019065420A1 - パワーコンディショナ及び太陽光発電システム - Google Patents

パワーコンディショナ及び太陽光発電システム Download PDF

Info

Publication number
WO2019065420A1
WO2019065420A1 PCT/JP2018/034670 JP2018034670W WO2019065420A1 WO 2019065420 A1 WO2019065420 A1 WO 2019065420A1 JP 2018034670 W JP2018034670 W JP 2018034670W WO 2019065420 A1 WO2019065420 A1 WO 2019065420A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
converter
inverter
output
Prior art date
Application number
PCT/JP2018/034670
Other languages
English (en)
French (fr)
Inventor
史聖 川原
裕太 山本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019065420A1 publication Critical patent/WO2019065420A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power conditioner and a solar power generation system for supplying generated power of a solar panel to a home load or a power system.
  • DC power generated by a solar panel is converted to a predetermined AC voltage by an inverter in a power conditioner and supplied to load devices in the home, or to a power system Supplied.
  • the output voltage of the solar panel will drop if the home load pulls the load current after the relay is closed, and power conditioning Operation is stopped (system down) and the relay is opened. Therefore, until the solar panel can generate sufficient starting power, ie, it consumes the power consumption of the power conditioner and power can be supplied to the load, starting and stopping of the power conditioner are repeated. . At this time, since the relay is repeatedly closed and opened, the life of the relay contact is shortened.
  • Patent Document 1 As a power conditioner that stabilizes the operation at the time of start-up, the one disclosed in Patent Document 1 is known.
  • This invention is made in view of such a situation,
  • the objective is to provide the power conditioner and solar power generation system which can stabilize operation
  • a power conditioner that solves the above problems includes a PV (photovoltaic) converter that boosts a DC input voltage, an inverter that converts a boosted voltage output from the PV converter into an AC voltage, and a voltage between the inverter and a power system.
  • a relay for grid connection a control unit for controlling a step-up operation of the PV converter, a conversion operation of the inverter, and an opening / closing operation of the relay for grid connection, a voltage for detecting an output voltage of the PV converter
  • the control unit is based on a detection voltage value of the voltage detection device and a detection current value of the current detection device. Operation start control of the inverter and the system after the calculated power value exceeds a preset reference power And performing the closing control of the system relay.
  • the direct current input voltage is input to the voltage detection device via a coil and a diode, and the control unit determines that the detected voltage value of the voltage detection device is a reference voltage.
  • the voltage boosting operation of the PV converter is started.
  • the DC input voltage is detected by the voltage detection device prior to the step-up operation of the PV converter, so that a minute DC input voltage can be detected at the start of DC input voltage input and compared with the reference voltage. It is possible.
  • control unit is configured to, based on the detected voltage value of the voltage detection device and the detected current value of the current detection device, during the step-up operation of the PV converter.
  • the maximum power point of is calculated by maximum power point tracking control, and the maximum power point is compared with the reference power.
  • a solar power generation system that solves the above problems includes a solar panel, a PV converter that boosts a DC voltage output from the solar panel, and an inverter that converts the boosted voltage output from the PV converter into an AC voltage
  • a relay for grid interconnection interposed between the inverter and the electric power system a control unit for controlling a step-up operation of the PV converter, a conversion operation of the inverter, and an opening / closing operation of the relay for grid interconnection;
  • a voltage detection device for detecting the output voltage of the PV converter, and a current detection device for detecting the output current of the PV converter, the control unit detecting the detection voltage value of the voltage detection device and the detection of the current detection device After the power value calculated based on the current value exceeds a preset reference power, the operation start control of the inverter and the grid connection And performing the closing control of the relay.
  • a voltage detection device for detecting an output voltage of the solar panel and a current detection for detecting an output current of the solar panel between the solar panel and the PV converter It is preferable not to have a device.
  • the operation at the time of startup can be stabilized.
  • the circuit diagram which shows a solar power generation system.
  • the flowchart which shows operation
  • Explanatory drawing which shows the output electric power by MPPT control.
  • the DC voltage generated by the solar panel 1 is boosted by the PV converter 2 and output to the inverter 3.
  • the inverter 3 converts the DC voltage output from the PV converter 2 into a commercial AC voltage. Then, the AC voltage output from the inverter 3 is supplied to the household load 6 a or the commercial power grid 6 b via the filter circuit 4 and the grid connection relay 5.
  • the PV converter 2, the inverter 3, the filter circuit 4, and the grid connection relay 5 are provided in the power conditioner 7. Further, the power conditioner 7 is provided with an outlet 8 for self-sustaining operation, and at the time of a power failure of the commercial power system 6b, the electric device is connected to the outlet 8 for self-sustaining operation. , And the electric device can be operated.
  • the configuration of the PV converter 2 will be specifically described.
  • the positive side output terminal of the solar panel 1 is connected to one end of the coil 9.
  • the other end of the coil 9 is connected to the drain of the switch 10 composed of a MOSFET (metal-oxide-semiconductor field-effect transistor) and the anode of the diode 11.
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • the source of the switch 10 is connected to the negative output terminal of the solar panel 1.
  • the cathode of the diode 11 is connected to the input terminal of the ammeter 12, and a voltmeter 13 and a smoothing capacitor 14 are connected in parallel between the output terminal of the ammeter 12 and the negative side output terminal of the solar panel 1. It is done.
  • the ammeter 12 detects a direct current output from the diode 11 and outputs the detected current value A1 to the control unit 15.
  • the smoothing capacitor 14 smoothes the DC output voltage of the diode and outputs it to the inverter 3.
  • the voltmeter 13 detects the DC voltage smoothed by the smoothing capacitor 14 and outputs the detected voltage value V1 to the control unit 15.
  • a control signal Q1 from the control unit 15 is input to the gate of the switch 10, and switching control is performed by pulse width modulation (PWM) control during normal operation of the PV converter 2. Then, based on the switching operation of the switch 10, the output voltage of the PV converter 2 is boosted by cooperation with the coil 9.
  • PWM pulse width modulation
  • the control unit 15 operates based on a preset program, and turns off the switch 10 when the PV converter 2 is activated to detect the detection voltage value V1 of the voltmeter 13 as the output voltage (intermediate voltage) of the PV converter 2 It has a function. Further, the control unit 15 performs a switching control of the switch 10 to boost the DC output voltage of the solar panel 1 and supply the same to the inverter 3 and the detection current value A1 of the ammeter 12 and the detection of the voltmeter And a function of calculating the output power of the PV converter 2 based on the voltage value V1.
  • control unit 15 controls the MPPT (maximum power point tracking) control that maximizes the output power of the PV converter 2, that is, maximum power point tracking control Have the ability to
  • the switches 16a and 16b configured by MOSFETs and the switches 16c and 16d are connected in series between the brass side output terminal and the negative side output terminal of the PV converter 2, respectively, and the connection point of the switches 16a and 16b And a connection point between the switches 16 c and 16 d is connected to the filter circuit 4.
  • Control signals Q2 to Q5 from the control unit 15 are input to the gates of the switches 16a and 16b and the switches 16c and 16d, respectively.
  • the switches 16a to 16d are switching-controlled by the control signals Q2 to Q5, and the switches 16a and 16d are turned on in phase and the switches 16b and 16c are turned on in phase.
  • the high voltage DC voltage output from the PV converter 2 is converted into a commercial AC voltage and output to the filter circuit 4.
  • the filter circuit 4 includes coils 17a and 17b, and removes high frequency noise from the commercial AC voltage output from the inverter 3. Then, the commercial AC voltage from which the high frequency noise has been removed is supplied from the filter circuit 4 to the home load 6 a or the commercial power grid 6 b via the grid connection relay 5.
  • the grid connection relay 5 is controlled to open and close by the control signal RL output from the control unit 15, and is closed after the operation of the inverter 3 is started. Next, the operation of the power conditioner 7 configured as described above will be described according to FIGS. 2 and 3.
  • the power conditioner 7 including the PV converter 2 is in the operation stop state, and the grid connection relay 5 is in the open state.
  • the PV converter 2 is still in the stop state.
  • the generated voltage of the solar panel is supplied to the smoothing capacitor 14 through the coil 9, the diode 11 and the ammeter 12, and the charging voltage of the smoothing capacitor 14 is detected by the voltmeter 13 as an intermediate voltage and is detected as the detected voltage value V1. It is output to the control unit 15.
  • the control unit 15 determines whether the detected intermediate voltage is equal to or higher than a preset reference voltage (step S1). Here, when the intermediate voltage becomes equal to or higher than the reference voltage, the control unit 15 outputs the control signal Q1 to the switch 10. Then, the boosting operation is started in the PV converter 2 (step S2), and the boosting ratio is gradually raised by the PWM control of the switch 10 (step S3).
  • the detection voltage value V1 of the voltmeter 13 and the detection current value A1 (intermediate current) of the ammeter 12 are calculated. While calculating the intermediate power as the output power of the solar panel 1, the boost ratio is sequentially changed to perform maximum power point tracking control (step S4).
  • a large number of PV curves C1 to C6 and the like are calculated based on the output voltage of the solar panel 1, and the control unit 15 determines whether the maximum power point P exceeds the reference power of 40 W, for example. It is determined (step S5).
  • 40 W is a value including a margin so that system shutdown does not occur even if the sun is suddenly hidden by a cloud and the generated power decreases instantaneously, and the power consumption of the PV converter 2, the inverter 3, and the control unit 15 is 40 W It is set higher than the total value.
  • step S5 If the calculated intermediate power does not exceed 40 W in step S5, the process proceeds to step S6 to determine whether the intermediate voltage exceeds a predetermined value. Then, when the intermediate voltage does not exceed the predetermined value, the standby state is maintained until the intermediate power exceeds 40 W (steps S5 and S6).
  • step S5 When the calculated intermediate power exceeds 40 W in step S5, the process proceeds to step S7, and the controller waits for the intermediate voltage to exceed the predetermined value, and operates the inverter 3 when the intermediate voltage exceeds the predetermined value. And the relay for system interconnection is closed, and a commercial AC voltage is supplied to the home load 6a or the commercial power system 6b (steps S8 and S9).
  • step S6 If the intermediate voltage exceeds the predetermined value in step S6, it is determined that sufficient generated power is not yet supplied from the solar panel 1 and the operation of the PV converter 2 is stopped, and the preset predetermined After waiting for time (step S10), the process returns to step S1.
  • the control unit 15 In the state where the commercial AC voltage is supplied at steps S8 and S9, the control unit 15 always performs maximum power point tracking control. Then, when the power generation of the solar panel 1 decreases at the sunset time and the maximum power point P does not reach 40 W, the control unit 15 stops the operation of the PV converter 2 and the inverter 3 to stop the supply of commercial AC power. Do.
  • the maximum power point P is calculated by maximum power point tracking control based on the detection voltage value V1 of the voltmeter 13 and the detection current value A1 of the ammeter at the output power of the solar panel 1. Then, after the maximum power point P exceeds 40 W, the inverter 3 is operated to supply commercial AC power to the in-home load 6 a or the commercial power grid 6 b. Therefore, the grid connection relay 5 can be closed when the maximum power point P exceeds 40 W and it becomes possible to supply power that is unlikely to cause a system down. Closing and opening are not repeated in 5. As a result, it is possible to suppress the deterioration of the contacts of the system interconnection relay 5.
  • the maximum power point P of the output power of the solar panel 1 can be calculated based on the detection current value A1 of the ammeter 12 provided in the PV converter 2 and the detection voltage value V1 of the voltmeter 13. Therefore, since it is not necessary to connect a voltmeter and an ammeter separately to the output terminal of the solar panel 1, the manufacturing cost of a solar power generation system can be reduced.
  • the above embodiment may be modified as follows.
  • the reference power is not limited to 40 W, and by setting a large value of 40 W or more, the stability at startup can be improved.
  • the control unit 15 of the embodiment is configured to execute one or more memories storing computer readable instructions configured to realize various controls described in the embodiment, and the computer readable instructions. And one or more processors. Further, the control unit 15 of the embodiment may be an integrated circuit such as an application specific IC (ASIC).
  • ASIC application specific IC

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Inverter Devices (AREA)

Abstract

直流入力電圧を昇圧するPVコンバータ2と、PVコンバータから出力される昇圧電圧を交流電圧に変換するインバータ3と、インバータと電力系統との間に介在される系統連系用リレー5と、PVコンバータの昇圧動作とインバータの変換動作と系統連系用リレーの開閉動作を制御する制御部15と、PVコンバータの出力電圧を検出する電圧検出装置13と、PVコンバータの出力電流を検出する電流検出装置12を備えたパワーコンディショナにおいて、制御部15は、電圧検出装置の検出電圧値と電流検出装置と検出電流値に基づいて算出される電力値があらかじめ設定された基準電力を超えた後に、インバータの作動開始制御と、系統連系用リレーの閉成制御を行う。

Description

パワーコンディショナ及び太陽光発電システム
 本発明は、太陽光パネルの発電電力を家庭内負荷あるいは電力系統に供給するパワーコンディショナ及び太陽光発電システムに関するものである。
 一般家庭に設置される太陽光発電システムでは、太陽光パネルで発電される直流電力がパワーコンディショナ内のインバータで所定の交流電圧に変換されて家庭内の負荷機器に供給され、あるいは電力系統に供給される。
 このような太陽光発電システムでは、日の出の時に太陽光パネルで発電が開始されると、パワーコンディショナの動作が開始され、パワーコンディショナと家庭内負荷及び電力系統との間に介在されるリレーが閉成(導通状態)されて電力の供給が開始される。
 電力の供給開始時に、太陽光パネルの発電電力が十分ではない場合には、リレーが閉成された後に家庭内負荷が負荷電流を引くと太陽光パネルの出力電圧が下降してしまい、パワーコンディショナの動作が停止(システムダウン)して、リレーが開成される。従って、太陽光パネルが十分な起動電力を発電可能となるまでは、すなわちパワーコンディショナの消費電力を賄い、かつ負荷に電力を供給可能となるまでは、パワーコンディショナの起動と停止が繰り返される。この時、リレーの閉成と開成が繰り返されるため、リレーの接点の寿命を縮めてしまう。
 そこで、起動時の動作を安定化させるようにしたパワーコンディショナとして、特許文献1に開示のものが知られている。
特開2017-54273号公報
 特許文献1に開示されたパワーコンディショナでは、インバータを内部負荷回路として動作させた状態で、太陽光パネルの出力電圧を検出することにより、太陽光パネルが十分な電力を発電しているか否かを判定する。そして、パワーコンディショナを起動し得る十分な電力が発電されていると判定した場合に、リレーを閉成して電力をパワーコンディショナから家庭内負荷あるいは電力系統に供給する。
 しかし、起動の可否を判定するためにインバータを動作させる必要があるため、インバータを動作させるための電力を発電できていないときには、パワーコンディショナの動作が停止してしまう。
 また、インバータ等の負荷回路の消費電力が小さい場合には、太陽光パネルで十分な電力が発電されていなくても起動可と判定されることがある。この場合には、家庭内負荷あるいは電力系統への電力供給を開始した時点で、電力供給不足によるシステムダウンが発生するという問題点がある。
 この発明はこのような事情に鑑みてなされたものであり、その目的は起動時の動作を安定化させ得るパワーコンディショナ及び太陽光発電システムを提供することにある。
 上記課題を解決するパワーコンディショナは、直流入力電圧を昇圧するPV(photovoltaic)コンバータと、前記PVコンバータから出力される昇圧電圧を交流電圧に変換するインバータと、前記インバータと電力系統との間に介在される系統連系用リレーと、前記PVコンバータの昇圧動作と前記インバータの変換動作と前記系統連系用リレーの開閉動作とを制御する制御部と、前記PVコンバータの出力電圧を検出する電圧検出装置と、前記PVコンバータの出力電流を検出する電流検出装置とを備えたパワーコンディショナにおいて、前記制御部は、前記電圧検出装置の検出電圧値と前記電流検出装置の検出電流値とに基づいて算出される電力値があらかじめ設定された基準電力を超えた後に、前記インバータの作動開始制御と前記系統連系用リレーの閉成制御とを行うことを特徴とする。
 この構成により、直流入力電圧の入力に基づいて、PVコンバータの出力電力が基準電力を超えたとき、インバータの作動が開始され、系統連系用リレーが閉成されて、電力系統への電力供給が開始される。
 また、上記のパワーコンディショナにおいて、前記PVコンバータは、前記直流入力電圧が、コイル及びダイオードを介して前記電圧検出装置に入力され、前記制御部は、前記電圧検出装置の検出電圧値が基準電圧を超えたとき、前記PVコンバータの昇圧動作を開始させることが好ましい。
 この構成により、PVコンバータの昇圧動作に先立って、直流入力電圧が電圧検出装置により検出されるので、直流入力電圧の入力開始時に微細な直流入力電圧を検出して、基準電圧と比較することが可能である。
 また、上記のパワーコンディショナにおいて、前記制御部は、前記PVコンバータの昇圧動作時に、前記電圧検出装置の検出電圧値と前記電流検出装置の検出電流値とに基づいて、前記PVコンバータの出力電力の最大電力点を最大電力点追従制御により算出し、該最大電力点と前記基準電力とを比較することが好ましい。
 この構成により、最大電力点追従制御によりPVコンバータの出力電力の最大電力点が算出され、その最大電力点と基準電力とが比較される。
 上記課題を解決する太陽光発電システムは、太陽光パネルと、前記太陽光パネルから出力される直流電圧を昇圧するPVコンバータと、前記PVコンバータから出力される昇圧電圧を交流電圧に変換するインバータと、前記インバータと電力系統との間に介在される系統連系用リレーと、前記PVコンバータの昇圧動作と前記インバータの変換動作と前記系統連系用リレーの開閉動作とを制御する制御部と、前記PVコンバータの出力電圧を検出する電圧検出装置と、前記PVコンバータの出力電流を検出する電流検出装置とを備え、前記制御部は、前記電圧検出装置の検出電圧値と前記電流検出装置の検出電流値とに基づいて算出される電力値があらかじめ設定された基準電力を超えた後に、前記インバータの作動開始制御と前記系統連系用リレーの閉成制御とを行うことを特徴とする。
 この構成により、太陽光パネルからの直流入力電圧の入力に基づいて、PVコンバータの出力電力が基準電力を超えたとき、インバータの作動が開始され、系統連系用リレーが閉成されて、電力系統への電力供給が開始される。
 また、上記の太陽光発電システムにおいて、前記太陽光パネルと前記PVコンバータとの間には、前記太陽光パネルの出力電圧を検出する電圧検出装置と前記太陽光パネルの出力電流を検出する電流検出装置とを有しないことが好ましい。
 この構成により、太陽光パネルと前記PVコンバータとの間には、電圧検出装置及び電流検出装置を必要としないので、太陽光発電システムの製造コストが低減される。
 本発明のパワーコンディショナ及び太陽光発電システムによれば、起動時の動作を安定化させることができる。
太陽光発電システムを示す回路図。 パワーコンディショナの動作を示すフローチャート。 MPPT制御による出力電力を示す説明図。
 以下、本発明を具体化した一実施形態を図面に従って説明する。
 図1に示す太陽光発電システムは、太陽光パネル1で発電された直流電圧がPVコンバータ2で昇圧されて、インバータ3に出力される。インバータ3は、PVコンバータ2から出力される直流電圧を商用交流電圧に変換する。そして、インバータ3から出力される交流電圧がフィルタ回路4及び系統連系用リレー5を介して家庭内負荷6aあるいは商用電力系統6bに供給される。
 PVコンバータ2、インバータ3、フィルタ回路4及び系統連系用リレー5は、パワーコンディショナ7内に設けられる。また、パワーコンディショナ7には、自立運転用コンセント8が設けられ、商用電力系統6bの停電時には、電気機器を自立運転用コンセント8に接続することにより、太陽光パネル1の発電電力に基づいて、当該電気機器を運転可能となっている。
 PVコンバータ2の構成を具体的に説明すると、太陽光パネル1のプラス側出力端子は、コイル9の一端に接続されている。コイル9の他端は、MOSFET(metal-oxide-semiconductor field-effect transistor)で構成されるスイッチ10のドレインとダイオード11のアノードに接続される。
 スイッチ10のソースは、太陽光パネル1のマイナス側出力端子に接続されている。ダイオード11のカソードは、電流計12の入力端子に接続され、電流計12の出力端子と、太陽光パネル1のマイナス側出力端子との間には電圧計13と平滑用キャパシタ14が並列に接続されている。
 電流計12は、ダイオード11から出力される直流電流を検出し、その検出電流値A1を制御部15に出力する。平滑用キャパシタ14は、ダイオードの直流出力電圧を平滑してインバータ3に出力する。電圧計13は、平滑用キャパシタ14で平滑された直流電圧を検出し、その検出電圧値V1を制御部15に出力する。
 スイッチ10のゲートには、制御部15から制御信号Q1が入力され、PVコンバータ2の通常動作時には、PWM(pulse width modulation)制御によりスイッチング制御される。そして、スイッチ10のスイッチング動作に基づいて、コイル9との協働によりPVコンバータ2の出力電圧が昇圧される。
 制御部15は、あらかじめ設定されたプログラムに基づいて動作し、PVコンバータ2の起動時にはスイッチ10をオフ状態として電圧計13の検出電圧値V1をPVコンバータ2の出力電圧(中間電圧)として検出する機能を備える。また、制御部15は、スイッチ10をスイッチング制御することにより、太陽光パネル1の直流出力電圧を昇圧してインバータ3に供給する機能と、電流計12の検出電流値A1及び電圧計13の検出電圧値V1に基づいてPVコンバータ2の出力電力を算出する機能とを備える。
 さらに、制御部15はスイッチ10のPWM制御により、PVコンバータ2の昇圧比を調整しながら、PVコンバータ2の出力電力が最大となるようなMPPT(maximum power point tracking)制御すなわち最大電力点追従制御を行う機能を備える。
 インバータ3は、PVコンバータ2のブラス側出力端子とマイナス側出力端子との間で、MOSFETで構成されるスイッチ16a,16bとスイッチ16c,16dがそれぞれ直列に接続され、スイッチ16a,16bの接続点とスイッチ16c,16dの接続点がフィルタ回路4に接続される。
 スイッチ16a,16bとスイッチ16c,16dのゲートには、制御部15から制御信号Q2~Q5がそれぞれ入力される。そして、制御信号Q2~Q5により、スイッチ16a~16dがスイッチング制御されるとともに、スイッチ16a,16dが同相でオンされ、スイッチ16b,16cが同相でオンされる。このような動作により、PVコンバータ2から出力される高圧直流電圧が商用交流電圧に変換されてフィルタ回路4に出力される。
 フィルタ回路4はコイル17a,17bで構成され、インバータ3から出力される商用交流電圧から高周波ノイズを除去する。そして、高周波ノイズが除去された商用交流電圧がフィルタ回路4から系統連系用リレー5を介して家庭内負荷6aあるいは商用電力系統6bに供給される。
 系統連系用リレー5は、制御部15から出力される制御信号RLにより開閉制御され、インバータ3の作動が開始された後に閉成される。
 次に、上記のように構成されたパワーコンディショナ7の作用を図2及び図3に従って説明する。
 夜間には、太陽光パネル1は発電電力を出力していないので、PVコンバータ2を含むパワーコンディショナ7は動作停止状態にあり、系統連系用リレー5は開成状態にある。
 日の出とともに太陽光パネル1で発電が開始されたとき、PVコンバータ2は未だ停止状態である。太陽光パネルの発電電圧はコイル9、ダイオード11及び電流計12を介して平滑用キャパシタ14に供給され、平滑用キャパシタ14の充電電圧が中間電圧として電圧計13で検出され、検出電圧値V1として制御部15に出力される。
 制御部15は、検出された中間電圧があらかじめ設定されている基準電圧以上となったか否かを判定している(ステップS1)。ここで、中間電圧が基準電圧以上となると、制御部15はスイッチ10に制御信号Q1を出力する。すると、PVコンバータ2では昇圧動作が開始され(ステップS2)、スイッチ10のPWM制御により、昇圧比が徐々に引き上げられる(ステップS3)。
 次いで、電圧計13の検出電圧値V1と、電流計12の検出電流値A1(中間電流)に基づいて、電圧計13の検出電圧値V1と電流計12の検出電流値A1とで算出される中間電力を太陽光パネル1の出力電力として算出しながら、昇圧比を順次変更して最大電力点追従制御を行う(ステップS4)。
 すると、図3に示すように、太陽光パネル1の出力電圧に基づいて、多数のPV曲線C1~C6等が算出され、制御部15は最大電力点Pが例えば40Wの基準電力を超えるか否かを判定する(ステップS5)。40Wは、仮に太陽が突然雲に隠れて瞬間的に発電電力が低下してもシステムダウンが発生しないようにマージンを含めた値であり、PVコンバータ2、インバータ3、制御部15の消費電力の合計値より高く設定されている。
 ステップS5で、算出された中間電力が40Wを超えない場合には、ステップS6に移行して中間電圧が所定値を超えているか否かを判定する。そして、中間電圧が所定値を超えていない場合には、中間電力が40Wを超えるまで待機する状態となる(ステップS5,S6)。
 ステップS5で、算出された中間電力が40Wを超えると、ステップS7に移行して、中間電圧が所定値を超えるまで待機し、中間電圧が所定値を超えると、制御部15はインバータ3を作動させ、系統連系用リレーを閉成して、家庭内負荷6aあるいは商用電力系統6bに商用交流電圧を供給する(ステップS8,S9)。
 ステップS6で、中間電圧が所定値を超えている場合は、未だ十分な発電電力が太陽光パネル1~供給されていないと判断して、PVコンバータ2の動作を停止し、あらかじめ設定された所定時間を待機した後(ステップS10)、ステップS1に復帰する。
 ステップS8,S9で商用交流電圧を供給している状態では、制御部15は常時最大電力点追従制御を行っている。そして、日の入り時に太陽光パネル1の発電電力が低下し、最大電力点Pが40Wに達しなくなると、制御部15はPVコンバータ2及びインバータ3の動作を停止して、商用交流電力の供給を停止する。
 上記のように構成されたパワーコンディショナ7では、次に示す効果を得ることができる。
 (1)日の出時には、太陽光パネル1の出力電力が、電圧計13の検出電圧値V1と電流計の検出電流値A1に基づいて最大電力点追従制御により最大電力点Pが算出される。そして、最大電力点Pが40Wを超えた後に、インバータ3を動作させて、家庭内負荷6aあるいは商用電力系統6bに商用交流電力を供給する。従って、最大電力点Pが40Wを超えて、システムダウンが発生するおそれのない電力を供給可能となったときに、系統連系用リレー5を閉成することができるので、系統連系用リレー5で閉成と開成が繰り返されることはない。この結果、系統連系用リレー5の接点の劣化を抑制することができる。
 (2)パワーコンディショナ7のPVコンバータ2で昇圧動作を開始して、太陽光パネル1の出力電力の最大電力点Pを算出するとき、インバータ3を作動させない。従って、最大電力点追従制御を行うとき、電流計12及び電圧計13で太陽光パネル1の出力電圧と出力電流を正確に検出することができる。
 (3)日の出時に太陽光パネル1が発電を開始したとき、昇圧動作を開始していないPVコンバータ2内の電圧計13で、太陽光パネル1の微細な出力電圧を正確に検出することができる。
 (4)PVコンバータ2内に設けられる電流計12の検出電流値A1と、電圧計13の検出電圧値V1に基づいて太陽光パネル1の出力電力の最大電力点Pを算出することができる。従って、太陽光パネル1の出力端子に、別途電圧計と電流計を接続する必要はないので、太陽光発電システムの製造コストを低減することができる。
 なお、上記実施形態は以下のように変更してもよい。
 ・基準電力は40Wに限定されるものではなく、40W以上の大きな値を設定することにより、起動時の安定性を向上させることができる。
 ・実施形態の制御部15は、例えば、実施形態で説明した種々の制御を実現するように構成されたコンピュータ可読命令を格納した1つ以上のメモリと、そのコンピュータ可読命令を実行するように構成された1つ以上のプロセッサとを備えてもよい。また、実施形態の制御部15は、特定用途向けIC(ASIC)等の集積回路であってもよい。
 1…太陽光パネル、2…PVコンバータ、3…インバータ、5…系統連系用リレー、7…パワーコンディショナ、12…電流検出装置(電流計)、13…電圧検出装置(電圧計)、15…制御部、V1…検出電圧値、A1…検出電流値。

Claims (5)

  1.  直流入力電圧を昇圧するPVコンバータと、
     前記PVコンバータから出力される昇圧電圧を交流電圧に変換するインバータと、
     前記インバータと電力系統との間に介在される系統連系用リレーと、
     前記PVコンバータの昇圧動作と前記インバータの変換動作と前記系統連系用リレーの開閉動作とを制御する制御部と、
     前記PVコンバータの出力電圧を検出する電圧検出装置と、
     前記PVコンバータの出力電流を検出する電流検出装置と
    を備えたパワーコンディショナにおいて、
     前記制御部は、
     前記電圧検出装置の検出電圧値と前記電流検出装置の検出電流値とに基づいて算出される電力値があらかじめ設定された基準電力を超えた後に、前記インバータの作動開始制御と前記系統連系用リレーの閉成制御とを行うことを特徴とするパワーコンディショナ。
  2.  請求項1に記載のパワーコンディショナにおいて、
     前記PVコンバータは、
     前記直流入力電圧が、コイル及びダイオードを介して前記電圧検出装置に入力され、
     前記制御部は、
     前記電圧検出装置の検出電圧値が基準電圧を超えたとき、前記PVコンバータの昇圧動作を開始させることを特徴とするパワーコンディショナ。
  3.  請求項2に記載のパワーコンディショナにおいて、
     前記制御部は、
     前記PVコンバータの昇圧動作時に、前記電圧検出装置の検出電圧値と前記電流検出装置の検出電流値とに基づいて、前記PVコンバータの出力電力の最大電力点を最大電力点追従制御により算出し、該最大電力点と前記基準電力とを比較することを特徴とするパワーコンディショナ。
  4.  太陽光パネルと、
     前記太陽光パネルから出力される直流電圧を昇圧するPVコンバータと、
     前記PVコンバータから出力される昇圧電圧を交流電圧に変換するインバータと、
     前記インバータと電力系統との間に介在される系統連系用リレーと、
     前記PVコンバータの昇圧動作と前記インバータの変換動作と前記系統連系用リレーの開閉動作とを制御する制御部と、
     前記PVコンバータの出力電圧を検出する電圧検出装置と、
     前記PVコンバータの出力電流を検出する電流検出装置と
    を備え、
     前記制御部は、
     前記電圧検出装置の検出電圧値と前記電流検出装置の検出電流値とに基づいて算出される電力値があらかじめ設定された基準電力を超えた後に、前記インバータの作動開始制御と前記系統連系用リレーの閉成制御とを行うことを特徴とする太陽光発電システム。
  5.  請求項4に記載の太陽光発電システムにおいて、
     前記太陽光パネルと前記PVコンバータとの間には、前記太陽光パネルの出力電圧を検出する電圧検出装置と前記太陽光パネルの出力電流を検出する電流検出装置とを有しないことを特徴とする太陽光発電システム。
PCT/JP2018/034670 2017-09-26 2018-09-19 パワーコンディショナ及び太陽光発電システム WO2019065420A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017184840 2017-09-26
JP2017-184840 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019065420A1 true WO2019065420A1 (ja) 2019-04-04

Family

ID=65902480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034670 WO2019065420A1 (ja) 2017-09-26 2018-09-19 パワーコンディショナ及び太陽光発電システム

Country Status (1)

Country Link
WO (1) WO2019065420A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181237A (zh) * 2020-01-07 2020-05-19 中国联合网络通信集团有限公司 光伏控制方法和光伏供电装置、系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250053A (ja) * 1992-03-09 1993-09-28 Sharp Corp 太陽電池出力電力制御回路
JP2009247184A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 太陽光発電システムおよびその起動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250053A (ja) * 1992-03-09 1993-09-28 Sharp Corp 太陽電池出力電力制御回路
JP2009247184A (ja) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp 太陽光発電システムおよびその起動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181237A (zh) * 2020-01-07 2020-05-19 中国联合网络通信集团有限公司 光伏控制方法和光伏供电装置、系统

Similar Documents

Publication Publication Date Title
JP6741169B2 (ja) 電源装置、電力制御装置、電源装置のリレー判定方法
JP3744679B2 (ja) 太陽光発電装置
JP6849076B2 (ja) 太陽光発電システム、パワーコンディショナ
TWI548192B (zh) 逆變裝置及其控制方法
JP5938746B2 (ja) 電力制御システム及び太陽光発電システム
JP5349688B2 (ja) 系統連系形インバータ
JP2007049770A (ja) 電源装置
JP5349687B2 (ja) 系統連系形インバータ
WO2015056309A1 (ja) 電力変換装置及びその制御方法
JP6711466B2 (ja) 蓄電装置用昇降圧装置及び蓄電装置
WO2019065420A1 (ja) パワーコンディショナ及び太陽光発電システム
JP6296878B2 (ja) 系統連系インバータおよび発電電力推定方法
CN111149275B (zh) 蓄电装置
WO2019035320A1 (ja) 太陽光発電システム、パワーコンディショナ
TWI829161B (zh) 儲能裝置及其電源供應方法
JP2014053982A (ja) 太陽光パワーコンディショナ及びその制御方法
JP6043223B2 (ja) 太陽光発電および蓄電池の連携システム
JP2016082710A (ja) 太陽光発電利用システム
JP4663042B2 (ja) 太陽光発電装置
JP2019122178A (ja) 電力変換装置
JP5523195B2 (ja) 空気調和機
CN114865933A (zh) 电源供应装置及电压转换方法
JP2011239582A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP