WO2015056309A1 - 電力変換装置及びその制御方法 - Google Patents

電力変換装置及びその制御方法 Download PDF

Info

Publication number
WO2015056309A1
WO2015056309A1 PCT/JP2013/078011 JP2013078011W WO2015056309A1 WO 2015056309 A1 WO2015056309 A1 WO 2015056309A1 JP 2013078011 W JP2013078011 W JP 2013078011W WO 2015056309 A1 WO2015056309 A1 WO 2015056309A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
operation mode
control unit
value
Prior art date
Application number
PCT/JP2013/078011
Other languages
English (en)
French (fr)
Inventor
祐司 松岡
達明 安保
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to EP13895714.7A priority Critical patent/EP3059653B1/en
Priority to PCT/JP2013/078011 priority patent/WO2015056309A1/ja
Priority to US15/029,881 priority patent/US9722458B2/en
Priority to JP2015542436A priority patent/JP6210649B2/ja
Priority to CN201380081235.1A priority patent/CN105765478B/zh
Publication of WO2015056309A1 publication Critical patent/WO2015056309A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • H02J3/1835Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control
    • H02J3/1842Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators with stepless control wherein at least one reactive element is actively controlled by a bridge converter, e.g. active filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/20Active power filtering [APF]

Definitions

  • Embodiments of the present invention relate to a power conversion device and a control method thereof.
  • the power conversion device that converts a DC voltage input from a DC power source such as a solar battery panel into an AC voltage and outputs the AC voltage to an electric power system.
  • the power conversion device is called, for example, a power conditioner.
  • Some power converters perform reactive power compensation of a power system when an input voltage from a DC power supply is low. For example, when a DC power source is a solar cell panel, there is a power conversion device that performs reactive power compensation at night when the amount of power generation is low. In such a power converter, reduction of the initial charging circuit is desired.
  • Embodiment of this invention provides the power converter device which can reduce an initial stage charging circuit, and its control method.
  • a power conversion device including a smoothing capacitor, an input voltage detection unit, a power conversion unit, and a control unit.
  • the smoothing capacitor smoothes a DC input voltage input from a DC power supply.
  • the input voltage detection unit detects a voltage value of the input voltage.
  • the power conversion unit converts the DC voltage smoothed by the smoothing capacitor into an AC voltage and outputs the AC voltage to the power system.
  • the control unit controls the conversion of the power conversion unit.
  • the control unit when the voltage value detected by the input voltage detection unit is greater than or equal to a determination value, a first operation mode for outputting active power to the power system, and when the voltage value is less than the determination value, A second operation mode for outputting reactive power to the power system, and determining whether the voltage value is equal to or higher than the determination value, and within a predetermined time from the determination that the voltage value is less than the determination value Transition from the first operation mode to the second operation mode.
  • a power conversion device capable of reducing an initial charging circuit and a control method thereof are provided.
  • FIG. 1 is a block diagram schematically illustrating the power conversion apparatus according to the first embodiment.
  • the power conversion device 10 includes a smoothing capacitor 11, an input voltage detection unit 12, a power conversion unit 13, and a control unit 14.
  • the power converter 10 is electrically connected to each of the solar cell panel 2 and the power system 4 as a DC power source.
  • the power converter 10 is detachably connected to each of the solar cell panel 2 and the power system 4 by, for example, a connector.
  • electrically connected includes not only the case of being connected by direct contact but also the case of being connected via another conductive member.
  • the power conversion apparatus 10 is electrically connected to the solar cell panel 2 through, for example, a pair of power input lines 2a and 2b. Thereby, DC power generated by the solar cell panel 2 is input to the power conversion device 10.
  • the DC power source connected to the power conversion device 10 is not limited to the solar cell panel 2, and may be, for example, a gas turbine engine.
  • the DC power source may be any power source that can supply DC power.
  • the power system 4 is, for example, a power transmission line for supplying power to a power receiving facility of a consumer.
  • the power supplied from the power system 4 is alternating current.
  • the power system 4 is, for example, a commercial power transmission line.
  • the voltage of the AC power of the power system 4 is, for example, the frequency of the AC power of the 100 V (effective value) power system 4 is, for example, 50 Hz or 60 Hz.
  • the power system 4 may be, for example, a power transmission line in a private power generation system.
  • the smoothing capacitor 11 is connected in series between a pair of power input lines 2a and 2b, for example. Thereby, the smoothing capacitor 11 smoothes the DC input voltage input from the solar cell panel 2.
  • the smoothing capacitor 11 is charged by the input voltage from the solar cell panel 2, for example.
  • the input voltage detection unit 12 detects the voltage value of the input voltage from the solar battery panel 2.
  • the input voltage detection unit 12 is electrically connected to the control unit 14.
  • the input voltage detection unit 12 inputs the detected voltage value of the input voltage to the control unit 14.
  • the input voltage detection unit 12 is connected between the solar cell panel 2 and the smoothing capacitor 11.
  • the input voltage detection unit 12 may be connected between the smoothing capacitor 11 and the power conversion unit 13.
  • the input voltage detector 12 may have any configuration that can detect the input voltage.
  • the power conversion unit 13 converts the DC voltage smoothed by the smoothing capacitor 11 into an AC voltage and outputs the AC voltage to the power system 4.
  • the power conversion unit 13 includes, for example, a converter 20 and a transformer 22.
  • the converter 20 converts the DC voltage into an AC voltage and outputs it to the transformer 22.
  • the transformer 22 transforms the alternating voltage output from the converter 20 and outputs the transformed alternating voltage to the power system 4.
  • the converter 20 for example, a self-excited converter is used.
  • the converter 20 includes, for example, a switching element, and converts a DC voltage into an AC voltage by turning on and off the switching element.
  • a switching element of the converter 20 for example, a self-extinguishing element is used. More specifically, for example, GTO (Gate-Turn-Off-thyristor), MOS-FET (Metal-Oxide-Semiconductor-Field-Effect-Transistor), IGBT (Insulated Gate-Bipolar-Transistor), or the like is used.
  • GTO Gate-Turn-Off-thyristor
  • MOS-FET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • IGBT Insulated Gate-Bipolar-Transistor
  • the power conversion device 10 further includes an output current detection unit 15 and a system voltage detection unit 16.
  • the output current detector 15 detects the current value of the output current output from the power converter 13.
  • the output current detection unit 15 is electrically connected to the control unit 14.
  • the output current detection unit 15 inputs the detected current value of the output current to the control unit 14.
  • the system voltage detection unit 16 detects the voltage value of the system voltage of the power system 4.
  • the system voltage detector 16 is electrically connected to the controller 14.
  • the system voltage detection unit 16 inputs the detected voltage value of the system voltage to the control unit 14.
  • the control unit 14 is, for example, a processor such as a CPU or MPU.
  • the control unit 14 reads out a predetermined program from a memory (not shown) and sequentially processes the program, thereby controlling the respective units of the power conversion apparatus 10 in an integrated manner.
  • the memory storing the program may be provided in the control unit 14 or may be provided separately from the control unit 14 and electrically connected to the control unit 14.
  • the control unit 14 is electrically connected to the power conversion unit 13.
  • the control unit 14 controls power conversion by the power conversion unit 13.
  • the control unit 14 is electrically connected to the switching element of the converter 20.
  • the control unit 14 controls on / off of the switching element.
  • the control part 14 converts a DC voltage into the alternating voltage of the voltage and frequency according to the electric power grid
  • control unit 14 has a first operation mode and a second operation mode.
  • the first operation mode is a mode in which active power is output to the power system 4 when the voltage value detected by the input voltage detection unit 12 is greater than or equal to the determination value.
  • the first operation mode is, for example, a PV (Photovoltaic) operation mode.
  • the second operation mode is a mode for outputting reactive power to the power system 4 when the voltage value is less than the determination value.
  • the second operation mode is, for example, an SVC (static var compensator) operation mode.
  • the control unit 14 determines whether or not the voltage value of the input voltage detected by the input voltage detection unit 12 is greater than or equal to a predetermined determination value. Then, the control unit 14 executes the first operation mode when the voltage value of the input voltage is greater than or equal to the determination value, and executes the second operation mode when the voltage value is less than the determination value. For example, the control unit 14 periodically determines whether or not the input voltage is equal to or higher than a determination value. Or you may refer the voltage value of the input voltage input from the input voltage detection part 12 substantially continuously.
  • the determination value is set according to the power generation amount of the solar cell panel 2, for example. That is, the control unit 14 executes the first operation mode in which the active power is output to the power system 4 when a sufficient power generation amount is obtained, and the reactive power is supplied to the power when the sufficient power generation amount is not obtained.
  • the second operation mode to be output to the system 4 is executed. More specifically, the control unit 14 executes the first operation mode when the power generation amount is large, such as during daylight hours, and executes the second operation mode when the power generation amount is small, such as during cloudy days or at night.
  • the control unit 14 performs on / off control of the switching element of the converter 20 so as to convert into AC power synchronized with the AC power of the power system 4, for example. That is, the control unit 14 adjusts the voltage, frequency, phase, and the like of the AC power converted by the converter 20 to the AC power of the power system 4, for example. As a result, the AC power converted by the converter 20 is output to the power system 4 as active power.
  • the control unit 14 uses, for example, power based on the current value of the output current detected by the output current detection unit 15 and the voltage value of the system voltage detected by the system voltage detection unit 16.
  • the reactive power output to the grid 4 is determined.
  • the control part 14 carries out on / off control of the switching element of the converter 20 according to the determined reactive power.
  • the AC power converted by the converter 20 is output to the power system 4 as reactive power.
  • the reactive power of the power system 4 can be controlled.
  • the stability of the power system 4 can be increased.
  • the DC voltage of the smoothing capacitor 11 is converted into an AC voltage by the converter 20.
  • the smoothing capacitor 11 is charged by turning on and off the switching element of the converter 20. Therefore, the voltage value of the smoothing capacitor 11 is maintained at a predetermined value or higher even in the second operation mode.
  • control unit 14 transitions from the first operation mode to the second operation mode within a predetermined time from the determination that the input voltage value is less than the determination value.
  • the control unit 14 stops the first operation mode in response to determining that the value is less than the determination value, for example. That is, the output of active power to the power system 4 is stopped. For example, the control unit 14 starts timing from the time when it is determined that the value is less than the determination value, and starts the second operation mode when a predetermined time has elapsed from the time when it is determined that the value is less than the determination value. That is, output of reactive power to the power system 4 is started.
  • the control unit 14 transitions from the first operation mode to the second operation mode when a predetermined time elapses from the time when it is determined that the voltage value of the input voltage is less than the determination value. For example, the control unit 14 stops the first operation mode when it is determined that the voltage value of the input voltage is less than the determination value. That is, the operation mode is different from the first operation mode and the second operation mode from when the first operation mode is stopped until the second operation mode is started. For example, when the voltage value of the input voltage returns to the determination value or more before the predetermined time elapses, the control unit 14 executes the first operation mode again.
  • the predetermined time until the transition from the first operation mode to the second operation mode is set according to, for example, the capacity of the smoothing capacitor 11 or the configuration of the power conversion unit 13.
  • the control unit 14 transitions from the first operation mode to the second operation mode before the voltage (accumulated charge) of the smoothing capacitor 11 becomes lower than a predetermined value. That is, the control unit 14 determines whether or not the voltage value of the input voltage is greater than or equal to the first determination value, and determines that the voltage value of the input voltage (of the smoothing capacitor 11) is determined to be less than the first determination value. It can also be said that the transition from the first operation mode to the second operation mode occurs when the voltage value reaches a second determination value lower than the first determination value.
  • the first operation mode is continuously shifted from the first operation mode to the second operation mode without stopping the first operation mode when it is determined that the voltage value of the input voltage is less than the determination value. May be. However, as described above, the first operation mode is stopped when it is determined that the voltage value of the input voltage is less than the determination value. Thereby, for example, the consumption of the charge accumulated in the smoothing capacitor 11 can be suppressed until a predetermined time elapses.
  • FIG. 2 is a flowchart schematically illustrating an example of the operation of the power conversion device according to the first embodiment.
  • the control unit 14 of the power conversion device 10 determines whether or not the voltage value of the input voltage is equal to or higher than the determination value periodically or substantially continuously when in the first operation mode. judge.
  • control part 14 When it determines with it being more than a determination value, the control part 14 continues a 1st operation mode. On the other hand, when it determines with it being less than a determination value, the control part 14 stops 1st operation mode, and starts time measurement of predetermined time.
  • the control unit 14 When the predetermined time has passed with the voltage value of the input voltage being less than the determination value, the control unit 14 starts executing the second operation mode. On the other hand, the control unit 14 executes the first operation mode again when the voltage value of the input voltage returns to the determination value or more after starting to measure the predetermined time. Further, when the voltage value of the input voltage becomes equal to or higher than the determination value during execution of the second operation mode, the control unit 14 transitions from the second operation mode to the first operation mode. Hereinafter, the control unit 14 repeats the same processing.
  • a power converter including a PV operation mode and an SVC operation mode
  • an apparatus that executes an SVC operation after a predetermined time or more has elapsed after the PV operation is stopped.
  • an initial charging circuit for charging the capacitor is required before starting the SVC operation.
  • the transition from the first operation mode to the second operation mode is performed within a predetermined time from the time when it is determined that the voltage value of the input voltage is less than the determination value. That is, before the voltage of the smoothing capacitor 11 becomes lower than the predetermined value, the transition is made from the first operation mode to the second operation mode.
  • the initial charging circuit can be omitted. In the power converter 10, the number of parts can be reduced. For example, the manufacturing cost of the power conversion device 10 can be suppressed.
  • the transition to the second operation mode is made after a predetermined time has elapsed since it was determined that the voltage value of the input voltage is less than the determination value.
  • the control unit 14 is prevented from switching repeatedly between the first operation mode and the second operation mode in a short cycle. be able to.
  • FIG. 3 is a flowchart schematically illustrating an example of another operation of the power conversion device according to the first embodiment.
  • the control unit 14 determines whether the voltage value of the input voltage is equal to or higher than a determination value periodically or substantially continuously.
  • the first operation mode is continuously changed to the second operation mode at the time of the determination.
  • control unit 14 may be immediately shifted from the first operation mode to the second operation mode when it is determined that the value is less than the determination value without leaving a predetermined time.
  • the voltage drop of the smoothing capacitor 11 can be suppressed more appropriately.
  • a mode in which a transition to the second operation mode after a lapse of a predetermined time and a mode in which the transition to the second operation mode is immediately performed may be provided so that the user can arbitrarily select.
  • control method of the power conversion device 10 includes the step of determining whether or not the voltage value of the input voltage is equal to or greater than the determination value, and the control unit 14 within the predetermined time from the determination that the voltage value is less than the determination value. And a step of transitioning from the first operation mode to the second operation mode.
  • FIG. 4 is a block diagram schematically illustrating the power conversion device according to the second embodiment. As illustrated in FIG. 4, the power conversion device 110 further includes a communication unit 18. Note that, in the power conversion device 110, the same functions and configurations as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the communication unit 18 communicates with a device outside the power conversion device 110.
  • the communication part 18 communicates with the controller which controls the electric power of the electric power grid
  • the communication unit 18 is electrically connected to the control unit 14.
  • the communication unit 18 communicates with an external device in response to an instruction from the control unit 14 and receives a command signal from the external device. Then, the communication unit 18 inputs the received command signal to the control unit 14.
  • the command signal includes, for example, information on the system voltage of the power system 4.
  • the communication unit 18 is, for example, a modem or a router.
  • the communication form of the communication unit 18 may be wired or wireless.
  • FIG. 5 is a schematic diagram illustrating an example of the operation of the power conversion device according to the second embodiment. As illustrated in FIG. 5, the control unit 14 changes the determination value of the input voltage according to a command signal input from the outside.
  • the control unit 14 raises the determination value higher than that in the normal mode, for example, in the capacitive mode (reactive power supply mode) in which the inflow current to the power conversion device 110 is advanced. That is, the control unit 14 makes the determination value higher than that in the normal time in the mode of pushing up the system voltage.
  • control unit 14 makes the determination value lower than that in the normal time, for example, in the inductive mode (reactive power consumption mode) in which the inflow current to the power conversion device 110 is delayed. That is, the control unit 14 makes the determination value lower than that in the normal time in the mode for reducing the system voltage.
  • the command signal includes, for example, the phase difference between the voltage and current of the power system 4.
  • the control unit 14 determines whether the mode is the capacitive mode or the inductive mode based on the phase difference information included in the command signal, and sets a determination value according to the result.
  • the determination value itself may be included in the command signal.
  • the determination value is constant as in the power conversion device 10 of the first embodiment, it is necessary to set the determination value in the capacitive mode. That is, it is necessary to set the highest determination value.
  • a lower determination value can be set in the normal mode and the inductive mode than in the capacitive mode. That is, it is possible to operate in the first operation mode up to a lower input voltage.
  • the utilization factor of the first operation mode can be expanded. For example, the time that contributes to power generation can be made longer.
  • the control unit 14 In the power conversion device 110 that receives a command signal from an external device, for example, the control unit 14 is shifted from the first operation mode to the second operation mode in accordance with the command from the external device regardless of the voltage value of the input voltage. You can also. For example, when the fluctuation range of the system voltage is large, the power conversion device 110 may be changed from the first operation mode to the second operation mode according to the command signal.
  • At least one power conversion device 110 is operated in the second operation mode in response to the command signal, and the rest is operated in the first operation mode. By doing so, reactive power generated due to the operation of each power converter 110 may be controlled.
  • a power conversion device capable of reducing an initial charging circuit and a control method thereof are provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 平滑コンデンサと入力電圧検出部と電力変換部と制御部とを備えた電力変換装置が提供される。平滑コンデンサは、直流電源から入力される直流の入力電圧を平滑化する。入力電圧検出部は、入力電圧の電圧値を検出する。電力変換部は、平滑コンデンサによって平滑された直流電圧を交流電圧に変換して電力系統に出力する。制御部は、電力変換部の変換を制御する。制御部は、入力電圧検出部によって検出された電圧値が判定値以上の時に、有効電力を電力系統に出力する第1動作モードと、電圧値が判定値未満の時に、無効電力を電力系統に出力する第2動作モードと、を有し、電圧値が判定値以上か否かを判定し、判定値未満であると判定した時点から所定時間以内に第1動作モードから第2動作モードに遷移する。これにより、初期充電回路を削減した電力変換装置及びその制御方法が提供される。

Description

電力変換装置及びその制御方法
 本発明の実施形態は、電力変換装置及びその制御方法に関する。
 太陽電池パネルなどの直流電源から入力される直流電圧を交流電圧に変換して電力系統に出力する電力変換装置がある。電力変換装置は、例えば、パワーコンディショナと呼ばれる。また、電力変換装置には、直流電源からの入力電圧が低い時に、電力系統の無効電力補償を行うものがある。例えば、直流電源を太陽電池パネルとした場合、発電量の低い夜間に無効電力補償を行う電力変換装置がある。こうした電力変換装置において、初期充電回路の削減が望まれている。
特開2011-193685号公報
 本発明の実施形態は、初期充電回路を削減することができる電力変換装置及びその制御方法を提供する。
 本発明の実施形態によれば、平滑コンデンサと、入力電圧検出部と、電力変換部と、制御部と、を備えた電力変換装置が提供される。前記平滑コンデンサは、直流電源から入力される直流の入力電圧を平滑化する。前記入力電圧検出部は、前記入力電圧の電圧値を検出する。前記電力変換部は、前記平滑コンデンサによって平滑された直流電圧を交流電圧に変換して電力系統に出力する。前記制御部は、前記電力変換部の前記変換を制御する。前記制御部は、前記入力電圧検出部によって検出された前記電圧値が判定値以上の時に、有効電力を前記電力系統に出力する第1動作モードと、前記電圧値が前記判定値未満の時に、無効電力を前記電力系統に出力する第2動作モードと、を有し、前記電圧値が前記判定値以上か否かを判定し、前記判定値未満であると判定した時点から所定時間以内に前記第1動作モードから前記第2動作モードに遷移する。
 本発明の実施形態によれば、初期充電回路を削減することができる電力変換装置及びその制御方法が提供される。
第1の実施形態に係る電力変換装置を模式的に表すブロック図である。 第1の実施形態に係る電力変換装置の動作の一例を模式的に表すフローチャートである。 第1の実施形態に係る電力変換装置の別の動作の一例を模式的に表すフローチャートである。 第2の実施形態に係る電力変換装置を模式的に表すブロック図である。 第2の実施形態に係る電力変換装置の動作の一例を表す模式図である。
 以下に、各実施の形態について図面を参照しつつ説明する。 
 なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。 
 なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
 (第1の実施の形態)
 図1は、第1の実施形態に係る電力変換装置を模式的に表すブロック図である。 
 図1に表したように、電力変換装置10は、平滑コンデンサ11と、入力電圧検出部12と、電力変換部13と、制御部14と、を備える。
 電力変換装置10は、直流電源として太陽電池パネル2及び電力系統4のそれぞれと電気的に接続される。電力変換装置10は、例えば、コネクタなどにより、太陽電池パネル2及び電力系統4のそれぞれに対して着脱可能に接続される。なお、本願明細書において、「電気的に接続」には、直接接触して接続される場合の他に、他の導電性部材などを介して接続される場合も含む。
 電力変換装置10は、例えば、一対の電源入力線2a、2bを介して太陽電池パネル2と電気的に接続される。これにより、電力変換装置10には、太陽電池パネル2によって発電された直流電力が入力される。なお、電力変換装置10に接続される直流電源は、太陽電池パネル2に限ることなく、例えば、ガスタービンエンジンなどでもよい。直流電源は、直流電力を供給可能な任意の電源でよい。
 電力系統4は、例えば、電力を需要家の受電設備に供給するための送電線である。電力系統4の供給する電力は、交流である。電力系統4は、例えば、商用電源の送電線である。電力系統4の交流電力の電圧は、例えば、100V(実効値)電力系統4の交流電力の周波数は、例えば、50Hzまたは60Hzである。電力系統4は、例えば、自家発電システム内の送電線などでもよい。
 平滑コンデンサ11は、例えば、一対の電源入力線2a、2bの間に直列に接続される。これにより、平滑コンデンサ11は、太陽電池パネル2から入力される直流の入力電圧を平滑化する。平滑コンデンサ11は、例えば、太陽電池パネル2からの入力電圧によって充電される。
 入力電圧検出部12は、太陽電池パネル2からの入力電圧の電圧値を検出する。入力電圧検出部12は、制御部14と電気的に接続されている。入力電圧検出部12は、検出した入力電圧の電圧値を制御部14に入力する。
 この例では、入力電圧検出部12が、太陽電池パネル2と平滑コンデンサ11との間に接続されている。入力電圧検出部12は、これに限ることなく、例えば、平滑コンデンサ11と電力変換部13との間に接続してもよい。入力電圧検出部12は、入力電圧を検出可能な任意の構成でよい。
 電力変換部13は、平滑コンデンサ11によって平滑された直流電圧を交流電圧に変換して電力系統4に出力する。電力変換部13は、例えば、変換器20と、変圧器22と、を含む。変換器20は、直流電圧を交流電圧に変換して変圧器22に出力する。変圧器22は、例えば、変換器20から出力された交流電圧を変圧し、変圧後の交流電圧を電力系統4に出力する。
 変換器20には、例えば、自励式の変換器が用いられる。変換器20は、例えば、スイッチング素子を含み、スイッチング素子のオン・オフによって、直流電圧を交流電圧に変換する。変換器20のスイッチング素子には、例えば、自己消弧型の素子が用いられる。より具体的には、例えば、GTO(Gate Turn-Off thyristor)、MOS-FET(Metal-Oxide-Semiconductor Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などが用いられる。
 この例において、電力変換装置10は、出力電流検出部15と、系統電圧検出部16と、をさらに備えている。
 出力電流検出部15は、電力変換部13から出力される出力電流の電流値を検出する。出力電流検出部15は、制御部14と電気的に接続されている。出力電流検出部15は、検出した出力電流の電流値を制御部14に入力する。
 系統電圧検出部16は、電力系統4の系統電圧の電圧値を検出する。系統電圧検出部16は、制御部14と電気的に接続されている。系統電圧検出部16は、検出した系統電圧の電圧値を制御部14に入力する。
 制御部14は、例えば、CPUやMPUなどのプロセッサである。制御部14は、例えば、図示を省略したメモリから所定のプログラムを読み出し、そのプログラムを逐次処理することによって、電力変換装置10の各部を統括的に制御する。プログラムを記憶したメモリは、制御部14内に設けてもよいし、制御部14と別に設け、制御部14と電気的に接続してよい。
 制御部14は、電力変換部13と電気的に接続されている。制御部14は、電力変換部13による電力の変換を制御する。制御部14は、例えば、変換器20のスイッチング素子と電気的に接続される。制御部14は、例えば、スイッチング素子のオン・オフを制御する。これにより、制御部14は、例えば、直流電圧を電力系統4に応じた電圧及び周波数の交流電圧に変換する。
 また、制御部14は、第1動作モードと、第2動作モードと、を有する。第1動作モードは、入力電圧検出部12によって検出された電圧値が判定値以上の時に、有効電力を電力系統4に出力するモードである。第1動作モードは、例えば、PV(Photovoltaic)運転モードである。第2動作モードは、電圧値が判定値未満の時に、無効電力を電力系統4に出力するモードである。第2動作モードは、例えば、SVC(static var compensator)運転モードである。
 制御部14は、入力電圧検出部12によって検出された入力電圧の電圧値が、予め設定された判定値以上であるか否かを判定する。そして、制御部14は、入力電圧の電圧値が判定値以上である場合に第1動作モードを実行し、判定値未満である場合に第2動作モードを実行する。制御部14は、例えば、入力電圧が判定値以上か否かの判定を定期的に行う。または、入力電圧検出部12から入力される入力電圧の電圧値を実質的に連続的に参照してもよい。
 判定値は、例えば、太陽電池パネル2の発電量に応じて設定される。すなわち、制御部14は、十分な発電量が得られている時に、有効電力を電力系統4に出力する第1動作モードを実行し、十分な発電量が得られていない時に、無効電力を電力系統4に出力する第2動作モードを実行する。より詳しくは、制御部14は、晴天時の日中など発電量の大きい時に第1動作モードを実行し、曇天時や夜間などの発電量の小さい時に第2動作モードを実行する。
 なお、「電力を電力系統4に出力する」には、送電線などに電力を供給するいわゆる逆潮流の他に、配電盤や分電盤などを介して系統負荷(電子機器など)に電力を供給する場合も含むものとする。
 制御部14は、第1動作モードにおいて、例えば、電力系統4の交流電力に同期した交流電力に変換するように、変換器20のスイッチング素子をオン・オフ制御する。すなわち、制御部14は、例えば、変換器20によって変換される交流電力の電圧、周波数及び位相などを、電力系統4の交流電力に合わせる。これにより、変換器20によって変換された交流電力が、有効電力として電力系統4に出力される。
 制御部14は、第2動作モードにおいて、例えば、出力電流検出部15によって検出された出力電流の電流値と、系統電圧検出部16によって検出された系統電圧の電圧値と、に基づいて、電力系統4に出力する無効電力を決定する。そして、制御部14は、決定した無効電力に応じて変換器20のスイッチング素子をオン・オフ制御する。これにより、変換器20によって変換された交流電力が、無効電力として電力系統4に出力される。これにより、例えば、電力系統4の無効電力を制御することができる。例えば、電力系統4の安定度を高めることができる。
 第2動作モードにおいては、平滑コンデンサ11の直流電圧が、変換器20によって交流電圧に変換される。この時、変換器20のスイッチング素子のオン・オフによって、平滑コンデンサ11が充電される。従って、平滑コンデンサ11の電圧値は、第2動作モードにおいても所定値以上に維持される。
 制御部14は、入力電圧の電圧値が判定値未満であると判定した場合、判定値未満であると判定した時点から所定時間以内に第1動作モードから第2動作モードに遷移する。
 制御部14は、例えば、判定値未満であると判定したことに応答して、第1動作モードを停止する。すなわち、電力系統4への有効電力の出力を停止する。制御部14は、例えば、判定値未満であると判定した時点から計時を開始し、判定値未満であると判定した時点から所定時間経過した時点において、第2動作モードを開始する。すなわち、電力系統4への無効電力の出力を開始する。
 このように、制御部14は、例えば、入力電圧の電圧値が判定値未満であると判定した時点から所定時間経過した時点において、第1動作モードから第2動作モードに遷移する。また、制御部14は、例えば、入力電圧の電圧値が判定値未満であると判定した時点において、第1動作モードを停止させる。すなわち、第1動作モードを停止させた時点から第2動作モードを開始するまでの間は、第1動作モード及び第2動作モードのそれぞれと異なる動作モードである。制御部14は、例えば、所定時間が経過する前に、入力電圧の電圧値が判定値以上に復帰した場合、再び第1動作モードを実行する。
 第1動作モードから第2動作モードに遷移するまでの所定時間は、例えば、平滑コンデンサ11の容量や電力変換部13の構成などに応じて設定される。制御部14は、例えば、平滑コンデンサ11の電圧(蓄積された電荷)が、所定値よりも低くなる前に、第1動作モードから第2動作モードに遷移する。すなわち、制御部14は、入力電圧の電圧値が第1判定値以上であるか否かを判定し、第1判定値未満であると判定した場合に、入力電圧の電圧値(平滑コンデンサ11の電圧値)が、第1判定値よりも低い第2判定値に達した時点において、第1動作モードから第2動作モードに遷移すると言うこともできる。
 なお、入力電圧の電圧値が判定値未満であると判定した時点において第1動作モードを停止させることなく、所定時間が経過した時点において、第1動作モードから第2動作モードに連続的に遷移してもよい。但し、上記のように、入力電圧の電圧値が判定値未満であると判定した時点で、第1動作モードを停止させる。これにより、例えば、所定時間が経過するまでの間において、平滑コンデンサ11に蓄積された電荷の消費量を抑えることができる。
 次に、電力変換装置10の動作について説明する。 
 図2は、第1の実施形態に係る電力変換装置の動作の一例を模式的に表すフローチャートである。 
 図2に表したように、電力変換装置10の制御部14は、第1動作モードしている時に、定期的または実質的に連続的に、入力電圧の電圧値が判定値以上か否かを判定する。
 判定値以上であると判定した場合、制御部14は、第1動作モードを継続する。一方、判定値未満であると判定した場合、制御部14は、第1動作モードを停止し、所定時間の計時を開始する。
 制御部14は、入力電圧の電圧値が判定値未満の状態で所定時間が経過した場合、経過した時点において第2動作モードの実行を開始する。一方、制御部14は、所定時間の計時を開始した後、入力電圧の電圧値が判定値以上に復帰した場合、再び第1動作モードを実行する。また、制御部14は、第2動作モードの実行中において、入力電圧の電圧値が判定値以上になった場合、第2動作モードから第1動作モードに遷移する。制御部14は、以下、同様の処理を繰り返す。
 例えば、PV運転モードとSVC運転モードとを含む電力変換装置において、PV運転を停止した後、所定時間以上経過してからSVC運転を実行するものがある。この場合、コンデンサの電圧が低下してしまうため、SVC運転を開始する前に、コンデンサを充電する初期充電回路が必要となる。
 これに対して、本実施形態に係る電力変換装置10では、入力電圧の電圧値が判定値未満であると判定した時点から、所定時間以内に第1動作モードから第2動作モードに遷移する。すなわち、平滑コンデンサ11の電圧が所定値よりも低くなる前に、第1動作モードから第2動作モードに遷移する。これにより、本実施形態に係る電力変換装置10では、初期充電回路を省略することができる。電力変換装置10において、部品点数を削減することができる。例えば、電力変換装置10の製造コストを抑えることができる。
 また、本実施形態に係る電力変換装置10では、入力電圧の電圧値が判定値未満であると判定した時点から、所定時間経過した後に、第2動作モードに遷移する。これにより、例えば、雲の加減などによって判定値付近で発電量が上下した場合に、制御部14が第1動作モードと第2動作モードとに短い周期で何度も切り替わってしまうことを抑制することができる。
 図3は、第1の実施形態に係る電力変換装置の別の動作の一例を模式的に表すフローチャートである。 
 図3に表したように、この例では、制御部14が、第1動作モードしている時に、定期的または実質的に連続的に、入力電圧の電圧値が判定値以上か否かを判定し、判定値未満であると判定した場合に、その判定の時点において、第1動作モードから第2動作モードに連続的に遷移する。
 このように、所定時間を空けることなく、判定値未満と判定した時点で即座に制御部14を第1動作モードから第2動作モードに遷移させてもよい。この場合には、例えば、平滑コンデンサ11の電圧の低下をより適切に抑えることができる。例えば、所定時間経過した後に第2動作モードに遷移するモードと、即座に第2動作モードに遷移するモードと、を設け、ユーザが任意に選択できるようにしてもよい。
 このように、電力変換装置10の制御方法は、入力電圧の電圧値が判定値以上か否かを判定する工程と、判定値未満であると判定した時点から所定時間以内に制御部14を第1動作モードから第2動作モードに遷移させる工程と、を含んでいればよい。
 (第2の実施の形態)
 図4は、第2の実施形態に係る電力変換装置を模式的に表すブロック図である。 
 図4に表したように、電力変換装置110は、通信部18をさらに備える。なお、電力変換装置110において、上記第1の実施形態と機能・構成上同一のものについては、同符号を付し、詳細な説明を省略する。
 通信部18は、電力変換装置110の外部の機器と通信を行う。通信部18は、例えば、電力系統4の電力を制御するコントローラと通信を行う。通信部18は、制御部14と電気的に接続されている。通信部18は、例えば、制御部14からの指示に応じて外部機器と通信を行い、外部機器からの指令信号を受信する。そして、通信部18は、受信した指令信号を制御部14に入力する。指令信号には、例えば、電力系統4の系統電圧の情報などが含まれる。通信部18は、例えば、モデムやルータなどである。通信部18の通信形態は、有線でもよいし無線でもよい。
 図5は、第2の実施形態に係る電力変換装置の動作の一例を表す模式図である。 
 図5に表したように、制御部14は、外部から入力される指令信号に応じて、入力電圧の判定値を変化させる。
 制御部14は、例えば、電力変換装置110への流入電流が進相になるキャパシティブモード(無効電力供給モード)の時に、判定値を通常時よりも高くする。すなわち、制御部14は、系統電圧を押し上げるモードの時に、判定値を通常時よりも高くする。
 また、制御部14は、例えば、電力変換装置110への流入電流が遅相になるインダクティブモード(無効電力消費モード)の時に、判定値を通常時よりも低くする。すなわち、制御部14は、系統電圧を引き下げるモードの時に、判定値を通常時よりも低くする。
 この場合、指令信号には、例えば、電力系統4の電圧と電流との位相差などが含まれる。制御部14は、例えば、指令信号に含まれる位相差の情報を基に、キャパシティブモードかインダクティブモードかを判断し、その結果に応じて判定値を設定する。なお、例えば、判定値自体を指令信号に含めてもよい。
 例えば、上記第1の実施形態の電力変換装置10のように、判定値が一定である場合には、キャパシティブモード時の判定値を設定する必要がある。すなわち、最も高い判定値に設定する必要がある。
 これに対して、本実施形態に係る電力変換装置110では、例えば、通常時及びインダクティブモードの時に、キャパシティブモードの時よりも低い判定値を設定することができる。すなわち、より低い入力電圧まで第1動作モードで動作させることができる。例えば、第1動作モードの利用率を拡大することができる。例えば、発電に寄与する時間をより長くすることができる。
 なお、外部機器から指令信号を受ける電力変換装置110では、例えば、入力電圧の電圧値に関係なく、外部機器からの指令に応じて制御部14を第1動作モードから第2動作モードに遷移させることもできる。例えば、系統電圧の変動幅が大きい時に、指令信号に応じて電力変換装置110を第1動作モードから第2動作モードに遷移させてもよい。
 また、例えば、複数台の電力変換装置110を連動させて動作させる際に、指令信号に応じて、少なくとも1つの電力変換装置110を第2動作モードで動作させ、残りを第1動作モードで動作させることにより、各電力変換装置110の動作に起因して生じる無効電力を制御できるようにしてもよい。
 実施形態によれば、初期充電回路を削減することができる電力変換装置及びその制御方法が提供される。
 以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明の実施形態は、これらの具体例に限定されるものではない。例えば、電力変換装置に含まれる、平滑コンデンサ、入力電圧検出部、電力変換部、制御部、出力電流検出部、及び、系統電圧検出部などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。 
 また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
 その他、本発明の実施の形態として上述した電力変換装置及びその制御方法を基にして、当業者が適宜設計変更して実施し得る全ての電力変換装置及びその制御方法も、本発明の要旨を包含する限り、本発明の範囲に属する。
 その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。

Claims (7)

  1.  直流電源から入力される直流の入力電圧を平滑化する平滑コンデンサと、
     前記入力電圧の電圧値を検出する入力電圧検出部と、
     前記平滑コンデンサによって平滑された直流電圧を交流電圧に変換して電力系統に出力する電力変換部と、
     前記電力変換部の前記変換を制御する制御部と、
     を備え、
     前記制御部は、前記入力電圧検出部によって検出された前記電圧値が判定値以上の時に、有効電力を前記電力系統に出力する第1動作モードと、前記電圧値が前記判定値未満の時に、無効電力を前記電力系統に出力する第2動作モードと、を有し、前記電圧値が前記判定値以上か否かを判定し、前記判定値未満であると判定した時点から所定時間以内に前記第1動作モードから前記第2動作モードに遷移する電力変換装置。
  2.  前記制御部は、外部から入力される指令信号に応じて、前記判定値を変化させる請求項1記載の電力変換装置。
  3.  前記電力変換部から出力される出力電流の電流値を検出する出力電流検出部と、
     前記電力系統の系統電圧の電圧値を検出する系統電圧検出部と、
     をさらに備え、
     前記制御部は、前記第2動作モードにおいて、前記出力電流検出部によって検出された前記出力電流の前記電流値と、前記系統電圧検出部によって検出された前記系統電圧の前記電圧値と、に基づいて、前記電力系統に出力する前記無効電力を決定する請求項1記載の電力変換装置。
  4.  前記制御部は、前記判定値未満であると判定した時点から所定時間経過した時点において、前記第1動作モードから前記第2動作モードに遷移する請求項1記載の電力変換装置。
  5.  前記制御部は、前記判定値未満であると判定した時に、前記第1動作モードから前記第2動作モードに連続的に遷移する請求項1記載の電力変換装置。
  6.  前記直流電源は、太陽電池パネルである請求項1記載の電力変換装置。
  7.  直流電源から入力される直流の入力電圧を平滑化する平滑コンデンサと、前記入力電圧の電圧値を検出する入力電圧検出部と、前記平滑コンデンサによって平滑された直流電圧を交流電圧に変換して電力系統に出力する電力変換部と、前記電力変換部の前記変換を制御する制御部と、を備え、前記制御部は、前記入力電圧検出部によって検出された前記電圧値が判定値以上の時に、有効電力を前記電力系統に出力する第1動作モードと、前記電圧値が前記判定値未満の時に、無効電力を前記電力系統に出力する第2動作モードと、を有する電力変換装置の制御方法であって、
     前記入力電圧の前記電圧値が前記判定値以上か否かを判定する工程と、
     前記判定値未満であると判定した時点から所定時間以内に前記制御部を前記第1動作モードから前記第2動作モードに遷移させる工程と、
     を含む電力変換装置の制御方法。
PCT/JP2013/078011 2013-10-15 2013-10-15 電力変換装置及びその制御方法 WO2015056309A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13895714.7A EP3059653B1 (en) 2013-10-15 2013-10-15 Power conversion device and method for controlling same
PCT/JP2013/078011 WO2015056309A1 (ja) 2013-10-15 2013-10-15 電力変換装置及びその制御方法
US15/029,881 US9722458B2 (en) 2013-10-15 2013-10-15 Power conversion device and method of controlling the same
JP2015542436A JP6210649B2 (ja) 2013-10-15 2013-10-15 電力変換装置及びその制御方法
CN201380081235.1A CN105765478B (zh) 2013-10-15 2013-10-15 电力转换装置和其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078011 WO2015056309A1 (ja) 2013-10-15 2013-10-15 電力変換装置及びその制御方法

Publications (1)

Publication Number Publication Date
WO2015056309A1 true WO2015056309A1 (ja) 2015-04-23

Family

ID=52827782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078011 WO2015056309A1 (ja) 2013-10-15 2013-10-15 電力変換装置及びその制御方法

Country Status (5)

Country Link
US (1) US9722458B2 (ja)
EP (1) EP3059653B1 (ja)
JP (1) JP6210649B2 (ja)
CN (1) CN105765478B (ja)
WO (1) WO2015056309A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424119A4 (en) * 2016-03-04 2019-08-14 Doosan Fuel Cell America, Inc. FUEL CELL POWER PLANT WITH REAL AND REACTIVE POWER MODES
WO2021009848A1 (ja) * 2019-07-16 2021-01-21 東芝三菱電機産業システム株式会社 電力変換システム
JP7462401B2 (ja) 2018-11-16 2024-04-05 シャンラオ シンユエン ユエドン テクノロジー デベロップメント シーオー.,エルティーディー 電力変換装置、それを備える太陽光モジュール、及び太陽光システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3224552T3 (da) * 2014-11-25 2024-03-11 B Medical Systems Sarl Køleapparat
FR3054384B1 (fr) * 2016-07-21 2018-08-17 Sagemcom Energy & Telecom Sas Procede pour recuperer une energie excedentaire dans une centrale de production d'energie electrique
JP6462969B2 (ja) * 2016-10-11 2019-01-30 東芝三菱電機産業システム株式会社 電力変換装置及びその運転方法
JP7160214B2 (ja) * 2019-12-12 2022-10-25 東芝三菱電機産業システム株式会社 電力変換装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200413A (ja) * 1986-02-28 1987-09-04 Toshiba Corp 電力変換装置の制御装置
JP2011193685A (ja) 2010-03-16 2011-09-29 Tokyo Electric Power Co Inc:The パワーコンディショナ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3382434B2 (ja) * 1995-09-22 2003-03-04 キヤノン株式会社 電池電源の電圧制御装置および電圧制御方法
JP2002112459A (ja) * 2000-09-29 2002-04-12 Canon Inc 太陽電池モジュールおよび発電装置
AU2003238599B8 (en) * 2002-01-31 2008-07-31 Ebara Corporation Method and device for controlling photovoltaic inverter, and feed water device
US7034513B2 (en) * 2003-09-03 2006-04-25 Delta Electronics, Inc. Power supply having efficient low power standby mode
KR20080106198A (ko) * 2006-01-27 2008-12-04 가부시키가이샤 산샤덴키세이사쿠쇼 태양광 발전 인버터
JP2009169800A (ja) 2008-01-18 2009-07-30 Meidensha Corp 太陽光発電システムの制御装置
US8754549B2 (en) 2008-07-24 2014-06-17 Mitsubishi Electric Corporation Power conversion device
EP2242160B1 (de) * 2009-04-17 2012-02-01 SMA Solar Technology AG Verfahren und Vorrichtung zum Zuschalten einer Photovoltaikanlage zu einem Wechselstromnetz
ES2853174T3 (es) * 2010-02-26 2021-09-15 Toshiba Mitsubishi Elec Ind Sistema de generación de potencia
WO2011159786A1 (en) 2010-06-15 2011-12-22 Advanced Energy Industries, Inc. Systems and methods for dynamic power compensation, such as dynamic power compensation using synchrophasors
JP5659290B2 (ja) * 2011-02-23 2015-01-28 東芝三菱電機産業システム株式会社 太陽光発電システム
CN102360237B (zh) * 2011-08-19 2014-03-12 蔡朝进 开关式功率调整装置
JP5864999B2 (ja) * 2011-10-12 2016-02-17 株式会社ダイヘン 電力計測装置、インバータ制御回路、系統連系インバータシステム、および、電力計測方法
TWI438602B (zh) * 2011-12-02 2014-05-21 Ind Tech Res Inst 最大功率點追蹤控制器、最大功率點追蹤系統和最大功率點追蹤方法
US20130155738A1 (en) 2011-12-19 2013-06-20 General Electric Company System and method for controlling reactive power in a power conversion system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200413A (ja) * 1986-02-28 1987-09-04 Toshiba Corp 電力変換装置の制御装置
JP2011193685A (ja) 2010-03-16 2011-09-29 Tokyo Electric Power Co Inc:The パワーコンディショナ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3424119A4 (en) * 2016-03-04 2019-08-14 Doosan Fuel Cell America, Inc. FUEL CELL POWER PLANT WITH REAL AND REACTIVE POWER MODES
AU2017225510B2 (en) * 2016-03-04 2021-11-04 Doosan Fuel Cell America, Inc. Fuel cell power plant with real and reactive power modes
US11442483B2 (en) 2016-03-04 2022-09-13 Hyaxiom, Inc. Fuel cell power plant with real and reactive power modes
JP7462401B2 (ja) 2018-11-16 2024-04-05 シャンラオ シンユエン ユエドン テクノロジー デベロップメント シーオー.,エルティーディー 電力変換装置、それを備える太陽光モジュール、及び太陽光システム
WO2021009848A1 (ja) * 2019-07-16 2021-01-21 東芝三菱電機産業システム株式会社 電力変換システム
CN112840550A (zh) * 2019-07-16 2021-05-25 东芝三菱电机产业系统株式会社 电力变换系统
JPWO2021009848A1 (ja) * 2019-07-16 2021-09-13 東芝三菱電機産業システム株式会社 電力変換システム
US11863063B2 (en) 2019-07-16 2024-01-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion system that performs initial charging of a direct-current capacitor from an alternate-current power supply

Also Published As

Publication number Publication date
EP3059653A4 (en) 2017-06-21
JPWO2015056309A1 (ja) 2017-03-09
US20160233787A1 (en) 2016-08-11
JP6210649B2 (ja) 2017-10-11
US9722458B2 (en) 2017-08-01
CN105765478B (zh) 2018-11-20
EP3059653B1 (en) 2020-11-25
CN105765478A (zh) 2016-07-13
EP3059653A1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP6210649B2 (ja) 電力変換装置及びその制御方法
Li et al. Design and test of a new droop control algorithm for a SMES/battery hybrid energy storage system
TWI548192B (zh) 逆變裝置及其控制方法
US9444355B2 (en) Method and apparatus for determining a bridge mode for power conversion
JP2014513915A (ja) 共振変換器の出力電力を制御するための方法及び装置
JPWO2016125292A1 (ja) Dc−dcコンバータ、電力変換装置、発電システムおよびdc−dc変換方法
KR101388698B1 (ko) 전력 변환 장치와 그 동작 방법 및 태양광 발전 시스템
JP2014075855A (ja) 電力制御システム及び太陽光発電システム
JP2016105335A (ja) 太陽光発電用パワーコンディショナ
JPWO2012169013A1 (ja) 太陽光発電システムの運転制御装置
JP6316152B2 (ja) パワーコンディショナ
US20150244250A1 (en) Regulation of an electronic voltage adapter module
JP2016110524A (ja) 太陽光発電システム
JP2015164015A (ja) 直流給電システム、直流電源装置、及び給電制御方法
KR20130127913A (ko) 인버터 장치 및 태양광 발전 시스템
CN115411771A (zh) 一种光伏发电系统和光伏发电系统的控制方法
JP2014165966A (ja) 電源装置及び充電制御方法
US20140117755A1 (en) Power system
KR101305634B1 (ko) 태양광 발전 장치 및 그 제어방법
US20140301113A1 (en) Solar power supply apparatus and method of controlling power supply thereof
US9467066B1 (en) Control method for DC to AC converter
JP6625469B2 (ja) 電力制御装置
JP6532274B2 (ja) 直流電源システムの制御装置および制御方法
WO2014198044A1 (en) Battery energy storage system and controlling method
JP6343434B2 (ja) 電力変換装置及び電力変換方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895714

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013895714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013895714

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015542436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15029881

Country of ref document: US