WO2019065234A1 - Method for manufacturing substrate with electrodes formed thereon - Google Patents

Method for manufacturing substrate with electrodes formed thereon Download PDF

Info

Publication number
WO2019065234A1
WO2019065234A1 PCT/JP2018/033780 JP2018033780W WO2019065234A1 WO 2019065234 A1 WO2019065234 A1 WO 2019065234A1 JP 2018033780 W JP2018033780 W JP 2018033780W WO 2019065234 A1 WO2019065234 A1 WO 2019065234A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
transparent substrate
transparent
insulating layer
Prior art date
Application number
PCT/JP2018/033780
Other languages
French (fr)
Japanese (ja)
Inventor
橋本大樹
高瀬皓平
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018549283A priority Critical patent/JPWO2019065234A1/en
Priority to CN201880062226.0A priority patent/CN111133408A/en
Priority to KR1020197037539A priority patent/KR20200058330A/en
Publication of WO2019065234A1 publication Critical patent/WO2019065234A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a method of manufacturing a substrate with an electrode having a transparent substrate, a first electrode, an insulating layer and a second electrode.
  • the touch panel includes a display unit such as a liquid crystal panel, and a touch panel sensor that detects information input to a specific position.
  • the touch panel methods are roughly classified into a resistive film method, a capacitance method, an optical method, an electromagnetic induction method, an ultrasonic method, and the like according to a detection method of an input position.
  • a capacitive touch panel is widely used for reasons of optically bright, excellent in design, simple in structure, and excellent in function.
  • the capacitive touch panel sensor has a second electrode which is orthogonal to the first electrode and the insulating layer, applies a voltage to the electrode on the touch panel surface, and the capacitance when a conductor such as a finger touches the electrode.
  • the contact position obtained by detecting the change is output as a signal.
  • a touch panel sensor used in the capacitance method for example, a structure in which two transparent substrates having a transparent electrode pattern formed on one surface of a transparent substrate are bonded, or electrodes are formed on both sides of one transparent substrate The structure formed etc. are known.
  • a wiring electrode used for a touch panel sensor a transparent wiring electrode was generally used from the viewpoint of making the wiring electrode difficult to see, but in recent years, metal materials have been used due to high sensitivity and large screens. The opaque wiring electrode is widespread.
  • a method for producing a transparent conductive laminate easy to align for example, at least a first transparent conductive layer and a second transparent conductive layer are formed on both sides of the transparent substrate layer, and the first transparent
  • a method of applying a resist on the surface of the conductive layer and the second transparent conductive layer and simultaneously exposing it, developing the resist and etching the first transparent conductive layer and the second transparent conductive layer has been proposed.
  • the transparent substrate layer needs to absorb the exposure light in order to avoid exposure of other than the desired resist by simultaneous exposure, and since the materials which can be used are limited, another method is desirable. It was rare.
  • a process of forming a first transparent electrode pattern on one side of a first transparent substrate, a process of forming at least a transparent conductive layer on one side of a second transparent substrate, and a process of forming the first transparent substrate A step in which the surface on which the transparent electrode pattern is not formed and the surface on which the transparent conductive layer of the second transparent substrate is not formed are opposed to each other and adhered with an adhesive layer, and the first transparent electrode pattern is used.
  • a method including the steps of adjusting the exposure position of patterning of the transparent conductive layer and forming a second transparent electrode pattern on the transparent conductive layer by patterning (see, for example, Patent Document 3).
  • the present invention has been made in view of the above-described circumstances, and provides a method of manufacturing a substrate with a high yield, which is difficult to be visually recognized, is excellent in positional accuracy even using a thin film transparent substrate, and can suppress moire.
  • the purpose is to
  • the present invention mainly has the following composition.
  • the method includes the steps of forming an electrode, forming an insulating layer on the surface of the transparent substrate on which the first electrode is formed, and forming a second electrode on the insulating layer, Forming the second electrode and heating the second electrode at a temperature of 100.degree. C. to 150.degree. C., the first electrode and / or the second electrode being opaque.
  • the present invention it is possible to obtain a substrate with an electrode which is hard to be recognized and which is excellent in positional accuracy even when using a thin film transparent substrate and which can suppress moire with high yield.
  • a substrate with an electrode based on the manufacturing method of the present invention has a first electrode, an insulating layer and a second electrode on a first transparent substrate. First, each of these layers will be described.
  • the first transparent substrate is a portion to be a base of the electrode-attached substrate, and is preferably transparent in the visible light region.
  • the transmittance of light having a wavelength of 550 nm is preferably 80% or more, and more preferably 85% or more.
  • the transmittance of the first transparent substrate at a wavelength of 550 nm can be measured using an ultraviolet-visible spectrophotometer (U-3310 manufactured by Hitachi High-Technologies Corporation).
  • a transparent substrate for example, quartz glass, soda glass, chemically tempered glass, "Pyrex” (registered trademark) glass, synthetic quartz plate, epoxy resin substrate, polyetherimide resin substrate, polyether ketone resin substrate, polysulfone resin substrate And transparent films made of resins such as polyethylene terephthalate film (hereinafter, "PET film”), cycloolefin polymer film, polyimide film, polyester film, aramid film, etc., and resin plates for optics.
  • PET films, cycloolefin polymer films, and polyimide films are preferable from the viewpoint of transparency, heat resistance, and strength when the thickness is 200 ⁇ m or less.
  • a plurality of these may be stacked and used, and for example, it can be used by bonding using a plurality of transparent substrates by an adhesive layer.
  • the functional film which has various functions, such as ultraviolet-ray cutability, gas-barrier property, anti-reflective property, as a transparent substrate is mentioned.
  • a functional film having an ultraviolet ray cutting property for example, a film made of a resin having an ultraviolet ray absorbing property such as polyethylene naphthalate or the transparent film exemplified above has a maximum absorption wavelength in the ultraviolet ray region of a wavelength of 300 to 380 nm.
  • surface or both surfaces to the transparent film illustrated above are mentioned.
  • the functional film having gas barrier properties include laminates in which a metal oxide layer such as silicon oxide is formed on the transparent film exemplified above.
  • Water vapor permeability of the functional film having a gas barrier property 1 ⁇ preferably 10 -1 g / m 2 ⁇ day or less, more preferably 1 ⁇ 10 -2 g / m 2 ⁇ day, 1 ⁇ 10 -3 g It is more preferable to use / m 2 ⁇ day or less.
  • the water vapor transmission rate can be measured at 40 ° C. in a 90% RH atmosphere using a water vapor transmission rate measuring device (MOCON PERMATRAN 3/21 manufactured by Modern Control Co., Ltd.).
  • the material for forming the low refractive index layer is preferably a low refractive index material having a refractive index of 1.6 or less at a wavelength of 550 nm, and examples thereof include silicon oxide and magnesium fluoride.
  • a high refractive material having a refractive index of 1.9 or more at a wavelength of 550 nm is preferable.
  • ITO indium oxide
  • ATO antimony-doped tin oxide
  • a middle refractive index layer having a refractive index of about 1.50 to 1.85 for example, a thin film made of titanium oxide or a mixture of the low refractive index material and the high refractive material May be formed.
  • the thickness of the first transparent substrate in the present invention is 200 ⁇ m or less in total.
  • the thickness of the first transparent substrate is thicker than 200 ⁇ m, the flexibility of the transparent substrate is small, so the transparent substrate on which the opaque wiring electrode is formed is bonded to two or more layers or other substrates.
  • misalignment does not easily occur.
  • the first electrode and / or the second electrode are opaque.
  • the transmittance of light with a wavelength of 365 nm is preferably 20% or less, and more preferably 10% or less.
  • the transmittance of the first electrode and the second electrode is measured by a micro-spectral spectral color difference meter (VSS 400: manufactured by Nippon Denshoku Kogyo Co., Ltd.) for an electrode of 0.1 mm square or more on the transparent substrate. can do.
  • the first electrode and the second electrode may be composed of the same material or may be composed of different materials.
  • one of the first electrode or the second electrode is opaque and the other is transparent. By having a transparent electrode, an electrode can be formed using existing production equipment without using expensive silver and the like.
  • the first electrode and the second electrode are more preferably a metal mesh that is made of metal and has a mesh-like pattern. Since the metal mesh has high conductivity, it can be easily miniaturized to a line width which is difficult to be visually recognized.
  • the thickness of the opaque electrode among the first electrode and the second electrode is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and still more preferably 0.1 ⁇ m or more.
  • the thickness of the opaque electrode is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and still more preferably 3 ⁇ m or less, from the viewpoint of forming finer wiring.
  • the line width of the patterns of the first electrode and the second electrode is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, and still more preferably 2 ⁇ m or more, from the viewpoint of further improving the conductivity.
  • the line width of the patterns of the first electrode and the second electrode is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less, and still more preferably 6 ⁇ m or less, from the viewpoint of making the wiring electrode less visible.
  • a material which forms an opaque electrode among the first electrode and the second electrode for example, silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, etc. Metals, alloys thereof and the like can be mentioned. Two or more of these may be used. Among these, conductive particles such as silver, copper and gold are preferable from the viewpoint of conductivity.
  • the primary particle diameter of the conductive particles is preferably 0.1 to 1.0 ⁇ m, more preferably 0.2 to 0.8 ⁇ m, in order to form a fine conductive pattern having desired conductivity.
  • the primary particle diameter of the conductive particles means that the electrode is physically collected with tweezers, adhesive tape, etc., the resin component is dissolved with an organic solvent such as tetrahydrofuran, the precipitated conductive particles are collected, and the box is The sample dried at 70 ° C. for 10 minutes using an oven was observed at a magnification of 25000 using an electron microscope, and the major and minor axes of the primary particles of 100 randomly selected conductive particles were measured. , And can be calculated by obtaining their number average value.
  • the organic solvent used to dissolve the resin component is not particularly limited as long as it can dissolve the resin component of the electrode.
  • the content thereof is preferably 60% by mass or more, more preferably 65% by mass or more, from the viewpoint of improving the conductivity. 70% by mass or more is more preferable.
  • the content of the conductive particles is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less.
  • content of the electroconductive particle in an opaque electrode can be calculated
  • the opaque electrode preferably contains an organic compound together with the aforementioned metal.
  • alkali-soluble resin As an organic compound, alkali-soluble resin is preferable.
  • alkali-soluble resin resin etc. which have a hydroxyl group and / or a carboxyl group are mentioned, for example.
  • a resin having a hydroxy group for example, a phenol novolak resin having a phenolic hydroxy group, a novolak resin such as a cresol novolac resin, a polymer of a monomer having a hydroxy group, a monomer having a hydroxy group, styrene, acrylonitrile, an acrylic monomer, etc. And copolymers thereof.
  • the monomer having a hydroxy group for example, monomers having a phenolic hydroxy group such as 4-hydroxystyrene, hydroxyphenyl (meth) acrylate and the like; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate , (Meth) acrylic acid 3-methyl-3-hydroxybutyl, (meth) acrylic acid 1,1-dimethyl-3-hydroxybutyl, (meth) acrylic acid 1,3-dimethyl-3-hydroxybutyl, (meth) 2,2,4-trimethyl-3-hydroxypentyl acrylate, 2-ethyl-3-hydroxyhexyl (meth) acrylate, glycerol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate Such as acrylate Monomers having a phenolic hydroxy group.
  • monomers having a phenolic hydroxy group such as 4-hydroxystyrene, hydroxy
  • resin which has a carboxyl group for example, carboxylic acid modified epoxy resin, carboxylic acid modified phenol resin, polyamic acid resin, carboxylic acid modified siloxane resin, polymer of monomer having carboxyl group, monomer having carboxyl group, styrene, acrylonitrile And copolymers with acrylic monomers and the like.
  • Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, cinnamic acid and the like.
  • the resin having a hydroxy group and a carboxyl group a copolymer of a monomer having a hydroxy group and a monomer having a carboxy group, a monomer having a hydroxy group, a monomer having a carboxy group, styrene, acrylonitrile, an acrylic monomer, etc. Copolymers may be mentioned. Two or more of these may be contained.
  • resins containing a phenolic hydroxy group and a carboxyl group are preferred.
  • a quinone diazide compound is used as a photosensitizer by containing a phenolic hydroxy group, the phenolic hydroxy group and the quinone diazide compound form a hydrogen bond, and the developer in the unexposed area of the positive photosensitive light shielding composition layer
  • the solubility difference between the unexposed area and the exposed area is increased, and the development margin can be expanded.
  • the solubility to a developing solution improves, and adjustment of development time becomes easy by content of a carboxyl group.
  • conductivity can be exhibited at a lower temperature.
  • the acid value of the alkali-soluble resin having a carboxyl group is preferably 50 mg KOH / g or more from the viewpoint of solubility in a developing solution, and 250 mg KOH / g or less from the viewpoint of suppressing excessive dissolution of the unexposed area.
  • the acid value of the alkali-soluble resin having a carboxyl group can be measured according to JIS K 0070 (1992).
  • the opaque electrode is, if necessary, a dispersant, a photopolymerization initiator, a monomer having an unsaturated double bond, a photoacid generator, a thermal acid generator, a sensitization It may contain an agent, a pigment or dye that absorbs visible light, an adhesion improver, a surfactant, a polymerization inhibitor, and the like.
  • indium tin oxide ITO
  • indium zinc oxide IZO
  • zinc oxide ZnO
  • indium zinc tin oxide Substances IZTO
  • cadmium tin oxide CTO
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • carbon nanotubes CNT
  • the thickness of the transparent electrode is preferably 16 nm or more, more preferably 18 nm or more, and still more preferably 20 nm or more.
  • the thickness of the transparent electrode is preferably 40 nm or less, more preferably 38 nm or less, and still more preferably 36 nm or less, from the viewpoint of transparency and color.
  • the surface resistance of the substrate with a transparent electrode is preferably 10 to 400 ⁇ / ⁇ .
  • 300 ohms / square or less are more preferable, and 270 ohms / square or less are further more preferable.
  • the insulating layer is a portion that secures insulation between the first electrode and the second electrode.
  • insulating resin materials such as polyimide resin, acrylic resin, cardo resin, epoxy resin, melamine resin, urethane resin, silicon resin, fluorine resin, etc., inorganic materials such as glass Etc. Two or more of these may be used.
  • An insulating resin material is preferable from the viewpoint of strength against bending and bending of the transparent substrate.
  • the insulating layer may be a multilayer including two or more layers.
  • the insulating layer preferably has a multilayer structure including an adhesive layer and a second transparent substrate. By having a multilayer structure including the adhesive layer and the second transparent substrate, a transparent substrate with high surface smoothness can be used, and the positional accuracy of the first electrode and the second electrode can be further improved.
  • the adhesive layer has a function to adhere a plurality of layers to be adhered in a short time with a slight pressure under room temperature and / or heating conditions.
  • the adhesive layer preferably has transparency.
  • the material constituting the adhesive layer include acrylic resin, silicone resin, urethane resin, polyamide resin, polyvinyl ether resin, vinyl acetate / vinyl chloride copolymer, modified polyolefin resin, fluorine resin, natural rubber, synthetic rubber, etc. Can be mentioned. Two or more of these may be used. Among these, acrylic resins are preferable from the viewpoint of excellent transparency, adhesion properties such as appropriate wettability, cohesion and adhesiveness, and excellent weather resistance and heat resistance.
  • the adhesive layer may contain, as necessary, a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like.
  • the thickness of the adhesive layer is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and still more preferably 5 ⁇ m or more. On the other hand, 100 micrometers or less are preferable, as for the thickness of an adhesion layer, 50 micrometers or less are more preferable, and 35 micrometers or less are more preferable.
  • the polarizing film refers to a film having a polarizing ability to transmit only polarized light in a certain vibration direction.
  • a polarizing film the film etc. which dyed and adsorb
  • the first transparent substrate and the second transparent substrate may be made of the same material or may be made of different materials.
  • the thickness of the insulating layer is preferably 0.1 ⁇ m to 300 ⁇ m, more preferably 0.5 ⁇ m to 200 ⁇ m, and still more preferably 0.8 ⁇ m to 150 ⁇ m, from the viewpoints of insulation, moist heat resistance, and transparency.
  • FIG. 1 schematically shows an electrode-equipped substrate having a first electrode, an opaque electrode 2 and an insulating layer 3 on a transparent substrate 1, and further having an opaque electrode 2 as a second electrode on an insulating layer 3.
  • FIG. 2 is a schematic view of a substrate with an electrode having the first electrode, the opaque electrode 2 and the insulating layer 3 on the transparent substrate 1 and the transparent electrode 4 as the second electrode on the insulating layer 3.
  • FIG. 3 schematically shows an electrode-equipped substrate having a transparent electrode 4 as a first electrode and an insulating layer 3 on a transparent substrate 1 and further having an opaque electrode 2 as a second electrode on the insulating layer 3.
  • FIGS. 4 to 6 are schematic views of a substrate with an electrode when the insulating layer 3 in FIGS. 1 to 3 is the adhesive layer 5 and the second transparent substrate 6.
  • a first electrode is formed on at least one side of a first transparent substrate.
  • the first electrode may be a transparent electrode or an opaque electrode.
  • the first electrode in the case of a transparent electrode, for example, dry coating such as PVD method such as sputtering or vapor deposition, CVD method, spin coating using a spinner, roll coating, spray coating, dip coating, etc.
  • dry coating such as PVD method such as sputtering or vapor deposition, CVD method, spin coating using a spinner, roll coating, spray coating, dip coating, etc.
  • the method include a method of forming a film formed into a pattern by a wet process or a dry process. From the viewpoint of patterning only the transparent electrode, a wet process is preferable, and a photolithography method is more preferable.
  • an opaque electrode for example, a method of forming a pattern by photolithography using a photosensitive conductive paste, a method of forming a pattern by screen printing, gravure printing, ink jet etc using a conductive paste, metal, metal composite, A method of forming a film of a complex of a metal and a metal compound, a metal alloy or the like and forming the film by a photolithography method using a resist can be mentioned.
  • the method of forming by a photolithographic method using a photosensitive conductive paste is preferable.
  • a film forming method for forming a transparent electrode dry coating is preferable and sputtering is more preferable because a thin film at the nanometer level can be easily formed.
  • a gas used for sputtering what has an inert gas as a main component is preferable, and mixed gas of argon and oxygen is more preferable.
  • a photoresist, a developer, an etchant, and a rinse agent used for etching can be arbitrarily selected and used so that a predetermined pattern can be formed without the transparent electrode being corroded.
  • the photosensitive conductive paste used to form the opaque electrode includes the above-mentioned conductive particles, an alkali-soluble resin, a dispersant, a photopolymerization initiator, a monomer having an unsaturated double bond, a photoacid generator, a thermal acid generator, A sensitizer, a pigment, a dye, an adhesion improver, a surfactant, a polymerization inhibitor, a solvent and the like can be contained as needed.
  • the photosensitive conductive paste for example, spin coating using a spinner, spray coating, roll coating, screen printing, offset printing, gravure printing, letterpress printing, flexo printing, blade coater, die coater, calendar coater, meniscus cove A method using a tar or a bar coater.
  • screen printing is preferable because it is excellent in the surface flatness of the composition film of the photosensitive conductive paste to be obtained, and the film thickness adjustment is easy by the selection of the screen plate.
  • the heating and drying apparatus may be one that heats by electromagnetic waves or microwaves, and examples thereof include an oven, a hot plate, an electromagnetic wave ultraviolet lamp, an infrared heater, a halogen heater and the like.
  • the heating temperature is preferably 50 ° C. or more, and more preferably 70 ° C. or more, from the viewpoint of suppressing the remaining of the solvent.
  • the heating temperature is preferably 130 ° C. or less, more preferably 110 ° C. or less, from the viewpoint of suppressing the deactivation of the photosensitizer.
  • the heating time is preferably 1 minute to several hours, more preferably 1 minute to 50 minutes.
  • a method of exposing and developing is preferable.
  • the unexposed area can be removed to form a desired pattern by developing the composition film of the exposed photosensitive conductive paste.
  • the exposure light preferably emits light in the ultraviolet region that matches the absorption wavelength of the photosensitive agent contained in the photosensitive conductive paste, that is, in the wavelength region of 200 nm to 450 nm.
  • a light source for obtaining such exposure light a mercury lamp, a halogen lamp, a xenon lamp, an LED lamp, a semiconductor laser, a KrF, an ArF excimer laser etc. are mentioned, for example.
  • the i-line (wavelength 365 nm) of a mercury lamp is preferable.
  • the exposure dose is preferably 50 mJ / cm 2 or more, more preferably 100 mJ / cm 2 or more, and still more preferably 200 mJ / cm 2 or more in terms of wavelength 365 nm from the viewpoint of solubility of the exposed portion in the developer.
  • an alkali developing solution As a developing solution, what does not inhibit the electroconductivity of a 1st electrode is preferable, and an alkali developing solution is preferable.
  • the alkali development include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia; primary amines such as ethylamine and n-propylamine; Secondary amines such as diethylamine and di-n-propylamine; tertiary amines such as triethylamine and methyl diethylamine; tetraalkyl ammonium hydroxides such as tetramethyl ammonium hydroxide (TMAH); quaternary ammonium salts such as choline Alcohol amines such as triethanolamine, diethanolamine, monoethanolamine, dimethylaminoethanol and diethylaminoethanol; pyrrole, piperidine, 1,8-diaza
  • a developing method for example, a method of spraying a developing solution on the surface of the composition film of the photosensitive conductive paste while allowing the substrate on which the composition film of the photosensitive conductive paste is formed to stand, rotate or transport the photosensitive conductive paste And a method of immersing the composition film of the photosensitive conductive paste in a developer while applying the ultrasonic wave.
  • the pattern obtained by development may be subjected to a rinse treatment with a rinse solution.
  • a rinse solution include water; aqueous solutions of alcohols such as ethanol and isopropyl alcohol; and aqueous solutions of esters such as ethyl lactate and propylene glycol monomethyl ether acetate.
  • the obtained transparent electrode or opaque electrode may be heated, preferably in air.
  • the heating temperature is preferably 100 ° C. or more, and more preferably 120 ° C. or more, from the viewpoint of sufficiently curing and improving the conductivity.
  • the heating temperature is preferably 150 ° C. or less, more preferably 140 ° C. or less, from the viewpoints of heat resistance of the transparent substrate and positional accuracy and visibility when using a thin film transparent substrate.
  • having the step of heating at a temperature of 100 ° C. or more and 150 ° C. or less is a position accuracy when using a conductive thin film transparent substrate And particularly preferred in view of visibility.
  • the method exemplified as the method of forming an opaque electrode using a photosensitive conductive paste may be mentioned.
  • the insulating layer has a pressure-sensitive adhesive layer and a second transparent substrate
  • a method of forming the pressure-sensitive adhesive layer for example, a method of transferring an adhesive onto a release liner and then transferring it to a transparent substrate (transfer method), transparent substrate Directly apply and dry the pressure-sensitive adhesive (direct printing method), co-extrusion and the like.
  • the first electrode and the second transparent substrate be attached to each other with the pressure-sensitive adhesive layer interposed therebetween.
  • defoaming is preferable. Since the surface smoothness of the second transparent substrate is improved by degassing, the positional accuracy of the first electrode and the second electrode can be further improved.
  • a degassing method methods, such as heating, pressurization, pressure reduction, are mentioned, for example.
  • the heating temperature is preferably 150 ° C. or less, more preferably 130 ° C. or less, and still more preferably 120 ° C. or less, from the viewpoint of further suppressing the thermal contraction of the transparent substrate and the adhesive layer.
  • the pressure at the time of heating and pressurizing is preferably 0.05 MPa or more, and more preferably 0.1 MPa or more from the viewpoint of degassing efficiency.
  • the pressure is preferably 2.0 MPa or less, more preferably 1.5 MPa or less, and still more preferably 1.0 MPa or less, from the viewpoint of further suppressing the bending of the substrate and the adhesive layer.
  • a second electrode is formed on the insulating layer.
  • the second electrode can be formed by the same method as the first electrode.
  • the method for producing a substrate with an electrode according to the present invention, in which the second electrode is formed on the insulating layer, is more prominent as the transparent substrate becomes thinner as compared to the method in which two or more substrates with electrodes are bonded. It is possible to suppress the positional deviation due to the flexibility of the above and improve the positional accuracy.
  • the insulating layer protects the first electrode, erosion of the developer on the first electrode in the developing step during formation of the second electrode and contact between the first electrode and equipment due to handling are suppressed. Thus, it is possible to improve the yield by suppressing defects such as wire breakage and disconnection.
  • alignment in patterning of the second electrode, alignment can be performed using the first electrode pattern already formed.
  • the first electrode pattern is detected using a camera, and the position of the first electrode pattern and the second electrode pattern is adjusted by adjusting the stage of the exposure apparatus. Deviation can be further suppressed, and position accuracy can be further improved.
  • the substrate with an electrode obtained by the manufacturing method of the present invention is difficult to be recognized visually, is excellent in positional accuracy, and can suppress moire, so it is suitable for, for example, a member for touch panel, a member for electromagnetic shielding, a member for transparent LED light, etc. It can be used for Above all, it can be suitably used as a member for a touch panel which is required to be more difficult to visually recognize the wiring electrode.
  • the materials used in each example are as follows.
  • the transmittance of the transparent substrate at a wavelength of 550 nm was measured using an ultraviolet-visible spectrophotometer (U-3310 manufactured by Hitachi High-Technologies Corporation).
  • Production Example 1 Carboxyl Group-Containing Acrylic Copolymer
  • DMEA diethylene glycol monoethyl ether acetate
  • EA ethyl acrylate
  • 2-EHMA 2-ethylhexyl methacrylate
  • St styrene
  • a mixture consisting of "AA” 0.8 g of 2,2-azobisisobutyronitrile
  • 10 g of diethylene glycol monoethyl ether acetate was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was further stirred for 6 hours to carry out a polymerization reaction. Thereafter, 1 g of hydroquinone monomethyl ether was added to terminate the polymerization reaction.
  • the obtained 42 g of resin solution and 62.3 g of primary particles having a primary particle diameter of 0.4 ⁇ m are mixed and kneaded using a 3-roller EXAKT M50 (manufactured by EXAKT), and 7 g of DMEA is further added and mixed.
  • EXAKT M50 manufactured by EXAKT
  • DMEA 7 g of DMEA is further added and mixed.
  • the viscosity of the photosensitive conductive paste was 10,000 mPa ⁇ s. The viscosity was measured using a Brookfield viscometer at a temperature of 25 ° C. and a rotational speed of 3 rpm.
  • the positional deviation amount X is measured in the portion where the first electrode and the second electrode for positional accuracy evaluation shown in FIG.
  • the case where the amount of displacement was less than 10 ⁇ m was evaluated as A, and the case where the amount of displacement was 10 ⁇ m or more was evaluated as B.
  • the pattern for position accuracy evaluation was a circle with a diameter of 2 mm, and the width of the pattern was 240 ⁇ m.
  • Example 1 ⁇ Formation of first electrode (opaque electrode)>
  • the photosensitive conductive paste obtained in Production Example 2 was printed on a transparent substrate (a-1) by screen printing so as to have a thickness of 1 ⁇ m after drying, and dried at 100 ° C. for 10 minutes.
  • An exposure apparatus (PEM-6M; manufactured by Union Optics Co., Ltd.) was used for exposure at an exposure dose of 500 mJ / cm 2 (converted to a wavelength of 365 nm) through an exposure mask having a pattern of the shape shown in FIGS.
  • the mask opening width was 3 ⁇ m.
  • the insulating composition obtained by Production Example 3 is spin-coated at 1000 rpm for 5 seconds using a spin coater on a substrate on which the first electrode is formed, and then prebaked at 100 ° C. for 2 minutes using a hot plate, A pre-bake film was produced. Using a parallel light mask aligner, an ultrahigh pressure mercury lamp was used as a light source, and the pre-bake film was exposed through a desired exposure mask to form an insulating layer. The thickness of the insulating layer was 1 ⁇ m.
  • a second electrode (opaque electrode) was formed by the same operation as the first electrode, to obtain a substrate with an electrode.
  • the exposure mask one having a pattern of the shape shown in FIG. 7 and FIG. 9 was used. The results evaluated by the above-mentioned method are shown in Table 1.
  • Example 2 By the same operation as in Example 1, the first electrode (opaque electrode) and the insulating layer were formed on the transparent substrate (a-1).
  • Example 3 The first electrode (transparent electrode) was formed on the transparent substrate (a-1) by the same operation as the method of forming the second electrode (transparent electrode) in Example 2. However, as the exposure mask, one having a pattern of the shape shown in FIG. 7 and FIG. 8 was used. Furthermore, by the same operation as in Example 1, an insulating layer and a second electrode (opaque electrode) were formed to obtain a substrate with an electrode. The results evaluated by the above-mentioned method are shown in Table 1.
  • Example 4 A first electrode (opaque electrode), an insulating layer, and a second electrode (opaque electrode) were formed on the transparent substrate (a-2) in the same manner as in Example 1 to obtain a substrate with an electrode.
  • the results evaluated by the above-mentioned method are shown in Table 1.
  • Example 5 The first electrode (opaque electrode) was formed on the transparent substrate (a-1) in the same manner as in Example 1.
  • An adhesive sheet “Panaclean” registered trademark) PD-R5 (Panac) is made to face the first electrode of the substrate on which the first electrode is formed and the second transparent substrate (a-1) separately prepared.
  • Inc. Thiickness: 25 ⁇ m
  • bonding was carried out under the conditions of heating temperature: 50 ° C., pressure: 0.2 MPa, to form an insulating layer consisting of an adhesive layer and a second transparent substrate.
  • a second electrode (opaque electrode) was formed on the second transparent substrate by the same operation as in Example 1. The results evaluated by the above-mentioned method are shown in Table 1.
  • Example 6 An insulating layer comprising a first electrode (opaque electrode), an adhesive layer and a second transparent substrate in the same manner as in Example 5 with the first transparent substrate and the second transparent substrate as (a-2) The second electrode (opaque electrode) was formed to obtain a substrate with an electrode.
  • the results evaluated by the above-mentioned method are shown in Table 1.
  • Example 2 A substrate with an opaque electrode formed on the transparent substrate (a-1) by the same operation as in Example 1, and a transparent substrate by the same operation as in Example 2 on the transparent substrate (a-1) Substrates with a transparent electrode on which electrodes were formed were respectively produced.
  • An adhesive sheet "Panaclean” (registered trademark) PD-R5 (Panak Co., Ltd.) is made to face the surface of the substrate with opaque electrode on which the opaque electrode is formed and the surface of the substrate with transparent electrode on which the transparent electrode is not formed.
  • the first electrode (transparent electrode) was formed on the transparent substrate (a-1) by the same operation as the method of forming the second electrode (transparent electrode) in Example 2. However, as the exposure mask, one having a pattern of the shape shown in FIG. 4 and FIG. 5 was used. A pressure-sensitive adhesive sheet "Pana Clean” (Pana Clean) is made to face the surface of the substrate on which the first electrode (transparent electrode) is formed, on which the first electrode is not formed, and the second transparent substrate (a-1) separately prepared.
  • Example 5 A substrate with an electrode was obtained in the same manner as in Example 1 except that the first electrode and the second electrode were formed at a heating temperature of 160 ° C. after forming the electrode pattern.
  • the results evaluated by the above-mentioned method are shown in Table 1.

Abstract

Provided is a method for manufacturing a substrate with electrodes formed thereon, wherein positional accuracy is excellent even when a thin film transparent substrate that is difficult to see is used, transmittance differences and moiré can be suppressed, and yield is high. This method for manufacturing a substrate with electrodes formed thereon in which a first electrode, an insulating layer, and a second electrode are formed on a first transparent substrate having a thickness of no greater than 200 μm comprises: a step for forming the first electrode on at least one surface of the first transparent substrate; a step for forming the insulating layer on the surface on which the first electrode of the transparent substrate is formed; and a step for forming the second electrode on the insulating layer, wherein the first electrode and/or the second electrode are opaque.

Description

電極付き基板の製造方法Method of manufacturing substrate with electrode
 本発明は、透明基板、第一の電極、絶縁層および第二の電極を有する電極付き基板の製造方法に関する。 The present invention relates to a method of manufacturing a substrate with an electrode having a transparent substrate, a first electrode, an insulating layer and a second electrode.
 近年、入力手段としてタッチパネルが広く用いられている。タッチパネルは、液晶パネルなどの表示部と、特定の位置に入力された情報を検出するタッチパネルセンサー等から構成される。タッチパネルの方式は、入力位置の検出方法により、抵抗膜方式、静電容量方式、光学方式、電磁誘導方式、超音波方式などに大別される。中でも、光学的に明るいこと、意匠性に優れること、構造が簡易であることおよび機能的に優れること等の理由により、静電容量方式のタッチパネルが広く用いられている。 In recent years, touch panels have been widely used as input means. The touch panel includes a display unit such as a liquid crystal panel, and a touch panel sensor that detects information input to a specific position. The touch panel methods are roughly classified into a resistive film method, a capacitance method, an optical method, an electromagnetic induction method, an ultrasonic method, and the like according to a detection method of an input position. Among them, a capacitive touch panel is widely used for reasons of optically bright, excellent in design, simple in structure, and excellent in function.
 静電容量方式のタッチパネルセンサーは、第一電極と絶縁層を介して直行する第二電極を有し、タッチパネル面の電極に電圧をかけて、指などの導電体が触れた際の静電容量変化を検知することにより得られた接触位置を信号として出力する。静電容量方式に用いられるタッチパネルセンサーとしては、例えば、透明基板の1つの面に透明電極のパターンが形成された透明基板2枚を貼り合わせた構造や、一枚の透明基板の両面に電極を形成した構造などが知られている。タッチパネルセンサーに用いられる配線電極としては、配線電極を見えにくくする観点から透明配線電極が用いられることが一般的であったが、近年、高感度化や画面の大型化により、金属材料を用いた不透明配線電極が広まっている。 The capacitive touch panel sensor has a second electrode which is orthogonal to the first electrode and the insulating layer, applies a voltage to the electrode on the touch panel surface, and the capacitance when a conductor such as a finger touches the electrode. The contact position obtained by detecting the change is output as a signal. As a touch panel sensor used in the capacitance method, for example, a structure in which two transparent substrates having a transparent electrode pattern formed on one surface of a transparent substrate are bonded, or electrodes are formed on both sides of one transparent substrate The structure formed etc. are known. As a wiring electrode used for a touch panel sensor, a transparent wiring electrode was generally used from the viewpoint of making the wiring electrode difficult to see, but in recent years, metal materials have been used due to high sensitivity and large screens. The opaque wiring electrode is widespread.
 金属材料を用いた不透明配線電極の形成方法としては、例えば、導電性粉末を含む感光性導電ペーストを塗布、フォトリソグラフィーによりパターン形成し、次いで焼成する方法が提案されている(例えば、特許文献1参照)。しかしながら、不透明配線電極を形成した透明基板を2層以上または他の基材に貼り合わせる場合、貼り合わせ装置の機械精度や貼り合わせ用粘着部材の可撓性により位置ずれが生じやすい課題があった。特に、不透明配線電極を形成した透明基板を2層以上貼り合わせる場合、位置ずれが生じると、不透明配線電極同士の干渉によるモアレ不良が発生する。かかる課題は、透明基板が薄くなるほど顕著となる。 As a method of forming an opaque wiring electrode using a metal material, for example, a method is proposed in which a photosensitive conductive paste containing a conductive powder is applied, patterned by photolithography, and then fired (for example, Patent Document 1) reference). However, when the transparent substrate on which the opaque wiring electrode is formed is bonded to two or more layers or other substrates, there has been a problem that positional deviation easily occurs due to the mechanical accuracy of the bonding apparatus and the flexibility of the bonding adhesive member. . In particular, in the case where two or more layers of the transparent substrate on which the opaque wiring electrodes are formed are bonded to each other, if misalignment occurs, moire defects occur due to interference between the opaque wiring electrodes. Such problems become more remarkable as the transparent substrate becomes thinner.
 これに対して、位置合わせが容易な透明導電性積層体の製造方法として、例えば、透明基板層の両面に少なくとも第一の透明導電層及び第二の透明導電層を形成し、第一の透明導電層及び第二の透明導電層の表面にレジストを塗布して同時に露光し、レジストを現像して第一の透明導電層及び第二の透明導電層をエッチングする方法(例えば、特許文献2参照)が提案されている。しかしながら、かかる方法においては、同時露光により所望のレジスト以外が感光することを避けるために、透明基板層が露光光を吸収する必要があり、使用できる材料が限られることから、他の方法が望まれていた。また、第一の透明基板の一方の面に第一の透明電極パターンを形成する工程と、第二の透明基板の一方の面に少なくとも透明導電層を形成する工程と、第一の透明基板の透明電極パターンが形成されていない面と、第二の透明基板の透明導電層が形成されていない面とを互いに対向させて粘着層で貼り合わせる工程と、第一の透明電極パターンを用いて前記透明導電層のパターニングの露光位置を調整する工程と、パターニングにより前記透明導電層に第二の透明電極パターンを形成する工程とを含む方法(例えば、特許文献3参照)が提案されている。 On the other hand, as a method for producing a transparent conductive laminate easy to align, for example, at least a first transparent conductive layer and a second transparent conductive layer are formed on both sides of the transparent substrate layer, and the first transparent A method of applying a resist on the surface of the conductive layer and the second transparent conductive layer and simultaneously exposing it, developing the resist and etching the first transparent conductive layer and the second transparent conductive layer (for example, see Patent Document 2) ) Has been proposed. However, in such a method, the transparent substrate layer needs to absorb the exposure light in order to avoid exposure of other than the desired resist by simultaneous exposure, and since the materials which can be used are limited, another method is desirable. It was rare. In addition, a process of forming a first transparent electrode pattern on one side of a first transparent substrate, a process of forming at least a transparent conductive layer on one side of a second transparent substrate, and a process of forming the first transparent substrate A step in which the surface on which the transparent electrode pattern is not formed and the surface on which the transparent conductive layer of the second transparent substrate is not formed are opposed to each other and adhered with an adhesive layer, and the first transparent electrode pattern is used. There has been proposed a method including the steps of adjusting the exposure position of patterning of the transparent conductive layer and forming a second transparent electrode pattern on the transparent conductive layer by patterning (see, for example, Patent Document 3).
特開2000-199954号公報JP 2000-199954 A 特許第4683164号公報Patent No. 4683164 gazette 特開2014-71802号公報JP, 2014-71802, A
 しかしながら、特許文献3に記載される方法においては、露出した第一の透明電極パターンが、第二の透明導電パターン形成時に欠損や断線を生じやすく、歩留まりが低い課題があった。本発明は、上記実情に鑑みてなされたものであり、視認されにくく、薄膜透明基板を用いても位置精度に優れ、モアレを抑制することができる、歩留まりの高い電極付き基板の製造方法を提供することを目的とする。 However, in the method described in Patent Document 3, there is a problem that the exposed first transparent electrode pattern tends to be deficient or broken at the time of forming the second transparent conductive pattern, and the yield is low. The present invention has been made in view of the above-described circumstances, and provides a method of manufacturing a substrate with a high yield, which is difficult to be visually recognized, is excellent in positional accuracy even using a thin film transparent substrate, and can suppress moire. The purpose is to
 上記課題を解決するため、本発明は、主として以下の構成を有する。
厚さ200μm以下の第一の透明基板上に、第一の電極、絶縁層および第二の電極を有する電極付き基板の製造方法であって、前記第一の透明基板の少なくとも片面に第一の電極を形成する工程と、前記透明基板の第一の電極が形成されている面に絶縁層を形成する工程と、前記絶縁層上に第二の電極を形成する工程を有し、前記第一の電極を形成する工程および第二の電極を形成する工程において、100℃以上150℃以下の温度で加熱する工程を有し、第一の電極および/または第二の電極が不透明である電極付き基板の製造方法。
In order to solve the above-mentioned subject, the present invention mainly has the following composition.
A method of manufacturing a substrate with an electrode having a first electrode, an insulating layer and a second electrode on a first transparent substrate having a thickness of 200 μm or less, wherein the first transparent substrate has at least one side thereof. The method includes the steps of forming an electrode, forming an insulating layer on the surface of the transparent substrate on which the first electrode is formed, and forming a second electrode on the insulating layer, Forming the second electrode and heating the second electrode at a temperature of 100.degree. C. to 150.degree. C., the first electrode and / or the second electrode being opaque. Method of manufacturing a substrate
 本発明によれば、視認されにくく、薄膜透明基板を用いても位置精度に優れ、モアレを抑制することができる電極付き基板を、歩留まり良く得ることができる。 According to the present invention, it is possible to obtain a substrate with an electrode which is hard to be recognized and which is excellent in positional accuracy even when using a thin film transparent substrate and which can suppress moire with high yield.
本発明の製造方法にもとづく電極付き基板の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the board | substrate with an electrode based on the manufacturing method of this invention. 本発明の製造方法にもとづく電極付き基板の構成の別の一例を示す概略図である。It is the schematic which shows another example of a structure of the board | substrate with an electrode based on the manufacturing method of this invention. 本発明の製造方法にもとづく電極付き基板の構成のさらに別の一例を示す概略図である。It is the schematic which shows another example of a structure of the board | substrate with an electrode based on the manufacturing method of this invention. 本発明の製造方法にもとづく電極付き基板の構成のさらに別の一例を示す概略図である。It is the schematic which shows another example of a structure of the board | substrate with an electrode based on the manufacturing method of this invention. 本発明の製造方法にもとづく電極付き基板の構成のさらに別の一例を示す概略図である。It is the schematic which shows another example of a structure of the board | substrate with an electrode based on the manufacturing method of this invention. 本発明の製造方法にもとづく電極付き基板の構成のさらに別の一例を示す概略図である。It is the schematic which shows another example of a structure of the board | substrate with an electrode based on the manufacturing method of this invention. 実施例および比較例における位置精度評価用の第一の電極および第二の電極を重ね合わせた一例を示す概略図である。It is the schematic which shows an example which overlap | superposed the 1st electrode and 2nd electrode for position accuracy evaluation in an Example and a comparative example. 実施例および比較例におけるモアレ評価用の第一の電極を示す概略図である。It is the schematic which shows the 1st electrode for moire evaluation in an Example and a comparative example. 実施例および比較例におけるモアレ評価用の第一の電極および第二の電極を重ね合わせた概略図である。It is the schematic which piled up the 1st electrode and 2nd electrode for moire evaluation in an Example and a comparative example. 実施例および比較例におけるモアレ評価用の不透明配線電極のメッシュ形状を示す概略図である。It is the schematic which shows the mesh shape of the opaque wiring electrode for moire evaluation in an Example and a comparative example.
 本発明の製造方法にもとづく電極付き基板は、第一の透明基板上に、第一の電極、絶縁層および第二の電極を有する。まず、これらの各層について説明する。 A substrate with an electrode based on the manufacturing method of the present invention has a first electrode, an insulating layer and a second electrode on a first transparent substrate. First, each of these layers will be described.
 (第一の透明基板)
 第一の透明基板は、電極付き基板の基体となる部位であり、可視光領域において透明であることが好ましい。具体的には、波長550nmの光の透過率は、80%以上が好ましく、85%以上がより好ましい。なお、第一の透明基板の波長550nmにおける透過率は、紫外可視分光光度計(U-3310 (株)日立ハイテクノロジーズ製)を用いて測定することができる。
(First transparent substrate)
The first transparent substrate is a portion to be a base of the electrode-attached substrate, and is preferably transparent in the visible light region. Specifically, the transmittance of light having a wavelength of 550 nm is preferably 80% or more, and more preferably 85% or more. The transmittance of the first transparent substrate at a wavelength of 550 nm can be measured using an ultraviolet-visible spectrophotometer (U-3310 manufactured by Hitachi High-Technologies Corporation).
 透明基板としては、例えば、石英ガラス、ソーダガラス、化学強化ガラス、“パイレックス”(登録商標)ガラス、合成石英板、エポキシ樹脂基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板、ポリエチレンテレフタレートフィルム(以下、「PETフィルム」)、シクロオレフィンポリマーフィルム、ポリイミドフィルム、ポリエステルフィルム、アラミドフィルム等の樹脂からなる透明フィルムや光学用樹脂板等が挙げられる。これらの中でも、透明性、耐熱性、厚さ200μm以下とした場合の強度の観点から、PETフィルム、シクロオレフィンポリマーフィルム、ポリイミドフィルムが好ましい。これらを複数重ねて使用してもよく、例えば、粘着層により複数の透明基板を用いて貼り合せて使用することができる。 As a transparent substrate, for example, quartz glass, soda glass, chemically tempered glass, "Pyrex" (registered trademark) glass, synthetic quartz plate, epoxy resin substrate, polyetherimide resin substrate, polyether ketone resin substrate, polysulfone resin substrate And transparent films made of resins such as polyethylene terephthalate film (hereinafter, "PET film"), cycloolefin polymer film, polyimide film, polyester film, aramid film, etc., and resin plates for optics. Among these, PET films, cycloolefin polymer films, and polyimide films are preferable from the viewpoint of transparency, heat resistance, and strength when the thickness is 200 μm or less. A plurality of these may be stacked and used, and for example, it can be used by bonding using a plurality of transparent substrates by an adhesive layer.
 また、透明基板として、紫外線カット性、ガスバリア性、反射防止性等の各種機能を有する機能性フィルムが挙げられる。紫外線カット性を有する機能性フィルムとしては、例えば、ポリエチレンナフタレートなどの紫外線吸収性を有する樹脂からなるフィルムや、先に例示した透明フィルムに、波長300~380nmの紫外線領域に極大吸収波長を有する紫外線吸収剤を添加したフィルムや、先に例示した透明フィルムに、紫外線吸収剤を含む絶縁層が片面または両面に形成された積層体等が挙げられる。紫外線カット性を有する機能性フィルムの波長365nmの光の透過率は、60%以下が好ましく、40%以下がより好ましく、20%以下がさらに好ましい。ガスバリア性を有する機能性フィルムとは、例えば、先に例示した透明フィルムに、酸化珪素等の金属酸化物層が形成された積層体などが挙げられる。ガスバリア性を有する機能性フィルムの水蒸気透過率は、1×10-1g/m・day以下が好ましく、1×10-2g/m・day以下がより好ましく、1×10-3g/m・day以下がさらに好ましい。ここで、水蒸気透過率は、水蒸気透過度測定装置(モダンコントロール社製 MOCON PERMATRAN 3/21)により、40℃、90%RH雰囲気にて測定することができる。反射防止性を有する機能性フィルムとしては、先に例示した透明フィルムに、金属の酸化物、窒化物、フッ化物等の薄膜材料からなる、低屈折率層や高屈折率層を形成した積層体等が挙げられる。低屈折率層を形成する材料としては、波長550nmにおける屈折率が1.6以下の低屈折率材料が好ましく、例えば、酸化シリコン、フッ化マグネシウム等が挙げられる。高屈折率層を形成する材料としては、波長550nmにおける屈折率が1.9以上の高屈折材料が好ましく、例えば、酸化チタン、酸化ニオブ、酸化ジルコニウム、スズドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)等が挙げられる。低屈折率層と高屈折率層に加えて、屈折率1.50~1.85程度の中屈折率層として、例えば、酸化チタンや、上記低屈折率材料と高屈折材料の混合物からなる薄膜を形成してもよい。 Moreover, the functional film which has various functions, such as ultraviolet-ray cutability, gas-barrier property, anti-reflective property, as a transparent substrate is mentioned. As a functional film having an ultraviolet ray cutting property, for example, a film made of a resin having an ultraviolet ray absorbing property such as polyethylene naphthalate or the transparent film exemplified above has a maximum absorption wavelength in the ultraviolet ray region of a wavelength of 300 to 380 nm. The film which added the ultraviolet absorber, and the laminated film etc. in which the insulating layer containing an ultraviolet absorber was formed in single side | surface or both surfaces to the transparent film illustrated above are mentioned. 60% or less is preferable, as for the transmittance | permeability of the light of wavelength 365 nm of the functional film which has ultraviolet-ray cutting property, 40% or less is more preferable, and 20% or less is more preferable. Examples of the functional film having gas barrier properties include laminates in which a metal oxide layer such as silicon oxide is formed on the transparent film exemplified above. Water vapor permeability of the functional film having a gas barrier property, 1 × preferably 10 -1 g / m 2 · day or less, more preferably 1 × 10 -2 g / m 2 · day, 1 × 10 -3 g It is more preferable to use / m 2 · day or less. Here, the water vapor transmission rate can be measured at 40 ° C. in a 90% RH atmosphere using a water vapor transmission rate measuring device (MOCON PERMATRAN 3/21 manufactured by Modern Control Co., Ltd.). A laminate obtained by forming a low refractive index layer or a high refractive index layer formed of a thin film material such as metal oxide, nitride or fluoride on the transparent film exemplified above as a functional film having an antireflective property Etc. The material for forming the low refractive index layer is preferably a low refractive index material having a refractive index of 1.6 or less at a wavelength of 550 nm, and examples thereof include silicon oxide and magnesium fluoride. As a material for forming the high refractive index layer, a high refractive material having a refractive index of 1.9 or more at a wavelength of 550 nm is preferable. For example, titanium oxide, niobium oxide, zirconium oxide, tin-doped indium oxide (ITO), antimony-doped tin oxide (ATO) etc. In addition to the low refractive index layer and the high refractive index layer, as a middle refractive index layer having a refractive index of about 1.50 to 1.85, for example, a thin film made of titanium oxide or a mixture of the low refractive index material and the high refractive material May be formed.
 本発明によれば、従来技術によっては位置ずれが生じやすい透明基板を用いた場合に好適に用いることができる。このため、本発明における第一の透明基板の厚さはトータルで200μm以下である。第一の透明基板の厚さが200μmよりも厚い場合には、透明基板の可撓性が小さいため、不透明配線電極を形成した透明基板を2層以上または他の基材に貼り合わせる場合であっても、位置ずれは生じにくい。 According to the present invention, according to the prior art, it can be suitably used when using a transparent substrate which is easily displaced. Therefore, the thickness of the first transparent substrate in the present invention is 200 μm or less in total. When the thickness of the first transparent substrate is thicker than 200 μm, the flexibility of the transparent substrate is small, so the transparent substrate on which the opaque wiring electrode is formed is bonded to two or more layers or other substrates. However, misalignment does not easily occur.
 (第一の電極、第二の電極)
 第一の電極および/または第二の電極は不透明である。具体的には、波長365nmの光の透過率は、20%以下が好ましく、10%以下がより好ましい。なお、第一の電極および第二の電極の透過率は、上記透明基板上の0.1mm角以上の電極について、微小面分光色差計(VSS 400:日本電色工業(株)製)により測定することができる。第一の電極および第二の電極は、同じ材料で構成されていてもよいし、異なる材料で構成されていてもよい。第一の電極または第二の電極の一方が不透明であり、他方が透明であることが好ましい。透明電極を有することにより、高価な銀等を用いることなく、既存の生産設備を用いて電極を形成することができる。
(First electrode, second electrode)
The first electrode and / or the second electrode are opaque. Specifically, the transmittance of light with a wavelength of 365 nm is preferably 20% or less, and more preferably 10% or less. The transmittance of the first electrode and the second electrode is measured by a micro-spectral spectral color difference meter (VSS 400: manufactured by Nippon Denshoku Kogyo Co., Ltd.) for an electrode of 0.1 mm square or more on the transparent substrate. can do. The first electrode and the second electrode may be composed of the same material or may be composed of different materials. Preferably, one of the first electrode or the second electrode is opaque and the other is transparent. By having a transparent electrode, an electrode can be formed using existing production equipment without using expensive silver and the like.
 第一の電極および第二の電極のパターン形状としては、例えば、メッシュ状、ストライプ状などが挙げられる。メッシュ状としては、例えば、単位形状が三角形、四角形、多角形、円形などの格子状またはこれらの単位形状の組み合わせからなる格子状等が挙げられる。中でも、パターンの導電性を均一にする観点から、メッシュ状が好ましい。第一の電極および第二の電極は、金属から構成され、メッシュ状のパターンを有するメタルメッシュであることがより好ましい。メタルメッシュは導電性が高いことから、視認されにくい線幅まで容易に微細化することができる。 As a pattern shape of a 1st electrode and a 2nd electrode, mesh shape, stripe shape etc. are mentioned, for example. As the mesh shape, for example, a lattice shape in which a unit shape is a lattice shape such as a triangle, a quadrangle, a polygon, a circle, or a combination of these unit shapes, and the like can be mentioned. Among them, the mesh shape is preferable from the viewpoint of making the conductivity of the pattern uniform. The first electrode and the second electrode are more preferably a metal mesh that is made of metal and has a mesh-like pattern. Since the metal mesh has high conductivity, it can be easily miniaturized to a line width which is difficult to be visually recognized.
 第一の電極および第二の電極のうち、不透明電極の厚さは、導電性の観点から、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上がさらに好ましい。一方、不透明電極の厚さは、より微細な配線を形成する観点から、10μm以下が好ましく、5μm以下がより好ましく、3μm以下がさらに好ましい。 From the viewpoint of conductivity, the thickness of the opaque electrode among the first electrode and the second electrode is preferably 0.01 μm or more, more preferably 0.05 μm or more, and still more preferably 0.1 μm or more. On the other hand, the thickness of the opaque electrode is preferably 10 μm or less, more preferably 5 μm or less, and still more preferably 3 μm or less, from the viewpoint of forming finer wiring.
 第一の電極および第二の電極のパターンの線幅は、導電性をより向上させる観点から、1μm以上が好ましく、1.5μm以上がより好ましく、2μm以上がさらに好ましい。一方、第一の電極および第二の電極のパターンの線幅は、配線電極をより視認されにくくする観点から、10μm以下が好ましく、7μm以下が好ましく、6μm以下がさらに好ましい。 The line width of the patterns of the first electrode and the second electrode is preferably 1 μm or more, more preferably 1.5 μm or more, and still more preferably 2 μm or more, from the viewpoint of further improving the conductivity. On the other hand, the line width of the patterns of the first electrode and the second electrode is preferably 10 μm or less, more preferably 7 μm or less, and still more preferably 6 μm or less, from the viewpoint of making the wiring electrode less visible.
 第一の電極および第二の電極のうち、不透明電極を形成する材料としては、例えば、銀、金、銅、白金、鉛、錫、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン、インジウム等の金属や、これらの合金などが挙げられる。これらを2種以上用いてもよい。これらの中でも、導電性の観点から、銀、銅、金などの導電性粒子が好ましい。 As a material which forms an opaque electrode among the first electrode and the second electrode, for example, silver, gold, copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum, chromium, titanium, indium, etc. Metals, alloys thereof and the like can be mentioned. Two or more of these may be used. Among these, conductive particles such as silver, copper and gold are preferable from the viewpoint of conductivity.
 導電性粒子の1次粒子径は、所望の導電性を有する微細な導電パターンを形成するため、0.1~1.0μmが好ましく、0.2~0.8μmがより好ましい。ここで、導電性粒子の1次粒子径とは、電極をピンセットや粘着テープ等で物理的に採取し、テトラヒドロフラン等の有機溶剤で樹脂成分を溶解し、沈降した導電性粒子を回収し、ボックスオーブンを用いて70℃で10分間乾燥をしたものについて、電子顕微鏡を用いて25000倍の倍率で観察し、無作為に選択した100個の導電性粒子の一次粒子の長径と短径を測定し、それらの数平均値を求めることにより算出することができる。樹脂成分の溶解に用いる有機溶剤は、電極の樹脂成分を溶解できるものであればよく、特に限定されない。 The primary particle diameter of the conductive particles is preferably 0.1 to 1.0 μm, more preferably 0.2 to 0.8 μm, in order to form a fine conductive pattern having desired conductivity. Here, the primary particle diameter of the conductive particles means that the electrode is physically collected with tweezers, adhesive tape, etc., the resin component is dissolved with an organic solvent such as tetrahydrofuran, the precipitated conductive particles are collected, and the box is The sample dried at 70 ° C. for 10 minutes using an oven was observed at a magnification of 25000 using an electron microscope, and the major and minor axes of the primary particles of 100 randomly selected conductive particles were measured. , And can be calculated by obtaining their number average value. The organic solvent used to dissolve the resin component is not particularly limited as long as it can dissolve the resin component of the electrode.
 第一の電極および第二の電極のうち、不透明電極が導電性粒子を含有する場合、その含有量は、導電性を向上させる観点から、60質量%以上が好ましく、65質量%以上がより好ましく、70質量%以上がさらに好ましい。一方で、導電性粒子の含有量は、パターン加工性を向上させる観点から、95質量%以下が好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましい。なお、不透明電極における導電性粒子の含有量は、不透明電極について、熱重量分析装置を用いて焼成残分を測定することにより求めることができる。 When the opaque electrode contains conductive particles among the first electrode and the second electrode, the content thereof is preferably 60% by mass or more, more preferably 65% by mass or more, from the viewpoint of improving the conductivity. 70% by mass or more is more preferable. On the other hand, from the viewpoint of improving pattern processability, the content of the conductive particles is preferably 95% by mass or less, more preferably 90% by mass or less, and still more preferably 85% by mass or less. In addition, content of the electroconductive particle in an opaque electrode can be calculated | required by measuring a baking residue using a thermogravimetric analyzer about an opaque electrode.
 第一の電極および第二の電極のうち、不透明電極は、前述の金属とともに、有機化合物を含有することが好ましい。 Among the first electrode and the second electrode, the opaque electrode preferably contains an organic compound together with the aforementioned metal.
 有機化合物としては、アルカリ可溶性樹脂が好ましい。アルカリ可溶性樹脂としては、例えば、ヒドロキシ基および/またはカルボキシル基を有する樹脂等が挙げられる。ヒドロキシ基を有する樹脂としては、例えば、フェノール性ヒドロキシ基を有するフェノールノボラック樹脂、クレゾールノボラック樹脂などのノボラック樹脂、ヒドロキシ基を有するモノマーの重合体、ヒドロキシ基を有するモノマーとスチレン、アクリロニトリル、アクリルモノマー等との共重合体が挙げられる。 As an organic compound, alkali-soluble resin is preferable. As alkali-soluble resin, resin etc. which have a hydroxyl group and / or a carboxyl group are mentioned, for example. As a resin having a hydroxy group, for example, a phenol novolak resin having a phenolic hydroxy group, a novolak resin such as a cresol novolac resin, a polymer of a monomer having a hydroxy group, a monomer having a hydroxy group, styrene, acrylonitrile, an acrylic monomer, etc. And copolymers thereof.
 ヒドロキシ基を有するモノマーとしては、例えば、4-ヒドロキシスチレン、ヒドロキシフェニル(メタ)アクリレートなどのフェノール性ヒドロキシ基を有するモノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-メチル-3-ヒドロキシブチル、(メタ)アクリル酸1,1-ジメチル-3-ヒドロキシブチル、(メタ)アクリル酸1,3-ジメチル-3-ヒドロキシブチル、(メタ)アクリル酸2,2,4-トリメチル-3-ヒドロキシペンチル、(メタ)アクリル酸2-エチル-3-ヒドロキシヘキシル、グリセリンモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートなどの非フェノール性ヒドロキシ基を有するモノマー等が挙げられる。 As the monomer having a hydroxy group, for example, monomers having a phenolic hydroxy group such as 4-hydroxystyrene, hydroxyphenyl (meth) acrylate and the like; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate , (Meth) acrylic acid 3-methyl-3-hydroxybutyl, (meth) acrylic acid 1,1-dimethyl-3-hydroxybutyl, (meth) acrylic acid 1,3-dimethyl-3-hydroxybutyl, (meth) 2,2,4-trimethyl-3-hydroxypentyl acrylate, 2-ethyl-3-hydroxyhexyl (meth) acrylate, glycerol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate Such as acrylate Monomers having a phenolic hydroxy group.
 カルボキシル基を有する樹脂としては、例えば、カルボン酸変性エポキシ樹脂、カルボン酸変性フェノール樹脂、ポリアミック酸樹脂、カルボン酸変性シロキサン樹脂、カルボキシル基を有するモノマーの重合体、カルボキシル基を有するモノマーとスチレン、アクリロニトリル、アクリルモノマー等との共重合体等が挙げられる。 As resin which has a carboxyl group, for example, carboxylic acid modified epoxy resin, carboxylic acid modified phenol resin, polyamic acid resin, carboxylic acid modified siloxane resin, polymer of monomer having carboxyl group, monomer having carboxyl group, styrene, acrylonitrile And copolymers with acrylic monomers and the like.
 カルボキシル基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、桂皮酸等が挙げられる。
ヒドロキシ基およびカルボキシル基を有する樹脂としては、ヒドロキシ基を有するモノマーとカルボキシル基を有するモノマーの共重合体、ヒドロキシ基を有するモノマーと、カルボキシル基を有するモノマーと、スチレン、アクリロニトリル、アクリルモノマー等との共重合体が挙げられる。これらを2種以上含有してもよい。
Examples of the monomer having a carboxyl group include acrylic acid, methacrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, cinnamic acid and the like.
As the resin having a hydroxy group and a carboxyl group, a copolymer of a monomer having a hydroxy group and a monomer having a carboxy group, a monomer having a hydroxy group, a monomer having a carboxy group, styrene, acrylonitrile, an acrylic monomer, etc. Copolymers may be mentioned. Two or more of these may be contained.
 中でも、フェノール性ヒドロキシ基およびカルボキシル基を含有する樹脂が好ましい。フェノール性ヒドロキシ基を含有することにより、感光剤としてキノンジアジド化合物を用いる場合、フェノール性ヒドロキシ基とキノンジアジド化合物が水素結合を形成し、ポジ型感光性遮光性組成物層の未露光部の現像液への溶解度を低下させることができ、未露光部と、露光部との溶解度差が大きくなり、現像マージンを広げることができる。また、カルボキシル基を含有することにより、現像液への溶解性が向上し、カルボキシル基の含有量により現像時間の調整が容易となる。また、カルボキシル基を含有することにより、より低温で導電性を発現することができる。 Among them, resins containing a phenolic hydroxy group and a carboxyl group are preferred. When a quinone diazide compound is used as a photosensitizer by containing a phenolic hydroxy group, the phenolic hydroxy group and the quinone diazide compound form a hydrogen bond, and the developer in the unexposed area of the positive photosensitive light shielding composition layer The solubility difference between the unexposed area and the exposed area is increased, and the development margin can be expanded. Moreover, by containing a carboxyl group, the solubility to a developing solution improves, and adjustment of development time becomes easy by content of a carboxyl group. Further, by containing a carboxyl group, conductivity can be exhibited at a lower temperature.
 カルボキシル基を有するアルカリ可溶性樹脂の酸価は、現像液への溶解性の観点から、50mgKOH/g以上が好ましく、未露光部の過度の溶解を抑制する観点から、250mgKOH/g以下が好ましい。なお、カルボキシル基を有するアルカリ可溶性樹脂の酸価は、JIS K 0070(1992)に準じて測定することができる。 The acid value of the alkali-soluble resin having a carboxyl group is preferably 50 mg KOH / g or more from the viewpoint of solubility in a developing solution, and 250 mg KOH / g or less from the viewpoint of suppressing excessive dissolution of the unexposed area. The acid value of the alkali-soluble resin having a carboxyl group can be measured according to JIS K 0070 (1992).
 第一の電極および第二の電極のうち、不透明電極は、必要に応じて、分散剤、光重合開始剤、不飽和二重結合を有するモノマー、光酸発生剤、熱酸発生剤、増感剤、可視光に吸収を有する顔料や染料、密着改良剤、界面活性剤、重合禁止剤等を含有してもよい。 Among the first electrode and the second electrode, the opaque electrode is, if necessary, a dispersant, a photopolymerization initiator, a monomer having an unsaturated double bond, a photoacid generator, a thermal acid generator, a sensitization It may contain an agent, a pigment or dye that absorbs visible light, an adhesion improver, a surfactant, a polymerization inhibitor, and the like.
 第一の電極および第二の電極のうち、透明電極を形成する材料としては、例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、亜鉛酸化物(ZnO)、インジウム亜鉛スズ酸化物(IZTO)、カドミウムスズ酸化物(CTO)、PEDOT(poly(3,4-ethylenedioxythiophene))、炭素ナノチューブ(CNT)、金属ワイヤ等が挙げられる。これらを2種以上用いてもよい。これらの中でも、インジウムスズ酸化物(ITO)が好ましい。 As a material which forms a transparent electrode among the first electrode and the second electrode, for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium zinc tin oxide Substances (IZTO), cadmium tin oxide (CTO), PEDOT (poly (3,4-ethylenedioxythiophene)), carbon nanotubes (CNT), metal wires and the like. Two or more of these may be used. Among these, indium tin oxide (ITO) is preferable.
 透明電極の厚さは、導電性の観点から、16nm以上が好ましく、18nm以上がより好ましく、20nm以上がさらに好ましい。一方、透明電極の厚さは、透明性・色味の観点から、40nm以下が好ましく、38nm以下がより好ましく、36nm以下がさらに好ましい。 From the viewpoint of conductivity, the thickness of the transparent electrode is preferably 16 nm or more, more preferably 18 nm or more, and still more preferably 20 nm or more. On the other hand, the thickness of the transparent electrode is preferably 40 nm or less, more preferably 38 nm or less, and still more preferably 36 nm or less, from the viewpoint of transparency and color.
 透明電極付き基板の表面抵抗値は、10~400Ω/□が好ましい。静電容量方式タッチパネルに用いる場合、感度の観点から、300Ω/□以下がより好ましく、270Ω/□以下がさらに好ましい。 The surface resistance of the substrate with a transparent electrode is preferably 10 to 400 Ω / □. When using for an electrostatic capacitance type touch panel, from a viewpoint of a sensitivity, 300 ohms / square or less are more preferable, and 270 ohms / square or less are further more preferable.
 (絶縁層)
 絶縁層は、第一の電極と第二の電極の間の絶縁性を確保する部位である。絶縁層を構成する材料としては、例えば、ポリイミド樹脂、アクリル樹脂、カルド樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、シリコン系樹脂、フッ素系樹脂等の絶縁性樹脂材料等や、ガラス等の無機材料等が挙げられる。これらを2種以上用いてもよい。透明基材の撓みや曲げに対しての強度の観点から、絶縁性樹脂材料が好ましい。絶縁層は、2層以上を含む多層であってもよい。本発明においては、絶縁層は、粘着層および第二の透明基板を含む多層構造を有することが好ましい。粘着層および第二の透明基板を含む多層構造を有することにより、表面平滑性の高い透明基板を用いることができ、第一の電極と第二の電極の位置精度をより向上させることができる。
(Insulating layer)
The insulating layer is a portion that secures insulation between the first electrode and the second electrode. As a material which constitutes an insulating layer, for example, insulating resin materials such as polyimide resin, acrylic resin, cardo resin, epoxy resin, melamine resin, urethane resin, silicon resin, fluorine resin, etc., inorganic materials such as glass Etc. Two or more of these may be used. An insulating resin material is preferable from the viewpoint of strength against bending and bending of the transparent substrate. The insulating layer may be a multilayer including two or more layers. In the present invention, the insulating layer preferably has a multilayer structure including an adhesive layer and a second transparent substrate. By having a multilayer structure including the adhesive layer and the second transparent substrate, a transparent substrate with high surface smoothness can be used, and the positional accuracy of the first electrode and the second electrode can be further improved.
 (粘着層、第二の透明基板)
 粘着層は、室温下および/または加熱条件下において、接着すべき複数の層を、僅かな圧力により短時間で接着する機能を有する。本発明においては、第一の電極を有する第一の透明基板と、第二の透明基板を接着することが好ましい。
(Adhesive layer, second transparent substrate)
The adhesive layer has a function to adhere a plurality of layers to be adhered in a short time with a slight pressure under room temperature and / or heating conditions. In the present invention, it is preferable to bond the first transparent substrate having the first electrode and the second transparent substrate.
 粘着層は、透明性を有することが好ましい。粘着層を構成する材料としては、例えば、アクリル樹脂、シリコン樹脂、ウレタン樹脂、ポリアミド樹脂、ポリビニルエーテル樹脂、酢酸ビニル/塩化ビニル共重合体、変性ポリオレフィン樹脂、フッ素系樹脂、天然ゴム、合成ゴム等が挙げられる。これらを2種以上用いてもよい。これらの中でも、透明性に優れ、適度な濡れ性、凝集性および接着性等の粘着特性を示し、耐候性や耐熱性等にも優れる観点から、アクリル樹脂が好ましい。粘着層は、必要に応じて、粘着付与剤、可塑剤、充填剤、酸化防止剤、紫外線吸収剤、シランカップリング剤等を含有してもよい。 The adhesive layer preferably has transparency. Examples of the material constituting the adhesive layer include acrylic resin, silicone resin, urethane resin, polyamide resin, polyvinyl ether resin, vinyl acetate / vinyl chloride copolymer, modified polyolefin resin, fluorine resin, natural rubber, synthetic rubber, etc. Can be mentioned. Two or more of these may be used. Among these, acrylic resins are preferable from the viewpoint of excellent transparency, adhesion properties such as appropriate wettability, cohesion and adhesiveness, and excellent weather resistance and heat resistance. The adhesive layer may contain, as necessary, a tackifier, a plasticizer, a filler, an antioxidant, an ultraviolet absorber, a silane coupling agent, and the like.
 粘着層の厚さは、1μm以上が好ましく、3μm以上がより好ましく、5μm以上がさらに好ましい。一方、粘着層の厚さは、100μm以下が好ましく、50μm以下がより好ましく、35μm以下がさらに好ましい。 The thickness of the adhesive layer is preferably 1 μm or more, more preferably 3 μm or more, and still more preferably 5 μm or more. On the other hand, 100 micrometers or less are preferable, as for the thickness of an adhesion layer, 50 micrometers or less are more preferable, and 35 micrometers or less are more preferable.
 第二の透明基板の態様としては、第一の透明基板の態様として例示したものや、偏光フィルムなどが挙げられる。偏光フィルムとは、ある振動方向の偏光のみを通過させる偏光性能を有するフィルムを指す。偏光フィルムとしては、例えば、ポリビニルアルコールにヨウ素や染料を染色・吸着させ、延伸・配向させたフィルムなどが挙げられる。第一の透明基板と第二の透明基板とは、同じ材料で構成されていてよいし、異なる材料で構成されていてもよい。 As an aspect of a 2nd transparent substrate, what was illustrated as an aspect of a 1st transparent substrate, a polarizing film, etc. are mentioned. The polarizing film refers to a film having a polarizing ability to transmit only polarized light in a certain vibration direction. As a polarizing film, the film etc. which dyed and adsorb | sucked iodine and dye to polyvinyl alcohol, and were made to extend | stretch and orient are mentioned, for example. The first transparent substrate and the second transparent substrate may be made of the same material or may be made of different materials.
 前記絶縁層の厚さは、絶縁性、耐湿熱性、透明性の観点から、0.1μm~300μmが好ましく、0.5μm~200μmがより好ましく、0.8μm~150μmがさらに好ましい。 The thickness of the insulating layer is preferably 0.1 μm to 300 μm, more preferably 0.5 μm to 200 μm, and still more preferably 0.8 μm to 150 μm, from the viewpoints of insulation, moist heat resistance, and transparency.
 図1~6に、本発明の製造方法にもとづく電極付き基板の構成の一例の概略図を示す。図1は、透明基板1上に、第一の電極である不透明電極2および絶縁層3を有し、さらに絶縁層3上に、第二の電極である不透明電極2を有する電極付き基板の概略図である。図2は、透明基板1上に、第一の電極である不透明電極2および絶縁層3を有し、さらに絶縁層3上に、第二の電極である透明電極4を有する電極付き基板の概略図である。図3は、透明基板1上に、第一の電極である透明電極4および絶縁層3を有し、さらに絶縁層3上に、第二の電極である不透明電極2を有する電極付き基板の概略図である。図4~6は、図1~3の絶縁層3が、粘着層5および第二の透明基板6である場合の電極付き基板の概略図である。 1 to 6 show schematic views of an example of the configuration of a substrate with an electrode based on the manufacturing method of the present invention. FIG. 1 schematically shows an electrode-equipped substrate having a first electrode, an opaque electrode 2 and an insulating layer 3 on a transparent substrate 1, and further having an opaque electrode 2 as a second electrode on an insulating layer 3. FIG. FIG. 2 is a schematic view of a substrate with an electrode having the first electrode, the opaque electrode 2 and the insulating layer 3 on the transparent substrate 1 and the transparent electrode 4 as the second electrode on the insulating layer 3. FIG. FIG. 3 schematically shows an electrode-equipped substrate having a transparent electrode 4 as a first electrode and an insulating layer 3 on a transparent substrate 1 and further having an opaque electrode 2 as a second electrode on the insulating layer 3. FIG. FIGS. 4 to 6 are schematic views of a substrate with an electrode when the insulating layer 3 in FIGS. 1 to 3 is the adhesive layer 5 and the second transparent substrate 6.
 次に、本発明の電極付き基板の製造方法における各工程について詳しく説明する。 Next, each step in the method of manufacturing a substrate with electrode of the present invention will be described in detail.
 まず、第一の透明基板の少なくとも片面に第一の電極を形成する。第一の電極は、透明電極でも不透明電極でもよい。 First, a first electrode is formed on at least one side of a first transparent substrate. The first electrode may be a transparent electrode or an opaque electrode.
 第一の電極の形成方法としては、透明電極の場合、例えば、スパッタリングや蒸着などのPVD法、CVD法などのドライコーティングや、スピナーを用いた回転塗布、ロールコーティング、スプレー塗布、ディッピング塗布などにより成膜した膜を、ウェットプロセスまたはドライプロセスによりパターン形成する方法等が挙げられる。透明電極のみをパターニングする観点から、ウェットプロセスが好ましく、フォトリソグラフィー法がより好ましい。一方、不透明電極の場合、例えば、感光性導電ペーストを用いてフォトリソグラフィー法によりパターン形成する方法、導電ペーストを用いてスクリーン印刷、グラビア印刷、インクジェット等によりパターン形成する方法、金属、金属複合体、金属と金属化合物との複合体、金属合金等の膜を形成し、レジストを用いてフォトリソグラフィー法により形成する方法等が挙げられる。これらの中でも、微細配線が形成可能であることから、感光性導電ペーストを用いてフォトリソグラフィー法により形成する方法が好ましい。 As a method of forming the first electrode, in the case of a transparent electrode, for example, dry coating such as PVD method such as sputtering or vapor deposition, CVD method, spin coating using a spinner, roll coating, spray coating, dip coating, etc. Examples of the method include a method of forming a film formed into a pattern by a wet process or a dry process. From the viewpoint of patterning only the transparent electrode, a wet process is preferable, and a photolithography method is more preferable. On the other hand, in the case of an opaque electrode, for example, a method of forming a pattern by photolithography using a photosensitive conductive paste, a method of forming a pattern by screen printing, gravure printing, ink jet etc using a conductive paste, metal, metal composite, A method of forming a film of a complex of a metal and a metal compound, a metal alloy or the like and forming the film by a photolithography method using a resist can be mentioned. Among these, since the fine wiring can be formed, the method of forming by a photolithographic method using a photosensitive conductive paste is preferable.
 透明電極を形成する成膜方法としては、ナノメートルレベルの薄膜を形成しやすいことから、ドライコーティングが好ましく、スパッタリングがより好ましい。スパッタリングに用いられるガスとしては、不活性ガスを主成分とするものが好ましく、アルゴンと酸素の混合ガスがより好ましい。 As a film forming method for forming a transparent electrode, dry coating is preferable and sputtering is more preferable because a thin film at the nanometer level can be easily formed. As a gas used for sputtering, what has an inert gas as a main component is preferable, and mixed gas of argon and oxygen is more preferable.
 得られた膜の一部をエッチング処理することによりパターン形成することが好ましい。エッチングに用いられるフォトレジスト、現像液、エッチング液、リンス剤は、透明電極が侵されることなく、所定のパターンを形成することができるよう、任意に選択して用いることができる。 It is preferable to form a pattern by etching a part of the obtained film. A photoresist, a developer, an etchant, and a rinse agent used for etching can be arbitrarily selected and used so that a predetermined pattern can be formed without the transparent electrode being corroded.
 不透明電極の形成に用いられる感光性導電ペーストは、前述の導電性粒子、アルカリ可溶性樹脂、分散剤、光重合開始剤、不飽和二重結合を有するモノマー、光酸発生剤、熱酸発生剤、増感剤、顔料、染料、密着改良剤、界面活性剤、重合禁止剤等、溶剤などを必要に応じて含有することができる。 The photosensitive conductive paste used to form the opaque electrode includes the above-mentioned conductive particles, an alkali-soluble resin, a dispersant, a photopolymerization initiator, a monomer having an unsaturated double bond, a photoacid generator, a thermal acid generator, A sensitizer, a pigment, a dye, an adhesion improver, a surfactant, a polymerization inhibitor, a solvent and the like can be contained as needed.
 感光性導電ペーストの塗布方法としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷、オフセット印刷、グラビア印刷、活版印刷、フレキソ印刷、ブレードコーター、ダイコーター、カレンダーコーター、メニスカスコ-ターまたはバーコーターを用いる方法が挙げられる。中でも、得られる感光性導電ペーストの組成物膜の表面平坦性に優れ、スクリーン版の選択により膜厚調整が容易であることから、スクリーン印刷が好ましい。 As a method of applying the photosensitive conductive paste, for example, spin coating using a spinner, spray coating, roll coating, screen printing, offset printing, gravure printing, letterpress printing, flexo printing, blade coater, die coater, calendar coater, meniscus cove A method using a tar or a bar coater. Above all, screen printing is preferable because it is excellent in the surface flatness of the composition film of the photosensitive conductive paste to be obtained, and the film thickness adjustment is easy by the selection of the screen plate.
 感光性導電ペーストが溶剤を含有する場合には、塗布した感光性導電ペーストの組成物膜を乾燥して溶剤を揮発除去することが好ましい。乾燥方法としては、例えば、加熱乾燥、真空乾燥などが挙げられる。加熱乾燥装置は、電磁波やマイクロ波により加熱するものでもよく、例えば、オーブン、ホットプレート、電磁波紫外線ランプ、赤外線ヒーター、ハロゲンヒーターなどが挙げられる。加熱温度は、溶剤の残存を抑制する観点から、50℃以上が好ましく、70℃以上がより好ましい。一方、加熱温度は、感光剤の失活を抑制する観点から、130℃以下が好ましく、110℃以下がより好ましい。加熱時間は、1分間~数時間が好ましく、1分間~50分間がより好ましい。 When the photosensitive conductive paste contains a solvent, it is preferable to dry the composition film of the applied photosensitive conductive paste to volatilize and remove the solvent. As a drying method, for example, heat drying, vacuum drying and the like can be mentioned. The heating and drying apparatus may be one that heats by electromagnetic waves or microwaves, and examples thereof include an oven, a hot plate, an electromagnetic wave ultraviolet lamp, an infrared heater, a halogen heater and the like. The heating temperature is preferably 50 ° C. or more, and more preferably 70 ° C. or more, from the viewpoint of suppressing the remaining of the solvent. On the other hand, the heating temperature is preferably 130 ° C. or less, more preferably 110 ° C. or less, from the viewpoint of suppressing the deactivation of the photosensitizer. The heating time is preferably 1 minute to several hours, more preferably 1 minute to 50 minutes.
 フォトリソグラフィー法によるパターン形成方法としては、露光および現像する方法が好ましい。例えば、感光性導電ペーストがネガ型感光性を有する場合、露光した感光性導電ペーストの組成物膜を現像することにより、未露光部を除去し、所望のパターンを形成することができる。 As a pattern formation method by the photolithography method, a method of exposing and developing is preferable. For example, when the photosensitive conductive paste has negative photosensitivity, the unexposed area can be removed to form a desired pattern by developing the composition film of the exposed photosensitive conductive paste.
 露光光は、感光性導電ペーストが含有する感光剤の吸収波長と合致する紫外領域、すなわち、200nm~450nmの波長域に発光を有することが好ましい。そのような露光光を得るための光源としては、例えば、水銀ランプ、ハロゲンランプ、キセノンランプ、LEDランプ、半導体レーザー、KrF、ArFエキシマレーザーなどが挙げられる。これらの中でも、水銀ランプのi線(波長365nm)が好ましい。露光量は、露光部の現像液への溶解性の観点から、波長365nm換算で50mJ/cm以上が好ましく、100mJ/cm以上がより好ましく、200mJ/cm以上がさらに好ましい。 The exposure light preferably emits light in the ultraviolet region that matches the absorption wavelength of the photosensitive agent contained in the photosensitive conductive paste, that is, in the wavelength region of 200 nm to 450 nm. As a light source for obtaining such exposure light, a mercury lamp, a halogen lamp, a xenon lamp, an LED lamp, a semiconductor laser, a KrF, an ArF excimer laser etc. are mentioned, for example. Among these, the i-line (wavelength 365 nm) of a mercury lamp is preferable. The exposure dose is preferably 50 mJ / cm 2 or more, more preferably 100 mJ / cm 2 or more, and still more preferably 200 mJ / cm 2 or more in terms of wavelength 365 nm from the viewpoint of solubility of the exposed portion in the developer.
 現像液としては、第一の電極の導電性を阻害しないものが好ましく、アルカリ現像液が好ましい。アルカリ現像としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水等の無機アルカリ類;エチルアミン、n-プロピルアミン等の1級アミン類;ジエチルアミン、ジ-n-プロピルアミン等の2級アミン類;トリエチルアミン、メチルジエチルアミン等の3級アミン類;テトラメチルアンモニウムヒドロキシド(TMAH)等のテトラアルキルアンモニウムヒドロキシド類;コリン等の4級アンモニウム塩;トリエタノールアミン、ジエタノールアミン、モノエタノールアミン、ジメチルアミノエタノール、ジエチルアミノエタノール等のアルコールアミン類;ピロール、ピペリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノナン、モルホリン等の環状アミン類等の有機アルカリ類などのアルカリ性物質の水溶液が挙げられる。これらの水溶液に、エタノール、γ-ブチロラクトン、ジメチルホルムアミド、N-メチル-2-ピロリドン等の水溶性有機溶剤、非イオン系界面活性剤などの界面活性剤を添加してもよい。 As a developing solution, what does not inhibit the electroconductivity of a 1st electrode is preferable, and an alkali developing solution is preferable. Examples of the alkali development include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium silicate, sodium metasilicate and aqueous ammonia; primary amines such as ethylamine and n-propylamine; Secondary amines such as diethylamine and di-n-propylamine; tertiary amines such as triethylamine and methyl diethylamine; tetraalkyl ammonium hydroxides such as tetramethyl ammonium hydroxide (TMAH); quaternary ammonium salts such as choline Alcohol amines such as triethanolamine, diethanolamine, monoethanolamine, dimethylaminoethanol and diethylaminoethanol; pyrrole, piperidine, 1,8-diazabicyclo [5,4,0] -7-undecene, , 5-diazabicyclo [4,3,0] -5-nonane, include aqueous solutions of alkaline substances such as organic alkalis such cyclic amines such as morpholine and the like. To these aqueous solutions, water-soluble organic solvents such as ethanol, γ-butyrolactone, dimethylformamide, N-methyl-2-pyrrolidone and the like, and surfactants such as nonionic surfactants may be added.
 現像方法として、例えば、感光性導電ペーストの組成物膜を形成した基板を静置、回転または搬送させながら現像液を前記感光性導電ペーストの組成物膜の表面にスプレーする方法、感光性導電ペーストの組成物膜を現像液中に浸漬する方法、感光性導電ペーストの組成物膜を現像液中に浸漬させながら超音波をかける方法などが挙げられる。 As a developing method, for example, a method of spraying a developing solution on the surface of the composition film of the photosensitive conductive paste while allowing the substrate on which the composition film of the photosensitive conductive paste is formed to stand, rotate or transport the photosensitive conductive paste And a method of immersing the composition film of the photosensitive conductive paste in a developer while applying the ultrasonic wave.
 現像により得られたパターンに、リンス液によるリンス処理を施してもよい。リンス液としては、例えば、水;エタノール、イソプロピルアルコール等のアルコール類の水溶液;乳酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類の水溶液などが挙げられる。 The pattern obtained by development may be subjected to a rinse treatment with a rinse solution. Examples of the rinse solution include water; aqueous solutions of alcohols such as ethanol and isopropyl alcohol; and aqueous solutions of esters such as ethyl lactate and propylene glycol monomethyl ether acetate.
 得られた透明電極または不透明電極を加熱してもよく、空気中において加熱することが好ましい。加熱温度は、硬化を十分に進め、導電性を向上させる観点から、100℃以上が好ましく、120℃以上がより好ましい。一方、加熱温度は、透明基板の耐熱性、薄膜透明基板を用いた際の位置精度や視認性の観点から、150℃以下が好ましく、140℃以下がより好ましい。第一の電極を形成する工程および第二の電極を形成する工程において、この100℃以上150℃以下の温度で加熱する工程を有することは、導電性、薄膜透明基板を用いた際の位置精度や視認性の点から特に好ましい。 The obtained transparent electrode or opaque electrode may be heated, preferably in air. The heating temperature is preferably 100 ° C. or more, and more preferably 120 ° C. or more, from the viewpoint of sufficiently curing and improving the conductivity. On the other hand, the heating temperature is preferably 150 ° C. or less, more preferably 140 ° C. or less, from the viewpoints of heat resistance of the transparent substrate and positional accuracy and visibility when using a thin film transparent substrate. In the step of forming the first electrode and the step of forming the second electrode, having the step of heating at a temperature of 100 ° C. or more and 150 ° C. or less is a position accuracy when using a conductive thin film transparent substrate And particularly preferred in view of visibility.
 次に、透明基板の第一の電極が形成されている面に絶縁層を形成する絶縁層の形成方法としては、感光性導電ペーストを用いた不透明電極の形成方法として例示した方法が挙げられる。絶縁層が粘着層および第二の透明基板を有する場合、粘着層の形成方法としては、例えば、剥離ライナーに粘着剤を塗布・乾燥した後、透明基板に転写する方法(転写法)、透明基板に直接粘着剤を塗布・乾燥する方法(直写法)、共押出による方法等が挙げられる。 Next, as a method of forming an insulating layer in which an insulating layer is formed on the surface of the transparent substrate on which the first electrode is formed, the method exemplified as the method of forming an opaque electrode using a photosensitive conductive paste may be mentioned. When the insulating layer has a pressure-sensitive adhesive layer and a second transparent substrate, as a method of forming the pressure-sensitive adhesive layer, for example, a method of transferring an adhesive onto a release liner and then transferring it to a transparent substrate (transfer method), transparent substrate Directly apply and dry the pressure-sensitive adhesive (direct printing method), co-extrusion and the like.
 絶縁層が粘着層および第二の透明基板を有する場合、第一の電極と第二の透明基板とを互いに対向させて、粘着層を介して貼り合わせることが好ましい。貼り合わせに際して、第一の電極の非平坦部近辺の気泡を除去するため、脱泡することが好ましい。脱泡することにより、第二の透明基板の表面平滑性が向上することから、第一の電極と第二の電極の位置精度をより向上させることができる。脱泡方法としては、例えば、加熱、加圧、減圧等の方法が挙げられる。例えば、第一の電極と第二の透明基板とを互いに対向させて、減圧・加熱下において、気泡の混入を抑制しながら貼り合わせることが好ましい。その後、ディレイバブルの抑制等を目的として、オートクレーブ処理等により、加熱加圧することが好ましい。加熱加圧時の加熱温度は、脱泡効率の観点から、30℃以上が好ましく、40℃以上がより好ましい。一方、加熱温度は、透明基板や粘着層の熱収縮をより抑制する観点から、150℃以下が好ましく、130℃以下がより好ましく、120℃以下がさらに好ましい。また、加熱加圧時の圧力は、脱泡効率の観点から、0.05MPa以上が好ましく、0.1MPa以上がより好ましい。一方、圧力は、基板や粘着層の撓みをより抑制する観点から、2.0MPa以下が好ましく、1.5MPa以下が好ましく、1.0MPa以下がさらに好ましい。 When the insulating layer has a pressure-sensitive adhesive layer and a second transparent substrate, it is preferable that the first electrode and the second transparent substrate be attached to each other with the pressure-sensitive adhesive layer interposed therebetween. At the time of bonding, in order to remove air bubbles in the vicinity of the non-flat portion of the first electrode, defoaming is preferable. Since the surface smoothness of the second transparent substrate is improved by degassing, the positional accuracy of the first electrode and the second electrode can be further improved. As a degassing method, methods, such as heating, pressurization, pressure reduction, are mentioned, for example. For example, it is preferable to make the first electrode and the second transparent substrate face each other and to bond them while suppressing mixing of air bubbles under reduced pressure and heating. Thereafter, for the purpose of suppressing delay bubbles, it is preferable to apply heat and pressure by autoclave treatment or the like. 30 degreeC or more is preferable from a viewpoint of degassing efficiency at the time of heating-pressing, and 40 degreeC or more is more preferable. On the other hand, the heating temperature is preferably 150 ° C. or less, more preferably 130 ° C. or less, and still more preferably 120 ° C. or less, from the viewpoint of further suppressing the thermal contraction of the transparent substrate and the adhesive layer. Further, the pressure at the time of heating and pressurizing is preferably 0.05 MPa or more, and more preferably 0.1 MPa or more from the viewpoint of degassing efficiency. On the other hand, the pressure is preferably 2.0 MPa or less, more preferably 1.5 MPa or less, and still more preferably 1.0 MPa or less, from the viewpoint of further suppressing the bending of the substrate and the adhesive layer.
 さらに絶縁層上に第二の電極を形成する。第二の電極は、第一の電極と同様の方法により形成することができる。絶縁層上に第二の電極を形成する本発明の電極付き基板の製造方法は、2以上の電極付き基板を貼り合せる方法に比べて、透明基板が薄くなるほど顕著となる、貼り合わせ用粘着部材の可撓性に起因する位置ずれを抑制し、位置精度を向上させることができる。また、絶縁層が第一の電極を保護するため、第二の電極形成時の現像工程における現像液の第一の電極への侵食や、ハンドリングによる第一の電極と設備等との接触を抑制し、配線の欠損や断線などの不良を抑制して歩留まりを向上させることができる。 Further, a second electrode is formed on the insulating layer. The second electrode can be formed by the same method as the first electrode. The method for producing a substrate with an electrode according to the present invention, in which the second electrode is formed on the insulating layer, is more prominent as the transparent substrate becomes thinner as compared to the method in which two or more substrates with electrodes are bonded. It is possible to suppress the positional deviation due to the flexibility of the above and improve the positional accuracy. In addition, since the insulating layer protects the first electrode, erosion of the developer on the first electrode in the developing step during formation of the second electrode and contact between the first electrode and equipment due to handling are suppressed. Thus, it is possible to improve the yield by suppressing defects such as wire breakage and disconnection.
 本発明においては、第二の電極のパターニングにおいて、既に形成した第一の電極パターンを利用して位置合わせを行うことができる。具体的には、第二の電極の露光工程において、カメラを用いて第一の電極パターンを検出し、露光装置のステージを調整することにより、第一の電極パターンと第二の電極パターンの位置ずれをより抑制し、位置精度をさらに向上させることができる。 In the present invention, in patterning of the second electrode, alignment can be performed using the first electrode pattern already formed. Specifically, in the exposure step of the second electrode, the first electrode pattern is detected using a camera, and the position of the first electrode pattern and the second electrode pattern is adjusted by adjusting the stage of the exposure apparatus. Deviation can be further suppressed, and position accuracy can be further improved.
 本発明の製造方法により得られる電極付き基板は、視認されにくく、位置精度に優れ、モアレを抑制することができることから、例えば、タッチパネル用部材、電磁シールド用部材、透明LEDライト用部材などに好適に用いることができる。中でも、配線電極を視認されにくくすることがより高く要求されるタッチパネル用部材として好適に用いることができる。 The substrate with an electrode obtained by the manufacturing method of the present invention is difficult to be recognized visually, is excellent in positional accuracy, and can suppress moire, so it is suitable for, for example, a member for touch panel, a member for electromagnetic shielding, a member for transparent LED light, etc. It can be used for Above all, it can be suitably used as a member for a touch panel which is required to be more difficult to visually recognize the wiring electrode.
 以下、実施例を挙げて、本発明をさらに詳しく説明するが、本発明はこれによって限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.
 各実施例で用いた材料は、以下の通りである。なお、透明基板の波長550nmにおける透過率は、紫外可視分光光度計(U-3310 (株)日立ハイテクノロジーズ製)を用いて測定した。 The materials used in each example are as follows. The transmittance of the transparent substrate at a wavelength of 550 nm was measured using an ultraviolet-visible spectrophotometer (U-3310 manufactured by Hitachi High-Technologies Corporation).
 (透明基板)
・“ルミラー”(登録商標)T60(東レ(株)製)(厚さ:100μm、波長550nmにおける透過率:89%)(a-1)
・“ゼオネックス”(登録商標)480(日本ゼオン(株)製)(厚さ:100μm、波長550nmにおける透過率:92%)(a-2)。
(Transparent substrate)
“Lumirror” (registered trademark) T60 (manufactured by Toray Industries, Inc.) (thickness: 100 μm, transmittance at a wavelength of 550 nm: 89%) (a-1)
"Zeonex" (registered trademark) 480 (manufactured by Nippon Zeon Co., Ltd.) (thickness: 100 μm, transmittance at a wavelength of 550 nm: 92%) (a-2).
 (製造例1:カルボキシル基含有アクリル系共重合体)
 窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテート(以下、「DMEA」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのエチルアクリレート(以下、「EA」)、40gのメタクリル酸2-エチルヘキシル(以下、「2-EHMA」)、20gのスチレン(以下、「St」)、15gのアクリル酸(以下、「AA」)、0.8gの2,2-アゾビスイソブチロニトリル及び10gのジエチレングリコールモノエチルエーテルアセテートからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間撹拌し、重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのグリシジルメタクリレート(以下、「GMA」)、1gのトリエチルベンゼンアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間撹拌し、付加反応を行った。得られた反応溶液をメタノールで精製することにより未反応不純物を除去し、さらに24時間真空乾燥して、共重合比率(質量基準):EA/2-EHMA/St/GMA/AA=20/40/20/5/15のカルボキシル基含有アクリル系共重合体を得た。得られた共重合体の酸価を測定したところ、103mgKOH/gであった。なお、酸価はJIS K 0070(1992)に準じて測定した。
Production Example 1: Carboxyl Group-Containing Acrylic Copolymer
In a nitrogen atmosphere reaction vessel, 150 g of diethylene glycol monoethyl ether acetate (hereinafter, “DMEA”) was charged, and the temperature was raised to 80 ° C. using an oil bath. In this, 20 g of ethyl acrylate (hereinafter, "EA"), 40 g of 2-ethylhexyl methacrylate (hereinafter, "2-EHMA"), 20 g of styrene (hereinafter, "St"), 15 g of acrylic acid (hereinafter, A mixture consisting of "AA"), 0.8 g of 2,2-azobisisobutyronitrile and 10 g of diethylene glycol monoethyl ether acetate was added dropwise over 1 hour. After completion of the dropwise addition, the mixture was further stirred for 6 hours to carry out a polymerization reaction. Thereafter, 1 g of hydroquinone monomethyl ether was added to terminate the polymerization reaction. Subsequently, a mixture consisting of 5 g of glycidyl methacrylate (hereinafter "GMA"), 1 g of triethylbenzene ammonium chloride and 10 g of DMEA was dropped over 0.5 hours. After completion of the dropwise addition, the mixture was further stirred for 2 hours to carry out an addition reaction. Unreacted impurities are removed by purifying the resulting reaction solution with methanol, and vacuum drying is further performed for 24 hours to obtain a copolymerization ratio (by mass): EA / 2-EHMA / St / GMA / AA = 20/40. A carboxyl group-containing acrylic copolymer of / 20/5/15 was obtained. It was 103 mgKOH / g when the acid value of the obtained copolymer was measured. The acid value was measured in accordance with JIS K 0070 (1992).
 (製造例2:感光性導電ペースト)
 100mLクリーンボトルに、17.5gの製造例1により得られたカルボキシル基含有アクリル系共重合体、0.5gの光重合開始剤N-1919((株)ADEKA製)、1.5gのエポキシ樹脂“アデカレジン”(登録商標)EP-4530(エポキシ当量190、(株)ADEKA製)、3.5gのモノマー“ライトアクリレート”(登録商標)BP-4EA(共栄社化学(株)製)及び19.0gのDMEAを入れ、“あわとり錬太郎”(登録商標)ARE-310((株)シンキー製)を用いて混合し、42.0gの樹脂溶液を得た。得られた42gの樹脂溶液と62.3gの一次粒子径0.4μmの銀粒子とを混ぜ合わせて、3本ローラーEXAKT M50(EXAKT製)を用いて混練した後に、さらにDMEAを7g加えて混合し、111gの感光性導電ペーストを得た。感光性導電ペーストの粘度は、10,000mPa・sであった。なお、粘度は、ブルックフィールド型の粘度計を用いて、温度25℃、回転数3rpmの条件で測定した。
(Production Example 2: Photosensitive Conductive Paste)
In a 100 mL clean bottle, 17.5 g of the carboxyl group-containing acrylic copolymer obtained according to Production Example 1 0.5 g of a photopolymerization initiator N-1919 (manufactured by ADEKA Co., Ltd.), 1.5 g of an epoxy resin "Adeka Resin" (registered trademark) EP-4530 (epoxy equivalent 190, manufactured by ADEKA Corporation), 3.5 g of monomer "Light Acrylate" (registered trademark) BP-4EA (manufactured by Kyoeisha Chemical Co., Ltd.) and 19.0 g The DMEA was added and mixed using “Awatori sakutaro” (registered trademark) ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 42.0 g of a resin solution. The obtained 42 g of resin solution and 62.3 g of primary particles having a primary particle diameter of 0.4 μm are mixed and kneaded using a 3-roller EXAKT M50 (manufactured by EXAKT), and 7 g of DMEA is further added and mixed. To give 111 g of photosensitive conductive paste. The viscosity of the photosensitive conductive paste was 10,000 mPa · s. The viscosity was measured using a Brookfield viscometer at a temperature of 25 ° C. and a rotational speed of 3 rpm.
 (製造例3:絶縁性組成物)
 100mLクリーンボトルに、20.0gのポリマー型アクリレート“ユニディック” (登録商標)V6840、0.5gの光重合開始剤“IRGACURE”(登録商標)IC184、10.0gのイソブチルケトンを入れ、“あわとり錬太郎”(登録商標)ARE-310((株)シンキー製)を用いて混合し、30.5gの絶縁性組成物を得た。
(Production Example 3: Insulating Composition)
In a 100 mL clean bottle, place 20.0 g of Polymeric Acrylate “UNIDIC” ® V6840, 0.5 g of Photopolymerization Initiator “IRGACURE” ® IC 184, 10.0 g of isobutyl ketone, The mixture was mixed using Tori-Shintaro "(registered trademark) ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 30.5 g of an insulating composition.
 各実施例および比較例における評価は以下の方法により行った。 Evaluation in each example and comparative example was performed by the following methods.
 (1)位置精度
 各実施例および比較例により作製した電極付き基板について、図7に示す位置精度評価用の第一の電極と第二の電極を重ね合わせた部分において、位置ずれ量Xを測定し、位置ずれ量が10μm未満の場合をA、位置ずれ量が10μm以上の場合をBと評価した。なお、位置精度評価用のパターンは、直径2mmの円形とし、パターンの幅は240μmとした。
(1) Positional Accuracy With respect to the substrate with electrodes produced in each of the Examples and the Comparative Examples, the positional deviation amount X is measured in the portion where the first electrode and the second electrode for positional accuracy evaluation shown in FIG. The case where the amount of displacement was less than 10 μm was evaluated as A, and the case where the amount of displacement was 10 μm or more was evaluated as B. The pattern for position accuracy evaluation was a circle with a diameter of 2 mm, and the width of the pattern was 240 μm.
 (2)視認性
 各実施例および比較例により作製した、図8~9に示す外形を有する第一の電極と図9に示す外形を有する第二の電極を有する電極付き基板を、全面白画像を表示したFlatron23EN43V-B2 23型ワイド液晶モニタ(LG Electronics社製)の上に載せ、モアレの有無を観察し、モアレが観察されない場合をA、モアレが観察される場合をBと評価した。ただし、電極付き基板において、不透明電極は、外形の内側を図10に示すメッシュ形状にパターン形成し、透明電極は外形の内側全体をベタパターンに形成した。
(2) Visibility An electrode-coated substrate having a first electrode having the outer shape shown in FIGS. 8 to 9 and a second electrode having the outer shape shown in FIG. The display was placed on a Flattron 23 EN 43 V-B2 23-type wide liquid crystal monitor (manufactured by LG Electronics), and the presence or absence of moiré was observed. However, in the electrode-attached substrate, the opaque electrode was formed by patterning the inside of the outer shape into a mesh shown in FIG. 10, and the transparent electrode was formed into a solid pattern in the entire inside of the outer shape.
 (3)歩留まり
 各実施例および比較例により作製した図8に示す外形を有する第一の電極を有する電極付き基板の第一の電極100個について、抵抗測定用テスター(2407A;BKプレシジョン社製)を用いて抵抗値を測定した。次に、第二の電極形成後に、再度、第一の電極100個の抵抗値を測定した。各第一の電極の抵抗値の変化率(第二の電極形成後の第一の電極の抵抗値/第一の電極形成後の第一の電極の抵抗値)を算出し、第一の電極100個全ての変化率が110%以下の場合をA、変化率が110%を超える第一の電極が1つ以上存在した場合をBと評価した。
(3) Yield A tester for measuring resistance (2407A; made by BK Precision Co., Ltd.) for 100 first electrodes of a substrate with an electrode having a first electrode having the outer shape shown in FIG. 8 manufactured according to each example and comparative example. The resistance value was measured using. Next, after forming the second electrode, the resistance value of the first 100 electrodes was measured again. The rate of change of the resistance value of each first electrode (the resistance value of the first electrode after the formation of the second electrode / the resistance value of the first electrode after the formation of the first electrode) is calculated. The case where all the 100 change rates were 110% or less was evaluated as A, and the case where one or more first electrodes whose change rates exceeded 110% were present was evaluated as B.
 (実施例1)
 <第一の電極(不透明電極)の形成>
 透明基板(a-1)上に、製造例2により得られた感光性導電ペーストを、スクリーン印刷により、乾燥後膜厚が1μmとなるように印刷し、100℃にて10分間乾燥した。図7および図8に示す形状のパターンを有する露光マスクを介して、露光装置(PEM-6M;ユニオン光学(株)製)を用いて露光量500mJ/cm(波長365nm換算)で露光した。マスク開口幅は3μmとした。その後、0.2質量%炭酸ナトリウム水溶液で30秒間浸漬現像を行い、さらに、超純水でリンスしてから、140℃のIRヒーター炉内で30分間加熱して、第一の電極(不透明電極)を形成し、図7および図8に示す外形を有する第一の電極を有する電極付き基板を得た。微小面分光色差計(VSS 400:日本電色工業(株)製)により不透明電極の波長365nmにおける透過率を測定したところ、5%であった。
Example 1
<Formation of first electrode (opaque electrode)>
The photosensitive conductive paste obtained in Production Example 2 was printed on a transparent substrate (a-1) by screen printing so as to have a thickness of 1 μm after drying, and dried at 100 ° C. for 10 minutes. An exposure apparatus (PEM-6M; manufactured by Union Optics Co., Ltd.) was used for exposure at an exposure dose of 500 mJ / cm 2 (converted to a wavelength of 365 nm) through an exposure mask having a pattern of the shape shown in FIGS. The mask opening width was 3 μm. Thereafter, immersion development is performed for 30 seconds in a 0.2 mass% sodium carbonate aqueous solution, and after rinsing with ultrapure water, heating is performed for 30 minutes in an IR heater furnace at 140 ° C. to form a first electrode (opaque electrode) To obtain an electroded substrate having a first electrode having the outer shape shown in FIGS. It was 5% when the transmittance | permeability in wavelength 365 nm of the opaque electrode was measured with the micro surface-spectral-color-difference meter (VSS 400: Nippon Denshoku Kogyo Co., Ltd. product).
 <絶縁層の形成>
 第一の電極を形成した基板上に製造例3により得られた絶縁性組成物を、スピンコーターを用いて1000rpmで5秒間スピンコートした後、ホットプレートを用いて100℃で2分間プリベークし、プリベーク膜を作製した。パラレルライトマスクアライナーを用いて、超高圧水銀灯を光源とし、所望の露光マスクを介してプリベーク膜を露光し、絶縁層を形成した。絶縁層の厚さは1μmであった。
<Formation of insulating layer>
The insulating composition obtained by Production Example 3 is spin-coated at 1000 rpm for 5 seconds using a spin coater on a substrate on which the first electrode is formed, and then prebaked at 100 ° C. for 2 minutes using a hot plate, A pre-bake film was produced. Using a parallel light mask aligner, an ultrahigh pressure mercury lamp was used as a light source, and the pre-bake film was exposed through a desired exposure mask to form an insulating layer. The thickness of the insulating layer was 1 μm.
 <第二の電極(不透明電極)の形成>
 形成した絶縁層上に、第一の電極と同様の操作により第二の電極(不透明電極)を形成し、電極付き基板を得た。ただし、露光マスクとしては、図7および図9に示す形状のパターンを有するものを用いた。前述の方法により評価した結果を表1に示す。
<Formation of Second Electrode (Opaque Electrode)>
On the formed insulating layer, a second electrode (opaque electrode) was formed by the same operation as the first electrode, to obtain a substrate with an electrode. However, as the exposure mask, one having a pattern of the shape shown in FIG. 7 and FIG. 9 was used. The results evaluated by the above-mentioned method are shown in Table 1.
 (実施例2)
 実施例1と同様の操作により、透明基板(a-1)上に、第一の電極(不透明電極)と絶縁層を形成した。
(Example 2)
By the same operation as in Example 1, the first electrode (opaque electrode) and the insulating layer were formed on the transparent substrate (a-1).
 <第二の電極(透明電極)の形成>
 形成した絶縁層上に、インジウムスズ酸化物(スズ酸化物含量5重量%)をターゲットとして用いて、アルゴン/酸素(体積比)が1/100の混合ガス中、装置内圧力0.5Paにおいて、温度:25℃、電力密度:2.2W/cmの条件でスパッタリングを行い、ITO層を形成した。得られたITO層の厚さは25nmであった。形成したITO層に、フォトレジスト(製品名:TSMR-8900(東京応化工業(株)製))を、スピンコートにより2μm程度の膜厚に塗布した。これを90℃のオーブンでプリベークした後、図7および図9に示す形状のパターンを有する露光マスクを介して、40mJ/cm(波長365nm換算)で露光した。その後、110℃でポストベークした後、25℃の現像液(0.75質量%NaOH水溶液)を用いて、フォトレジストをパターニングした。さらに、エッチング液(製品名:ITO-02(関東化学(株)製))を用いて、ITO膜をエッチングすることによりパターニングした。40℃の剥離液(2質量%NaOH水溶液)を用いて残ったフォトレジストを除去した後、150℃で30分間乾燥し、第二の電極(透明電極)を形成し、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
<Formation of Second Electrode (Transparent Electrode)>
On the formed insulating layer, using indium tin oxide (tin oxide content: 5% by weight) as a target, in a mixed gas of argon / oxygen (volume ratio) 1/100, at an internal pressure of 0.5 Pa, Sputtering was performed at a temperature of 25 ° C. and a power density of 2.2 W / cm 2 to form an ITO layer. The thickness of the obtained ITO layer was 25 nm. On the formed ITO layer, a photoresist (product name: TSMR-8900 (manufactured by Tokyo Ohka Kogyo Co., Ltd.)) was applied by spin coating to a film thickness of about 2 μm. This was prebaked in an oven at 90 ° C., and then exposed at 40 mJ / cm 2 (converted to a wavelength of 365 nm) through an exposure mask having a pattern of the shape shown in FIGS. 7 and 9. Then, after post-baking at 110 ° C., the photoresist was patterned using a 25 ° C. developer (0.75 mass% aqueous NaOH solution). Furthermore, patterning was performed by etching the ITO film using an etching solution (product name: ITO-02 (manufactured by Kanto Chemical Co., Ltd.)). The remaining photoresist was removed using a stripping solution (2% by mass aqueous NaOH solution) at 40 ° C., followed by drying at 150 ° C. for 30 minutes to form a second electrode (transparent electrode) to obtain a substrate with an electrode. . The results evaluated by the above-mentioned method are shown in Table 1.
 (実施例3)
 透明基板(a-1)上に、実施例2における第二の電極(透明電極)の形成方法と同様の操作により、第一の電極(透明電極)を形成した。ただし、露光マスクとしては、図7および図8に示す形状のパターンを有するものを用いた。さらに、実施例1と同様の操作により、絶縁層および第二の電極(不透明電極)を形成し、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
(Example 3)
The first electrode (transparent electrode) was formed on the transparent substrate (a-1) by the same operation as the method of forming the second electrode (transparent electrode) in Example 2. However, as the exposure mask, one having a pattern of the shape shown in FIG. 7 and FIG. 8 was used. Furthermore, by the same operation as in Example 1, an insulating layer and a second electrode (opaque electrode) were formed to obtain a substrate with an electrode. The results evaluated by the above-mentioned method are shown in Table 1.
 (実施例4)
 透明基板(a-2)上に、実施例1と同様の操作により、第一の電極(不透明電極)、絶縁層、第二の電極(不透明電極)を形成し、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
(Example 4)
A first electrode (opaque electrode), an insulating layer, and a second electrode (opaque electrode) were formed on the transparent substrate (a-2) in the same manner as in Example 1 to obtain a substrate with an electrode. The results evaluated by the above-mentioned method are shown in Table 1.
 (実施例5)
 透明基板(a-1)上に、実施例1と同様の操作により、第一の電極(不透明電極)を形成した。第一の電極を形成した基板の第一の電極と、別に準備した第二の透明基板(a-1)とを互いに対向させて、粘着シート“パナクリーン”(登録商標)PD-R5(パナック(株)製)(厚さ:25μm)を介して、加熱温度:50℃、加圧力:0.2MPaの条件で貼り合わせ、粘着層と第二の透明基板からなる絶縁層を形成した。第二の透明基板上に、実施例1と同様の操作により、第二の電極(不透明電極)を形成した。前述の方法により評価した結果を表1に示す。
(Example 5)
The first electrode (opaque electrode) was formed on the transparent substrate (a-1) in the same manner as in Example 1. An adhesive sheet “Panaclean” (registered trademark) PD-R5 (Panac) is made to face the first electrode of the substrate on which the first electrode is formed and the second transparent substrate (a-1) separately prepared. (Inc.) (Thickness: 25 μm), bonding was carried out under the conditions of heating temperature: 50 ° C., pressure: 0.2 MPa, to form an insulating layer consisting of an adhesive layer and a second transparent substrate. A second electrode (opaque electrode) was formed on the second transparent substrate by the same operation as in Example 1. The results evaluated by the above-mentioned method are shown in Table 1.
 (実施例6)
 第一の透明基板および第二の透明基板を(a-2)として、実施例5と同様の操作により、第一の電極(不透明電極)、粘着層と第二の透明基板からなる絶縁層、第二の電極(不透明電極)を形成し、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
(Example 6)
An insulating layer comprising a first electrode (opaque electrode), an adhesive layer and a second transparent substrate in the same manner as in Example 5 with the first transparent substrate and the second transparent substrate as (a-2) The second electrode (opaque electrode) was formed to obtain a substrate with an electrode. The results evaluated by the above-mentioned method are shown in Table 1.
 (比較例1)
 透明基板(a-1)上に、実施例1と同様の操作により、不透明電極を形成した不透明電極付き基板を2枚作製した。一方の不透明電極付き基板の不透明電極を形成した面と、他方の不透明電極付き基板の不透明電極を形成していない面とを対向させ、粘着シート“パナクリーン”(登録商標)PD-R5(パナック(株)製)(厚さ:25μm)を介して、加熱温度:50℃、加圧力:0.2MPaの条件で貼り合わせ、透明基板上に、第一の電極(不透明電極)、粘着層と第二の透明基板からなる絶縁層、第二の電極(不透明電極)を形成し、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
(Comparative example 1)
On a transparent substrate (a-1), by the same operation as in Example 1, two sheets of a substrate with an opaque electrode on which an opaque electrode was formed were produced. The adhesive sheet "Panaclean" (registered trademark) PD-R5 (Panuc) is made to face the surface of the substrate with opaque electrode on which the opaque electrode is formed and the surface of the other substrate with opaque electrode on which the opaque electrode is not formed. (Thickness: 25 μm), bonding is performed under the conditions of heating temperature: 50 ° C., pressure: 0.2 MPa, and on a transparent substrate, a first electrode (opaque electrode), an adhesive layer and An insulating layer composed of a second transparent substrate and a second electrode (opaque electrode) were formed to obtain a substrate with an electrode. The results evaluated by the above-mentioned method are shown in Table 1.
 (比較例2)
 透明基板(a-1)上に、実施例1と同様の操作により、不透明電極を形成した不透明電極付き基板と、透明基板(a-1)上に、実施例2と同様の操作により、透明電極を形成した透明電極付き基板をそれぞれ作製した。不透明電極付き基板の不透明電極を形成した面と、透明電極付き基板の透明電極を形成していない面とを対向させ、粘着シート“パナクリーン”(登録商標)PD-R5(パナック(株)製)(厚さ:25μm)を介して、加熱温度:50℃、加圧力:0.2MPaの条件で貼り合わせ、透明基板上に、第一の電極(不透明電極)、粘着層と第二の透明基板からなる絶縁層、第二の電極(透明電極)を形成し、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
(Comparative example 2)
A substrate with an opaque electrode formed on the transparent substrate (a-1) by the same operation as in Example 1, and a transparent substrate by the same operation as in Example 2 on the transparent substrate (a-1) Substrates with a transparent electrode on which electrodes were formed were respectively produced. An adhesive sheet "Panaclean" (registered trademark) PD-R5 (Panak Co., Ltd.) is made to face the surface of the substrate with opaque electrode on which the opaque electrode is formed and the surface of the substrate with transparent electrode on which the transparent electrode is not formed. ) (Thickness: 25 μm), bonded at heating temperature: 50 ° C., applied pressure: 0.2 MPa, on a transparent substrate, a first electrode (opaque electrode), an adhesive layer and a second transparent An insulating layer composed of a substrate and a second electrode (transparent electrode) were formed to obtain a substrate with an electrode. The results evaluated by the above-mentioned method are shown in Table 1.
 (比較例3)
 比較例2と同様の操作により、不透明配線電極付き基板と、透明配線電極付き基板をそれぞれ作製した。透明電極付き基板の透明電極を形成した面と、不透明電極付き基板の不透明電極を形成していない面とを対向させ、粘着シート“パナクリーン”(登録商標)PD-R5(パナック(株)製)(厚さ:25μm)を介して、加熱温度:50℃、加圧力:0.2MPaの条件で貼り合わせ、透明基板上に、第一の電極(透明電極)、粘着層と第二の透明基板からなる絶縁層、第二の電極(不透明電極)を形成し、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
(Comparative example 3)
By the same operation as Comparative Example 2, a substrate with an opaque wiring electrode and a substrate with a transparent wiring electrode were produced. An adhesive sheet "Panaclean" (registered trademark) PD-R5 (Panak Co., Ltd.) is made to face the surface of the substrate with transparent electrode on which the transparent electrode is formed and the surface of the substrate with opaque electrode on which the opaque electrode is not formed. ) (Thickness: 25 μm), bonded at heating temperature: 50 ° C., applied pressure: 0.2 MPa, on a transparent substrate, a first electrode (transparent electrode), an adhesive layer and a second transparent An insulating layer composed of a substrate and a second electrode (opaque electrode) were formed to obtain a substrate with an electrode. The results evaluated by the above-mentioned method are shown in Table 1.
 (比較例4)
 透明基板(a-1)上に、実施例2における第二の電極(透明電極)の形成方法と同様の操作により、第一の電極(透明電極)を形成した。ただし、露光マスクとしては、図4および図5に示す形状のパターンを有するものを用いた。第一の電極(透明電極)を形成した基板の第一の電極を形成していない面と、別に準備した第二の透明基板(a-1)とを対向させ、粘着シート“パナクリーン”(登録商標)PD-R5(パナック(株)製)(厚さ:25μm)を介して、加熱温度:50℃、加圧力:0.2MPaの条件で貼り合わせ、粘着層と第二の透明基板からなる絶縁層を形成した。さらに第二の透明基板の粘着層を貼り合せていない面に、実施例2と同様の操作により、第二の電極(透明電極)を形成し、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
(Comparative example 4)
The first electrode (transparent electrode) was formed on the transparent substrate (a-1) by the same operation as the method of forming the second electrode (transparent electrode) in Example 2. However, as the exposure mask, one having a pattern of the shape shown in FIG. 4 and FIG. 5 was used. A pressure-sensitive adhesive sheet "Pana Clean" (Pana Clean) is made to face the surface of the substrate on which the first electrode (transparent electrode) is formed, on which the first electrode is not formed, and the second transparent substrate (a-1) separately prepared. From the adhesive layer and the second transparent substrate, they are bonded together under the conditions of heating temperature: 50 ° C., pressure: 0.2 MPa, through a registered trademark PD-R5 (Panak Co., Ltd.) (thickness: 25 μm) An insulating layer was formed. Furthermore, a second electrode (transparent electrode) was formed on the surface of the second transparent substrate on which the adhesive layer was not attached, in the same manner as in Example 2, to obtain a substrate with an electrode. The results evaluated by the above-mentioned method are shown in Table 1.
 (比較例5)
 電極パターン形成した後の加熱温度を160℃として第一の電極および第二の電極を形成する以外は、全て実施例1と同様の操作により、電極付き基板を得た。前述の方法により評価した結果を表1に示す。
(Comparative example 5)
A substrate with an electrode was obtained in the same manner as in Example 1 except that the first electrode and the second electrode were formed at a heating temperature of 160 ° C. after forming the electrode pattern. The results evaluated by the above-mentioned method are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の配線電極付き基板の製造方法を用いることにより、薄膜透明基板を用いても位置精度に優れ、モアレを抑制することができる電極付き基板を、歩留まり良く得ることができ、外観の良好なタッチパネルを提供することが可能である。 By using the method for producing a substrate with a wiring electrode of the present invention, it is possible to obtain a substrate with an electrode which is excellent in positional accuracy and can suppress moire even with a thin film transparent substrate with good yield, and has a good appearance. It is possible to provide a touch panel.
1 第一の透明基板
2 不透明電極
3 絶縁層
4 透明電極
5 粘着層
6 第二の透明基板
7 第一の電極
8 第二の電極
9 不透明電極のメッシュ形状
X 位置ずれ量
1 first transparent substrate 2 opaque electrode 3 insulating layer 4 transparent electrode 5 adhesive layer 6 second transparent substrate 7 first electrode 8 second electrode 9 mesh shape of opaque electrode X displacement amount

Claims (9)

  1. 厚さ200μm以下の第一の透明基板上に、第一の電極、絶縁層および第二の電極を有する電極付き基板の製造方法であって、前記第一の透明基板の少なくとも片面に第一の電極を形成する工程と、前記透明基板の第一の電極が形成されている面に絶縁層を形成する工程と、前記絶縁層上に第二の電極を形成する工程を有し、前記第一の電極を形成する工程および第二の電極を形成する工程において、100℃以上150℃以下の温度で加熱する工程を有し、第一の電極および/または第二の電極が不透明である電極付き基板の製造方法。 A method of manufacturing a substrate with an electrode having a first electrode, an insulating layer and a second electrode on a first transparent substrate having a thickness of 200 μm or less, wherein the first transparent substrate has at least one side thereof. The method includes the steps of forming an electrode, forming an insulating layer on the surface of the transparent substrate on which the first electrode is formed, and forming a second electrode on the insulating layer, Forming the second electrode and heating the second electrode at a temperature of 100.degree. C. to 150.degree. C., the first electrode and / or the second electrode being opaque. Method of manufacturing a substrate
  2. 前記第一の透明基板がポリエチレンテレフタレートフィルム、シクロオレフィンポリマーフィルム、ポリイミドフィルムからなる群から選ばれる一つである請求項1記載の電極付き基板の製造方法。 The method according to claim 1, wherein the first transparent substrate is one selected from the group consisting of a polyethylene terephthalate film, a cycloolefin polymer film, and a polyimide film.
  3. 前記第一の透明基板が機能性フィルムである請求項1記載の電極付き基板の製造方法。 The method according to claim 1, wherein the first transparent substrate is a functional film.
  4. 前記絶縁層が、粘着層および第二の透明基板を有し、前記第一の電極と第二の透明基板とを互いに対向させて、粘着層を介して貼り合わせる請求項1~3のいずれか一項記載の電極付き基板の製造方法。 The said insulating layer has an adhesion layer and a 2nd transparent substrate, makes the said 1st electrode and a 2nd transparent substrate mutually face, and bonds together via an adhesion layer. The manufacturing method of the board | substrate with an electrode as described in one term.
  5. 前記第二の透明基板がポリエチレンテレフタレートフィルム、シクロオレフィンポリマーフィルム、ポリイミドフィルムからなる群から選ばれる一つである請求項4記載の電極付き基板の製造方法。 The method according to claim 4, wherein the second transparent substrate is one selected from the group consisting of a polyethylene terephthalate film, a cycloolefin polymer film, and a polyimide film.
  6. 前記第二の透明基板が機能性フィルムまたは偏光フィルムである請求項4記載の電極付き基板の製造方法。 The method according to claim 4, wherein the second transparent substrate is a functional film or a polarizing film.
  7. 前記不透明電極の線幅が1~10μmである請求項1~6のいずれか一項記載の電極付き基板の製造方法。 The method according to any one of claims 1 to 6, wherein the line width of the opaque electrode is 1 to 10 μm.
  8. 前記第一の電極および第二の電極の線幅が1~10μmである請求項1~6のいずれか一項記載の電極付き基板の製造方法。 The method according to any one of claims 1 to 6, wherein the line width of the first electrode and the second electrode is 1 to 10 μm.
  9. 電極付き基板がタッチパネル用部材である請求項1~8のいずれか一項記載の電極付き基板の製造方法。 The method for producing an electrode-attached substrate according to any one of claims 1 to 8, wherein the electrode-attached substrate is a member for a touch panel.
PCT/JP2018/033780 2017-09-26 2018-09-12 Method for manufacturing substrate with electrodes formed thereon WO2019065234A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018549283A JPWO2019065234A1 (en) 2017-09-26 2018-09-12 Manufacturing method of substrate with electrodes
CN201880062226.0A CN111133408A (en) 2017-09-26 2018-09-12 Method for manufacturing substrate with electrode
KR1020197037539A KR20200058330A (en) 2017-09-26 2018-09-12 Method for manufacturing a substrate with an electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-184503 2017-09-26
JP2017184503 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019065234A1 true WO2019065234A1 (en) 2019-04-04

Family

ID=65901699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033780 WO2019065234A1 (en) 2017-09-26 2018-09-12 Method for manufacturing substrate with electrodes formed thereon

Country Status (5)

Country Link
JP (1) JPWO2019065234A1 (en)
KR (1) KR20200058330A (en)
CN (1) CN111133408A (en)
TW (1) TW201921456A (en)
WO (1) WO2019065234A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029614A (en) * 2012-07-31 2014-02-13 Toppan Printing Co Ltd Film-shaped capacitive touch panel and method for manufacturing the same
JP2014209332A (en) * 2013-03-27 2014-11-06 富士フイルム株式会社 Conductive sheet, manufacturing method therefor, and touch panel
WO2015030090A1 (en) * 2013-08-30 2015-03-05 富士フイルム株式会社 Electrically conductive film, touch panel and display device employing same, and evaluation method for electrically conductive film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062805B2 (en) 1999-01-06 2008-03-19 東レ株式会社 Photosensitive conductive paste for firing and method for forming fine electrode pattern
JP5307670B2 (en) * 2009-09-10 2013-10-02 ハリマ化成株式会社 Low temperature curable conductive paste
CN102639318B (en) 2009-11-27 2014-11-19 凸版印刷株式会社 Transparent conductive laminate, method for producing same, and electrostatic capacitance type touch panel
JP5647864B2 (en) * 2010-11-05 2015-01-07 富士フイルム株式会社 Touch panel
JP5806684B2 (en) * 2011-01-11 2015-11-10 アルプス電気株式会社 Coordinate input device
JP5763492B2 (en) * 2011-09-30 2015-08-12 富士フイルム株式会社 Capacitance type input device manufacturing method, capacitance type input device, and image display apparatus including the same
JP2014071802A (en) 2012-10-01 2014-04-21 Toppan Printing Co Ltd Manufacturing method of transparent conductive laminate
JP2014071865A (en) * 2012-10-02 2014-04-21 Fujikura Ltd Touch panel
CN104951128B (en) * 2014-03-31 2019-10-18 Lg伊诺特有限公司 Touch panel with the intersection construction for sensing patterns

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014029614A (en) * 2012-07-31 2014-02-13 Toppan Printing Co Ltd Film-shaped capacitive touch panel and method for manufacturing the same
JP2014209332A (en) * 2013-03-27 2014-11-06 富士フイルム株式会社 Conductive sheet, manufacturing method therefor, and touch panel
WO2015030090A1 (en) * 2013-08-30 2015-03-05 富士フイルム株式会社 Electrically conductive film, touch panel and display device employing same, and evaluation method for electrically conductive film

Also Published As

Publication number Publication date
CN111133408A (en) 2020-05-08
JPWO2019065234A1 (en) 2020-09-03
KR20200058330A (en) 2020-05-27
TW201921456A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
US10031631B2 (en) Transfer film, method for producing transfer film, transparent laminate, method for producing transparent laminate, capacitance-type input device, and image display device
TWI578211B (en) Capacitive input device and method for producing the same and image display device
TWI668514B (en) Composition for forming protective film for touch panel electrode, transfer film, laminate, protective film for touch panel electrode and forming method thereof, capacitive input device and image display device
TWI724062B (en) Transfer material, method of manufacturing transfer material, laminated body, method of manufacturing laminated body, method of manufacturing capacitance-type input device, and method of manufacturing image display device
JP6333780B2 (en) Transfer film, transfer film manufacturing method, laminate, laminate manufacturing method, capacitive input device, and image display device
CN108025533B (en) Transfer film, electrostatic capacitance type input device, electrode protection film for electrostatic capacitance type input device, laminate, and method for manufacturing laminate
KR20180044966A (en) Transfer film, method of manufacturing film sensor, film sensor, front plate integrated sensor and image display device
JP6750685B2 (en) Photosensitive conductive paste and conductive pattern forming film
TW201924935A (en) Photosensitive transfer material, method for manufacturing resin pattern, and method for manufacturing circuit
US11449180B2 (en) Method for manufacturing substrate equipped with wiring electrode, and substrate equipped with wiring electrode
KR102542864B1 (en) Laminated base material, cover glass, touch panel, and method for manufacturing laminated base material
WO2019065234A1 (en) Method for manufacturing substrate with electrodes formed thereon
JP7035437B2 (en) Manufacturing method of substrate with conductive pattern and substrate with conductive pattern
JP2017107426A (en) Substrate with conductive pattern, method for manufacturing substrate with conductive pattern, and touch panel
CN111665996A (en) Method for manufacturing contact sensor member and contact sensor member
TWI797437B (en) Substrate with conductive layer and touch panel
JP2013214271A (en) Capacitance type touch panel substrate, method for manufacturing the same, and display device
WO2024004318A1 (en) Method for manufacturing substrate with wiring electrode
TW202027983A (en) Photosensitive transfer material, laminate, touch panel,method for manufacturing patterned substrate, method for manufacturing circuit board, and method for manufacturing touch panel
CN116602061A (en) Wiring substrate
WO2020174767A1 (en) Pattern-added substrate manufacturing method, circuit board manufacturing method, touch panel manufacturing method, and laminate
JP2019114497A (en) Conductive paste and method for producing conductive pattern forming substrate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549283

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861272

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861272

Country of ref document: EP

Kind code of ref document: A1