WO2019065168A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2019065168A1
WO2019065168A1 PCT/JP2018/033335 JP2018033335W WO2019065168A1 WO 2019065168 A1 WO2019065168 A1 WO 2019065168A1 JP 2018033335 W JP2018033335 W JP 2018033335W WO 2019065168 A1 WO2019065168 A1 WO 2019065168A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
power supply
heat
supply device
battery cell
Prior art date
Application number
PCT/JP2018/033335
Other languages
French (fr)
Japanese (ja)
Inventor
米田 晴彦
真己 拝野
岸田 裕司
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201880062870.8A priority Critical patent/CN111149252B/en
Priority to JP2019544515A priority patent/JP7219716B2/en
Publication of WO2019065168A1 publication Critical patent/WO2019065168A1/en
Priority to PH12020550171A priority patent/PH12020550171A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device incorporating a battery cell and an electronic circuit.
  • a large-power, large-capacity power supply device a large number of battery cells are connected in series to increase the output voltage, and in parallel, to increase the output current.
  • a protection circuit is connected to the battery cell, and the charge and discharge current is controlled by the protection circuit to ensure the deterioration and safety of the battery cell.
  • the battery cell protection circuit is realized by a control element mounted on a circuit board. On the circuit board, semiconductor switching elements such as FETs and transistors are mounted as power elements for controlling the current in order to control the current of the battery cell. Since the power element controls a large current, a large current flows and the power loss increases to generate heat. This is because Joule heat increases in proportion to the square of the current.
  • the thermal energy of the power element mounted on the circuit board and the battery cell is conducted to dissipate both.
  • This power supply device is characterized in that the heat energy of both the power element and the battery cell can be conducted to the potting resin and dissipated.
  • this power supply device has a drawback that it can not hold both the power element and the battery cell in the ideal temperature range. This is because the ideal temperature range of the power element and the battery cell is different. Furthermore, since both the power element and the battery cell generate heat together, the temperature rise of the power element and the battery cell is simultaneously caused.
  • the present invention has been developed for the purpose of solving the above-mentioned drawbacks.
  • One of the objects of the present invention is to keep the temperature balance of the battery cell and the control element in the optimum range by connecting in series and proportionally increasing the current value, and by the temperature rise of both the battery cell and the control element
  • a power supply device includes a battery assembly including a plurality of battery cells, a circuit board on which a control element for realizing a protection circuit of battery cells of the battery assembly is mounted, and the circuit A substrate holder fixed to the substrate and having a bottom plate disposed between the circuit substrate and the battery assembly, the circuit substrate having a surface opposite to the surface facing the bottom plate of the substrate holder
  • the control element is fixed on the surface, the potting resin is in close contact with the surface, and a heat insulating layer is provided between the back surface of the circuit board and the bottom plate.
  • the above power supply devices can maintain the temperature balance between the battery cell and the control element in the optimum range, in which the current values are proportionally connected in series with each other. Therefore, the adverse effect due to the temperature rise of both the battery cell and the control element is prevented, and the deterioration of the electrical characteristics due to the temperature rise of the battery cell and the operation failure due to the temperature rise of the control element are eliminated.
  • the above power supply fixes the circuit board to the board holder, arranges the bottom plate of the board holder between the circuit board and the battery assembly, and further fixes the control element on the surface of the circuit board.
  • the potting resin is in close contact, and a heat insulating layer is provided between the back surface of the circuit board and the bottom plate to thermally isolate the circuit board on which the control element is mounted from the battery cell.
  • the control element that controls the current of the battery cell is connected in series with the battery cell, and thus the current value increases as the current of the battery cell increases. Since the battery cell and the control element generate heat by Joule heat in proportion to the square of the current, the control element also generates heat at the same time as the battery cell generates heat. Therefore, both the battery cell and the control element rise in temperature together. Since the control element is smaller than the battery cell, heat is generated locally and the temperature rise is higher than that of the battery cell. Therefore, in the circuit board on which the control element is mounted, the temperature of the mounting portion of the control element is locally high. Arrow A in FIG.
  • the power supply device connects the battery cells in series to increase the output voltage without connecting all the battery cells in parallel. With the power supply devices connected in series, the electrical characteristics of any battery cell degrade the overall electrical characteristics. From this, in addition to reducing the temperature rise of the battery cells, the power supply device incorporating a large number of battery cells can reduce the temperature difference between the respective battery cells by reducing the electrical characteristics, that is, the lifetime. It becomes an important parameter to identify.
  • the power supply device shown in FIG. 2 fixes the circuit board 80 to the board holder 81, arranges the control element 82 on the surface thereof and adheres the potting resin 7 thereto, and the bottom plate of the board holder 81 on the back surface of the circuit board 80.
  • the heat insulating layer 83 is provided between the circuit board 81 and the control element 82 and the heat insulating layer 83 is provided between the circuit board 80 and the control element 82.
  • the heat energy of the control element fixed on the surface of the circuit board and generating heat is conducted to the potting resin, and the heat energy of the control element is dissipated and dispersed on the surface of the circuit board.
  • the potting resin efficiently disperses and dissipates the heat energy of the control element. Therefore, the temperature rise of the control element is limited, and the temperature unevenness of the circuit board is reduced.
  • the circuit board with less temperature unevenness has a heat insulating layer between the back surface and the bottom plate. An insulating layer disposed between the circuit board and the bottom plate is between the circuit board and the control element to block heat transfer from the circuit board to the battery assembly. Therefore, in a state where the current flowing to the battery cell increases and the temperature of the battery cell rises due to Joule heat, the control element that generates heat to a higher temperature than the battery cell is not heated.
  • the heat resistance temperature of the control element is higher than that of the battery cell. Moreover, the battery cell which temperature rises is hold
  • the said heat insulation layer can be made into an air layer.
  • the air layer can be an air ventilation layer formed by opening the air layer to the outside.
  • the substrate holder provides a peripheral wall around the bottom plate, and arranges the circuit board inside the peripheral wall,
  • the boundary between the peripheral wall and the outer periphery of the circuit board may be a closed gap that prevents the inflow of potting resin.
  • a packing that prevents the inflow of the potting resin can be disposed between the peripheral wall and the circuit board.
  • a heat conduction layer is provided on the surface of the circuit board, and the circuit board is made into the potting resin via the heat conduction layer. It can be attached closely.
  • the circuit board and the bottom plate are disposed in a horizontal posture, and the potting resin is closely attached to the upper surface of the circuit board
  • the heat insulating layer may be disposed on the lower surface of the circuit board, and the battery assembly may be disposed below the bottom plate.
  • a heat insulating air layer can be provided between the bottom plate and the battery assembly.
  • FIG. 1 It is a vertical sectional view showing a power supply device concerning one embodiment of the present invention. It is a principal part expansion schematic sectional drawing of the power supply device of FIG. It is a disassembled perspective view of the battery assembly of the power supply device of FIG. It is a disassembled perspective view of the closure cover shown in FIG.
  • each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and one member is used in common as a plurality of elements, or conversely the function of one member is realized by a plurality of members It can be shared and realized.
  • the contents described in some examples and embodiments may be applicable to other examples and embodiments.
  • the power supply device shown below mainly demonstrates the example applied to the drive power supply of electric vehicles, such as an electric vehicle and an electric cart which drive
  • the power supply device 100 shown in the cross-sectional view of FIG. 1 and the enlarged cross-sectional view of FIG. 2 has the circuit board 80 disposed on the battery assembly 40.
  • the plurality of secondary battery cells 1 are arranged at fixed positions by the battery holder 44.
  • the secondary battery cells 1 are arranged in parallel in a horizontal posture, and are arranged in multiple stages. (Circuit board 80)
  • the circuit board 80 has mounted thereon a control element 82 for realizing the protection circuit of the secondary battery cell 1 of the battery assembly 40.
  • the protection circuit detects the voltage, remaining capacity, temperature, current, etc. of the secondary battery cell 1 to control the current to prevent overcharging or overdischarging of the secondary battery cell 1, and The current in the abnormal state is controlled to prevent the deterioration of the secondary battery cell 1 and the deterioration of the electrical characteristics.
  • the protection circuit for controlling the current of the secondary battery cell 1 includes a control element 82 connected in series to the secondary battery cell 1 to control the current.
  • the control element 82 is a semiconductor element such as a FET or a transistor.
  • control elements 82 generate heat with Joule heat that is proportional to the product of the square of the current and the equivalent resistance.
  • the control element 82 is connected in series to the secondary battery cell 1 to control the current of the secondary battery cell 1, so the current of the control element 82, which increases the current of the secondary battery cell 1, also increases. Since the secondary battery cell 1 also generates heat with Joule heat that is proportional to the product of the square of the current and the internal resistance, the control element 82 and the secondary battery cell 1 generate heat at the same timing, and the generated energy also increases. For this reason, for example, when the current is doubled, the heat generation energy of the secondary battery cell 1 and the control element 82 is quadrupled.
  • the calorific value of the secondary battery cell 1 and the control element 82 increase at the same rate, but the temperature rise of the control element 82 becomes larger than that of the secondary battery cell 1. The reason is that the heat generation area of the control element 82 is extremely narrow compared to the secondary battery cell 1. (Substrate holder 81)
  • the circuit board 80 is disposed at a predetermined position of the battery assembly 40 via the substrate holder 81.
  • the substrate holder 81 efficiently diffuses the thermal energy of the control element 82 heated to a high temperature, and further dissipates heat, from the control element 82 to the secondary battery cell 1
  • the heat conduction to the secondary battery cell is cut off to optimize the temperature balance of both the control element 82 and the secondary battery cell 1, and both the secondary battery cell 1 and the control element 82 are maintained in the optimum temperature range.
  • the substrate holder 81 is provided with a heat insulating layer 83 between the back surface of the circuit board 80 and the bottom plate 81A, and the potting resin 7 is injected into the upper surface of the circuit board 80. (Adiabatic layer 83)
  • the substrate holder 81 of FIG. 2 uses the heat insulating layer 83 on the back surface of the circuit board as an air layer.
  • the air layer is light and achieves excellent thermal insulation properties.
  • the heat insulating layer 83 of FIG. 2 further improves the heat insulating property of the air layer as a ventilation layer 83A of air opened to the outside.
  • the ventilation layer 83A is provided with through holes at the top and bottom of the peripheral wall 81B of the substrate holder 81 to form openings 81a and 81b.
  • this ventilation layer 83A the outside air flows in from the lower opening 81a, and the air heated and lightened inside is discharged from the upper opening 81b to the outside, and the inside air is ventilated to obtain the internal air Reduce temperature rise.
  • the heat insulating layer 83 may be a heat insulating material in which a myriad of fibers are three-dimensionally assembled, or a heat insulating material made of a foam of plastic or inorganic material.
  • the substrate holder 81 for filling the heat insulating layer 83 with a heat insulating material can prevent the potting resin 7 injected on the upper surface from flowing into the heat insulating layer 83, so that the injection of the potting resin 7 can be simplified.
  • the power supply device 100 shown in FIGS. 1 and 2 is provided with a heat insulating air layer 84 also between the bottom plate 81A of the substrate holder 81 and the battery assembly 40, and the control element 82 to the secondary battery cell 1. It blocks heat conduction. (Potting resin 7)
  • the substrate holder 81 injects the potting resin 7 onto the circuit board 80 to bring the surface of the circuit board 80 and the control element 82 into close contact with the potting resin 7.
  • the substrate holder 81 has a peripheral wall 81B having a height projecting upward from the surface of the circuit board 80.
  • the substrate holder 81 is provided with a peripheral wall 81B around the bottom plate 81A so that the uncured, liquid potting resin 7 injected onto the circuit substrate 80 does not flow into the back surface of the circuit substrate 80. Are disposed inside the peripheral wall 81B.
  • the boundary between the peripheral wall 81B and the outer periphery of the circuit board 80 is formed as a closed gap 81C for blocking the inflow of the potting resin 7 so that no space is formed between the outer peripheral edge of the circuit board 80 and the inner surface of the peripheral wall.
  • the board holder 81 of FIG. 2 has a packing 85 disposed between the inner surface of the peripheral wall 81 B and the outer peripheral edge of the circuit board 80 to prevent the potting resin 7 from flowing into the back surface of the circuit board 80.
  • the potting resin 7 is embedded in the surface of the circuit board 80 and the whole or the lower part of the control element 82 and is in close contact with the surface of the circuit board 80 and the control element 82 to apply thermal energy of the control element 82 to the surface of the circuit board 80 Disperse and dissipate heat to the outside.
  • the potting resin 7 shown in the cross-sectional view of FIG. 2 embeds the whole of the control element 82 in the potting resin 7 and raises the peripheral wall 81 B to make the potting resin 7 in close contact with the potting resin 7. Is filled thick.
  • the control element 82 embedded in the potting resin 7 conducts thermal energy to the potting resin 7 from the entire surface.
  • the potting resin 7 disperses the conducted thermal energy to the surface of the circuit board 80 and further dissipates heat from the surface to dissipate the thermal energy of the control element 82.
  • the circuit board 80 shown in the cross-sectional view of FIG. 2 is provided with a heat conduction layer 86 on the surface so that the heat energy of the control element 82 can be dispersed to the surface more efficiently. It is in close contact.
  • the heat conduction layer 86 is a metal layer having a thermal conductivity better than that of the potting resin 7 and distributes the heat energy of the control element 82 very efficiently to the surface of the circuit board 80.
  • the circuit board 80 is provided with the heat conduction layer 86 excellent in the heat conduction characteristic between the potting resin 7 and the surface of the circuit board 80, the heat energy of the control element 82 is dispersed by the heat conduction layer 86, The dispersed thermal energy is further dispersed by the potting resin 7 and dissipated.
  • the power supply device 100 of FIG. 2 arranges the circuit board 80 and the bottom plate 81A in a horizontal posture, adheres closely to the potting resin 7 on the circuit board 80, and arranges the heat insulating layer 83 on the lower surface.
  • the body 40 is disposed below the bottom plate 81A.
  • the power supply device 100 conducts the heat energy of the control element 82 that generates heat to the potting resin 7 to radiate the heat.
  • the heated potting resin 7 disperses thermal energy and radiates heat from the surface.
  • the potting resin 7 which dissipates heat energy dissipates heat by radiant heat, and also heats and dissipates air contacting the surface. The air warmed on the surface of the potting resin 7 is lightened and rises.
  • the control element 82 that generates heat does not heat the secondary battery cell 1 via air. There is a feature that the temperature rise of the secondary battery cell 1 due to heat generation can be minimized.
  • the circuit board 80 disposed above the battery assembly 40 is heated by the air whose temperature has risen in the temperature rising secondary battery cell 1, but the temperature rise of the secondary battery cell 1 is smaller than that of the control element 82 Moreover, since the temperature rise of the control element 82 is higher than that of the secondary battery cell 1, the heating of the control element 82 by the secondary battery cell 1 that generates heat does not have a problem. (Battery assembly 40)
  • the battery assembly 40 arranges the plurality of secondary battery cells 1 at fixed positions by the battery holder 44.
  • a pair of battery units 40A are arranged and connected at opposing positions (left and right in the drawing).
  • the plurality of secondary battery cells 1 are arranged in a parallel posture, both ends thereof are arranged on the same plane, and the lead plate 45 is connected to the end electrodes 13 at both ends.
  • the battery assembly 40 arranges a pair of battery units 40A arranged at opposing positions in the axial direction of the secondary battery cell 1, and also provides an insulating space 6 between the pair of battery units 40A.
  • Each battery unit 40A arrange
  • the secondary battery cell 1 is provided at its end face with a discharge port (not shown) of a discharge valve that opens at a set pressure.
  • the secondary battery cell 1 is provided with end electrodes 13 at both ends.
  • the opening of a metal outer can such as aluminum is hermetically sealed with a sealing plate, and a convex electrode is provided on the sealing plate to form a first end electrode 13A, and the bottom of the outer can As a second end electrode 13B.
  • the discharge port of the discharge valve is provided on the convex electrode side or on the bottom surface of the outer can.
  • the secondary battery cell 1 is a cylindrical lithium ion battery.
  • the lithium ion battery has a large capacity with respect to size and weight, and can increase the total capacity of the power supply device 100.
  • the power supply device of the present invention does not specify the secondary battery cell as a lithium ion battery.
  • Other secondary batteries that can be charged can be used for the secondary battery cell.
  • the power supply device 100 of a figure makes the secondary battery cell 1 a cylindrical battery, a square battery can also be used for a secondary battery cell.
  • a lead plate 45 is welded to the end electrodes 13 at both ends thereof, and the adjacent secondary battery cells 1 are connected in series or in parallel. (Battery holder 44)
  • the secondary battery cell 1 is disposed at a fixed position by the battery holder 44 as shown in FIG.
  • the battery holder 44 is manufactured by molding an insulating material such as plastic.
  • the illustrated battery holder 44 arranges all the secondary battery cells 1 at a fixed position in a parallel posture. Since the secondary battery cells 1 arranged at a fixed position by the battery holder 44 have the lead plates 45 welded to both ends, each lead plate 45 to be welded to each end is positioned in the same plane.
  • the secondary battery cell 1 is disposed in the battery holder 44 so that both ends thereof are positioned substantially in the same plane.
  • the battery holder 44 is provided with the insertion part 44A which inserts the secondary battery cell 1 and arrange
  • the insertion portion 44A has a cylindrical shape.
  • the battery holder 44 has a cylindrical plastic shape and is provided with the insertion portion 44A inside.
  • the insertion portion 44A is provided at both ends with openings 44B for exposing the battery end.
  • the opening 44B exposes the end of the secondary battery cell 1 inserted into the insertion portion 44A to the outside from the insertion portion 44A.
  • the battery assembly 40 in which the insulating space 6 is provided between the pair of battery units 40A and the end faces of the secondary battery cells 1 are disposed on both sides of the insulating space 6 has a discharge port of the discharge valve. It is arranged in the insulating space 6.
  • the discharge valve When the discharge valve is opened, the high-temperature jetted gas discharged from the discharge port is injected toward the end face of the opposing battery unit 40A.
  • the high-temperature jetted gas injected to the facing surface of the secondary battery cell 1 at the facing position causes the thermal runaway of the secondary battery cell 1 to be induced.
  • a heat-resistant sheet 64 is disposed in the middle of the insulating space 6. (Heat resistant sheet 64)
  • the heat-resistant sheet 64 is an insulation sheet having a heat-resistant temperature which is not melted by the jetted gas discharged from the discharge valve, and is, for example, a heat-resistant paper subjected to a flame retardant treatment.
  • a heat-resistant paper instead of heat-resistant paper, paper or non-woven fabric in which inorganic fibers which are not melted by jet gas are gathered in sheet form, or inorganic sheet in which inorganic material is bound in thin sheet form can be used. Since these heat-resistant sheets 64 can be made thin, the heat-resistant sheets 64 can widen the insulating space 6 without reducing the substantial volume of the insulating space 6 and can discharge the jetted gas smoothly.
  • the insulating heat-resistant sheet 64 can arrange the end face of the secondary battery cell 1 arranged on both sides and the lead plate 45 in an insulating state.
  • the heat-resistant sheet does not necessarily have to be an insulating material. That is because the insulating sheet can be laminated on the surface of the heat resistant sheet to insulate the surface.
  • the structure which laminates an insulating material on the surface by using a heat-resistant sheet as the insulating material can further improve the insulation by the heat-resistant sheet.
  • the heat-resistant sheet 64 is disposed in a posture parallel to the end face of the secondary battery cell 1.
  • the power supply apparatus 100 of the figure arrange
  • FIG. In order to place the heat-resistant sheet 63 in the middle of the insulating space 6, as shown in FIGS. 1 to 4, the power supply apparatus 100 has a closing cover 61 shaped along the outer periphery of the insulating space 6 on both sides of the heat-resistant sheet 64. It arrange
  • the closing cover 61 in the figure has an outer peripheral frame portion 62 shaped along the outer peripheral portion of the insulating space 6.
  • the power supply device 100 arranges the heat-resistant sheet 64 in a state of being separated from the opposing surface 40 a of the battery unit 40 by arranging the blocking cover 61 of this shape between the opposing surface 40 a of the battery unit 40 and the heat-resistant sheet 64.
  • An exhaust chamber 63 is provided between the heat-resistant sheet 64 and the opposing surface 40 a of the battery unit 40 and inside the outer peripheral frame portion 62.
  • the insulating space 6 in which the exhaust chamber 63 is provided on both sides of the heat-resistant sheet 64 can discharge the jetted gas smoothly to the exhaust chamber 63 without resistance. Further, since the insulating space 6 of this structure diffuses the jetted gas in the exhaust chamber 63 and blows it to the heat-resistant sheet 64, the heat damage of the heat-resistant sheet 64 due to the jetted gas is reduced, and the secondary battery cell 1 located at the opposing position Can prevent the thermal runaway more effectively. Furthermore, the strength and heat resistance required for the heat resistant sheet 64 can be reduced, and the cost of the heat resistant sheet 64 can be reduced.
  • the jetted gas sprayed on the surface of the heat-resistant sheet 64 is dispersed on both sides by the exhaust chamber 63, a feature is also realized in which the jetted gas can be smoothly discharged to the insulating space 6 with a small exhaust resistance. This can quickly reduce the pressure of the secondary battery cell 1 in which the internal pressure has abnormally increased, thereby effectively preventing negative effects such as the rupture of the outer can caused by the increase in internal pressure.
  • the heat-resistant sheet 64 is a flexible sheet that is deformed by the ejected gas.
  • the heat resistant sheet 64 is deformed by the pressure of the jetted gas to be jetted, and the volume of the exhaust chamber 63 from which the jetted gas is discharged can be increased.
  • the gas can be smoothly discharged to effectively prevent the destruction due to the increase of the internal pressure of the secondary battery cell 1 and ensure higher safety.
  • a cover 61 disposed on both sides of the heat-resistant sheet 64 and disposed between the heat-resistant sheet 64 and the battery unit 40A is an outer peripheral frame that closes the outer peripheral portion of the insulating space 6, as shown in FIGS.
  • the exhaust chamber 63 is provided inside the outer peripheral frame 62 to expose the exhaust port of the exhaust valve to the exhaust chamber 63.
  • the outer peripheral frame portion 62 has a shape extending along the outer peripheral edge portion of the insulating space 6 and is in close contact with the end face of the battery unit 40A without a gap to form an exhaust chamber 63 in the insulating space 6.
  • the closed cover 61 having this structure is characterized in that a large volume exhaust chamber 63 is provided inside the outer peripheral frame 62 and the jetted gas can be jetted here, so that the jetted gas can be smoothly discharged.
  • the reason is that the large-volume exhaust chamber 63 has a slow rise in internal pressure due to the gas jetted from the discharge port of the discharge valve, and can make the rise gradient of the exhaust resistance gentle.
  • the closing cover 61 is formed of a foam of an insulating material having closed cells which are melted by the gas discharged from the discharge valve.
  • the melting temperature of the blocking cover 61 melted by the jet gas is, for example, 100 ° C. or more and 500 ° C. or less, preferably 200 ° C. or more and 400 ° C. or less.
  • the closing cover 61 having a low melting temperature can be quickly melted by the jetted gas to discharge the jetted gas to the outside of the insulating space 6, and the closing cover 61 having a high melting temperature can block the insulating space 6 reliably in use.
  • the melting temperature of the blocking cover 61 is set in the above-mentioned range in consideration of the temperature characteristic which is promptly melted in the jetted gas and does not deform or melt in the state where the jetted gas is not jetted.
  • the closing cover 61 melted by the jetted gas is melted by the high-temperature jetted gas injected from the opened discharge valve.
  • the melted closing cover 61 opens the insulating space 6 to the outside and discharges the inflowing jetted gas from the insulating space 6 as shown by the arrow B in FIG.
  • the closing cover 61 made of an insulating material is in close contact with the end portion electrode 13 side of the battery unit 40A, so that the insulating space 6 can be closed.
  • the closing cover 61 of the insulating material is in close contact with the lead plate 45, and the insulating space 6 is closed without shorting the lead plate 45. it can.
  • the closed cover 61 of the foam having the closed cells has a small weight per unit volume and can have a low density, it is rapidly melted by the high-temperature jetted gas, and the jetted gas is rapidly discharged to the outside from the insulating space 6 There is a feature that can be done. Furthermore, since the closed cover 61 of the foam can be made to have a lower specific gravity by controlling the foaming ratio at the time of molding, the melting time by the jet gas can be extremely shortened.
  • the closing cover 61 is formed of a rubber-like elastic foam.
  • the rubber-like elastic closure cover 61 is formed of, for example, a synthetic rubber foam or a soft plastic foam. Propylene rubber can be used as the synthetic rubber foam. For example, a soft urethane foam can be used for the soft plastic foam.
  • the closing cover 61 made of a rubber-like elastic body is disposed between the pair of battery units 40A, pressed by the battery units 40A on both sides, and elastically deformed in a compressed state to be in close contact with the opposing surface 40a of the battery unit 40A. Do.
  • the lead plate 45 forms asperities and gaps on the facing surface 40a.
  • the closed cover 61 of the rubber-like elastic body made of the foam having the closed cells has a greater degree of freedom to be softened and deformed by the innumerable air bubbles, and there is no gap on the facing surface 40a of the battery unit 40A having unevenness.
  • the closed cover 61 of the rubber-like elastic body made of the foam having the closed cells has a greater degree of freedom to be softened and deformed by the innumerable air bubbles, and there is no gap on the facing surface 40a of the battery unit 40A having unevenness.
  • the closing cover 61 made of a rubber elastic body can be elastically deformed to be in close contact with the facing surface 40a of the battery unit 40A, thereby reducing the pressing force of the facing surface 40a of the battery unit 40A. Therefore, there is a feature that the insulating space 6 can be reliably closed without causing an excessive stress on the battery unit 40A while in close contact with the facing surface 40a of the battery unit 40A.
  • the closing cover 61 does not necessarily have to be formed of a rubber-like elastic body.
  • a packing that elastically deforms is disposed between the closing cover 61 and the facing surface 40a of the battery unit 40A, or a sealing material is applied to closely attach the closing cover 61 to the facing surface 40a of the battery unit 40A. It is because
  • the insulating sheet 65 is laminated on the surface of the outer peripheral frame portion 62 of the closing cover 61 and the surface of the heat resistant sheet 64.
  • the insulating sheet 65 is made of plastic, and the closing covers 61 are disposed on both sides of the heat resistant sheet 64, and the heat resistant sheet 64 and the closing covers 61 on both sides are integrally connected to each other.
  • As the insulating spacer 60 of FIG. The insulating spacer 60 is disposed in a state of being sandwiched between the pair of battery units 40A, and places the closing cover 61 and the heat-resistant sheet 64 at a predetermined position of the insulating space 6. Therefore, this structure is characterized in that the assembly process is simplified and mass production is efficiently performed, and the heat-resistant sheet 64 and the closing cover 61 can be disposed at the correct positions.
  • the power supply device 100 of FIGS. 1 and 2 is provided with the outer peripheral frame portion 62 in the closing cover 61 and the exhaust chamber 63 inside the outer peripheral frame portion 62, but the closing cover 61 is not limited to this shape .
  • the closing cover is formed into a plate-like foam in which a recess is provided on the surface facing the discharge port of the discharge valve of the secondary battery cell, or it is disposed without gaps in the insulating space, It is also possible to form a plate without the exhaust chamber to close the outlet of the outlet valve.
  • the closure cover 61 having these shapes increases the expansion ratio of the foam to increase the porosity inside the closure cover, and lowers the melting temperature to shorten the melting time by the high temperature gas, thereby making the insulation space Immediately discharge the gas jetted to the outside to the outside.
  • the power supply device of the present invention can be used conveniently for applications requiring high safety by preventing the thermal runaway of the built-in battery.
  • Battery unit 40a Opposite surface 44: battery holder 44A: insertion portion 44B: opening 45: lead plate 60: insulating spacer 61: closing cover 62: outer peripheral frame 63: exhaust chamber 64: heat resistant sheet 65: insulating sheet 80: circuit board 81: board Holder 81A: Bottom plate 81B: Peripheral wall 81C: Closed gap 81a: Opening 81b: Opening 82: Control element 83: Heat insulation layer 83A: Ventilation layer 84: Heat insulation air layer 85: Packing 86: Heat conduction layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The purpose of the present invention is to keep the temperature balance between a battery cell and a control element in an optimum range, and to prevent a deterioration of electric characteristics due to a battery cell temperature increase and an operation failure due to a control element temperature increase. This power supply device includes a battery assembly (40) having battery cells (1) and a circuit substrate (80) on which a control element (82) for providing a protection circuit for the battery cells (1) is mounted, the circuit substrate (80) being fixed to a substrate holder (81). A bottom plate (81A) of the substrate holder (81) is disposed between the circuit substrate (80) and the battery assembly (40). The control element (82) is fixed to a surface of the circuit substrate (80) and is closely contacted with a potting resin (7). A heat insulating layer (83) is disposed between a back surface of the circuit substrate (80) and the bottom plate (81A).

Description

電源装置Power supply
 本発明は、電池セルと電子回路とを内蔵する電源装置に関する。 The present invention relates to a power supply device incorporating a battery cell and an electronic circuit.
 大出力で大容量の電源装置は、多数の電池セルを直列に接続して出力電圧を高く、また並列に接続して出力電流を大きくしている。この種の電源装置は、電池セルに保護回路を接続し、保護回路で充放電の電流をコントロールして、電池セルの劣化や安全性を確保している。電池セルの保護回路は、回路基板に実装する制御素子で実現される。回路基板には、電池セルの電流を制御するために、FETやトランジスタ等の半導体スイッチング素子が電流をコントロールするパワー素子として実装される。パワー素子は大電流をコントロールするので、大電流が流れて電力損失が大きくなって発熱する。ジュール熱が電流の二乗に比例して大きくなるからである。一方、電池セルも電流のジュール熱で発熱するので、電池セルとパワー素子の両方が発熱する。電池セルの発熱による温度上昇は、電池セルの電気特性を低下し、また安全性を低下させる。パワー素子の発熱は、パワー素子が故障する原因となる。パワー素子と電池セルの熱エネルギーを効率よく放熱して異常な温度上昇を防止するために、従来の電源装置は、電池セルと回路基板とをポッティング樹脂に埋設してポッティング樹脂に熱伝導して放熱している。(特許文献1参照) In a large-power, large-capacity power supply device, a large number of battery cells are connected in series to increase the output voltage, and in parallel, to increase the output current. In this type of power supply device, a protection circuit is connected to the battery cell, and the charge and discharge current is controlled by the protection circuit to ensure the deterioration and safety of the battery cell. The battery cell protection circuit is realized by a control element mounted on a circuit board. On the circuit board, semiconductor switching elements such as FETs and transistors are mounted as power elements for controlling the current in order to control the current of the battery cell. Since the power element controls a large current, a large current flows and the power loss increases to generate heat. This is because Joule heat increases in proportion to the square of the current. On the other hand, since the battery cell also generates heat due to Joule heat of current, both the battery cell and the power element generate heat. The temperature rise due to the heat generation of the battery cell degrades the electrical characteristics of the battery cell and also reduces the safety. The heat generation of the power element causes the power element to fail. In order to efficiently dissipate the thermal energy of the power element and the battery cell and to prevent an abnormal temperature rise, the conventional power supply device embeds the battery cell and the circuit board in the potting resin and conducts heat to the potting resin. It is radiating heat. (See Patent Document 1)
特開2012-15121号公報JP 2012-15121 A
 電池セルと回路基板の両方をポッティング樹脂に埋設する電源装置は、回路基板に実装するパワー素子と電池セルの熱エネルギーが伝導されて両方を放熱する。この電源装置は、パワー素子と電池セルの両方の熱エネルギーをポッティング樹脂に伝導して放熱できる特徴がある。しかしながら、この電源装置は、パワー素子と電池セルの両方を理想的な温度帯域に保持できない欠点がある。パワー素子と電池セルの理想的な温度帯域が異なるからである。さらに困ったことに、パワー素子と電池セルは両方が一緒に発熱するので、パワー素子と電池セルの温度上昇が同時になる。それは、両方が流れる電流の二乗に比例してジュール熱で発熱し、しかもパワー素子は電池セルに直列に接続されて、パワー素子の電流が増加するときに電池セルの電流も増加するからである。さらに、両方が同時に発熱するタイミングで、パワー素子の温度上昇は電池セルよりも大きくなる。パワー素子の電流密度が電池セルよりも大きく、パワー素子が電池セルよりも小さい領域で発熱するからである。したがって、パワー素子と電池セルとがポッティング樹脂で密着されて両方が同じタイミングで発熱すると、高温のパワー素子の熱エネルギーが、電池セルを温度上昇させて電池セルに温度障害を与える弊害が発生する。 In the power supply device in which both the battery cell and the circuit board are embedded in the potting resin, the thermal energy of the power element mounted on the circuit board and the battery cell is conducted to dissipate both. This power supply device is characterized in that the heat energy of both the power element and the battery cell can be conducted to the potting resin and dissipated. However, this power supply device has a drawback that it can not hold both the power element and the battery cell in the ideal temperature range. This is because the ideal temperature range of the power element and the battery cell is different. Furthermore, since both the power element and the battery cell generate heat together, the temperature rise of the power element and the battery cell is simultaneously caused. The reason is that both generate Joule heat in proportion to the square of the current flowing, and the power element is connected in series to the battery cell, and the current of the battery cell also increases when the current of the power element increases. . Furthermore, the temperature rise of the power element becomes larger than that of the battery cell at the timing when both generate heat simultaneously. This is because the current density of the power element is larger than that of the battery cell, and the power element generates heat in an area smaller than that of the battery cell. Therefore, when the power element and the battery cell are in close contact with each other by the potting resin and both generate heat at the same timing, the thermal energy of the high temperature power element raises the temperature of the battery cell and causes a problem of causing a temperature failure in the battery cell. .
 本発明は、以上の欠点を解決することを目的に開発されたものである。本発明の目的の一は、互いに直列に接続されて比例して電流値が増加する、電池セルと制御素子の温度バランスを最適範囲に保持して、電池セルと制御素子の両方の温度上昇による弊害を防止して、電池セルの温度上昇による電気特性の低下と、制御素子の温度上昇による動作不良とを解消して、厳しい使用環境においても高い安全性を実現する電源装置を提供することにある。 The present invention has been developed for the purpose of solving the above-mentioned drawbacks. One of the objects of the present invention is to keep the temperature balance of the battery cell and the control element in the optimum range by connecting in series and proportionally increasing the current value, and by the temperature rise of both the battery cell and the control element To provide a power supply device that achieves high safety even in a severe use environment by preventing adverse effects and eliminating deterioration of electrical characteristics due to temperature rise of battery cells and malfunction due to temperature rise of control elements. is there.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 本発明の第1の側面に係る電源装置は、複数の電池セルを備える電池集合体と、前記電池集合体の電池セルの保護回路を実現する制御素子を実装してなる回路基板と、前記回路基板を固定して、底プレートを回路基板と電池集合体との間に配置してなる基板ホルダーとを備え、前記回路基板は、前記基板ホルダーの底プレートと対向する面の反対側にある表面に制御素子を固定して、表面にはポッティング樹脂が密着しており、さらに、回路基板の裏面と底プレートとの間には断熱層を設けている。 A power supply device according to a first aspect of the present invention includes a battery assembly including a plurality of battery cells, a circuit board on which a control element for realizing a protection circuit of battery cells of the battery assembly is mounted, and the circuit A substrate holder fixed to the substrate and having a bottom plate disposed between the circuit substrate and the battery assembly, the circuit substrate having a surface opposite to the surface facing the bottom plate of the substrate holder The control element is fixed on the surface, the potting resin is in close contact with the surface, and a heat insulating layer is provided between the back surface of the circuit board and the bottom plate.
 以上の電源装置は、互いに直列に接続されて比例して電流値が増加する、電池セルと制御素子の温度バランスを最適範囲に保持できる。したがって、電池セルと制御素子の両方の温度上昇による弊害を防止して、電池セルの温度上昇による電気特性の低下と、制御素子の温度上昇による動作不良とを解消して、厳しい使用環境においても高い安全性を実現できる特徴がある。それは、以上の電源装置が、回路基板を基板ホルダーに固定して、回路基板と電池集合体との間に基板ホルダーの底プレートを配置し、さらに回路基板は、表面に制御素子を固定してポッティング樹脂が密着し、回路基板の裏面と底プレートとの間には断熱層を設けて制御素子を実装する回路基板を電池セルから熱遮断しているからである。 The above power supply devices can maintain the temperature balance between the battery cell and the control element in the optimum range, in which the current values are proportionally connected in series with each other. Therefore, the adverse effect due to the temperature rise of both the battery cell and the control element is prevented, and the deterioration of the electrical characteristics due to the temperature rise of the battery cell and the operation failure due to the temperature rise of the control element are eliminated. There is a feature that can realize high safety. That is, the above power supply fixes the circuit board to the board holder, arranges the bottom plate of the board holder between the circuit board and the battery assembly, and further fixes the control element on the surface of the circuit board. The potting resin is in close contact, and a heat insulating layer is provided between the back surface of the circuit board and the bottom plate to thermally isolate the circuit board on which the control element is mounted from the battery cell.
 電池セルの電流をコントロールする制御素子は、電池セルと直列に接続されるので、電池セルの電流が増加するに従って電流値が増加する。電池セルと制御素子は電流の二乗に比例してジュール熱で発熱するので、電池セルが発熱するタイミングにおいて制御素子も同時に発熱する。したがって、電池セルと制御素子は両方が一緒に温度上昇する。制御素子は電池セルよりも小さいので、局部的に発熱して温度上昇が電池セルよりも高くなる。したがって、制御素子を実装する回路基板を、制御素子の実装部分の温度が局部的に高くなる。図2の矢印Aは、電池セル1に回路基板80が密着されると、発熱した制御素子82の熱エネルギーが電池セル1に伝導される状態を示している。この図に示すように、回路基板80に実装する制御素子82が発熱すると、回路基板80が局部的に温度上昇し、温度上昇した回路基板80が付近に配置している特定の電池セル1を加熱する。制御素子の温度は電池セルよりも高く、また電池セルと制御素子とは一緒に発熱するので、温度上昇した電池セルが、さらに高温の制御素子で加熱されて、電池温度が異常に高くなる。この状態は、特定の電池温度を高くして電気特性を著しく低下させることに加えて、各々の電池セルの温度差を拡大して、電気特性をアンバランスとする。電気特性のアンバランスは、特定の電池セルを急激に劣化させる原因となる。電源装置は全ての電池セルを並列に接続することなく、電池セルを直列接続して出力電圧を高くしている。直列接続している電源装置は、何れかの電池セルの電気特性が全体の電気特性を低下させる。このことから、多数の電池セルを内蔵する電源装置は、電池セルの温度上昇を少なくすることに加えて、各々の電池セルの温度差をいかに小さくできるかが、電気特性の低下、すなわち寿命を特定する大切なパラメーターとなる。 The control element that controls the current of the battery cell is connected in series with the battery cell, and thus the current value increases as the current of the battery cell increases. Since the battery cell and the control element generate heat by Joule heat in proportion to the square of the current, the control element also generates heat at the same time as the battery cell generates heat. Therefore, both the battery cell and the control element rise in temperature together. Since the control element is smaller than the battery cell, heat is generated locally and the temperature rise is higher than that of the battery cell. Therefore, in the circuit board on which the control element is mounted, the temperature of the mounting portion of the control element is locally high. Arrow A in FIG. 2 indicates a state where the heat energy of the control element 82 that has generated heat is conducted to the battery cell 1 when the circuit board 80 is in close contact with the battery cell 1. As shown in this figure, when the control element 82 mounted on the circuit board 80 generates heat, the temperature of the circuit board 80 is locally increased, and the specific battery cell 1 in which the circuit board 80 whose temperature is increased is disposed is Heat up. Since the temperature of the control element is higher than that of the battery cell, and the battery cell and the control element generate heat together, the battery cell whose temperature has risen is heated by the control element having a higher temperature, and the battery temperature becomes abnormally high. In addition to raising the specific battery temperature to significantly reduce the electrical characteristics, this state enlarges the temperature difference of each battery cell to unbalance the electrical characteristics. An imbalance in the electrical characteristics causes the specific battery cell to deteriorate rapidly. The power supply device connects the battery cells in series to increase the output voltage without connecting all the battery cells in parallel. With the power supply devices connected in series, the electrical characteristics of any battery cell degrade the overall electrical characteristics. From this, in addition to reducing the temperature rise of the battery cells, the power supply device incorporating a large number of battery cells can reduce the temperature difference between the respective battery cells by reducing the electrical characteristics, that is, the lifetime. It becomes an important parameter to identify.
 図2に示す電源装置は、回路基板80を基板ホルダー81に固定して、その表面に制御素子82を配置してポッティング樹脂7を密着し、回路基板80の裏面には基板ホルダー81の底プレート81Aとの間に断熱層83を設けて、回路基板80と制御素子82との間に断熱層83を配置する。この構造の電源装置は、回路基板の表面に固定されて発熱する制御素子の熱エネルギーをポッティング樹脂に伝導し、制御素子の熱エネルギーを放熱して回路基板の表面に分散する。ポッティング樹脂は、制御素子の熱エネルギーを効率よく分散して放熱する。したがって、制御素子の温度上昇が制限されて、回路基板の温度むらが少なくなる。温度むらの少ない回路基板は、裏面と底プレートとの間に断熱層を設けている。回路基板と底プレートとの間に配置される断熱層は、回路基板と制御素子との間にあって、回路基板から電池集合体への熱伝導を遮断する。したがって、電池セルに流れる電流が増加して電池セルがジュール熱で温度上昇する状態において、電池セルよりもさらに高温に発熱した制御素子で加熱されることがない。制御素子の温度上昇は電池セルよりも高くなるが、制御素子の耐熱温度は電池セルよりも高いので、ポッティング樹脂で放熱することで好ましい設定範囲に保持される。また、温度上昇する電池セルは、さらに高温の制御素子で加熱されることなく、好ましい設定範囲に保持される。 The power supply device shown in FIG. 2 fixes the circuit board 80 to the board holder 81, arranges the control element 82 on the surface thereof and adheres the potting resin 7 thereto, and the bottom plate of the board holder 81 on the back surface of the circuit board 80. The heat insulating layer 83 is provided between the circuit board 81 and the control element 82 and the heat insulating layer 83 is provided between the circuit board 80 and the control element 82. In the power supply device having this structure, the heat energy of the control element fixed on the surface of the circuit board and generating heat is conducted to the potting resin, and the heat energy of the control element is dissipated and dispersed on the surface of the circuit board. The potting resin efficiently disperses and dissipates the heat energy of the control element. Therefore, the temperature rise of the control element is limited, and the temperature unevenness of the circuit board is reduced. The circuit board with less temperature unevenness has a heat insulating layer between the back surface and the bottom plate. An insulating layer disposed between the circuit board and the bottom plate is between the circuit board and the control element to block heat transfer from the circuit board to the battery assembly. Therefore, in a state where the current flowing to the battery cell increases and the temperature of the battery cell rises due to Joule heat, the control element that generates heat to a higher temperature than the battery cell is not heated. Although the temperature rise of the control element is higher than that of the battery cell, the heat resistance temperature of the control element is higher than that of the battery cell. Moreover, the battery cell which temperature rises is hold | maintained in a preferable setting range, without being heated by the control element of high temperature.
 また、第2の側面に係る電源装置によれば、上記構成に加えて、前記断熱層を空気層とすることができる。 Moreover, according to the power supply device which concerns on a 2nd side surface, in addition to the said structure, the said heat insulation layer can be made into an air layer.
 さらに、第3の側面に係る電源装置によれば、上記構成に加えて、前記空気層を外部に開放してなる空気の換気層とすることができる。 Furthermore, according to the power supply device according to the third aspect, in addition to the above configuration, the air layer can be an air ventilation layer formed by opening the air layer to the outside.
 さらに、第4の側面に係る電源装置によれば、上記何れかの構成に加えて、前記基板ホルダーは、底プレートの周囲に周壁を設けて、前記回路基板を前記周壁の内側に配置し、前記周壁と前記回路基板の外周との境界を、ポッティング樹脂の流入を阻止する閉塞隙間とすることができる。 Furthermore, according to the power supply device according to the fourth aspect, in addition to any of the above configurations, the substrate holder provides a peripheral wall around the bottom plate, and arranges the circuit board inside the peripheral wall, The boundary between the peripheral wall and the outer periphery of the circuit board may be a closed gap that prevents the inflow of potting resin.
 さらに、第5の側面に係る電源装置によれば、上記構成に加えて、前記周壁と前記回路基板との間に、前記ポッティング樹脂の流入を阻止するパッキンを配置することができる。 Furthermore, according to the power supply device according to the fifth aspect, in addition to the above configuration, a packing that prevents the inflow of the potting resin can be disposed between the peripheral wall and the circuit board.
 さらに、第6の側面に係る電源装置によれば、上記何れかの構成に加えて、前記回路基板の表面に熱伝導層を設け、前記熱伝導層を介して前記回路基板を前記ポッティング樹脂に密着させることができる。 Furthermore, according to the power supply device according to the sixth aspect, in addition to any of the above configurations, a heat conduction layer is provided on the surface of the circuit board, and the circuit board is made into the potting resin via the heat conduction layer. It can be attached closely.
 さらに、第7の側面に係る電源装置によれば、上記何れかの構成に加えて、前記回路基板と前記底プレートを水平姿勢に配置して、前記回路基板の上面に前記ポッティング樹脂を密着して、該回路基板の下面に前記断熱層を配置し、前記電池集合体を前記底プレートの下方に配置することができる。 Furthermore, according to the power supply device according to the seventh aspect, in addition to any of the above configurations, the circuit board and the bottom plate are disposed in a horizontal posture, and the potting resin is closely attached to the upper surface of the circuit board The heat insulating layer may be disposed on the lower surface of the circuit board, and the battery assembly may be disposed below the bottom plate.
 さらにまた、第8の側面に係る電源装置によれば、上記構成に加えて、前記底プレートと前記電池集合体との間に断熱空気層を設けることができる。 Furthermore, according to the power supply device of the eighth aspect, in addition to the above configuration, a heat insulating air layer can be provided between the bottom plate and the battery assembly.
本発明の一実施形態に係る電源装置を示す垂直断面図である。It is a vertical sectional view showing a power supply device concerning one embodiment of the present invention. 図1の電源装置の要部拡大概略断面図である。It is a principal part expansion schematic sectional drawing of the power supply device of FIG. 図1の電源装置の電池集合体の分解斜視図である。It is a disassembled perspective view of the battery assembly of the power supply device of FIG. 図3に示す閉塞カバーの分解斜視図である。It is a disassembled perspective view of the closure cover shown in FIG.
 以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための構成を例示するものであって、本発明は以下のものに特定されない。また、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。 Hereinafter, embodiments of the present invention will be described based on the drawings. However, the embodiments shown below exemplify the configuration for embodying the technical concept of the present invention, and the present invention is not specified to the following. Moreover, the members shown in the claims are not limited to the members of the embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention thereto alone, unless specifically described otherwise. It is only an illustrative example. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for the sake of clarity. Further, in the following description, the same names and reference numerals indicate the same or the same members, and the detailed description will be appropriately omitted. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and one member is used in common as a plurality of elements, or conversely the function of one member is realized by a plurality of members It can be shared and realized. In addition, the contents described in some examples and embodiments may be applicable to other examples and embodiments.
 以下に示す電源装置は、主として、モータのみで走行する電気自動車や電動カートなどの電動車両の駆動用電源に適用する例を説明する。なお本発明の電源装置を、エンジンとモータの両方で走行するハイブリッド車に使用したり、電動車両以外の大出力が要求される用途、例えば家庭用、工場用の蓄電装置等に使用してもよい。
(実施形態1)
The power supply device shown below mainly demonstrates the example applied to the drive power supply of electric vehicles, such as an electric vehicle and an electric cart which drive | works only by a motor. It should be noted that the power supply device of the present invention may be used in a hybrid vehicle traveling with both an engine and a motor, or in applications requiring a large output other than electric vehicles, for example, storage devices for home use and factories Good.
(Embodiment 1)
 図1の断面図と図2の拡大断面図に示す電源装置100は、電池集合体40の上に回路基板80を配置している。電池集合体40は、図3に示すように、複数の二次電池セル1を電池ホルダ44で定位置に配置している。図の電池集合体40は、二次電池セル1を水平姿勢で平行に配置して、多段多列に配列している。
(回路基板80)
The power supply device 100 shown in the cross-sectional view of FIG. 1 and the enlarged cross-sectional view of FIG. 2 has the circuit board 80 disposed on the battery assembly 40. As shown in FIG. 3, in the battery assembly 40, the plurality of secondary battery cells 1 are arranged at fixed positions by the battery holder 44. In the illustrated battery assembly 40, the secondary battery cells 1 are arranged in parallel in a horizontal posture, and are arranged in multiple stages.
(Circuit board 80)
 回路基板80は、電池集合体40の二次電池セル1の保護回路を実現する制御素子82を実装している。保護回路は二次電池セル1の電圧、残容量、温度、電流等を検出して電流を制御して、二次電池セル1の過充電や過放電を防止し、さらに二次電池セル1の異常な状態における電流を制御して二次電池セル1の劣化や電気特性の低下を防止する。二次電池セル1の電流をコントロールする保護回路は、二次電池セル1と直列に接続されて電流をコントロールする制御素子82を備える。制御素子82はFETやトランジスタ等の半導体素子である。これ等の制御素子82は、電流の二乗と等価抵抗の積に比例するジュール熱で発熱する。制御素子82は二次電池セル1と直列に接続されて二次電池セル1の電流をコントロールするので、二次電池セル1の電流が増加する制御素子82の電流も増加する。二次電池セル1も電流の二乗と内部抵抗の積に比例するジュール熱で発熱するので、制御素子82と二次電池セル1は同じタイミングで発熱し、また発熱エネルギーも同じように増加する。このため、例えば電流が2倍に増加すると、二次電池セル1と制御素子82の発熱エネルギーは4倍となる。二次電池セル1と制御素子82は同じ割合で発熱量が増加するが、制御素子82の温度上昇は二次電池セル1よりも大きくなる。それは、制御素子82の発熱領域が二次電池セル1に比較して極めて狭い領域となるからである。
(基板ホルダー81)
The circuit board 80 has mounted thereon a control element 82 for realizing the protection circuit of the secondary battery cell 1 of the battery assembly 40. The protection circuit detects the voltage, remaining capacity, temperature, current, etc. of the secondary battery cell 1 to control the current to prevent overcharging or overdischarging of the secondary battery cell 1, and The current in the abnormal state is controlled to prevent the deterioration of the secondary battery cell 1 and the deterioration of the electrical characteristics. The protection circuit for controlling the current of the secondary battery cell 1 includes a control element 82 connected in series to the secondary battery cell 1 to control the current. The control element 82 is a semiconductor element such as a FET or a transistor. These control elements 82 generate heat with Joule heat that is proportional to the product of the square of the current and the equivalent resistance. The control element 82 is connected in series to the secondary battery cell 1 to control the current of the secondary battery cell 1, so the current of the control element 82, which increases the current of the secondary battery cell 1, also increases. Since the secondary battery cell 1 also generates heat with Joule heat that is proportional to the product of the square of the current and the internal resistance, the control element 82 and the secondary battery cell 1 generate heat at the same timing, and the generated energy also increases. For this reason, for example, when the current is doubled, the heat generation energy of the secondary battery cell 1 and the control element 82 is quadrupled. The calorific value of the secondary battery cell 1 and the control element 82 increase at the same rate, but the temperature rise of the control element 82 becomes larger than that of the secondary battery cell 1. The reason is that the heat generation area of the control element 82 is extremely narrow compared to the secondary battery cell 1.
(Substrate holder 81)
 回路基板80は、基板ホルダー81を介して電池集合体40の定位置に配置されている。基板ホルダー81は、回路基板80を定位置に配置することに加えて、高温に加熱される制御素子82の熱エネルギーを効率よく拡散し、さらに放熱しながら、制御素子82から二次電池セル1への熱伝導を遮断して、制御素子82と二次電池セル1の両方の温度バランスを最適化し、二次電池セル1と制御素子82の両方を最適な温度領域に保持する。このことを実現するために、基板ホルダー81は、回路基板80の裏面と底プレート81Aとの間には断熱層83を設けて、回路基板80の上面にはポッティング樹脂7を注入している。
(断熱層83)
The circuit board 80 is disposed at a predetermined position of the battery assembly 40 via the substrate holder 81. In addition to arranging the circuit board 80 at a fixed position, the substrate holder 81 efficiently diffuses the thermal energy of the control element 82 heated to a high temperature, and further dissipates heat, from the control element 82 to the secondary battery cell 1 The heat conduction to the secondary battery cell is cut off to optimize the temperature balance of both the control element 82 and the secondary battery cell 1, and both the secondary battery cell 1 and the control element 82 are maintained in the optimum temperature range. In order to realize this, the substrate holder 81 is provided with a heat insulating layer 83 between the back surface of the circuit board 80 and the bottom plate 81A, and the potting resin 7 is injected into the upper surface of the circuit board 80.
(Adiabatic layer 83)
 図2の基板ホルダー81は、回路基板裏面の断熱層83を空気層とする。空気層は軽くて優れた断熱特性を実現する。さらに、図2の断熱層83は、外部に開放された空気の換気層83Aとして、空気層の断熱特性をより向上している。換気層83Aは、基板ホルダー81の周壁81Bの上下に貫通穴を設けて開口部81a、81bとしている。この換気層83Aは、下部の開口部81aから外気が流入し、内部で加温して軽くなった空気が上部の開口部81bから外部に排出されて、内部の空気を換気して内部空気の温度上昇を少なくする。断熱層83は、空気層に代わって、無数の繊維を立体的に集合している断熱材やプラスチックや無機材の発泡体からなる断熱材も使用できる。断熱層83に断熱材を充填する基板ホルダー81は、上面に注入されるポッティング樹脂7が断熱層83に流入するのを防止できるので、ポッティング樹脂7の注入を簡単にできる特徴がある。さらに、図1と図2に示す電源装置100は、基板ホルダー81の底プレート81Aと電池集合体40との間にも断熱空気層84を設けて、制御素子82から二次電池セル1への熱伝導を遮断している。
(ポッティング樹脂7)
The substrate holder 81 of FIG. 2 uses the heat insulating layer 83 on the back surface of the circuit board as an air layer. The air layer is light and achieves excellent thermal insulation properties. Furthermore, the heat insulating layer 83 of FIG. 2 further improves the heat insulating property of the air layer as a ventilation layer 83A of air opened to the outside. The ventilation layer 83A is provided with through holes at the top and bottom of the peripheral wall 81B of the substrate holder 81 to form openings 81a and 81b. In this ventilation layer 83A, the outside air flows in from the lower opening 81a, and the air heated and lightened inside is discharged from the upper opening 81b to the outside, and the inside air is ventilated to obtain the internal air Reduce temperature rise. Instead of the air layer, the heat insulating layer 83 may be a heat insulating material in which a myriad of fibers are three-dimensionally assembled, or a heat insulating material made of a foam of plastic or inorganic material. The substrate holder 81 for filling the heat insulating layer 83 with a heat insulating material can prevent the potting resin 7 injected on the upper surface from flowing into the heat insulating layer 83, so that the injection of the potting resin 7 can be simplified. Furthermore, the power supply device 100 shown in FIGS. 1 and 2 is provided with a heat insulating air layer 84 also between the bottom plate 81A of the substrate holder 81 and the battery assembly 40, and the control element 82 to the secondary battery cell 1. It blocks heat conduction.
(Potting resin 7)
 基板ホルダー81は、回路基板80の上にポッティング樹脂7を注入して、回路基板80の表面と制御素子82をポッティング樹脂7に密着する。回路基板80の上面にポッティング樹脂7を注入するために、基板ホルダー81は周壁81Bを回路基板80の表面から上に突出する高さとしている。さらに、回路基板80の上に注入される未硬化で液状のポッティング樹脂7が回路基板80の裏面に流入しないように、基板ホルダー81は底プレート81Aの周囲に周壁81Bを設けて、回路基板80を周壁81Bの内側に配置している。周壁81Bと回路基板80の外周との境界は、ポッティング樹脂7の流入を阻止する閉塞隙間81Cとして、回路基板80の外周縁と周壁内面との間に隙間ができない形状としている。図2の基板ホルダー81は、周壁81Bの内面と回路基板80の外周縁との間にパッキン85を配置して、ポッティング樹脂7が回路基板80の裏面に流入するのを防止している。 The substrate holder 81 injects the potting resin 7 onto the circuit board 80 to bring the surface of the circuit board 80 and the control element 82 into close contact with the potting resin 7. In order to inject the potting resin 7 onto the upper surface of the circuit board 80, the substrate holder 81 has a peripheral wall 81B having a height projecting upward from the surface of the circuit board 80. Furthermore, the substrate holder 81 is provided with a peripheral wall 81B around the bottom plate 81A so that the uncured, liquid potting resin 7 injected onto the circuit substrate 80 does not flow into the back surface of the circuit substrate 80. Are disposed inside the peripheral wall 81B. The boundary between the peripheral wall 81B and the outer periphery of the circuit board 80 is formed as a closed gap 81C for blocking the inflow of the potting resin 7 so that no space is formed between the outer peripheral edge of the circuit board 80 and the inner surface of the peripheral wall. The board holder 81 of FIG. 2 has a packing 85 disposed between the inner surface of the peripheral wall 81 B and the outer peripheral edge of the circuit board 80 to prevent the potting resin 7 from flowing into the back surface of the circuit board 80.
 ポッティング樹脂7は、回路基板80の表面と制御素子82の全体あるいは下部を埋設して、回路基板80の表面と制御素子82に密着されて、制御素子82の熱エネルギーを回路基板80の表面に分散し、さらに外部に放熱する。図2の断面図に示すポッティング樹脂7は、制御素子82の全体をポッティング樹脂7に埋設して、制御素子82の全面をポッティング樹脂7に密着するように、周壁81Bを高くしてポッティング樹脂7を厚く充填している。ポッティング樹脂7に埋設される制御素子82は、熱エネルギーを全面からポッティング樹脂7に伝導する。ポッティング樹脂7は、伝導される熱エネルギーを回路基板80の表面に分散し、さらに、表面から放熱して制御素子82の熱エネルギーを放熱する。さらに、図2の断面図に示す回路基板80は、制御素子82の熱エネルギーをより効率よく表面に分散できるように、表面に熱伝導層86を設けて、熱伝導層86をポッティング樹脂7に密着している。熱伝導層86はポッティング樹脂7よりも熱伝導率の優れた金属層で、制御素子82の熱エネルギーを極めて効率よく回路基板80の表面に分散する。この回路基板80は、ポッティング樹脂7と回路基板80の表面との間に熱伝導特性に優れた熱伝導層86を設けているので、制御素子82の熱エネルギーを熱伝導層86で分散し、分散された熱エネルギーをさらにポッティング樹脂7で分散して放熱する。 The potting resin 7 is embedded in the surface of the circuit board 80 and the whole or the lower part of the control element 82 and is in close contact with the surface of the circuit board 80 and the control element 82 to apply thermal energy of the control element 82 to the surface of the circuit board 80 Disperse and dissipate heat to the outside. The potting resin 7 shown in the cross-sectional view of FIG. 2 embeds the whole of the control element 82 in the potting resin 7 and raises the peripheral wall 81 B to make the potting resin 7 in close contact with the potting resin 7. Is filled thick. The control element 82 embedded in the potting resin 7 conducts thermal energy to the potting resin 7 from the entire surface. The potting resin 7 disperses the conducted thermal energy to the surface of the circuit board 80 and further dissipates heat from the surface to dissipate the thermal energy of the control element 82. Furthermore, the circuit board 80 shown in the cross-sectional view of FIG. 2 is provided with a heat conduction layer 86 on the surface so that the heat energy of the control element 82 can be dispersed to the surface more efficiently. It is in close contact. The heat conduction layer 86 is a metal layer having a thermal conductivity better than that of the potting resin 7 and distributes the heat energy of the control element 82 very efficiently to the surface of the circuit board 80. Since the circuit board 80 is provided with the heat conduction layer 86 excellent in the heat conduction characteristic between the potting resin 7 and the surface of the circuit board 80, the heat energy of the control element 82 is dispersed by the heat conduction layer 86, The dispersed thermal energy is further dispersed by the potting resin 7 and dissipated.
 図2の電源装置100は、回路基板80と底プレート81Aを水平姿勢に配置して、回路基板80の上にポッティング樹脂7に密着して、下面に断熱層83を配置し、さらに、電池集合体40を底プレート81Aの下方に配置している。電源装置100は、発熱する制御素子82の熱エネルギーをポッティング樹脂7に伝導して放熱する。加熱されたポッティング樹脂7は、熱エネルギーを分散して表面から放熱する。熱エネルギーを放熱するポッティング樹脂7は、輻射熱で放熱し、また表面に接触する空気を加温して放熱する。ポッティング樹脂7の表面で加温された空気は、軽くなって上昇する。ポッティング樹脂7で加温された空気は、上昇するので下方に配置している二次電池セル1を加温しない。したがって、回路基板80と底プレート81Aとを電池集合体40の上に配置する構造は、発熱した制御素子82が空気を介して二次電池セル1を加温することがなく、制御素子82の発熱による二次電池セル1の温度上昇を最も小さくできる特徴がある。電池集合体40の上方に配置される回路基板80は、温度上昇した二次電池セル1で温度上昇した空気で加温されるが、二次電池セル1の温度上昇は制御素子82よりも小さく、しかも制御素子82の温度上昇が二次電池セル1よりも高くなるので、発熱した二次電池セル1による制御素子82の加温は弊害とならない。
(電池集合体40)
The power supply device 100 of FIG. 2 arranges the circuit board 80 and the bottom plate 81A in a horizontal posture, adheres closely to the potting resin 7 on the circuit board 80, and arranges the heat insulating layer 83 on the lower surface. The body 40 is disposed below the bottom plate 81A. The power supply device 100 conducts the heat energy of the control element 82 that generates heat to the potting resin 7 to radiate the heat. The heated potting resin 7 disperses thermal energy and radiates heat from the surface. The potting resin 7 which dissipates heat energy dissipates heat by radiant heat, and also heats and dissipates air contacting the surface. The air warmed on the surface of the potting resin 7 is lightened and rises. Since the air heated by the potting resin 7 rises, it does not heat the secondary battery cell 1 disposed below. Therefore, in the structure in which the circuit board 80 and the bottom plate 81A are disposed on the battery assembly 40, the control element 82 that generates heat does not heat the secondary battery cell 1 via air. There is a feature that the temperature rise of the secondary battery cell 1 due to heat generation can be minimized. The circuit board 80 disposed above the battery assembly 40 is heated by the air whose temperature has risen in the temperature rising secondary battery cell 1, but the temperature rise of the secondary battery cell 1 is smaller than that of the control element 82 Moreover, since the temperature rise of the control element 82 is higher than that of the secondary battery cell 1, the heating of the control element 82 by the secondary battery cell 1 that generates heat does not have a problem.
(Battery assembly 40)
 電池集合体40は、複数の二次電池セル1を電池ホルダ44で定位置に配置している。図1~図3に示す電池集合体40は、一対の電池ユニット40Aを対向位置(図において左右)に配置して連結している。電池ユニット40Aは複数の二次電池セル1を平行姿勢に並べて、両端を同一平面に配置して、両端の端部電極13にリード板45を接続している。電池集合体40は、対向位置に配置する一対の電池ユニット40Aを二次電池セル1の軸方向に並べて配置すると共に、一対の電池ユニット40Aの間に絶縁スペース6を設けている。各々の電池ユニット40Aは、図2の拡大断面図に示すように、絶縁スペース6の対向位置に端部電極13を配置している。
(二次電池セル1)
The battery assembly 40 arranges the plurality of secondary battery cells 1 at fixed positions by the battery holder 44. In the battery assembly 40 shown in FIGS. 1 to 3, a pair of battery units 40A are arranged and connected at opposing positions (left and right in the drawing). In the battery unit 40A, the plurality of secondary battery cells 1 are arranged in a parallel posture, both ends thereof are arranged on the same plane, and the lead plate 45 is connected to the end electrodes 13 at both ends. The battery assembly 40 arranges a pair of battery units 40A arranged at opposing positions in the axial direction of the secondary battery cell 1, and also provides an insulating space 6 between the pair of battery units 40A. Each battery unit 40A arrange | positions the edge part electrode 13 in the opposing position of the insulation space 6, as shown to the enlarged sectional view of FIG.
(Secondary battery cell 1)
 二次電池セル1は、設定圧力で開弁する排出弁の排出口(図視せず)を端面に設けている。二次電池セル1は両端に端部電極13を設けている。この二次電池セル1は、アルミニウム等の金属製外装缶の開口部を封口板で気密に密閉して、封口板に凸部電極を設けて第1の端部電極13Aとし、外装缶の底面を第2の端部電極13Bとしている。排出弁の排出口は、凸部電極側に設けられ、あるいは外装缶の底面に設けられる。 The secondary battery cell 1 is provided at its end face with a discharge port (not shown) of a discharge valve that opens at a set pressure. The secondary battery cell 1 is provided with end electrodes 13 at both ends. In the secondary battery cell 1, the opening of a metal outer can such as aluminum is hermetically sealed with a sealing plate, and a convex electrode is provided on the sealing plate to form a first end electrode 13A, and the bottom of the outer can As a second end electrode 13B. The discharge port of the discharge valve is provided on the convex electrode side or on the bottom surface of the outer can.
 二次電池セル1は、円筒形電池のリチウムイオン電池である。リチウムイオン電池は、大きさや重量に対する容量が大きく、電源装置100のトータル容量を大きくできる。ただし、本発明の電源装置は、二次電池セルをリチウムイオン電池には特定しない。二次電池セルには、充電できる他の二次電池が使用できる。また、図の電源装置100は、二次電池セル1を円筒形電池とするが、二次電池セルには角形電池も使用できる。各々の二次電池セル1は、その両端の端部電極13にリード板45を溶接して、隣接する二次電池セル1を直列又は並列に接続している。
(電池ホルダ44)
The secondary battery cell 1 is a cylindrical lithium ion battery. The lithium ion battery has a large capacity with respect to size and weight, and can increase the total capacity of the power supply device 100. However, the power supply device of the present invention does not specify the secondary battery cell as a lithium ion battery. Other secondary batteries that can be charged can be used for the secondary battery cell. Moreover, although the power supply device 100 of a figure makes the secondary battery cell 1 a cylindrical battery, a square battery can also be used for a secondary battery cell. In each of the secondary battery cells 1, a lead plate 45 is welded to the end electrodes 13 at both ends thereof, and the adjacent secondary battery cells 1 are connected in series or in parallel.
(Battery holder 44)
 二次電池セル1は、図3に示すように、電池ホルダ44で定位置に配置している。電池ホルダ44はプラスチック等の絶縁材を成形して制作される。図の電池ホルダ44は、すべての二次電池セル1を平行な姿勢で定位置に配置している。電池ホルダ44で定位置に配置される二次電池セル1は、その両端にリード板45を溶接するので、各々の端部に溶接されるリード板45を同一面に位置するように、各々の二次電池セル1をその両端部がほぼ同一面に位置するように、電池ホルダ44に配置している。 The secondary battery cell 1 is disposed at a fixed position by the battery holder 44 as shown in FIG. The battery holder 44 is manufactured by molding an insulating material such as plastic. The illustrated battery holder 44 arranges all the secondary battery cells 1 at a fixed position in a parallel posture. Since the secondary battery cells 1 arranged at a fixed position by the battery holder 44 have the lead plates 45 welded to both ends, each lead plate 45 to be welded to each end is positioned in the same plane. The secondary battery cell 1 is disposed in the battery holder 44 so that both ends thereof are positioned substantially in the same plane.
 電池ホルダ44は、二次電池セル1を挿入して定位置に配置する挿入部44Aを設けている。図の電源装置100は、二次電池セル1を円筒形電池とするので、挿入部44Aを円柱状としている。電池ホルダ44は、プラスチックを筒状に成形して内側に挿入部44Aを設けている。挿入部44Aは、電池端部を露出させる開口部44Bを両端に設けている。開口部44Bは、挿入部44Aに挿入される二次電池セル1の端部を挿入部44Aから外部に露出させる。開口部44Bに露出される二次電池セル1の端面は、端部電極13となってここにリード板45が溶接して固定される。 The battery holder 44 is provided with the insertion part 44A which inserts the secondary battery cell 1 and arrange | positions in a fixed position. In the power supply device 100 shown in the figure, since the secondary battery cell 1 is a cylindrical battery, the insertion portion 44A has a cylindrical shape. The battery holder 44 has a cylindrical plastic shape and is provided with the insertion portion 44A inside. The insertion portion 44A is provided at both ends with openings 44B for exposing the battery end. The opening 44B exposes the end of the secondary battery cell 1 inserted into the insertion portion 44A to the outside from the insertion portion 44A. The end face of the secondary battery cell 1 exposed to the opening 44B becomes the end electrode 13 and the lead plate 45 is welded and fixed here.
 図1に示すように、一対の電池ユニット40Aの間に絶縁スペース6を設けて、絶縁スペース6の両側に二次電池セル1の端面を配置する電池集合体40は、排出弁の排出口が絶縁スペース6に配置される。排出弁が開弁すると、排出口から排出される高温の噴出ガスが対向する電池ユニット40Aの端面に向かって噴射される。対向位置にある二次電池セル1の対向面に噴射される高温の噴出ガスは、二次電池セル1の熱暴走を誘発する原因となる。図1の電源装置100は、絶縁スペース6の中間に耐熱シート64を配置している。
(耐熱シート64)
As shown in FIG. 1, the battery assembly 40 in which the insulating space 6 is provided between the pair of battery units 40A and the end faces of the secondary battery cells 1 are disposed on both sides of the insulating space 6 has a discharge port of the discharge valve. It is arranged in the insulating space 6. When the discharge valve is opened, the high-temperature jetted gas discharged from the discharge port is injected toward the end face of the opposing battery unit 40A. The high-temperature jetted gas injected to the facing surface of the secondary battery cell 1 at the facing position causes the thermal runaway of the secondary battery cell 1 to be induced. In the power supply device 100 of FIG. 1, a heat-resistant sheet 64 is disposed in the middle of the insulating space 6.
(Heat resistant sheet 64)
 耐熱シート64は、排出弁から排出される噴出ガスで溶融されない耐熱温度の絶縁シートで、たとえば難燃処理した耐熱紙である。ただ、耐熱シート64には、耐熱紙に代わって噴出ガスで溶融されない無機繊維をシート状に集合した紙や不織布、あるいは、無機材を薄いシート状に結合した無機シート等も使用できる。これ等の耐熱シート64は薄くできるので、耐熱シート64が絶縁スペース6の実質容積を減少することなく絶縁スペース6を広くして噴出ガスをスムーズに排出できる特徴がある。絶縁性の耐熱シート64は、両面に配置される二次電池セル1の端面やリード板45を絶縁状態に配置できる。ただ、耐熱シートは必ずしも絶縁材とする必要はない。それは、耐熱シートの表面に絶縁シートを積層して表面を絶縁できるからである。ただし、耐熱シートを絶縁材としてその表面に絶縁材を積層する構造は、耐熱シートによる絶縁性をさらに向上できる。 The heat-resistant sheet 64 is an insulation sheet having a heat-resistant temperature which is not melted by the jetted gas discharged from the discharge valve, and is, for example, a heat-resistant paper subjected to a flame retardant treatment. However, instead of heat-resistant paper, paper or non-woven fabric in which inorganic fibers which are not melted by jet gas are gathered in sheet form, or inorganic sheet in which inorganic material is bound in thin sheet form can be used. Since these heat-resistant sheets 64 can be made thin, the heat-resistant sheets 64 can widen the insulating space 6 without reducing the substantial volume of the insulating space 6 and can discharge the jetted gas smoothly. The insulating heat-resistant sheet 64 can arrange the end face of the secondary battery cell 1 arranged on both sides and the lead plate 45 in an insulating state. However, the heat-resistant sheet does not necessarily have to be an insulating material. That is because the insulating sheet can be laminated on the surface of the heat resistant sheet to insulate the surface. However, the structure which laminates an insulating material on the surface by using a heat-resistant sheet as the insulating material can further improve the insulation by the heat-resistant sheet.
 耐熱シート64は、二次電池セル1の端面と平行な姿勢で配置される。図の電源装置100は、絶縁スペース6の中間に耐熱シート64を配置して、耐熱シート64の両面には噴出ガスの排気チャンバー63を設けている。絶縁スペース6の中間に耐熱シート63を配置するために、電源装置100は、図1~図4に示すように、耐熱シート64の両側に絶縁スペース6の外周部に沿う形状の閉塞カバー61を配置し、この閉塞カバー61を耐熱シート64と電池ユニット40Aとの間に介在させている。図の閉塞カバー61は、絶縁スペース6の外周部に沿う形状の外周枠部62を有している。電源装置100は、この形状の閉塞カバー61を電池ユニット40の対向面40aと耐熱シート64との間に配置することで、耐熱シート64を電池ユニット40の対向面40aから離間する状態で配置して、耐熱シート64と電池ユニット40の対向面40aとの間であって外周枠部62の内側に排気チャンバー63を設けている。 The heat-resistant sheet 64 is disposed in a posture parallel to the end face of the secondary battery cell 1. The power supply apparatus 100 of the figure arrange | positions the heat-resistant sheet | seat 64 in the middle of the insulation space 6, and provides the exhaust chamber 63 of blowing gas on both surfaces of the heat-resistant sheet 64. FIG. In order to place the heat-resistant sheet 63 in the middle of the insulating space 6, as shown in FIGS. 1 to 4, the power supply apparatus 100 has a closing cover 61 shaped along the outer periphery of the insulating space 6 on both sides of the heat-resistant sheet 64. It arrange | positions and this occlusion cover 61 is interposed between the heat-resistant sheet | seat 64 and the battery unit 40A. The closing cover 61 in the figure has an outer peripheral frame portion 62 shaped along the outer peripheral portion of the insulating space 6. The power supply device 100 arranges the heat-resistant sheet 64 in a state of being separated from the opposing surface 40 a of the battery unit 40 by arranging the blocking cover 61 of this shape between the opposing surface 40 a of the battery unit 40 and the heat-resistant sheet 64. An exhaust chamber 63 is provided between the heat-resistant sheet 64 and the opposing surface 40 a of the battery unit 40 and inside the outer peripheral frame portion 62.
 このように、耐熱シート64の両面に排気チャンバー63を設けている絶縁スペース6は、噴出ガスをスムーズに抵抗なく排気チャンバー63に排出できる。また、この構造の絶縁スペース6は、噴出ガスを排気チャンバー63で拡散して耐熱シート64に吹き付けるので、噴出ガスによる耐熱シート64の熱損傷を少なくして、対向位置にある二次電池セル1の熱暴走の誘発をより効果的に阻止できる。さらに耐熱シート64に要求される強度と耐熱特性を低下して、耐熱シート64のコストを低減できる。さらにまた、耐熱シート64の表面に吹き付けられる噴出ガスを排気チャンバー63で両側に分散させるので、噴出ガスを少ない排気抵抗でスムーズに絶縁スペース6に排出できる特徴も実現する。このことは、内圧が異常に上昇した二次電池セル1の圧力を速やかに低下して、内圧上昇による外装缶の破裂などの弊害を有効に防止できる。 As described above, the insulating space 6 in which the exhaust chamber 63 is provided on both sides of the heat-resistant sheet 64 can discharge the jetted gas smoothly to the exhaust chamber 63 without resistance. Further, since the insulating space 6 of this structure diffuses the jetted gas in the exhaust chamber 63 and blows it to the heat-resistant sheet 64, the heat damage of the heat-resistant sheet 64 due to the jetted gas is reduced, and the secondary battery cell 1 located at the opposing position Can prevent the thermal runaway more effectively. Furthermore, the strength and heat resistance required for the heat resistant sheet 64 can be reduced, and the cost of the heat resistant sheet 64 can be reduced. Furthermore, since the jetted gas sprayed on the surface of the heat-resistant sheet 64 is dispersed on both sides by the exhaust chamber 63, a feature is also realized in which the jetted gas can be smoothly discharged to the insulating space 6 with a small exhaust resistance. This can quickly reduce the pressure of the secondary battery cell 1 in which the internal pressure has abnormally increased, thereby effectively preventing negative effects such as the rupture of the outer can caused by the increase in internal pressure.
 さらに、耐熱シート64は、排出される噴出ガスで変形する可撓性シートとしている。この耐熱シート64は、噴射される噴出ガスの圧力で変形して、噴出ガスが排出される一方の排気チャンバー63の容積を増加できるので、排出弁の排出口から排気チャンバー63により少ない抵抗で噴出ガスをスムーズに排出して、二次電池セル1の内圧上昇による破壊を効果的に防止してより高い安全性を確保できる特徴がある。
(閉塞カバー61)
Furthermore, the heat-resistant sheet 64 is a flexible sheet that is deformed by the ejected gas. The heat resistant sheet 64 is deformed by the pressure of the jetted gas to be jetted, and the volume of the exhaust chamber 63 from which the jetted gas is discharged can be increased. There is a feature that the gas can be smoothly discharged to effectively prevent the destruction due to the increase of the internal pressure of the secondary battery cell 1 and ensure higher safety.
(Occlusion cover 61)
 耐熱シート64の両側に配置されて、耐熱シート64と電池ユニット40Aとの間に配置される閉塞カバー61は、図1~図4に示すように、絶縁スペース6の外周部を閉塞する外周枠部62を有しており、この外周枠部62の内側に排気チャンバー63を設けて、排気チャンバー63に排出弁の排出口を露出させている。外周枠部62は、絶縁スペース6の外周縁部に沿って伸びる形状で、電池ユニット40Aの端面に隙間なく密着して、絶縁スペース6に排気チャンバー63を形成している。この構造の閉塞カバー61は、外周枠部62の内側に大容積の排気チャンバー63を設けて、ここに噴出ガスを噴射できるので、噴出ガスをスムーズに排出できる特徴がある。それは、大容積の排気チャンバー63は、排出弁の排出口から噴射される噴出ガスによる内圧上昇が緩慢で排気抵抗の上昇勾配を緩やかにできるからである。 A cover 61 disposed on both sides of the heat-resistant sheet 64 and disposed between the heat-resistant sheet 64 and the battery unit 40A is an outer peripheral frame that closes the outer peripheral portion of the insulating space 6, as shown in FIGS. The exhaust chamber 63 is provided inside the outer peripheral frame 62 to expose the exhaust port of the exhaust valve to the exhaust chamber 63. The outer peripheral frame portion 62 has a shape extending along the outer peripheral edge portion of the insulating space 6 and is in close contact with the end face of the battery unit 40A without a gap to form an exhaust chamber 63 in the insulating space 6. The closed cover 61 having this structure is characterized in that a large volume exhaust chamber 63 is provided inside the outer peripheral frame 62 and the jetted gas can be jetted here, so that the jetted gas can be smoothly discharged. The reason is that the large-volume exhaust chamber 63 has a slow rise in internal pressure due to the gas jetted from the discharge port of the discharge valve, and can make the rise gradient of the exhaust resistance gentle.
 閉塞カバー61は、排出弁から排出される噴出ガスで溶融する独立気泡を有する絶縁材の発泡体で成形される。噴出ガスで溶融される閉塞カバー61の溶融温度は、たとえば100℃以上であって500℃以下、好ましくは200℃以上であって400℃以下とする。溶融温度の低い閉塞カバー61は、噴出ガスで速やかに溶融して噴出ガスを絶縁スペース6の外部に排出し、溶融温度の高い閉塞カバー61は、使用状態において確実に絶縁スペース6を閉塞できる。閉塞カバー61の溶融温度が低すぎると、電池温度で溶融し、あるいは変形し、また高すぎると噴出ガスで速やかに溶融できなくなる。したがって、閉塞カバー61の溶融温度は、噴出ガスでは速やかに溶融し、かつ噴出ガスが噴射されない状態では変形したり溶融しない温度特性を考慮して、先述の範囲に設定される。 The closing cover 61 is formed of a foam of an insulating material having closed cells which are melted by the gas discharged from the discharge valve. The melting temperature of the blocking cover 61 melted by the jet gas is, for example, 100 ° C. or more and 500 ° C. or less, preferably 200 ° C. or more and 400 ° C. or less. The closing cover 61 having a low melting temperature can be quickly melted by the jetted gas to discharge the jetted gas to the outside of the insulating space 6, and the closing cover 61 having a high melting temperature can block the insulating space 6 reliably in use. If the melting temperature of the blocking cover 61 is too low, it will melt or deform at the battery temperature, and if too high, it will not be possible to quickly melt it with the jet gas. Therefore, the melting temperature of the closing cover 61 is set in the above-mentioned range in consideration of the temperature characteristic which is promptly melted in the jetted gas and does not deform or melt in the state where the jetted gas is not jetted.
 噴出ガスで溶融する閉塞カバー61は、開弁した排出弁から噴射される高温の噴出ガスで溶融される。溶融された閉塞カバー61は絶縁スペース6を外部に開放して、流入される噴出ガスを図2の矢印Bで示すように、絶縁スペース6から排出する。絶縁材の閉塞カバー61は、電池ユニット40Aの端部電極13側に密着して、絶縁スペース6を閉塞できる。とくに、端部電極13側には金属板のリード板45を配置しているので、絶縁材の閉塞カバー61はリード板45に密着して、リード板45を短絡することなく絶縁スペース6を閉塞できる。さらに、独立気泡を有する発泡体の閉塞カバー61は、単位体積に対する重量が小さく、密度が低くできるので、高温の噴出ガスで速やかに溶融されて、噴出ガスを絶縁スペース6から速やかに外部に排出できる特徴がある。さらに発泡体の閉塞カバー61は、成形時の発泡倍率をコントロールしてより低比重化できるので、噴出ガスによる溶融時間を極めて短縮することができる。 The closing cover 61 melted by the jetted gas is melted by the high-temperature jetted gas injected from the opened discharge valve. The melted closing cover 61 opens the insulating space 6 to the outside and discharges the inflowing jetted gas from the insulating space 6 as shown by the arrow B in FIG. The closing cover 61 made of an insulating material is in close contact with the end portion electrode 13 side of the battery unit 40A, so that the insulating space 6 can be closed. In particular, since the lead plate 45 of a metal plate is disposed on the side of the end electrode 13, the closing cover 61 of the insulating material is in close contact with the lead plate 45, and the insulating space 6 is closed without shorting the lead plate 45. it can. Furthermore, since the closed cover 61 of the foam having the closed cells has a small weight per unit volume and can have a low density, it is rapidly melted by the high-temperature jetted gas, and the jetted gas is rapidly discharged to the outside from the insulating space 6 There is a feature that can be done. Furthermore, since the closed cover 61 of the foam can be made to have a lower specific gravity by controlling the foaming ratio at the time of molding, the melting time by the jet gas can be extremely shortened.
 閉塞カバー61は、ゴム状弾性体の発泡体で成形している。ゴム状弾性体の閉塞カバー61は、たとえば合成ゴム発泡体や軟質のプラスチック発泡体で成形される。合成ゴム発泡体はプロピレンゴムが使用できる。軟質のプラスチック発泡体には、たとえば軟質ウレタン発泡体が使用できる。ゴム状弾性体の閉塞カバー61は、一対の電池ユニット40Aの間に配置し、両側の電池ユニット40Aで押圧し、圧縮される状態に弾性変形させることで、電池ユニット40Aの対向面40aに密着する。とくに、絶縁スペース6との対向面40aにリード板45を固定している電池ユニット40Aは、リード板45によって対向面40aに凹凸や隙間ができるが、弾性変形して密着する閉塞カバー61は、凹凸を吸収し、隙間を閉塞できる特徴がある。さらに、独立気泡を有する発泡体からなるゴム状弾性体の閉塞カバー61は、無数の気泡でより柔軟化されて変形できる自由度が大きくなり、凹凸のある電池ユニット40Aの対向面40aに隙間なく密着できる特徴がある。さらに、ゴム状弾性体の発泡体からなる閉塞カバー61は、弾性変形して電池ユニット40Aの対向面40aに密着する状態で、電池ユニット40Aの対向面40aの押圧力を小さくできる。したがって、電池ユニット40Aの対向面40aに密着しながら、電池ユニット40Aに無理な応力を作用させることなく、絶縁スペース6を確実に閉塞できる特徴がある。 The closing cover 61 is formed of a rubber-like elastic foam. The rubber-like elastic closure cover 61 is formed of, for example, a synthetic rubber foam or a soft plastic foam. Propylene rubber can be used as the synthetic rubber foam. For example, a soft urethane foam can be used for the soft plastic foam. The closing cover 61 made of a rubber-like elastic body is disposed between the pair of battery units 40A, pressed by the battery units 40A on both sides, and elastically deformed in a compressed state to be in close contact with the opposing surface 40a of the battery unit 40A. Do. In particular, in the battery unit 40A in which the lead plate 45 is fixed to the facing surface 40a with the insulating space 6, the lead plate 45 forms asperities and gaps on the facing surface 40a. There is a feature that can absorb unevenness and close the gap. Furthermore, the closed cover 61 of the rubber-like elastic body made of the foam having the closed cells has a greater degree of freedom to be softened and deformed by the innumerable air bubbles, and there is no gap on the facing surface 40a of the battery unit 40A having unevenness. There is a feature that can be closely attached. Further, the closing cover 61 made of a rubber elastic body can be elastically deformed to be in close contact with the facing surface 40a of the battery unit 40A, thereby reducing the pressing force of the facing surface 40a of the battery unit 40A. Therefore, there is a feature that the insulating space 6 can be reliably closed without causing an excessive stress on the battery unit 40A while in close contact with the facing surface 40a of the battery unit 40A.
 ただ、本発明の電源装置は、閉塞カバー61を必ずしもゴム状弾性体で成形する必要はない。それは、閉塞カバー61と電池ユニット40Aの対向面40aとの間に弾性変形するパッキンを配置し、あるいはシール材を塗布して、閉塞カバー61を電池ユニット40Aの対向面40aに隙間なく密着することができるからである。 However, in the power supply device of the present invention, the closing cover 61 does not necessarily have to be formed of a rubber-like elastic body. In this method, a packing that elastically deforms is disposed between the closing cover 61 and the facing surface 40a of the battery unit 40A, or a sealing material is applied to closely attach the closing cover 61 to the facing surface 40a of the battery unit 40A. It is because
 図1の電源装置100は、図2~図4に示すように、閉塞カバー61の外周枠部62の表面と耐熱シート64の表面とに絶縁シート65を積層している。絶縁シート65はプラスチック製で、耐熱シート64の両面に閉塞カバー61を配置して、耐熱シート64と両側の閉塞カバー61とを一体構造に連結して、絶縁スペース6に配設される板状の絶縁スペーサ60としている。絶縁スペーサ60は、一対の電池ユニット40Aに間に挟む状態で配置されて、閉塞カバー61と耐熱シート64とを絶縁スペース6の定位置に配置する。したがって、この構造は組み立て工程を簡単にして能率よく多量生産して、耐熱シート64と閉塞カバー61とを正確な位置に配置できる特徴がある。 In the power supply device 100 of FIG. 1, as shown in FIGS. 2 to 4, the insulating sheet 65 is laminated on the surface of the outer peripheral frame portion 62 of the closing cover 61 and the surface of the heat resistant sheet 64. The insulating sheet 65 is made of plastic, and the closing covers 61 are disposed on both sides of the heat resistant sheet 64, and the heat resistant sheet 64 and the closing covers 61 on both sides are integrally connected to each other. As the insulating spacer 60 of FIG. The insulating spacer 60 is disposed in a state of being sandwiched between the pair of battery units 40A, and places the closing cover 61 and the heat-resistant sheet 64 at a predetermined position of the insulating space 6. Therefore, this structure is characterized in that the assembly process is simplified and mass production is efficiently performed, and the heat-resistant sheet 64 and the closing cover 61 can be disposed at the correct positions.
 図1及び図2の電源装置100は、閉塞カバー61に外周枠部62を設けて、外周枠部62の内側に排気チャンバー63を設けているが、閉塞カバー61はこの形状に特定するものでない。たとえば、図示しないが、閉塞カバーは、二次電池セルの排出弁の排出口との対向面に凹部を設けた板状の発泡体に成形し、あるいは、絶縁スペースに隙間なく配設されて、排気チャンバーを設けない板状に成形して排出弁の排出口を塞ぐこともできる。これ等の形状の閉塞カバー61は、発泡体の発泡倍率を高くして閉塞カバー内部の空隙率を高くし、また溶融温度を低くして高温の噴出ガスによる溶融時間を短縮して、絶縁スペースに噴射される噴出ガスを速やかに外部に排出する。 The power supply device 100 of FIGS. 1 and 2 is provided with the outer peripheral frame portion 62 in the closing cover 61 and the exhaust chamber 63 inside the outer peripheral frame portion 62, but the closing cover 61 is not limited to this shape . For example, although not shown, the closing cover is formed into a plate-like foam in which a recess is provided on the surface facing the discharge port of the discharge valve of the secondary battery cell, or it is disposed without gaps in the insulating space, It is also possible to form a plate without the exhaust chamber to close the outlet of the outlet valve. The closure cover 61 having these shapes increases the expansion ratio of the foam to increase the porosity inside the closure cover, and lowers the melting temperature to shorten the melting time by the high temperature gas, thereby making the insulation space Immediately discharge the gas jetted to the outside to the outside.
 本発明の電源装置は、内蔵する電池の熱暴走の誘発を防止して高い安全性が要求される用途に便利に使用される。 The power supply device of the present invention can be used conveniently for applications requiring high safety by preventing the thermal runaway of the built-in battery.
100…電源装置
1…二次電池セル
6…絶縁スペース
7…ポッティング樹脂
13…端部電極
13A…第1の端部電極
13B…第2の端部電極
40…電池集合体
40A…電池ユニット
40a…対向面
44…電池ホルダ
44A…挿入部
44B…開口部
45…リード板
60…絶縁スペーサ
61…閉塞カバー
62…外周枠部
63…排気チャンバー
64…耐熱シート
65…絶縁シート
80…回路基板
81…基板ホルダー
81A…底プレート
81B…周壁
81C…閉塞隙間
81a…開口部
81b…開口部
82…制御素子
83…断熱層
83A…換気層
84…断熱空気層
85…パッキン
86…熱伝導層
 
100 Power supply device 1 Secondary battery cell 6 Insulating space 7 Potting resin 13 End electrode 13A First end electrode 13B Second end electrode 40 Battery assembly 40A Battery unit 40a Opposite surface 44: battery holder 44A: insertion portion 44B: opening 45: lead plate 60: insulating spacer 61: closing cover 62: outer peripheral frame 63: exhaust chamber 64: heat resistant sheet 65: insulating sheet 80: circuit board 81: board Holder 81A: Bottom plate 81B: Peripheral wall 81C: Closed gap 81a: Opening 81b: Opening 82: Control element 83: Heat insulation layer 83A: Ventilation layer 84: Heat insulation air layer 85: Packing 86: Heat conduction layer

Claims (8)

  1.  複数の電池セルを備える電池集合体と、
     前記電池集合体の電池セルの保護回路を実現する制御素子を実装してなる回路基板と、
     前記回路基板を固定して、底プレートを回路基板と電池集合体との間に配置してなる基板ホルダーとを備え、
     前記回路基板は、前記基板ホルダーの底プレートと対向する面の反対側にある表面に制御素子を固定しており、
     前記回路基板は、表面にはポッティング樹脂が密着されて、
     前記回路基板の裏面と前記底プレートとの間に断熱層が設けられてなることを特徴とする電源装置。
    A battery assembly comprising a plurality of battery cells;
    A circuit board on which a control element for realizing a protection circuit of a battery cell of the battery assembly is mounted;
    A substrate holder having the circuit board fixed and a bottom plate disposed between the circuit board and the battery assembly;
    The circuit board fixes a control element on a surface opposite to the surface facing the bottom plate of the substrate holder.
    In the circuit board, potting resin is in close contact with the surface,
    A heat insulating layer is provided between the back surface of the circuit board and the bottom plate.
  2.  請求項1に記載される電源装置であって、
     前記断熱層が空気層であることを特徴とする電源装置。
    The power supply device according to claim 1, wherein
    The power supply apparatus characterized in that the heat insulation layer is an air layer.
  3.  請求項2に記載される電源装置であって、
     前記空気層が、外部に開放された空気の換気層であることを特徴とする電源装置。
    The power supply device according to claim 2, wherein
    The power supply apparatus characterized in that the air layer is a ventilating layer of air opened to the outside.
  4.  請求項1ないし3のいずれかに記載される電源装置であって、
     前記基板ホルダーが底プレートの周囲に周壁を備え、
     前記回路基板が前記周壁の内側に配置され、
     前記周壁と前記回路基板の外周との境界が、前記ポッティング樹脂の流入を阻止する閉塞隙間としてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3, wherein
    The substrate holder comprises a circumferential wall around the bottom plate,
    The circuit board is disposed inside the peripheral wall,
    A power supply device characterized in that a boundary between the peripheral wall and an outer periphery of the circuit board is a closed gap that prevents the inflow of the potting resin.
  5.  請求項4に記載される電源装置であって、
     前記周壁と前記回路基板との間に、前記ポッティング樹脂の流入を阻止するパッキンを配置してなることを特徴とする電源装置。
    The power supply device according to claim 4, wherein
    A power supply device characterized in that a packing for blocking the inflow of the potting resin is disposed between the peripheral wall and the circuit board.
  6.  請求項1ないし5のいずれかに記載される電源装置であって、
     前記回路基板が表面に熱伝導層を有し、前記熱伝導層を介して前記回路基板が前記ポッティング樹脂に密着されてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 5, wherein
    The power supply device, wherein the circuit board has a heat conduction layer on the surface, and the circuit board is in close contact with the potting resin through the heat conduction layer.
  7.  請求項1ないし6のいずれかに記載される電源装置であって、
     前記回路基板と前記底プレートとが水平姿勢に配置され、
     前記回路基板が、上面をポッティング樹脂に密着して、下面に前記断熱層を配置しており、
     さらに、前記電池集合体が前記底プレートの下方に配置されてなることを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 6, wherein
    The circuit board and the bottom plate are disposed in a horizontal attitude;
    The circuit board has the upper surface in close contact with the potting resin, and the heat insulating layer is disposed on the lower surface,
    Furthermore, the battery assembly is disposed below the bottom plate.
  8.  請求項7に記載される電源装置であって、
     前記底プレートと前記電池集合体との間に断熱空気層を設けてなることを特徴とする電源装置。
     
    The power supply device according to claim 7, wherein
    A power supply apparatus characterized by providing a heat insulation air layer between the bottom plate and the battery assembly.
PCT/JP2018/033335 2017-09-29 2018-09-10 Power supply device WO2019065168A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880062870.8A CN111149252B (en) 2017-09-29 2018-09-10 Power supply device
JP2019544515A JP7219716B2 (en) 2017-09-29 2018-09-10 power supply
PH12020550171A PH12020550171A1 (en) 2017-09-29 2020-03-28 Power source apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-190038 2017-09-29
JP2017190038 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065168A1 true WO2019065168A1 (en) 2019-04-04

Family

ID=65900881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033335 WO2019065168A1 (en) 2017-09-29 2018-09-10 Power supply device

Country Status (4)

Country Link
JP (1) JP7219716B2 (en)
CN (1) CN111149252B (en)
PH (1) PH12020550171A1 (en)
WO (1) WO2019065168A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851780A (en) * 2020-06-10 2021-12-28 华为数字能源技术有限公司 Battery, electric vehicle and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176689A (en) * 2008-01-28 2009-08-06 Sanyo Electric Co Ltd Battery pack
JP2010277796A (en) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd Battery pack
JP2014138483A (en) * 2013-01-16 2014-07-28 Sanyo Electric Co Ltd Battery pack and electric apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175743A (en) * 2010-02-23 2011-09-08 Sanyo Electric Co Ltd Power source apparatus, and vehicle equipped with the same
JP5518576B2 (en) * 2010-05-29 2014-06-11 三洋電機株式会社 Battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176689A (en) * 2008-01-28 2009-08-06 Sanyo Electric Co Ltd Battery pack
JP2010277796A (en) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd Battery pack
JP2014138483A (en) * 2013-01-16 2014-07-28 Sanyo Electric Co Ltd Battery pack and electric apparatus

Also Published As

Publication number Publication date
CN111149252A (en) 2020-05-12
JP7219716B2 (en) 2023-02-08
PH12020550171A1 (en) 2021-03-01
CN111149252B (en) 2024-01-05
JPWO2019065168A1 (en) 2020-11-05

Similar Documents

Publication Publication Date Title
CN102593389B (en) Vehicle battery packaging
JP7208145B2 (en) power supply
CN105932352B (en) Cooling circuit with a cooling fluid for a lithium battery, and vehicle comprising said cooling circuit
JP6490105B2 (en) Battery module including cartridge provided with gripping section
JP4925680B2 (en) Pack battery
JP4415570B2 (en) Battery
US8809743B2 (en) Heater with temperature detecting device, battery structure with heater, and heater unit
KR20110118807A (en) Cell module
JP7174707B2 (en) power supply
JP2013012441A (en) Electric power source device and vehicle including the same
JP2009176464A (en) Battery pack device
JP2019008887A (en) Battery pack, battery module and manufacturing method of battery pack
US10483601B2 (en) Battery pack with enclosed heater
WO2017110036A1 (en) Battery pack and method for manufacturing battery pack
JP2010080352A (en) Battery system
WO2013002090A1 (en) Power supply device, vehicle including same, and method for manufacturing power supply device
KR102479967B1 (en) Battery module
WO2019065168A1 (en) Power supply device
KR102585988B1 (en) Battery module, battery pack comprising the battery module and vehicle comprising the battery pack
US11309612B2 (en) Separating device for a battery module, battery module, and motor vehicle
KR20200074320A (en) Battery pack
JP2019160496A (en) Battery device
JP6144128B2 (en) Battery for vehicle
CN220796942U (en) Battery pack
US11444345B2 (en) Separating device for a battery module, battery module, and motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860215

Country of ref document: EP

Kind code of ref document: A1