JPWO2019065168A1 - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JPWO2019065168A1
JPWO2019065168A1 JP2019544515A JP2019544515A JPWO2019065168A1 JP WO2019065168 A1 JPWO2019065168 A1 JP WO2019065168A1 JP 2019544515 A JP2019544515 A JP 2019544515A JP 2019544515 A JP2019544515 A JP 2019544515A JP WO2019065168 A1 JPWO2019065168 A1 JP WO2019065168A1
Authority
JP
Japan
Prior art keywords
circuit board
power supply
supply device
heat
battery cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019544515A
Other languages
Japanese (ja)
Other versions
JP7219716B2 (en
Inventor
米田 晴彦
晴彦 米田
真己 拝野
真己 拝野
岸田 裕司
裕司 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of JPWO2019065168A1 publication Critical patent/JPWO2019065168A1/en
Application granted granted Critical
Publication of JP7219716B2 publication Critical patent/JP7219716B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/227Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

電池セルと制御素子の温度バランスを最適範囲に保持して、電池セルの温度上昇による電気特性の低下と、制御素子の温度上昇による動作不良とを解消する。電源装置は、電池集合体(40)の電池セル(1)の保護回路を実現する制御素子(82)を実装する回路基板(80)を基板ホルダー(81)に固定して、基板ホルダー(81)の底プレート(81A)を回路基板(80)と電池集合体(40)との間に配置しており、回路基板(80)の表面には制御素子(82)が固定されて、ポッティング樹脂(7)が密着しており、回路基板(80)の裏面と底プレート(81A)との間には断熱層(83)を設けている。The temperature balance between the battery cell and the control element is maintained in the optimum range, and the deterioration of the electrical characteristics due to the temperature rise of the battery cell and the malfunction due to the temperature rise of the control element are eliminated. In the power supply device, the circuit board (80) on which the control element (82) that realizes the protection circuit of the battery cell (1) of the battery assembly (40) is mounted is fixed to the board holder (81), and the board holder (81) is fixed. ) Is arranged between the circuit board (80) and the battery assembly (40), and the control element (82) is fixed to the surface of the circuit board (80) to form a potting resin. (7) is in close contact with each other, and a heat insulating layer (83) is provided between the back surface of the circuit board (80) and the bottom plate (81A).

Description

本発明は、電池セルと電子回路とを内蔵する電源装置に関する。 The present invention relates to a power supply device incorporating a battery cell and an electronic circuit.

大出力で大容量の電源装置は、多数の電池セルを直列に接続して出力電圧を高く、また並列に接続して出力電流を大きくしている。この種の電源装置は、電池セルに保護回路を接続し、保護回路で充放電の電流をコントロールして、電池セルの劣化や安全性を確保している。電池セルの保護回路は、回路基板に実装する制御素子で実現される。回路基板には、電池セルの電流を制御するために、FETやトランジスタ等の半導体スイッチング素子が電流をコントロールするパワー素子として実装される。パワー素子は大電流をコントロールするので、大電流が流れて電力損失が大きくなって発熱する。ジュール熱が電流の二乗に比例して大きくなるからである。一方、電池セルも電流のジュール熱で発熱するので、電池セルとパワー素子の両方が発熱する。電池セルの発熱による温度上昇は、電池セルの電気特性を低下し、また安全性を低下させる。パワー素子の発熱は、パワー素子が故障する原因となる。パワー素子と電池セルの熱エネルギーを効率よく放熱して異常な温度上昇を防止するために、従来の電源装置は、電池セルと回路基板とをポッティング樹脂に埋設してポッティング樹脂に熱伝導して放熱している。(特許文献1参照) In a high-output, large-capacity power supply device, a large number of battery cells are connected in series to increase the output voltage, and are connected in parallel to increase the output current. In this type of power supply device, a protection circuit is connected to the battery cell, and the charge / discharge current is controlled by the protection circuit to ensure deterioration and safety of the battery cell. The battery cell protection circuit is realized by a control element mounted on a circuit board. In order to control the current of the battery cell, a semiconductor switching element such as a FET or a transistor is mounted on the circuit board as a power element for controlling the current. Since the power element controls a large current, a large current flows, the power loss becomes large, and heat is generated. This is because the Joule heat increases in proportion to the square of the current. On the other hand, since the battery cell also generates heat due to the Joule heat of the electric current, both the battery cell and the power element generate heat. The temperature rise due to the heat generated by the battery cell lowers the electrical characteristics of the battery cell and also lowers the safety. The heat generated by the power element causes the power element to fail. In order to efficiently dissipate the heat energy of the power element and the battery cell and prevent an abnormal temperature rise, the conventional power supply device embeds the battery cell and the circuit board in the potting resin and conducts heat to the potting resin. It dissipates heat. (See Patent Document 1)

特開2012−15121号公報Japanese Unexamined Patent Publication No. 2012-15121

電池セルと回路基板の両方をポッティング樹脂に埋設する電源装置は、回路基板に実装するパワー素子と電池セルの熱エネルギーが伝導されて両方を放熱する。この電源装置は、パワー素子と電池セルの両方の熱エネルギーをポッティング樹脂に伝導して放熱できる特徴がある。しかしながら、この電源装置は、パワー素子と電池セルの両方を理想的な温度帯域に保持できない欠点がある。パワー素子と電池セルの理想的な温度帯域が異なるからである。さらに困ったことに、パワー素子と電池セルは両方が一緒に発熱するので、パワー素子と電池セルの温度上昇が同時になる。それは、両方が流れる電流の二乗に比例してジュール熱で発熱し、しかもパワー素子は電池セルに直列に接続されて、パワー素子の電流が増加するときに電池セルの電流も増加するからである。さらに、両方が同時に発熱するタイミングで、パワー素子の温度上昇は電池セルよりも大きくなる。パワー素子の電流密度が電池セルよりも大きく、パワー素子が電池セルよりも小さい領域で発熱するからである。したがって、パワー素子と電池セルとがポッティング樹脂で密着されて両方が同じタイミングで発熱すると、高温のパワー素子の熱エネルギーが、電池セルを温度上昇させて電池セルに温度障害を与える弊害が発生する。 In the power supply device in which both the battery cell and the circuit board are embedded in the potting resin, the thermal energy of the power element mounted on the circuit board and the battery cell is conducted to dissipate heat. This power supply device is characterized in that the heat energy of both the power element and the battery cell can be conducted to the potting resin to dissipate heat. However, this power supply has a drawback that both the power element and the battery cell cannot be maintained in the ideal temperature band. This is because the ideal temperature bands of the power element and the battery cell are different. To make matters worse, both the power element and the battery cell generate heat together, so that the temperature of the power element and the battery cell rises at the same time. This is because the heat generated by Joule heat is proportional to the square of the current flowing through both, and the power element is connected in series with the battery cell, and the current of the battery cell increases as the current of the power element increases. .. Further, the temperature rise of the power element becomes larger than that of the battery cell at the timing when both generate heat at the same time. This is because the current density of the power element is larger than that of the battery cell, and the power element generates heat in a region smaller than that of the battery cell. Therefore, when the power element and the battery cell are brought into close contact with each other with the potting resin and both generate heat at the same timing, the thermal energy of the high-temperature power element raises the temperature of the battery cell and causes a temperature hindrance to the battery cell. ..

本発明は、以上の欠点を解決することを目的に開発されたものである。本発明の目的の一は、互いに直列に接続されて比例して電流値が増加する、電池セルと制御素子の温度バランスを最適範囲に保持して、電池セルと制御素子の両方の温度上昇による弊害を防止して、電池セルの温度上昇による電気特性の低下と、制御素子の温度上昇による動作不良とを解消して、厳しい使用環境においても高い安全性を実現する電源装置を提供することにある。 The present invention has been developed for the purpose of solving the above drawbacks. One of the objects of the present invention is to maintain the temperature balance between the battery cell and the control element in the optimum range, in which the current value increases proportionally by being connected in series with each other, and the temperature rises of both the battery cell and the control element. To provide a power supply device that realizes high safety even in a harsh usage environment by preventing harmful effects and eliminating the deterioration of electrical characteristics due to the temperature rise of the battery cell and the malfunction due to the temperature rise of the control element. is there.

課題を解決するための手段及び発明の効果Means for Solving Problems and Effects of Invention

本発明の第1の側面に係る電源装置は、複数の電池セルを備える電池集合体と、前記電池集合体の電池セルの保護回路を実現する制御素子を実装してなる回路基板と、前記回路基板を固定して、底プレートを回路基板と電池集合体との間に配置してなる基板ホルダーとを備え、前記回路基板は、前記基板ホルダーの底プレートと対向する面の反対側にある表面に制御素子を固定して、表面にはポッティング樹脂が密着しており、さらに、回路基板の裏面と底プレートとの間には断熱層を設けている。 The power supply device according to the first aspect of the present invention includes a battery assembly including a plurality of battery cells, a circuit board on which a control element for realizing a protection circuit for the battery cells of the battery assembly is mounted, and the circuit. A substrate holder for fixing a substrate and arranging a bottom plate between the circuit board and a battery assembly is provided, and the circuit board is a surface opposite to a surface of the substrate holder facing the bottom plate. The control element is fixed to the surface, the potting resin is in close contact with the front surface, and a heat insulating layer is provided between the back surface of the circuit board and the bottom plate.

以上の電源装置は、互いに直列に接続されて比例して電流値が増加する、電池セルと制御素子の温度バランスを最適範囲に保持できる。したがって、電池セルと制御素子の両方の温度上昇による弊害を防止して、電池セルの温度上昇による電気特性の低下と、制御素子の温度上昇による動作不良とを解消して、厳しい使用環境においても高い安全性を実現できる特徴がある。それは、以上の電源装置が、回路基板を基板ホルダーに固定して、回路基板と電池集合体との間に基板ホルダーの底プレートを配置し、さらに回路基板は、表面に制御素子を固定してポッティング樹脂が密着し、回路基板の裏面と底プレートとの間には断熱層を設けて制御素子を実装する回路基板を電池セルから熱遮断しているからである。 The above power supply devices can maintain the temperature balance between the battery cell and the control element in the optimum range, which are connected in series with each other and the current value increases proportionally. Therefore, it is possible to prevent the harmful effects caused by the temperature rise of both the battery cell and the control element, eliminate the deterioration of the electrical characteristics due to the temperature rise of the battery cell and the malfunction due to the temperature rise of the control element, and even in a harsh usage environment. It has the feature of being able to achieve high safety. That is, the above power supply device fixes the circuit board to the board holder, arranges the bottom plate of the board holder between the circuit board and the battery assembly, and further fixes the control element on the surface of the circuit board. This is because the potting resin is in close contact with the circuit board, and a heat insulating layer is provided between the back surface of the circuit board and the bottom plate to heat-shield the circuit board on which the control element is mounted from the battery cell.

電池セルの電流をコントロールする制御素子は、電池セルと直列に接続されるので、電池セルの電流が増加するに従って電流値が増加する。電池セルと制御素子は電流の二乗に比例してジュール熱で発熱するので、電池セルが発熱するタイミングにおいて制御素子も同時に発熱する。したがって、電池セルと制御素子は両方が一緒に温度上昇する。制御素子は電池セルよりも小さいので、局部的に発熱して温度上昇が電池セルよりも高くなる。したがって、制御素子を実装する回路基板を、制御素子の実装部分の温度が局部的に高くなる。図2の矢印Aは、電池セル1に回路基板80が密着されると、発熱した制御素子82の熱エネルギーが電池セル1に伝導される状態を示している。この図に示すように、回路基板80に実装する制御素子82が発熱すると、回路基板80が局部的に温度上昇し、温度上昇した回路基板80が付近に配置している特定の電池セル1を加熱する。制御素子の温度は電池セルよりも高く、また電池セルと制御素子とは一緒に発熱するので、温度上昇した電池セルが、さらに高温の制御素子で加熱されて、電池温度が異常に高くなる。この状態は、特定の電池温度を高くして電気特性を著しく低下させることに加えて、各々の電池セルの温度差を拡大して、電気特性をアンバランスとする。電気特性のアンバランスは、特定の電池セルを急激に劣化させる原因となる。電源装置は全ての電池セルを並列に接続することなく、電池セルを直列接続して出力電圧を高くしている。直列接続している電源装置は、何れかの電池セルの電気特性が全体の電気特性を低下させる。このことから、多数の電池セルを内蔵する電源装置は、電池セルの温度上昇を少なくすることに加えて、各々の電池セルの温度差をいかに小さくできるかが、電気特性の低下、すなわち寿命を特定する大切なパラメーターとなる。 Since the control element that controls the current of the battery cell is connected in series with the battery cell, the current value increases as the current of the battery cell increases. Since the battery cell and the control element generate heat with Joule heat in proportion to the square of the current, the control element also generates heat at the same time when the battery cell generates heat. Therefore, both the battery cell and the control element rise in temperature together. Since the control element is smaller than the battery cell, it generates heat locally and the temperature rise is higher than that of the battery cell. Therefore, in the circuit board on which the control element is mounted, the temperature of the mounting portion of the control element becomes locally high. The arrow A in FIG. 2 indicates a state in which the heat energy of the heat-generating control element 82 is conducted to the battery cell 1 when the circuit board 80 is brought into close contact with the battery cell 1. As shown in this figure, when the control element 82 mounted on the circuit board 80 generates heat, the temperature of the circuit board 80 rises locally, and the temperature-raised circuit board 80 causes a specific battery cell 1 arranged in the vicinity. Heat. The temperature of the control element is higher than that of the battery cell, and the battery cell and the control element generate heat together. Therefore, the battery cell whose temperature has risen is heated by the control element having a higher temperature, and the battery temperature becomes abnormally high. In this state, in addition to raising a specific battery temperature and significantly lowering the electrical characteristics, the temperature difference between the respective battery cells is expanded to make the electrical characteristics unbalanced. An imbalance in electrical characteristics causes a rapid deterioration of a particular battery cell. The power supply device does not connect all the battery cells in parallel, but connects the battery cells in series to increase the output voltage. In the power supply devices connected in series, the electrical characteristics of any of the battery cells deteriorate the overall electrical characteristics. From this, in a power supply device having a large number of battery cells built-in, in addition to reducing the temperature rise of the battery cells, how to reduce the temperature difference of each battery cell reduces the electrical characteristics, that is, the life. It is an important parameter to identify.

図2に示す電源装置は、回路基板80を基板ホルダー81に固定して、その表面に制御素子82を配置してポッティング樹脂7を密着し、回路基板80の裏面には基板ホルダー81の底プレート81Aとの間に断熱層83を設けて、回路基板80と制御素子82との間に断熱層83を配置する。この構造の電源装置は、回路基板の表面に固定されて発熱する制御素子の熱エネルギーをポッティング樹脂に伝導し、制御素子の熱エネルギーを放熱して回路基板の表面に分散する。ポッティング樹脂は、制御素子の熱エネルギーを効率よく分散して放熱する。したがって、制御素子の温度上昇が制限されて、回路基板の温度むらが少なくなる。温度むらの少ない回路基板は、裏面と底プレートとの間に断熱層を設けている。回路基板と底プレートとの間に配置される断熱層は、回路基板と制御素子との間にあって、回路基板から電池集合体への熱伝導を遮断する。したがって、電池セルに流れる電流が増加して電池セルがジュール熱で温度上昇する状態において、電池セルよりもさらに高温に発熱した制御素子で加熱されることがない。制御素子の温度上昇は電池セルよりも高くなるが、制御素子の耐熱温度は電池セルよりも高いので、ポッティング樹脂で放熱することで好ましい設定範囲に保持される。また、温度上昇する電池セルは、さらに高温の制御素子で加熱されることなく、好ましい設定範囲に保持される。 In the power supply device shown in FIG. 2, the circuit board 80 is fixed to the board holder 81, the control element 82 is arranged on the surface thereof, and the potting resin 7 is brought into close contact with the power supply device. A heat insulating layer 83 is provided between the 81A and the heat insulating layer 83, and the heat insulating layer 83 is arranged between the circuit board 80 and the control element 82. The power supply device having this structure conducts the thermal energy of the control element that is fixed to the surface of the circuit board and generates heat to the potting resin, dissipates the thermal energy of the control element, and disperses it on the surface of the circuit board. The potting resin efficiently disperses the heat energy of the control element and dissipates heat. Therefore, the temperature rise of the control element is limited, and the temperature unevenness of the circuit board is reduced. A circuit board having less temperature unevenness is provided with a heat insulating layer between the back surface and the bottom plate. The heat insulating layer arranged between the circuit board and the bottom plate is located between the circuit board and the control element to block heat conduction from the circuit board to the battery assembly. Therefore, in a state where the current flowing through the battery cell increases and the temperature of the battery cell rises due to Joule heat, the control element that generates heat at a higher temperature than the battery cell does not heat the battery cell. The temperature rise of the control element is higher than that of the battery cell, but the heat resistant temperature of the control element is higher than that of the battery cell. Therefore, heat is dissipated by the potting resin to keep the temperature within a preferable setting range. Further, the battery cell whose temperature rises is held in a preferable setting range without being heated by the control element having a higher temperature.

また、第2の側面に係る電源装置によれば、上記構成に加えて、前記断熱層を空気層とすることができる。 Further, according to the power supply device according to the second side surface, in addition to the above configuration, the heat insulating layer can be an air layer.

さらに、第3の側面に係る電源装置によれば、上記構成に加えて、前記空気層を外部に開放してなる空気の換気層とすることができる。 Further, according to the power supply device according to the third aspect, in addition to the above configuration, the air layer can be an air ventilation layer that is open to the outside.

さらに、第4の側面に係る電源装置によれば、上記何れかの構成に加えて、前記基板ホルダーは、底プレートの周囲に周壁を設けて、前記回路基板を前記周壁の内側に配置し、前記周壁と前記回路基板の外周との境界を、ポッティング樹脂の流入を阻止する閉塞隙間とすることができる。 Further, according to the power supply device according to the fourth side surface, in addition to any of the above configurations, the substrate holder is provided with a peripheral wall around the bottom plate, and the circuit board is arranged inside the peripheral wall. The boundary between the peripheral wall and the outer periphery of the circuit board can be a closed gap that prevents the inflow of the potting resin.

さらに、第5の側面に係る電源装置によれば、上記構成に加えて、前記周壁と前記回路基板との間に、前記ポッティング樹脂の流入を阻止するパッキンを配置することができる。 Further, according to the power supply device according to the fifth aspect, in addition to the above configuration, a packing for blocking the inflow of the potting resin can be arranged between the peripheral wall and the circuit board.

さらに、第6の側面に係る電源装置によれば、上記何れかの構成に加えて、前記回路基板の表面に熱伝導層を設け、前記熱伝導層を介して前記回路基板を前記ポッティング樹脂に密着させることができる。 Further, according to the power supply device according to the sixth side surface, in addition to any of the above configurations, a heat conductive layer is provided on the surface of the circuit board, and the circuit board is made into the potting resin via the heat conductive layer. Can be brought into close contact.

さらに、第7の側面に係る電源装置によれば、上記何れかの構成に加えて、前記回路基板と前記底プレートを水平姿勢に配置して、前記回路基板の上面に前記ポッティング樹脂を密着して、該回路基板の下面に前記断熱層を配置し、前記電池集合体を前記底プレートの下方に配置することができる。 Further, according to the power supply device according to the seventh side surface, in addition to any of the above configurations, the circuit board and the bottom plate are arranged in a horizontal posture, and the potting resin is brought into close contact with the upper surface of the circuit board. The heat insulating layer can be arranged on the lower surface of the circuit board, and the battery assembly can be arranged below the bottom plate.

さらにまた、第8の側面に係る電源装置によれば、上記構成に加えて、前記底プレートと前記電池集合体との間に断熱空気層を設けることができる。 Furthermore, according to the power supply device according to the eighth side surface, in addition to the above configuration, an adiabatic air layer can be provided between the bottom plate and the battery assembly.

本発明の一実施形態に係る電源装置を示す垂直断面図である。It is a vertical sectional view which shows the power-source device which concerns on one Embodiment of this invention. 図1の電源装置の要部拡大概略断面図である。FIG. 5 is an enlarged schematic cross-sectional view of a main part of the power supply device of FIG. 図1の電源装置の電池集合体の分解斜視図である。It is an exploded perspective view of the battery assembly of the power supply device of FIG. 図3に示す閉塞カバーの分解斜視図である。It is an exploded perspective view of the blockage cover shown in FIG.

以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための構成を例示するものであって、本発明は以下のものに特定されない。また、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the embodiments shown below exemplify a configuration for embodying the technical idea of the present invention, and the present invention is not specified as the following. Moreover, the member shown in the claims is never specified as the member of the embodiment. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the constituent members described in the embodiments are not intended to limit the scope of the present invention to the specific ones unless otherwise specified. It is just an example of explanation. The size and positional relationship of the members shown in each drawing may be exaggerated to clarify the explanation. Further, in the following description, members having the same or the same quality are shown with the same name and reference numeral, and detailed description thereof will be omitted as appropriate. Further, each element constituting the present invention may be configured such that a plurality of elements are composed of the same member and the plurality of elements are combined with one member, or conversely, the function of one member is performed by the plurality of members. It can also be shared and realized. In addition, the contents described in some examples and embodiments can be used in other embodiments and embodiments.

以下に示す電源装置は、主として、モータのみで走行する電気自動車や電動カートなどの電動車両の駆動用電源に適用する例を説明する。なお本発明の電源装置を、エンジンとモータの両方で走行するハイブリッド車に使用したり、電動車両以外の大出力が要求される用途、例えば家庭用、工場用の蓄電装置等に使用してもよい。
(実施形態1)
An example in which the power supply device shown below is mainly applied to a power source for driving an electric vehicle such as an electric vehicle or an electric cart that runs only by a motor will be described. Even if the power supply device of the present invention is used in a hybrid vehicle that runs on both an engine and a motor, or in an application other than an electric vehicle that requires a large output, for example, a power storage device for home or factory use. Good.
(Embodiment 1)

図1の断面図と図2の拡大断面図に示す電源装置100は、電池集合体40の上に回路基板80を配置している。電池集合体40は、図3に示すように、複数の二次電池セル1を電池ホルダ44で定位置に配置している。図の電池集合体40は、二次電池セル1を水平姿勢で平行に配置して、多段多列に配列している。
(回路基板80)
In the power supply device 100 shown in the cross-sectional view of FIG. 1 and the enlarged cross-sectional view of FIG. 2, the circuit board 80 is arranged on the battery assembly 40. As shown in FIG. 3, the battery assembly 40 has a plurality of secondary battery cells 1 arranged at fixed positions by the battery holder 44. In the battery assembly 40 shown in the figure, the secondary battery cells 1 are arranged in parallel in a horizontal posture and arranged in multiple stages and rows.
(Circuit board 80)

回路基板80は、電池集合体40の二次電池セル1の保護回路を実現する制御素子82を実装している。保護回路は二次電池セル1の電圧、残容量、温度、電流等を検出して電流を制御して、二次電池セル1の過充電や過放電を防止し、さらに二次電池セル1の異常な状態における電流を制御して二次電池セル1の劣化や電気特性の低下を防止する。二次電池セル1の電流をコントロールする保護回路は、二次電池セル1と直列に接続されて電流をコントロールする制御素子82を備える。制御素子82はFETやトランジスタ等の半導体素子である。これ等の制御素子82は、電流の二乗と等価抵抗の積に比例するジュール熱で発熱する。制御素子82は二次電池セル1と直列に接続されて二次電池セル1の電流をコントロールするので、二次電池セル1の電流が増加する制御素子82の電流も増加する。二次電池セル1も電流の二乗と内部抵抗の積に比例するジュール熱で発熱するので、制御素子82と二次電池セル1は同じタイミングで発熱し、また発熱エネルギーも同じように増加する。このため、例えば電流が2倍に増加すると、二次電池セル1と制御素子82の発熱エネルギーは4倍となる。二次電池セル1と制御素子82は同じ割合で発熱量が増加するが、制御素子82の温度上昇は二次電池セル1よりも大きくなる。それは、制御素子82の発熱領域が二次電池セル1に比較して極めて狭い領域となるからである。
(基板ホルダー81)
The circuit board 80 mounts a control element 82 that realizes a protection circuit for the secondary battery cell 1 of the battery assembly 40. The protection circuit detects the voltage, remaining capacity, temperature, current, etc. of the secondary battery cell 1 and controls the current to prevent overcharging and overdischarging of the secondary battery cell 1, and further, the secondary battery cell 1 The current in an abnormal state is controlled to prevent deterioration of the secondary battery cell 1 and deterioration of electrical characteristics. The protection circuit that controls the current of the secondary battery cell 1 includes a control element 82 that is connected in series with the secondary battery cell 1 to control the current. The control element 82 is a semiconductor element such as a FET or a transistor. These control elements 82 generate heat with Joule heat, which is proportional to the product of the square of the current and the equivalent resistance. Since the control element 82 is connected in series with the secondary battery cell 1 to control the current of the secondary battery cell 1, the current of the control element 82, which increases the current of the secondary battery cell 1, also increases. Since the secondary battery cell 1 also generates heat with Joule heat proportional to the product of the square of the current and the internal resistance, the control element 82 and the secondary battery cell 1 generate heat at the same timing, and the heat generation energy also increases in the same manner. Therefore, for example, when the current is doubled, the heat generation energy of the secondary battery cell 1 and the control element 82 is quadrupled. The amount of heat generated by the secondary battery cell 1 and the control element 82 increases at the same rate, but the temperature rise of the control element 82 is larger than that of the secondary battery cell 1. This is because the heat generation region of the control element 82 is an extremely narrow region as compared with the secondary battery cell 1.
(Board holder 81)

回路基板80は、基板ホルダー81を介して電池集合体40の定位置に配置されている。基板ホルダー81は、回路基板80を定位置に配置することに加えて、高温に加熱される制御素子82の熱エネルギーを効率よく拡散し、さらに放熱しながら、制御素子82から二次電池セル1への熱伝導を遮断して、制御素子82と二次電池セル1の両方の温度バランスを最適化し、二次電池セル1と制御素子82の両方を最適な温度領域に保持する。このことを実現するために、基板ホルダー81は、回路基板80の裏面と底プレート81Aとの間には断熱層83を設けて、回路基板80の上面にはポッティング樹脂7を注入している。
(断熱層83)
The circuit board 80 is arranged at a fixed position of the battery assembly 40 via the board holder 81. In addition to arranging the circuit board 80 in a fixed position, the board holder 81 efficiently diffuses the heat energy of the control element 82 heated to a high temperature, and further dissipates heat from the control element 82 to the secondary battery cell 1. By blocking heat conduction to, the temperature balance of both the control element 82 and the secondary battery cell 1 is optimized, and both the secondary battery cell 1 and the control element 82 are held in the optimum temperature range. In order to realize this, the substrate holder 81 is provided with a heat insulating layer 83 between the back surface of the circuit board 80 and the bottom plate 81A, and the potting resin 7 is injected into the upper surface of the circuit board 80.
(Insulation layer 83)

図2の基板ホルダー81は、回路基板裏面の断熱層83を空気層とする。空気層は軽くて優れた断熱特性を実現する。さらに、図2の断熱層83は、外部に開放された空気の換気層83Aとして、空気層の断熱特性をより向上している。換気層83Aは、基板ホルダー81の周壁81Bの上下に貫通穴を設けて開口部81a、81bとしている。この換気層83Aは、下部の開口部81aから外気が流入し、内部で加温して軽くなった空気が上部の開口部81bから外部に排出されて、内部の空気を換気して内部空気の温度上昇を少なくする。断熱層83は、空気層に代わって、無数の繊維を立体的に集合している断熱材やプラスチックや無機材の発泡体からなる断熱材も使用できる。断熱層83に断熱材を充填する基板ホルダー81は、上面に注入されるポッティング樹脂7が断熱層83に流入するのを防止できるので、ポッティング樹脂7の注入を簡単にできる特徴がある。さらに、図1と図2に示す電源装置100は、基板ホルダー81の底プレート81Aと電池集合体40との間にも断熱空気層84を設けて、制御素子82から二次電池セル1への熱伝導を遮断している。
(ポッティング樹脂7)
In the substrate holder 81 of FIG. 2, the heat insulating layer 83 on the back surface of the circuit board is used as an air layer. The air layer is light and provides excellent insulation properties. Further, the heat insulating layer 83 of FIG. 2 is a ventilation layer 83A of air open to the outside, and the heat insulating characteristics of the air layer are further improved. The ventilation layer 83A is provided with through holes above and below the peripheral wall 81B of the substrate holder 81 to form openings 81a and 81b. In the ventilation layer 83A, the outside air flows in from the lower opening 81a, and the air that has been heated and lightened inside is discharged to the outside from the upper opening 81b to ventilate the internal air and to ventilate the internal air. Reduce the temperature rise. As the heat insulating layer 83, instead of the air layer, a heat insulating material in which innumerable fibers are three-dimensionally assembled or a heat insulating material made of a foam of a plastic or an inorganic material can be used. The substrate holder 81 for filling the heat insulating layer 83 with the heat insulating material has a feature that the potting resin 7 injected on the upper surface can be prevented from flowing into the heat insulating layer 83, so that the potting resin 7 can be easily injected. Further, in the power supply device 100 shown in FIGS. 1 and 2, a heat insulating air layer 84 is also provided between the bottom plate 81A of the substrate holder 81 and the battery assembly 40, and the control element 82 is transferred to the secondary battery cell 1. It blocks heat conduction.
(Potting resin 7)

基板ホルダー81は、回路基板80の上にポッティング樹脂7を注入して、回路基板80の表面と制御素子82をポッティング樹脂7に密着する。回路基板80の上面にポッティング樹脂7を注入するために、基板ホルダー81は周壁81Bを回路基板80の表面から上に突出する高さとしている。さらに、回路基板80の上に注入される未硬化で液状のポッティング樹脂7が回路基板80の裏面に流入しないように、基板ホルダー81は底プレート81Aの周囲に周壁81Bを設けて、回路基板80を周壁81Bの内側に配置している。周壁81Bと回路基板80の外周との境界は、ポッティング樹脂7の流入を阻止する閉塞隙間81Cとして、回路基板80の外周縁と周壁内面との間に隙間ができない形状としている。図2の基板ホルダー81は、周壁81Bの内面と回路基板80の外周縁との間にパッキン85を配置して、ポッティング樹脂7が回路基板80の裏面に流入するのを防止している。 The substrate holder 81 injects the potting resin 7 onto the circuit board 80 to bring the surface of the circuit board 80 and the control element 82 into close contact with the potting resin 7. In order to inject the potting resin 7 into the upper surface of the circuit board 80, the substrate holder 81 has a height at which the peripheral wall 81B projects upward from the surface of the circuit board 80. Further, the substrate holder 81 is provided with a peripheral wall 81B around the bottom plate 81A so that the uncured and liquid potting resin 7 injected onto the circuit board 80 does not flow into the back surface of the circuit board 80. Is arranged inside the peripheral wall 81B. The boundary between the peripheral wall 81B and the outer periphery of the circuit board 80 is a closed gap 81C that prevents the inflow of the potting resin 7, and is shaped so that there is no gap between the outer peripheral edge of the circuit board 80 and the inner surface of the peripheral wall. In the substrate holder 81 of FIG. 2, the packing 85 is arranged between the inner surface of the peripheral wall 81B and the outer peripheral edge of the circuit board 80 to prevent the potting resin 7 from flowing into the back surface of the circuit board 80.

ポッティング樹脂7は、回路基板80の表面と制御素子82の全体あるいは下部を埋設して、回路基板80の表面と制御素子82に密着されて、制御素子82の熱エネルギーを回路基板80の表面に分散し、さらに外部に放熱する。図2の断面図に示すポッティング樹脂7は、制御素子82の全体をポッティング樹脂7に埋設して、制御素子82の全面をポッティング樹脂7に密着するように、周壁81Bを高くしてポッティング樹脂7を厚く充填している。ポッティング樹脂7に埋設される制御素子82は、熱エネルギーを全面からポッティング樹脂7に伝導する。ポッティング樹脂7は、伝導される熱エネルギーを回路基板80の表面に分散し、さらに、表面から放熱して制御素子82の熱エネルギーを放熱する。さらに、図2の断面図に示す回路基板80は、制御素子82の熱エネルギーをより効率よく表面に分散できるように、表面に熱伝導層86を設けて、熱伝導層86をポッティング樹脂7に密着している。熱伝導層86はポッティング樹脂7よりも熱伝導率の優れた金属層で、制御素子82の熱エネルギーを極めて効率よく回路基板80の表面に分散する。この回路基板80は、ポッティング樹脂7と回路基板80の表面との間に熱伝導特性に優れた熱伝導層86を設けているので、制御素子82の熱エネルギーを熱伝導層86で分散し、分散された熱エネルギーをさらにポッティング樹脂7で分散して放熱する。 The potting resin 7 embeds the surface of the circuit board 80 and the entire or lower part of the control element 82, and is brought into close contact with the surface of the circuit board 80 and the control element 82 to transfer the thermal energy of the control element 82 to the surface of the circuit board 80. Disperse and dissipate heat to the outside. In the potting resin 7 shown in the cross-sectional view of FIG. 2, the entire control element 82 is embedded in the potting resin 7, and the peripheral wall 81B is raised so that the entire surface of the control element 82 is in close contact with the potting resin 7. Is thickly filled. The control element 82 embedded in the potting resin 7 conducts thermal energy from the entire surface to the potting resin 7. The potting resin 7 disperses the conducted heat energy on the surface of the circuit board 80, and further dissipates heat from the surface to dissipate the heat energy of the control element 82. Further, the circuit board 80 shown in the cross-sectional view of FIG. 2 is provided with a heat conductive layer 86 on the surface so that the heat energy of the control element 82 can be more efficiently dispersed on the surface, and the heat conductive layer 86 is made of the potting resin 7. It is in close contact. The heat conductive layer 86 is a metal layer having a higher thermal conductivity than the potting resin 7, and disperses the heat energy of the control element 82 on the surface of the circuit board 80 extremely efficiently. Since the circuit board 80 is provided with the heat conductive layer 86 having excellent heat conductive characteristics between the potting resin 7 and the surface of the circuit board 80, the heat energy of the control element 82 is dispersed by the heat conductive layer 86. The dispersed heat energy is further dispersed by the potting resin 7 to dissipate heat.

図2の電源装置100は、回路基板80と底プレート81Aを水平姿勢に配置して、回路基板80の上にポッティング樹脂7に密着して、下面に断熱層83を配置し、さらに、電池集合体40を底プレート81Aの下方に配置している。電源装置100は、発熱する制御素子82の熱エネルギーをポッティング樹脂7に伝導して放熱する。加熱されたポッティング樹脂7は、熱エネルギーを分散して表面から放熱する。熱エネルギーを放熱するポッティング樹脂7は、輻射熱で放熱し、また表面に接触する空気を加温して放熱する。ポッティング樹脂7の表面で加温された空気は、軽くなって上昇する。ポッティング樹脂7で加温された空気は、上昇するので下方に配置している二次電池セル1を加温しない。したがって、回路基板80と底プレート81Aとを電池集合体40の上に配置する構造は、発熱した制御素子82が空気を介して二次電池セル1を加温することがなく、制御素子82の発熱による二次電池セル1の温度上昇を最も小さくできる特徴がある。電池集合体40の上方に配置される回路基板80は、温度上昇した二次電池セル1で温度上昇した空気で加温されるが、二次電池セル1の温度上昇は制御素子82よりも小さく、しかも制御素子82の温度上昇が二次電池セル1よりも高くなるので、発熱した二次電池セル1による制御素子82の加温は弊害とならない。
(電池集合体40)
In the power supply device 100 of FIG. 2, the circuit board 80 and the bottom plate 81A are arranged in a horizontal position, the potting resin 7 is brought into close contact with the circuit board 80, and the heat insulating layer 83 is arranged on the lower surface. The body 40 is placed below the bottom plate 81A. The power supply device 100 conducts the heat energy of the heat-generating control element 82 to the potting resin 7 to dissipate heat. The heated potting resin 7 disperses heat energy and dissipates heat from the surface. The potting resin 7 that dissipates heat energy dissipates heat by radiant heat, and also heats air that comes into contact with the surface to dissipate heat. The air heated on the surface of the potting resin 7 becomes lighter and rises. Since the air heated by the potting resin 7 rises, it does not heat the secondary battery cell 1 arranged below. Therefore, in the structure in which the circuit board 80 and the bottom plate 81A are arranged on the battery assembly 40, the heat-generating control element 82 does not heat the secondary battery cell 1 via air, and the control element 82 of the control element 82 It has the feature that the temperature rise of the secondary battery cell 1 due to heat generation can be minimized. The circuit board 80 arranged above the battery assembly 40 is heated by the air whose temperature has risen in the secondary battery cell 1 whose temperature has risen, but the temperature rise of the secondary battery cell 1 is smaller than that of the control element 82. Moreover, since the temperature rise of the control element 82 is higher than that of the secondary battery cell 1, the heating of the control element 82 by the generated secondary battery cell 1 is not harmful.
(Battery assembly 40)

電池集合体40は、複数の二次電池セル1を電池ホルダ44で定位置に配置している。図1〜図3に示す電池集合体40は、一対の電池ユニット40Aを対向位置(図において左右)に配置して連結している。電池ユニット40Aは複数の二次電池セル1を平行姿勢に並べて、両端を同一平面に配置して、両端の端部電極13にリード板45を接続している。電池集合体40は、対向位置に配置する一対の電池ユニット40Aを二次電池セル1の軸方向に並べて配置すると共に、一対の電池ユニット40Aの間に絶縁スペース6を設けている。各々の電池ユニット40Aは、図2の拡大断面図に示すように、絶縁スペース6の対向位置に端部電極13を配置している。
(二次電池セル1)
In the battery assembly 40, a plurality of secondary battery cells 1 are arranged at fixed positions by the battery holder 44. In the battery assembly 40 shown in FIGS. 1 to 3, a pair of battery units 40A are arranged and connected at opposite positions (left and right in the figure). In the battery unit 40A, a plurality of secondary battery cells 1 are arranged in a parallel posture, both ends are arranged on the same plane, and the lead plate 45 is connected to the end electrodes 13 at both ends. In the battery assembly 40, a pair of battery units 40A arranged at opposite positions are arranged side by side in the axial direction of the secondary battery cell 1, and an insulating space 6 is provided between the pair of battery units 40A. As shown in the enlarged cross-sectional view of FIG. 2, each battery unit 40A has an end electrode 13 arranged at a position facing the insulating space 6.
(Secondary battery cell 1)

二次電池セル1は、設定圧力で開弁する排出弁の排出口(図視せず)を端面に設けている。二次電池セル1は両端に端部電極13を設けている。この二次電池セル1は、アルミニウム等の金属製外装缶の開口部を封口板で気密に密閉して、封口板に凸部電極を設けて第1の端部電極13Aとし、外装缶の底面を第2の端部電極13Bとしている。排出弁の排出口は、凸部電極側に設けられ、あるいは外装缶の底面に設けられる。 The secondary battery cell 1 is provided with a discharge port (not shown) of a discharge valve that opens at a set pressure on the end face. The secondary battery cell 1 is provided with end electrodes 13 at both ends. In this secondary battery cell 1, the opening of a metal outer can made of aluminum or the like is hermetically sealed with a sealing plate, and a convex electrode is provided on the sealing plate to form a first end electrode 13A, which is the bottom surface of the outer can. Is the second end electrode 13B. The discharge port of the discharge valve is provided on the convex electrode side or on the bottom surface of the outer can.

二次電池セル1は、円筒形電池のリチウムイオン電池である。リチウムイオン電池は、大きさや重量に対する容量が大きく、電源装置100のトータル容量を大きくできる。ただし、本発明の電源装置は、二次電池セルをリチウムイオン電池には特定しない。二次電池セルには、充電できる他の二次電池が使用できる。また、図の電源装置100は、二次電池セル1を円筒形電池とするが、二次電池セルには角形電池も使用できる。各々の二次電池セル1は、その両端の端部電極13にリード板45を溶接して、隣接する二次電池セル1を直列又は並列に接続している。
(電池ホルダ44)
The secondary battery cell 1 is a lithium ion battery of a cylindrical battery. The lithium ion battery has a large capacity relative to its size and weight, and the total capacity of the power supply device 100 can be increased. However, the power supply device of the present invention does not specify the secondary battery cell as a lithium ion battery. Other rechargeable secondary batteries can be used in the secondary battery cell. Further, in the power supply device 100 shown in the figure, the secondary battery cell 1 is a cylindrical battery, but a square battery can also be used as the secondary battery cell. Each secondary battery cell 1 has a lead plate 45 welded to the end electrodes 13 at both ends thereof, and adjacent secondary battery cells 1 are connected in series or in parallel.
(Battery holder 44)

二次電池セル1は、図3に示すように、電池ホルダ44で定位置に配置している。電池ホルダ44はプラスチック等の絶縁材を成形して制作される。図の電池ホルダ44は、すべての二次電池セル1を平行な姿勢で定位置に配置している。電池ホルダ44で定位置に配置される二次電池セル1は、その両端にリード板45を溶接するので、各々の端部に溶接されるリード板45を同一面に位置するように、各々の二次電池セル1をその両端部がほぼ同一面に位置するように、電池ホルダ44に配置している。 As shown in FIG. 3, the secondary battery cell 1 is arranged at a fixed position by the battery holder 44. The battery holder 44 is manufactured by molding an insulating material such as plastic. In the battery holder 44 shown in the figure, all the secondary battery cells 1 are arranged in a fixed position in a parallel posture. Since the rechargeable battery cell 1 arranged at a fixed position in the battery holder 44 has lead plates 45 welded to both ends thereof, each of the rechargeable battery cells 45 to be welded to each end is located on the same surface. The secondary battery cell 1 is arranged in the battery holder 44 so that both ends thereof are located on substantially the same surface.

電池ホルダ44は、二次電池セル1を挿入して定位置に配置する挿入部44Aを設けている。図の電源装置100は、二次電池セル1を円筒形電池とするので、挿入部44Aを円柱状としている。電池ホルダ44は、プラスチックを筒状に成形して内側に挿入部44Aを設けている。挿入部44Aは、電池端部を露出させる開口部44Bを両端に設けている。開口部44Bは、挿入部44Aに挿入される二次電池セル1の端部を挿入部44Aから外部に露出させる。開口部44Bに露出される二次電池セル1の端面は、端部電極13となってここにリード板45が溶接して固定される。 The battery holder 44 is provided with an insertion portion 44A into which the secondary battery cell 1 is inserted and arranged at a fixed position. In the power supply device 100 shown in the figure, since the secondary battery cell 1 is a cylindrical battery, the insertion portion 44A is cylindrical. The battery holder 44 is formed by molding plastic into a tubular shape and is provided with an insertion portion 44A inside. The insertion portion 44A is provided with openings 44B at both ends that expose the end portions of the battery. The opening 44B exposes the end of the secondary battery cell 1 inserted into the insertion portion 44A to the outside from the insertion portion 44A. The end face of the secondary battery cell 1 exposed to the opening 44B becomes an end electrode 13, and a lead plate 45 is welded and fixed thereto.

図1に示すように、一対の電池ユニット40Aの間に絶縁スペース6を設けて、絶縁スペース6の両側に二次電池セル1の端面を配置する電池集合体40は、排出弁の排出口が絶縁スペース6に配置される。排出弁が開弁すると、排出口から排出される高温の噴出ガスが対向する電池ユニット40Aの端面に向かって噴射される。対向位置にある二次電池セル1の対向面に噴射される高温の噴出ガスは、二次電池セル1の熱暴走を誘発する原因となる。図1の電源装置100は、絶縁スペース6の中間に耐熱シート64を配置している。
(耐熱シート64)
As shown in FIG. 1, in the battery assembly 40 in which the insulating space 6 is provided between the pair of battery units 40A and the end faces of the secondary battery cells 1 are arranged on both sides of the insulating space 6, the discharge port of the discharge valve is provided. It is arranged in the insulating space 6. When the discharge valve is opened, the high-temperature ejected gas discharged from the discharge port is injected toward the end face of the facing battery unit 40A. The high-temperature ejected gas injected onto the facing surfaces of the secondary battery cells 1 at opposite positions causes thermal runaway of the secondary battery cells 1. In the power supply device 100 of FIG. 1, a heat-resistant sheet 64 is arranged in the middle of the insulating space 6.
(Heat-resistant sheet 64)

耐熱シート64は、排出弁から排出される噴出ガスで溶融されない耐熱温度の絶縁シートで、たとえば難燃処理した耐熱紙である。ただ、耐熱シート64には、耐熱紙に代わって噴出ガスで溶融されない無機繊維をシート状に集合した紙や不織布、あるいは、無機材を薄いシート状に結合した無機シート等も使用できる。これ等の耐熱シート64は薄くできるので、耐熱シート64が絶縁スペース6の実質容積を減少することなく絶縁スペース6を広くして噴出ガスをスムーズに排出できる特徴がある。絶縁性の耐熱シート64は、両面に配置される二次電池セル1の端面やリード板45を絶縁状態に配置できる。ただ、耐熱シートは必ずしも絶縁材とする必要はない。それは、耐熱シートの表面に絶縁シートを積層して表面を絶縁できるからである。ただし、耐熱シートを絶縁材としてその表面に絶縁材を積層する構造は、耐熱シートによる絶縁性をさらに向上できる。 The heat-resistant sheet 64 is an insulating sheet having a heat-resistant temperature that is not melted by the ejected gas discharged from the discharge valve, and is, for example, flame-retardant heat-resistant paper. However, as the heat-resistant sheet 64, instead of heat-resistant paper, paper or non-woven fabric in which inorganic fibers that are not melted by ejected gas are assembled in a sheet shape, or an inorganic sheet in which an inorganic material is bonded in a thin sheet shape can be used. Since these heat-resistant sheets 64 can be made thin, the heat-resistant sheet 64 has a feature that the insulating space 6 can be widened and the ejected gas can be smoothly discharged without reducing the substantial volume of the insulating space 6. In the heat-insulating heat-resistant sheet 64, the end faces and lead plates 45 of the secondary battery cells 1 arranged on both sides can be arranged in an insulated state. However, the heat-resistant sheet does not necessarily have to be an insulating material. This is because the surface can be insulated by laminating an insulating sheet on the surface of the heat-resistant sheet. However, a structure in which a heat-resistant sheet is used as an insulating material and an insulating material is laminated on the surface thereof can further improve the insulating property of the heat-resistant sheet.

耐熱シート64は、二次電池セル1の端面と平行な姿勢で配置される。図の電源装置100は、絶縁スペース6の中間に耐熱シート64を配置して、耐熱シート64の両面には噴出ガスの排気チャンバー63を設けている。絶縁スペース6の中間に耐熱シート63を配置するために、電源装置100は、図1〜図4に示すように、耐熱シート64の両側に絶縁スペース6の外周部に沿う形状の閉塞カバー61を配置し、この閉塞カバー61を耐熱シート64と電池ユニット40Aとの間に介在させている。図の閉塞カバー61は、絶縁スペース6の外周部に沿う形状の外周枠部62を有している。電源装置100は、この形状の閉塞カバー61を電池ユニット40の対向面40aと耐熱シート64との間に配置することで、耐熱シート64を電池ユニット40の対向面40aから離間する状態で配置して、耐熱シート64と電池ユニット40の対向面40aとの間であって外周枠部62の内側に排気チャンバー63を設けている。 The heat-resistant sheet 64 is arranged in a posture parallel to the end surface of the secondary battery cell 1. In the power supply device 100 shown in the figure, a heat-resistant sheet 64 is arranged in the middle of the insulating space 6, and exhaust gas chambers 63 for ejected gas are provided on both sides of the heat-resistant sheet 64. In order to arrange the heat-resistant sheet 63 in the middle of the heat-resistant space 6, the power supply device 100 has closed covers 61 having a shape along the outer peripheral portion of the heat-resistant space 6 on both sides of the heat-resistant sheet 64 as shown in FIGS. The closing cover 61 is arranged and interposed between the heat-resistant sheet 64 and the battery unit 40A. The closing cover 61 in the figure has an outer peripheral frame portion 62 having a shape along the outer peripheral portion of the insulating space 6. The power supply device 100 arranges the heat-resistant sheet 64 in a state of being separated from the facing surface 40a of the battery unit 40 by arranging the closing cover 61 having this shape between the facing surface 40a of the battery unit 40 and the heat-resistant sheet 64. The exhaust chamber 63 is provided between the heat-resistant sheet 64 and the facing surface 40a of the battery unit 40 and inside the outer peripheral frame portion 62.

このように、耐熱シート64の両面に排気チャンバー63を設けている絶縁スペース6は、噴出ガスをスムーズに抵抗なく排気チャンバー63に排出できる。また、この構造の絶縁スペース6は、噴出ガスを排気チャンバー63で拡散して耐熱シート64に吹き付けるので、噴出ガスによる耐熱シート64の熱損傷を少なくして、対向位置にある二次電池セル1の熱暴走の誘発をより効果的に阻止できる。さらに耐熱シート64に要求される強度と耐熱特性を低下して、耐熱シート64のコストを低減できる。さらにまた、耐熱シート64の表面に吹き付けられる噴出ガスを排気チャンバー63で両側に分散させるので、噴出ガスを少ない排気抵抗でスムーズに絶縁スペース6に排出できる特徴も実現する。このことは、内圧が異常に上昇した二次電池セル1の圧力を速やかに低下して、内圧上昇による外装缶の破裂などの弊害を有効に防止できる。 In this way, the insulating space 6 provided with the exhaust chambers 63 on both sides of the heat-resistant sheet 64 can smoothly discharge the exhaust gas to the exhaust chamber 63 without resistance. Further, since the insulating space 6 having this structure diffuses the ejected gas in the exhaust chamber 63 and blows it onto the heat-resistant sheet 64, the thermal damage of the heat-resistant sheet 64 due to the ejected gas is reduced, and the secondary battery cells 1 located at opposite positions are reduced. Can more effectively prevent the induction of thermal runaway. Further, the strength and heat resistance characteristics required for the heat resistant sheet 64 can be lowered, and the cost of the heat resistant sheet 64 can be reduced. Furthermore, since the exhaust gas sprayed on the surface of the heat-resistant sheet 64 is dispersed on both sides by the exhaust chamber 63, the feature that the exhaust gas can be smoothly discharged to the insulating space 6 with a small exhaust resistance is also realized. This makes it possible to quickly reduce the pressure of the secondary battery cell 1 in which the internal pressure has risen abnormally, and effectively prevent adverse effects such as bursting of the outer can due to the rise in the internal pressure.

さらに、耐熱シート64は、排出される噴出ガスで変形する可撓性シートとしている。この耐熱シート64は、噴射される噴出ガスの圧力で変形して、噴出ガスが排出される一方の排気チャンバー63の容積を増加できるので、排出弁の排出口から排気チャンバー63により少ない抵抗で噴出ガスをスムーズに排出して、二次電池セル1の内圧上昇による破壊を効果的に防止してより高い安全性を確保できる特徴がある。
(閉塞カバー61)
Further, the heat-resistant sheet 64 is a flexible sheet that is deformed by the discharged gas. Since the heat-resistant sheet 64 can be deformed by the pressure of the ejected gas to be injected to increase the volume of the exhaust chamber 63 on which the ejected gas is discharged, the heat-resistant sheet 64 is ejected from the discharge port of the exhaust valve to the exhaust chamber 63 with less resistance. It has a feature that gas can be smoothly discharged, and destruction due to an increase in internal pressure of the secondary battery cell 1 can be effectively prevented to ensure higher safety.
(Occlusion cover 61)

耐熱シート64の両側に配置されて、耐熱シート64と電池ユニット40Aとの間に配置される閉塞カバー61は、図1〜図4に示すように、絶縁スペース6の外周部を閉塞する外周枠部62を有しており、この外周枠部62の内側に排気チャンバー63を設けて、排気チャンバー63に排出弁の排出口を露出させている。外周枠部62は、絶縁スペース6の外周縁部に沿って伸びる形状で、電池ユニット40Aの端面に隙間なく密着して、絶縁スペース6に排気チャンバー63を形成している。この構造の閉塞カバー61は、外周枠部62の内側に大容積の排気チャンバー63を設けて、ここに噴出ガスを噴射できるので、噴出ガスをスムーズに排出できる特徴がある。それは、大容積の排気チャンバー63は、排出弁の排出口から噴射される噴出ガスによる内圧上昇が緩慢で排気抵抗の上昇勾配を緩やかにできるからである。 As shown in FIGS. 1 to 4, the closing covers 61 arranged on both sides of the heat-resistant sheet 64 and arranged between the heat-resistant sheet 64 and the battery unit 40A are outer peripheral frames that close the outer peripheral portion of the insulating space 6. A portion 62 is provided, and an exhaust chamber 63 is provided inside the outer peripheral frame portion 62 to expose the exhaust port of the exhaust valve to the exhaust chamber 63. The outer peripheral frame portion 62 has a shape extending along the outer peripheral edge portion of the insulating space 6 and is in close contact with the end surface of the battery unit 40A without a gap to form an exhaust chamber 63 in the insulating space 6. The closing cover 61 having this structure is characterized in that a large-volume exhaust chamber 63 is provided inside the outer peripheral frame portion 62, and the ejected gas can be injected there, so that the ejected gas can be smoothly discharged. This is because the large-volume exhaust chamber 63 has a slow increase in internal pressure due to the exhaust gas injected from the exhaust port of the exhaust valve, and the increase gradient of the exhaust resistance can be made gentle.

閉塞カバー61は、排出弁から排出される噴出ガスで溶融する独立気泡を有する絶縁材の発泡体で成形される。噴出ガスで溶融される閉塞カバー61の溶融温度は、たとえば100℃以上であって500℃以下、好ましくは200℃以上であって400℃以下とする。溶融温度の低い閉塞カバー61は、噴出ガスで速やかに溶融して噴出ガスを絶縁スペース6の外部に排出し、溶融温度の高い閉塞カバー61は、使用状態において確実に絶縁スペース6を閉塞できる。閉塞カバー61の溶融温度が低すぎると、電池温度で溶融し、あるいは変形し、また高すぎると噴出ガスで速やかに溶融できなくなる。したがって、閉塞カバー61の溶融温度は、噴出ガスでは速やかに溶融し、かつ噴出ガスが噴射されない状態では変形したり溶融しない温度特性を考慮して、先述の範囲に設定される。 The block cover 61 is formed of a foam of an insulating material having closed cells that are melted by the ejected gas discharged from the discharge valve. The melting temperature of the block cover 61 melted by the ejected gas is, for example, 100 ° C. or higher and 500 ° C. or lower, preferably 200 ° C. or higher and 400 ° C. or lower. The closing cover 61 having a low melting temperature is rapidly melted by the ejected gas and the ejected gas is discharged to the outside of the insulating space 6, and the closing cover 61 having a high melting temperature can reliably close the insulating space 6 in the used state. If the melting temperature of the block cover 61 is too low, it melts or deforms at the battery temperature, and if it is too high, it cannot be quickly melted by the ejected gas. Therefore, the melting temperature of the closing cover 61 is set in the above-mentioned range in consideration of the temperature characteristics that the blown gas melts quickly and does not deform or melt when the jet gas is not injected.

噴出ガスで溶融する閉塞カバー61は、開弁した排出弁から噴射される高温の噴出ガスで溶融される。溶融された閉塞カバー61は絶縁スペース6を外部に開放して、流入される噴出ガスを図2の矢印Bで示すように、絶縁スペース6から排出する。絶縁材の閉塞カバー61は、電池ユニット40Aの端部電極13側に密着して、絶縁スペース6を閉塞できる。とくに、端部電極13側には金属板のリード板45を配置しているので、絶縁材の閉塞カバー61はリード板45に密着して、リード板45を短絡することなく絶縁スペース6を閉塞できる。さらに、独立気泡を有する発泡体の閉塞カバー61は、単位体積に対する重量が小さく、密度が低くできるので、高温の噴出ガスで速やかに溶融されて、噴出ガスを絶縁スペース6から速やかに外部に排出できる特徴がある。さらに発泡体の閉塞カバー61は、成形時の発泡倍率をコントロールしてより低比重化できるので、噴出ガスによる溶融時間を極めて短縮することができる。 The closing cover 61, which is melted by the ejected gas, is melted by the high-temperature ejected gas injected from the opened discharge valve. The molten block cover 61 opens the insulating space 6 to the outside, and discharges the inflowing ejected gas from the insulating space 6 as shown by an arrow B in FIG. The closing cover 61 of the insulating material can close the insulating space 6 by being in close contact with the end electrode 13 side of the battery unit 40A. In particular, since the lead plate 45 of the metal plate is arranged on the end electrode 13 side, the closing cover 61 of the insulating material is in close contact with the lead plate 45 and closes the insulating space 6 without short-circuiting the lead plate 45. it can. Further, since the foam closing cover 61 having closed cells has a small weight with respect to a unit volume and can have a low density, it is quickly melted by a high-temperature jet gas, and the blow gas is quickly discharged from the insulating space 6 to the outside. There are features that can be done. Further, since the foam closing cover 61 can control the foaming ratio at the time of molding to lower the specific gravity, the melting time by the ejected gas can be extremely shortened.

閉塞カバー61は、ゴム状弾性体の発泡体で成形している。ゴム状弾性体の閉塞カバー61は、たとえば合成ゴム発泡体や軟質のプラスチック発泡体で成形される。合成ゴム発泡体はプロピレンゴムが使用できる。軟質のプラスチック発泡体には、たとえば軟質ウレタン発泡体が使用できる。ゴム状弾性体の閉塞カバー61は、一対の電池ユニット40Aの間に配置し、両側の電池ユニット40Aで押圧し、圧縮される状態に弾性変形させることで、電池ユニット40Aの対向面40aに密着する。とくに、絶縁スペース6との対向面40aにリード板45を固定している電池ユニット40Aは、リード板45によって対向面40aに凹凸や隙間ができるが、弾性変形して密着する閉塞カバー61は、凹凸を吸収し、隙間を閉塞できる特徴がある。さらに、独立気泡を有する発泡体からなるゴム状弾性体の閉塞カバー61は、無数の気泡でより柔軟化されて変形できる自由度が大きくなり、凹凸のある電池ユニット40Aの対向面40aに隙間なく密着できる特徴がある。さらに、ゴム状弾性体の発泡体からなる閉塞カバー61は、弾性変形して電池ユニット40Aの対向面40aに密着する状態で、電池ユニット40Aの対向面40aの押圧力を小さくできる。したがって、電池ユニット40Aの対向面40aに密着しながら、電池ユニット40Aに無理な応力を作用させることなく、絶縁スペース6を確実に閉塞できる特徴がある。 The closing cover 61 is made of a rubber-like elastic foam. The rubber-like elastic body closing cover 61 is formed of, for example, a synthetic rubber foam or a soft plastic foam. Propylene rubber can be used as the synthetic rubber foam. As the soft plastic foam, for example, a soft urethane foam can be used. The rubber-like elastic body closing cover 61 is arranged between the pair of battery units 40A, pressed by the battery units 40A on both sides, and elastically deformed into a compressed state, so that it adheres to the facing surface 40a of the battery unit 40A. To do. In particular, in the battery unit 40A in which the lead plate 45 is fixed to the facing surface 40a with the insulating space 6, the lead plate 45 creates irregularities and gaps in the facing surface 40a, but the closing cover 61 which is elastically deformed and closely adheres to the battery unit 40A. It has the feature of absorbing unevenness and closing the gap. Further, the rubber-like elastic body closing cover 61 made of a foam having closed cells is made more flexible by innumerable bubbles and has a greater degree of freedom to be deformed, and there is no gap on the facing surface 40a of the uneven battery unit 40A. It has the characteristic of being able to adhere closely. Further, the closing cover 61 made of a foam of a rubber-like elastic body can reduce the pressing force of the facing surface 40a of the battery unit 40A in a state of being elastically deformed and in close contact with the facing surface 40a of the battery unit 40A. Therefore, there is a feature that the insulating space 6 can be reliably closed without applying an unreasonable stress to the battery unit 40A while being in close contact with the facing surface 40a of the battery unit 40A.

ただ、本発明の電源装置は、閉塞カバー61を必ずしもゴム状弾性体で成形する必要はない。それは、閉塞カバー61と電池ユニット40Aの対向面40aとの間に弾性変形するパッキンを配置し、あるいはシール材を塗布して、閉塞カバー61を電池ユニット40Aの対向面40aに隙間なく密着することができるからである。 However, in the power supply device of the present invention, the closing cover 61 does not necessarily have to be formed of a rubber-like elastic body. It is that a packing that elastically deforms is arranged between the closing cover 61 and the facing surface 40a of the battery unit 40A, or a sealing material is applied so that the closing cover 61 is brought into close contact with the facing surface 40a of the battery unit 40A without a gap. Because it can be done.

図1の電源装置100は、図2〜図4に示すように、閉塞カバー61の外周枠部62の表面と耐熱シート64の表面とに絶縁シート65を積層している。絶縁シート65はプラスチック製で、耐熱シート64の両面に閉塞カバー61を配置して、耐熱シート64と両側の閉塞カバー61とを一体構造に連結して、絶縁スペース6に配設される板状の絶縁スペーサ60としている。絶縁スペーサ60は、一対の電池ユニット40Aに間に挟む状態で配置されて、閉塞カバー61と耐熱シート64とを絶縁スペース6の定位置に配置する。したがって、この構造は組み立て工程を簡単にして能率よく多量生産して、耐熱シート64と閉塞カバー61とを正確な位置に配置できる特徴がある。 In the power supply device 100 of FIG. 1, as shown in FIGS. 2 to 4, an insulating sheet 65 is laminated on the surface of the outer peripheral frame portion 62 of the closing cover 61 and the surface of the heat resistant sheet 64. The insulating sheet 65 is made of plastic, and the blocking covers 61 are arranged on both sides of the heat-resistant sheet 64, and the heat-resistant sheet 64 and the blocking covers 61 on both sides are connected in an integral structure to be arranged in the insulating space 6. Insulation spacer 60 is used. The insulating spacer 60 is arranged so as to be sandwiched between the pair of battery units 40A, and the closing cover 61 and the heat-resistant sheet 64 are arranged at a fixed position in the insulating space 6. Therefore, this structure has a feature that the assembly process can be simplified, the heat-resistant sheet 64 and the closing cover 61 can be arranged at accurate positions by efficiently mass-producing.

図1及び図2の電源装置100は、閉塞カバー61に外周枠部62を設けて、外周枠部62の内側に排気チャンバー63を設けているが、閉塞カバー61はこの形状に特定するものでない。たとえば、図示しないが、閉塞カバーは、二次電池セルの排出弁の排出口との対向面に凹部を設けた板状の発泡体に成形し、あるいは、絶縁スペースに隙間なく配設されて、排気チャンバーを設けない板状に成形して排出弁の排出口を塞ぐこともできる。これ等の形状の閉塞カバー61は、発泡体の発泡倍率を高くして閉塞カバー内部の空隙率を高くし、また溶融温度を低くして高温の噴出ガスによる溶融時間を短縮して、絶縁スペースに噴射される噴出ガスを速やかに外部に排出する。 In the power supply device 100 of FIGS. 1 and 2, the outer peripheral frame portion 62 is provided on the closing cover 61, and the exhaust chamber 63 is provided inside the outer peripheral frame portion 62, but the closing cover 61 is not specified in this shape. .. For example, although not shown, the closing cover is formed into a plate-shaped foam having a recess on the surface facing the discharge port of the discharge valve of the secondary battery cell, or is arranged without a gap in the insulating space. It is also possible to form a plate without an exhaust chamber to close the exhaust port of the exhaust valve. The closed cover 61 having such a shape increases the foaming ratio of the foam to increase the porosity inside the closed cover, and lowers the melting temperature to shorten the melting time by the high-temperature ejected gas, thereby shortening the melting time by the high-temperature ejected gas. The ejected gas injected into the water is quickly discharged to the outside.

本発明の電源装置は、内蔵する電池の熱暴走の誘発を防止して高い安全性が要求される用途に便利に使用される。 The power supply device of the present invention is conveniently used in applications where high safety is required by preventing the induction of thermal runaway of the built-in battery.

100…電源装置
1…二次電池セル
6…絶縁スペース
7…ポッティング樹脂
13…端部電極
13A…第1の端部電極
13B…第2の端部電極
40…電池集合体
40A…電池ユニット
40a…対向面
44…電池ホルダ
44A…挿入部
44B…開口部
45…リード板
60…絶縁スペーサ
61…閉塞カバー
62…外周枠部
63…排気チャンバー
64…耐熱シート
65…絶縁シート
80…回路基板
81…基板ホルダー
81A…底プレート
81B…周壁
81C…閉塞隙間
81a…開口部
81b…開口部
82…制御素子
83…断熱層
83A…換気層
84…断熱空気層
85…パッキン
86…熱伝導層
100 ... Power supply device 1 ... Secondary battery cell 6 ... Insulation space 7 ... Potting resin 13 ... End electrode 13A ... First end electrode 13B ... Second end electrode 40 ... Battery assembly 40A ... Battery unit 40a ... Facing surface 44 ... Battery holder 44A ... Insertion 44B ... Opening 45 ... Lead plate 60 ... Insulating spacer 61 ... Closing cover 62 ... Outer frame 63 ... Exhaust chamber 64 ... Heat resistant sheet 65 ... Insulating sheet 80 ... Circuit board 81 ... Substrate Holder 81A ... Bottom plate 81B ... Peripheral wall 81C ... Closure gap 81a ... Opening 81b ... Opening 82 ... Control element 83 ... Insulation layer 83A ... Ventilation layer 84 ... Insulation air layer 85 ... Packing 86 ... Heat conductive layer

Claims (8)

複数の電池セルを備える電池集合体と、
前記電池集合体の電池セルの保護回路を実現する制御素子を実装してなる回路基板と、
前記回路基板を固定して、底プレートを回路基板と電池集合体との間に配置してなる基板ホルダーとを備え、
前記回路基板は、前記基板ホルダーの底プレートと対向する面の反対側にある表面に制御素子を固定しており、
前記回路基板は、表面にはポッティング樹脂が密着されて、
前記回路基板の裏面と前記底プレートとの間に断熱層が設けられてなることを特徴とする電源装置。
A battery assembly with multiple battery cells and
A circuit board on which a control element that realizes a protection circuit for a battery cell of the battery assembly is mounted, and
A board holder for fixing the circuit board and arranging the bottom plate between the circuit board and the battery assembly is provided.
The circuit board has a control element fixed to a surface opposite to the surface of the substrate holder facing the bottom plate.
A potting resin is adhered to the surface of the circuit board.
A power supply device characterized in that a heat insulating layer is provided between the back surface of the circuit board and the bottom plate.
請求項1に記載される電源装置であって、
前記断熱層が空気層であることを特徴とする電源装置。
The power supply device according to claim 1.
A power supply device characterized in that the heat insulating layer is an air layer.
請求項2に記載される電源装置であって、
前記空気層が、外部に開放された空気の換気層であることを特徴とする電源装置。
The power supply device according to claim 2.
A power supply device characterized in that the air layer is a ventilation layer of air open to the outside.
請求項1ないし3のいずれかに記載される電源装置であって、
前記基板ホルダーが底プレートの周囲に周壁を備え、
前記回路基板が前記周壁の内側に配置され、
前記周壁と前記回路基板の外周との境界が、前記ポッティング樹脂の流入を阻止する閉塞隙間としてなることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 3.
The substrate holder has a peripheral wall around the bottom plate.
The circuit board is arranged inside the peripheral wall,
A power supply device characterized in that the boundary between the peripheral wall and the outer periphery of the circuit board serves as a closing gap that prevents the inflow of the potting resin.
請求項4に記載される電源装置であって、
前記周壁と前記回路基板との間に、前記ポッティング樹脂の流入を阻止するパッキンを配置してなることを特徴とする電源装置。
The power supply device according to claim 4.
A power supply device characterized in that a packing for blocking the inflow of the potting resin is arranged between the peripheral wall and the circuit board.
請求項1ないし5のいずれかに記載される電源装置であって、
前記回路基板が表面に熱伝導層を有し、前記熱伝導層を介して前記回路基板が前記ポッティング樹脂に密着されてなることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 5.
A power supply device characterized in that the circuit board has a heat conductive layer on its surface, and the circuit board is brought into close contact with the potting resin via the heat conductive layer.
請求項1ないし6のいずれかに記載される電源装置であって、
前記回路基板と前記底プレートとが水平姿勢に配置され、
前記回路基板が、上面をポッティング樹脂に密着して、下面に前記断熱層を配置しており、
さらに、前記電池集合体が前記底プレートの下方に配置されてなることを特徴とする電源装置。
The power supply device according to any one of claims 1 to 6.
The circuit board and the bottom plate are arranged in a horizontal position.
The circuit board has the upper surface in close contact with the potting resin, and the heat insulating layer is arranged on the lower surface.
Further, the power supply device is characterized in that the battery assembly is arranged below the bottom plate.
請求項7に記載される電源装置であって、
前記底プレートと前記電池集合体との間に断熱空気層を設けてなることを特徴とする電源装置。
The power supply device according to claim 7.
A power supply device characterized in that an insulated air layer is provided between the bottom plate and the battery assembly.
JP2019544515A 2017-09-29 2018-09-10 power supply Active JP7219716B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017190038 2017-09-29
JP2017190038 2017-09-29
PCT/JP2018/033335 WO2019065168A1 (en) 2017-09-29 2018-09-10 Power supply device

Publications (2)

Publication Number Publication Date
JPWO2019065168A1 true JPWO2019065168A1 (en) 2020-11-05
JP7219716B2 JP7219716B2 (en) 2023-02-08

Family

ID=65900881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019544515A Active JP7219716B2 (en) 2017-09-29 2018-09-10 power supply

Country Status (4)

Country Link
JP (1) JP7219716B2 (en)
CN (1) CN111149252B (en)
PH (1) PH12020550171A1 (en)
WO (1) WO2019065168A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851780A (en) * 2020-06-10 2021-12-28 华为数字能源技术有限公司 Battery, electric vehicle and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176689A (en) * 2008-01-28 2009-08-06 Sanyo Electric Co Ltd Battery pack
JP2010277796A (en) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd Battery pack
JP2014138483A (en) * 2013-01-16 2014-07-28 Sanyo Electric Co Ltd Battery pack and electric apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011175743A (en) * 2010-02-23 2011-09-08 Sanyo Electric Co Ltd Power source apparatus, and vehicle equipped with the same
JP5518576B2 (en) * 2010-05-29 2014-06-11 三洋電機株式会社 Battery pack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009176689A (en) * 2008-01-28 2009-08-06 Sanyo Electric Co Ltd Battery pack
JP2010277796A (en) * 2009-05-27 2010-12-09 Sanyo Electric Co Ltd Battery pack
JP2014138483A (en) * 2013-01-16 2014-07-28 Sanyo Electric Co Ltd Battery pack and electric apparatus

Also Published As

Publication number Publication date
PH12020550171A1 (en) 2021-03-01
JP7219716B2 (en) 2023-02-08
CN111149252B (en) 2024-01-05
WO2019065168A1 (en) 2019-04-04
CN111149252A (en) 2020-05-12

Similar Documents

Publication Publication Date Title
JP7208145B2 (en) power supply
US10263303B2 (en) Battery module and battery pack including same
KR101610876B1 (en) Frame for secondary battery and battery module including the same
JP7174707B2 (en) power supply
JP7084115B2 (en) Battery pack
US20120021260A1 (en) Battery module
KR102665192B1 (en) Battery pack and device including the same
CN102593389A (en) Vehicle battery packaging
KR101806733B1 (en) Cooling structure for battery cell
KR20180004992A (en) Cartridge for secondary battery and battery module including the same
US20240283080A1 (en) Battery pack and electric vehicle
KR20210042480A (en) Battery Module Comprising Heat Insulating Member and Battery Pack Including the Same
KR20210086089A (en) Battery pack
KR20140000770A (en) Battery module for secondary battery
KR20220132353A (en) A battery module with a heat propagation repression structure using coolant and a battery pack including the same
JPWO2019065168A1 (en) Power supply
JPWO2018221002A1 (en) Battery pack for vehicle mounting
WO2021253329A1 (en) Battery pack and electric vehicle
KR101806412B1 (en) Cartridge for secondary battery and battery module including the same
KR102646853B1 (en) Battery module
KR101851432B1 (en) Cartridge for secondary battery and battery module including the same
KR20200074320A (en) Battery pack
KR102411029B1 (en) Battery module
KR101746765B1 (en) Cartridge for secondary battery and battery module including the same
JP6144128B2 (en) Battery for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230127

R151 Written notification of patent or utility model registration

Ref document number: 7219716

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350