WO2019065063A1 - 耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材 - Google Patents

耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材 Download PDF

Info

Publication number
WO2019065063A1
WO2019065063A1 PCT/JP2018/032096 JP2018032096W WO2019065063A1 WO 2019065063 A1 WO2019065063 A1 WO 2019065063A1 JP 2018032096 W JP2018032096 W JP 2018032096W WO 2019065063 A1 WO2019065063 A1 WO 2019065063A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystalline
crystalline resin
resin composition
sliding wear
wear resistant
Prior art date
Application number
PCT/JP2018/032096
Other languages
English (en)
French (fr)
Inventor
博樹 深津
不二 酒井
青藤 宏光
昭宏 長永
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to JP2019502031A priority Critical patent/JP6545416B1/ja
Publication of WO2019065063A1 publication Critical patent/WO2019065063A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity

Definitions

  • the present invention relates to a liquid crystalline resin composition for a sliding wear resistant member and a sliding wear resistant member using the same.
  • Liquid crystalline resins represented by liquid crystalline polyester resins have excellent mechanical strength, heat resistance, chemical resistance, electrical properties, etc. in a well-balanced manner and also have excellent dimensional stability and are widely used as high functional engineering plastics. It's being used. Recently, liquid crystalline resins have come to be used for precision instrument parts by taking advantage of these features.
  • Patent Document 1 deals with a liquid crystalline resin and a talc having a specific volume average particle diameter, with the object of providing a molded article comprising a liquid crystalline resin composition excellent in surface appearance and excellent in slidability.
  • a liquid crystalline resin composition is disclosed, which contains at a specific ratio.
  • the present invention has been made to solve the above-mentioned problems, and its object is to provide a slide resistance that is reduced in sliding abrasion while having the same adhesiveness, mechanical strength, and heat resistance as conventional. It is an object of the present invention to provide a liquid crystalline resin composition for a sliding wear resistant member used for producing a dynamic wear member, and a sliding wear resistant member using the same.
  • the present inventors have intensively studied to solve the above problems. As a result, it contains a liquid crystalline resin, talc having a specific median diameter, a fibrous filler having a specific weight average fiber length, and an epoxy group-containing copolymer, and the content of the epoxy group-containing copolymer is predetermined. It has been found that the above-mentioned problems can be solved by using a liquid crystalline resin composition which falls within the above range, and the present invention has been completed. More specifically, the present invention provides the following.
  • a liquid crystalline resin (A), (B1) talc, (B2) a fibrous filler, and (C) an epoxy group-containing copolymer are contained, and the median diameter of the (B1) talc is 50 ⁇ m or less
  • the weight average fiber length of the (B2) fibrous filler is 200 ⁇ m or less
  • the content of the (C) epoxy group-containing copolymer is 2.0 to 6.5 mass%.
  • the content of the (B1) talc is 20 to 42% by mass
  • the content of the (B2) fibrous filler is 8 to 15% by mass
  • the (B1) talc and the (B1) talc are B2)
  • a sliding wear resistant member comprising the composition according to (1) or (2).
  • the sliding wear resistant member When a sliding wear resistant member is produced using the liquid crystalline resin composition for a sliding wear resistant member of the present invention as a raw material, the sliding wear is obtained while having the same adhesiveness, mechanical strength and heat resistance as before. It is possible to obtain a sliding wear resistant member with reduced elasticity.
  • FIG.1 (a) is a figure for demonstrating the manufacturing method of the sample for epoxy adhesiveness evaluation
  • FIG.1 (b) is a figure for demonstrating the method of epoxy adhesiveness evaluation
  • FIG. 2 is a diagram for explaining a method of sliding wear evaluation.
  • the liquid crystalline resin composition for a sliding wear resistant member of the present invention comprises (A) a liquid crystalline resin, (B1) talc, (B2) a fibrous filler, and (C) an epoxy group-containing copolymer. .
  • the (A) liquid crystalline resin used in the present invention refers to a melt-processable polymer having a property capable of forming an optically anisotropic melt phase.
  • the properties of the anisotropic melt phase can be confirmed by a conventional polarization inspection method using crossed polarizers. More specifically, confirmation of the anisotropic melting phase can be performed by observing the molten sample mounted on the Leitz hot stage under a nitrogen atmosphere at a magnification of 40 using a Leitz polarization microscope.
  • the liquid crystalline polymer applicable to the present invention when inspected between crossed polarizers, normally transmits polarized light and exhibits optical anisotropy even in the melt stationary state.
  • liquid crystalline resin It does not specifically limit as a kind of above (A) liquid crystalline resin, It is preferable that it is aromatic polyester and / or aromatic polyester amide. In addition, polyesters partially containing aromatic polyesters and / or aromatic polyester amides in the same molecular chain are within the scope.
  • the liquid crystalline resin (A) is preferably at least about 2.0 dl / g, more preferably 2.0 to 10.0 dl / g, when dissolved in pentafluorophenol at 60 ° C. at a concentration of 0.1% by mass. Those having a logarithmic viscosity (I.V.) of are preferably used.
  • the aromatic polyester or aromatic polyesteramide as the liquid crystalline resin (A) applicable to the present invention is particularly preferably at least one selected from the group consisting of aromatic hydroxycarboxylic acid, aromatic hydroxyamine and aromatic diamine. It is an aromatic polyester or aromatic polyester amide which has a repeating unit derived from a compound of a kind as a component.
  • a polyester comprising repeating units mainly derived from one or more of aromatic hydroxycarboxylic acids and their derivatives; (2) A repeating unit mainly derived from one or two or more of (a) aromatic hydroxycarboxylic acid and its derivative, and (b) one kind of aromatic dicarboxylic acid, alicyclic dicarboxylic acid, and their derivatives Or a polyester comprising a repeating unit derived from two or more species and a repeating unit derived from (c) at least one species or two or more species of an aromatic diol, an alicyclic diol, an aliphatic diol, and derivatives thereof; (3) A repeating unit mainly derived from one or two or more of (a) aromatic hydroxycarboxylic acids and their derivatives, and (b) one or two of aromatic hydroxyamines, aromatic diamines, and their derivatives A polyesteramide comprising a repeating unit derived from a species or more and a repeating unit derived from (c) an aromatic dicarboxylic
  • Specific examples of the specific compound constituting the liquid crystalline resin (A) applicable to the present invention include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, 2,6-dihydroxy Aromatic diols such as naphthalene, 1,4-dihydroxynaphthalene, 4,4′-dihydroxybiphenyl, hydroquinone, resorcine, compounds represented by the following general formula (I), and compounds represented by the following general formula (II)
  • Aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and compounds represented by the following general formula (III); p-aminophenol, p- Aromatic amines such as phenylenediamine can be mentioned.
  • X a group selected from alkylene (C 1 -C 4 ), alkylidene, -O-, -SO-, -SO 2- , -S-, and -CO-)
  • the preparation of the liquid crystalline resin (A) used in the present invention can be carried out from the above-mentioned monomer compound (or mixture of monomers) by a direct polymerization method or a transesterification method by a known method, and usually a melt polymerization method And slurry polymerization.
  • the above compounds having an ester forming ability may be used for polymerization as they are, or may be those which are converted from a precursor into a derivative having the ester forming ability at a stage prior to polymerization.
  • various catalysts can be used, and typical ones are dialkyl tin oxide, diaryl tin oxide, titanium dioxide, alkoxy titanium silicates, titanium alcoholates, alkali of carboxylic acid And alkaline earth metal salts, Lewis acid salts such as BF 3 and the like.
  • the amount of catalyst used is generally about 0.001 to 1% by weight, preferably about 0.01 to 0.2% by weight, based on the total weight of the monomers. If necessary, the polymers produced by these polymerization methods can be increased in molecular weight by solid phase polymerization heated under reduced pressure or in an inert gas.
  • the melt viscosity of the liquid crystalline resin (A) obtained by the above method is not particularly limited. Generally, one having a melt viscosity at molding temperature of 10 MPa or more and 600 MPa or less at a shear rate of 1000 sec ⁇ 1 can be used. However, those having too high viscosity are not preferable because the flowability is extremely deteriorated.
  • the liquid crystalline resin (A) may be a mixture of two or more liquid crystalline resins.
  • the preferable content of the (A) liquid crystalline resin is 43.5 to 63% by mass.
  • the content of the component (A) is preferably 43.5% by mass or more from the viewpoint of fluidity, and the content of the component (A) is preferably 63% by mass or less from the viewpoint of heat resistance.
  • the content of the component (A) is more preferably 48 to 60.5% by mass, still more preferably 51 to 59% by mass, and particularly preferably 53 to 57% by mass.
  • (B1) talc By using talc (B1) in combination with the (C) epoxy group-containing copolymer, the adhesion of the molded product obtained from the liquid crystalline resin composition of the present invention is improved, and the sliding of the molded product is caused. It contributes to reducing wear resistance.
  • (B1) talc can be used singly or in combination of two or more.
  • the median diameter of talc is 50 ⁇ m or less. When the median diameter is more than 50 ⁇ m, the melt viscosity of the obtained liquid crystalline resin composition tends to increase, and when the liquid crystalline resin composition is molded, mold deposit (hereinafter also referred to as “MD”) is generated. It's easy to do.
  • the median diameter is preferably 10 to 25 ⁇ m, more preferably 11 to 20 ⁇ m, and still more preferably 12 to 16 ⁇ m because the melt viscosity and MD are easily reduced.
  • a median diameter means the median value of the volume reference
  • a mold deposit means the deposit
  • the content of the component (B1) in the liquid crystal composition of the present invention is preferably 20 to 42% by mass. When the content is 20 to 42% by mass, the melt viscosity and the MD are easily reduced.
  • the content is more preferably 21 to 40% by mass, still more preferably 23 to 37% by mass, and particularly preferably 25 to 35% by mass because adhesion is easily improved and melt viscosity and MD are more easily reduced. %.
  • the liquid crystalline resin composition of the present invention can give a molded article excellent in heat resistance, for example, heat resistance as evaluated by high temperature rigidity, by containing the (B2) fibrous filler.
  • the fibrous filler (B2) can be used singly or in combination of two or more.
  • the high temperature rigidity is evaluated by measuring the deflection temperature under load (hereinafter, also referred to as “DTUL”) in accordance with ISO 75-1, 2.
  • the weight average fiber length of the fibrous filler is 200 ⁇ m or less, preferably 25 to 170 ⁇ m, and more preferably 30 to 150 ⁇ m.
  • the weight average fiber length is more than 200 ⁇ m, the flowability of the liquid crystalline resin composition is unlikely to be sufficient.
  • the mechanical strength and heat resistance of the molded product obtained from the liquid crystalline resin composition of the present invention tend to be improved when the weight average fiber length is 25 ⁇ m or more.
  • an average fiber length takes in a stereomicroscope image from a CCD camera to PC, and adopts a value measured by an image processing method by an image measuring machine.
  • the preferred average fiber diameter of the (B2) fibrous filler is 20 ⁇ m or less, and the more preferred average fiber diameter is 5 to 15 ⁇ m.
  • an average fiber diameter takes in a stereomicroscope image from a CCD camera to PC, and adopts a value measured by an image processing method by an image measuring machine.
  • any fiber can be used as long as it is a fibrous filler satisfying the above-mentioned shape, but as the fibrous filler (B2), for example, glass fiber, milled fiber, carbon fiber, asbestos fiber, silica fiber And inorganic fibrous materials such as silica-alumina fibers, zirconia fibers, boron nitride fibers, boron nitride fibers, boron fibers, potassium titanate fibers, and further fibrous materials of metals such as stainless steel, aluminum, titanium, copper, brass and the like Be In the present invention, it is preferable to use a milled fiber as the component (B2).
  • a milled fiber as the component (B2).
  • blends differ.
  • the shape of the above-mentioned (B2) component is a shape before it is blended. If the shape before being compounded is as above-mentioned, it will be easy to obtain the molded object which is excellent in heat resistance.
  • the content of the component (B2) in the liquid crystalline resin composition of the present invention is preferably 8 to 15% by mass, more preferably 8.5 to 13% by mass, and still more preferably 9 to 11% by mass.
  • the content of the component (B2) is within the above range, the flowability of the liquid crystalline resin composition is sufficiently ensured, and the mechanical strength and the heat resistance of the molded body obtained from the liquid crystalline resin composition are improved.
  • Cheap is preferably 8 to 15% by mass, more preferably 8.5 to 13% by mass, and still more preferably 9 to 11% by mass.
  • the total content of (B1) talc and (B2) fibrous filler is preferably 35 to 50% by mass, more preferably 37 to 46% by mass, and still more preferably, in the liquid crystalline resin composition of the present invention Is 38 to 44% by mass.
  • the content of the component (B2) is within the above range, the flowability of the liquid crystalline resin composition is sufficiently ensured, and the mechanical strength and the heat resistance of the molded body obtained from the liquid crystalline resin composition are improved.
  • Cheap is preferably 35 to 50% by mass, more preferably 37 to 46% by mass, and still more preferably, in the liquid crystalline resin composition of the present invention is 38 to 44% by mass.
  • the liquid crystalline composition of the present invention contains (C) an epoxy group-containing copolymer.
  • the epoxy group-containing copolymer (C) can be used singly or in combination of two or more.
  • the (C) epoxy group-containing copolymer is not particularly limited, and, for example, at least one selected from the group consisting of (C1) epoxy group-containing olefin copolymer and (C2) epoxy group-containing styrene copolymer There is one kind.
  • Examples of the (C1) epoxy group-containing olefin copolymer include copolymers composed of a repeating unit derived from an ⁇ -olefin and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid.
  • the ⁇ -olefin is not particularly limited, and examples thereof include ethylene, propylene and butene. Among them, ethylene is preferably used.
  • the glycidyl ester of an ⁇ , ⁇ -unsaturated acid is represented by the following general formula (IV). Glycidyl esters of ⁇ , ⁇ -unsaturated acids are, for example, acrylic acid glycidyl ester, methacrylic acid glycidyl ester, ethacrylic acid glycidyl ester, itaconic acid glycidyl ester and the like, with methacrylic acid glycidyl ester being particularly preferable.
  • the content of repeating units derived from ⁇ -olefin is 87 to 98% by mass, and the content of repeating units derived from glycidyl ester of ⁇ , ⁇ -unsaturated acid is The amount is preferably 13 to 2% by mass.
  • the (C1) epoxy group-containing olefin copolymer used in the present invention is a third component other than the above two components within the range that does not impair the present invention, and acrylonitrile, acrylic ester, methacrylic ester, ⁇ -methylstyrene, and maleic anhydride as a third component.
  • Repeating units derived from one or more of olefinically unsaturated esters such as acids may be contained in an amount of 0 to 48 parts by mass with respect to 100 parts by mass of the above two components.
  • the epoxy group-containing olefin copolymer which is the component (C1) of the present invention, can be easily prepared by a conventional radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, generally, the presence of a suitable solvent or chain transfer agent at a pressure of 500 to 4000 atm at 100 to 300 ° C. in the presence of a radical generator and an ⁇ -olefin and a glycidyl ester of an ⁇ , ⁇ -unsaturated acid It can be produced by the method of copolymerization under or without. It can also be produced by mixing an ⁇ -olefin with a glycidyl ester of an ⁇ , ⁇ -unsaturated acid and a radical generator, and melt graft copolymerization in an extruder.
  • Examples of the epoxy group-containing styrene-based copolymer of (C2) include copolymers composed of a repeating unit derived from styrenes and a repeating unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid.
  • the glycidyl ester of the ⁇ , ⁇ -unsaturated acid is the same as that described for the component (C1), and thus the description thereof is omitted.
  • Styrenes include styrene, ⁇ -methylstyrene, brominated styrene, divinylbenzene and the like, with styrene being preferably used.
  • the (C2) epoxy group-containing styrenic copolymer used in the present invention is a multicomponent copolymer containing a repeating unit derived from one or more other vinyl monomers as a third component in addition to the above two components. It may be. Preferred as the third component are repeating units derived from one or more of olefinically unsaturated esters such as acrylonitrile, acrylic esters, methacrylic esters, and maleic anhydride. An epoxy-containing styrene-based copolymer containing 40% by mass or less of these repeating units in the copolymer is preferred as the component (C2).
  • the content of repeating units derived from glycidyl esters of ⁇ , ⁇ -unsaturated acids is 2 to 20% by mass, and the content of repeating units derived from styrenes Is preferably 80 to 98% by mass.
  • the (C2) epoxy group-containing styrenic copolymer can be prepared by a conventional radical polymerization method using a monomer corresponding to each component and a radical polymerization catalyst. More specifically, styrenes and glycidyl esters of ⁇ , ⁇ -unsaturated acids are usually added in the presence of a radical generator at 500 to 4000 atm at 100 to 300 ° C. in the presence of a suitable solvent or chain transfer agent. Or it can manufacture by the method of making it copolymerize in absence.
  • It can also be produced by a method in which styrenes and a glycidyl ester of an ⁇ , ⁇ -unsaturated acid and a radical generator are mixed and melt graft copolymerized in an extruder.
  • the (C) epoxy group-containing copolymer a (C1) epoxy group-containing olefin copolymer is preferable from the viewpoint of heat resistance.
  • the (C1) component and the (C2) component are used in combination, the ratio of these components can be appropriately selected in accordance with the required characteristics.
  • the content of the epoxy group-containing copolymer (C) is 2.0 to 6.5% by mass in the liquid crystalline resin composition of the present invention. If the content of the component (C) is within the above range, it is easy to obtain a molded article with reduced sliding wear, without impairing the flowability.
  • the more preferable content is 2.5 to 6.0% by mass, and the still more preferable content is 3.0 to 5.0% by mass.
  • the (D) carbon black used as an optional component in the present invention is not particularly limited as long as it is generally available for resin coloring.
  • (D) carbon black contains a lump formed by aggregation of primary particles, but the resin composition of the present invention is molded unless a large number of lumps having a size of 50 ⁇ m or more is contained. It is hard to generate many bumps (fine bumps (fine irregularities) in which carbon black is aggregated) on the surface of the resulting molded body.
  • the content of particles having a particle size of 50 ⁇ m or more is 20 ppm or less, the effect of suppressing the raising of the surface of the molded body tends to be high.
  • the preferred content is 5 ppm or less.
  • the compounding amount of (D) carbon black is preferably in the range of 0.5 to 5% by mass in the liquid crystalline resin composition.
  • the blending amount of carbon black is 0.5% by mass or more, the jettackiness of the obtained resin composition is unlikely to be lowered, and the light shielding property is less likely to be disturbed.
  • the amount of carbon black is 5% by mass or less, it is difficult to become uneconomical and it is difficult to generate bumps.
  • the (E) mold release agent used as an optional component in the present invention is not particularly limited as long as it is generally available, and, for example, fatty acid esters, fatty acid metal salts, fatty acid amides, low Molecular weight polyolefin etc. are mentioned, and fatty acid ester of pentaerythritol (for example, pentaerythritol tetrastearate) is preferable.
  • the compounding amount of the (E) mold release agent is preferably in the range of 0.1 to 3% by mass in the liquid crystalline resin composition. While the mold release property at the time of shaping
  • the liquid crystalline resin composition of the present invention is a known substance generally added to other polymers, other fillers, and synthetic resins, as long as the effects of the present invention are not impaired.
  • Stabilizers such as agents, antistatic agents, flame retardants, colorants such as dyes and pigments, lubricants, crystallization accelerators, crystal nucleating agents, and the like can be appropriately added according to the required performance.
  • the other fillers include fillers other than (B1) talc, (B2) fibrous fillers, and (D) carbon black, and examples thereof include particulate fillers such as silica.
  • the liquid crystalline resin composition of the present invention does not contain mica, from the viewpoints of improvement of adhesion and reduction of melt viscosity, MD, and sliding abrasion resistance.
  • the preparation method of the liquid crystalline resin composition for a sliding wear resistant member of the present invention is not particularly limited. For example, by blending the components (A), (B1), (B2) and (C) and melt-kneading them using a single- or twin-screw extruder, for sliding wear resistant members Preparation of a liquid crystalline resin composition is performed.
  • the liquid crystalline resin composition of the present invention obtained as described above preferably has a melt viscosity of less than 70 Pa ⁇ sec from the viewpoint of MD reduction. It is one of the features of the liquid crystalline resin composition of the present invention that it has high flowability at the time of melting and is excellent in moldability.
  • the melt viscosity is more preferably 60 Pa ⁇ sec or less, still more preferably 55 Pa ⁇ sec or less.
  • the lower limit of the melt viscosity is not particularly limited, and may be, for example, 30 Pa ⁇ sec or more, or 40 Pa ⁇ sec.
  • the melt viscosity a value obtained by a measurement method in accordance with ISO 11443 is adopted under the conditions of a cylinder temperature higher by 10 to 20 ° C. than the melting point of the liquid crystalline resin and a shear rate of 1000 sec ⁇ 1 .
  • a sliding wear resistant member is manufactured using the liquid crystalline resin composition of the present invention.
  • the sliding wear resistant member according to the present invention has reduced sliding wear while having the same adhesiveness, mechanical strength and heat resistance as conventional ones.
  • the sliding wear resistant member of the present invention can be used for parts in which two or more members are in dynamic contact during use. Specifically, for example, a connector such as an FPC connector; a memory card socket etc. It can be used for sockets, camera module parts such as lens holders, relays, etc.
  • Liquid crystalline polyesteramide resin After charging the following raw materials in a polymerization vessel, the temperature of the reaction system was raised to 140 ° C., and reaction was performed at 140 ° C. for 1 hour. Thereafter, the temperature is further raised to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 15 minutes to distill off acetic acid, excess acetic anhydride, and other low boiling components. Melt polymerization was performed. After the stirring torque reached a predetermined value, nitrogen was introduced and pressure was applied from under reduced pressure to normal pressure, the polymer was discharged from the lower part of the polymerization vessel, and the strands were pelletized to obtain pellets.
  • 10 Torr ie, 1330 Pa
  • the obtained pellet was heat-treated at 300 ° C. for 2 hours under a nitrogen stream to obtain a target polymer.
  • the melting point of the obtained polymer was 336 ° C. and the melt viscosity at 350 ° C. was 19.0 Pa ⁇ s.
  • the melt viscosity of the above-mentioned polymer was measured in the same manner as the method of measuring the melt viscosity described later.
  • HBA 4-hydroxybenzoic acid
  • HNA 2-hydroxy-6-naphthoic acid
  • TA terephthalic acid
  • BP 4,4'-dihydroxybiphenyl
  • APAP 4-acetoxyaminophenol
  • APAP 126 g (5 mol%)
  • Metal catalyst potassium acetate catalyst
  • 110 mg Acylation agent acetic anhydride
  • Talc Crown Talc PP (manufactured by Matsumura Sangyo Co., Ltd., talc, median diameter 14.6 ⁇ m)
  • Fibrous filler 1 PF70E001 (manufactured by Nittobos Co., Ltd., milled fiber, average fiber diameter 10 ⁇ m, average fiber length 70 ⁇ m (manufacturer nominal value))
  • said maker nominal value is different from the value in Table 1 which is the measured value in a composition.
  • -Fibrous filler 2 ECS03T-786H (manufactured by Nippon Electric Glass Co., Ltd., glass fiber, chopped strand having an average fiber diameter of 10 ⁇ m and a length of 3 mm) ⁇
  • Epoxy group-containing olefin copolymer Bond first 2C (manufactured by Sumitomo Chemical Co., Ltd., ethylene-glycidyl methacrylate copolymer, content of glycidyl methacrylate 6 mass%)
  • Carbon black VULCAN XC 305 (manufactured by Cabot Japan Ltd., average particle diameter 20 nm, ratio of particles having a particle diameter of 50 ⁇ m or more is 20 ppm or less)
  • Releasing agent Pentaerythritol tetrastearate (Emerie Oleo Chemicals Japan Co., Ltd.)
  • the weight average fiber length of the fibrous filler in the liquid crystalline resin composition was measured by the following method. 5 g of liquid crystalline resin composition pellets were incinerated by heating at 600 ° C. for 2 hours. After the ashing residue was sufficiently dispersed in a 5% by mass aqueous polyethylene glycol solution, it was transferred to a petri dish with a syringe and the fibrous filler was observed with a microscope. At the same time, the weight average fiber length of the fibrous filler was measured using an image measurement device (LUZEXFS manufactured by Nireco Co., Ltd.).
  • melt viscosity The melt viscosity of the liquid crystalline resin composition of the example and the comparative example was measured using the above-mentioned pellet. Specifically, the apparent melt viscosity under the conditions of a cylinder temperature of 350 ° C. and a shear rate of 1000 sec ⁇ 1 is in accordance with ISO 11443 using a capillary type rheometer (Capirograph 1 D: piston diameter 10 mm, manufactured by Toyo Seiki Seisakusho Co., Ltd.) Measured. For measurement, an orifice with an inner diameter of 1 mm and a length of 20 mm was used. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

従来と同等の接着性、機械的強度、及び耐熱性を有しつつ、摺動摩耗性が低減された耐摺動摩耗部材を製造するために用いられる耐摺動摩耗部材用液晶性樹脂組成物並びにそれを用いた耐摺動摩耗部材を提供する。 本発明に係る耐摺動摩耗部材用液晶性樹脂組成物は、(A)液晶性樹脂、(B1)タルク、(B2)繊維状充填剤、及び(C)エポキシ基含有共重合体を含有し、前記(B1)タルクのメディアン径は、50μm以下であり、前記(B2)繊維状充填剤の重量平均繊維長は、200μm以下であり、前記(C)エポキシ基含有共重合体の含有量は、2.0~6.5質量%である。

Description

耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材
 本発明は、耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材に関する。
 液晶性ポリエステル樹脂に代表される液晶性樹脂は、優れた機械的強度、耐熱性、耐薬品性、電気的性質等をバランス良く有し、優れた寸法安定性も有するため高機能エンジニアリングプラスチックとして広く利用されている。最近では、液晶性樹脂は、これらの特長を生かして、精密機器部品に使用されるようになっている。
 液晶性樹脂が使用される部品としては、例えば、FPCコネクター等のコネクター;メモリーカードソケット等のソケット;レンズホルダー等のカメラモジュール用部品;リレーが挙げられる。これらの部品は、接着性及び耐衝撃性に優れることが求められ、また、2つ以上の部材が動的に接触するような形態で用いられる場合があるため、摺動摩耗性(即ち、2つ以上の部材が動的に接触したときの摩耗のしやすさ)が低減されていることも求められる。例えば、特許文献1には、表面外観に優れかつ摺動性に優れた液晶性樹脂組成物からなる成形品を提供することを課題として、液晶性樹脂と特定の体積平均粒子径を有するタルクとを特定の比で含有する液晶性樹脂組成物が開示されている。
特許第5087958号公報
 しかし、本発明者らの検討によれば、従来の液晶性樹脂組成物では、摺動摩耗性の低減が不十分である。本発明は、上記課題を解決するためになされたものであり、その目的は、従来と同等の接着性、機械的強度、及び耐熱性を有しつつ、摺動摩耗性が低減された耐摺動摩耗部材を製造するために用いられる耐摺動摩耗部材用液晶性樹脂組成物並びにそれを用いた耐摺動摩耗部材を提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、液晶性樹脂と特定のメディアン径を有するタルクと特定の重量平均繊維長を有する繊維状充填剤とエポキシ基含有共重合体とを含有し、エポキシ基含有共重合体の含有量が所定の範囲である液晶性樹脂組成物を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。より具体的には本発明は以下のものを提供する。
 (1) (A)液晶性樹脂、(B1)タルク、(B2)繊維状充填剤、及び(C)エポキシ基含有共重合体を含有し、前記(B1)タルクのメディアン径は、50μm以下であり、前記(B2)繊維状充填剤の重量平均繊維長は、200μm以下であり、前記(C)エポキシ基含有共重合体の含有量は、2.0~6.5質量%である耐摺動摩耗部材用液晶性樹脂組成物。
 (2) 前記(B1)タルクの含有量は、20~42質量%であり、前記(B2)繊維状充填剤の含有量は、8~15質量%であり、前記(B1)タルクと前記(B2)繊維状充填剤との合計の含有量は、35~50質量%である(1)に記載の組成物。
 (3) (1)又は(2)に記載の組成物からなる耐摺動摩耗部材。
 本発明の耐摺動摩耗部材用液晶性樹脂組成物を原料として、耐摺動摩耗部材を製造すれば、従来と同等の接着性、機械的強度、及び耐熱性を有しつつ、摺動摩耗性が低減された耐摺動摩耗部材が得られる。
図1(a)は、エポキシ接着性評価のためのサンプルの製造方法を説明するための図であり、図1(b)は、エポキシ接着性評価の方法を説明するための図である。 図2は、摺動摩耗量評価の方法を説明するための図である。
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。
<耐摺動摩耗部材用液晶性樹脂組成物>
 本発明の耐摺動摩耗部材用液晶性樹脂組成物は、(A)液晶性樹脂、(B1)タルク、(B2)繊維状充填剤、及び、(C)エポキシ基含有共重合体を含有する。
[(A)液晶性樹脂]
 本発明で使用する(A)液晶性樹脂とは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することが出来る。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明に適用できる液晶性ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
 上記のような(A)液晶性樹脂の種類としては特に限定されず、芳香族ポリエステル及び/又は芳香族ポリエステルアミドであることが好ましい。また、芳香族ポリエステル及び/又は芳香族ポリエステルアミドを同一分子鎖中に部分的に含むポリエステルもその範囲にある。(A)液晶性樹脂としては、60℃でペンタフルオロフェノールに濃度0.1質量%で溶解したときに、好ましくは少なくとも約2.0dl/g、更に好ましくは2.0~10.0dl/gの対数粘度(I.V.)を有するものが好ましく使用される。
 本発明に適用できる(A)液晶性樹脂としての芳香族ポリエステル又は芳香族ポリエステルアミドは、特に好ましくは、芳香族ヒドロキシカルボン酸、芳香族ヒドロキシアミン、及び芳香族ジアミンからなる群より選ばれる少なくとも1種の化合物に由来する繰り返し単位を構成成分として有する芳香族ポリエステル又は芳香族ポリエステルアミドである。
 より具体的には、
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位からなるポリエステル;
(2)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステル;
(3)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド;
(4)主として(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上に由来する繰り返し単位と、(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(c)芳香族ジカルボン酸、脂環族ジカルボン酸、及びそれらの誘導体の1種又は2種以上に由来する繰り返し単位と、(d)芳香族ジオール、脂環族ジオール、脂肪族ジオール、及びそれらの誘導体の少なくとも1種又は2種以上に由来する繰り返し単位、とからなるポリエステルアミド等が挙げられる。更に上記の構成成分に必要に応じ分子量調整剤を併用してもよい。
 本発明に適用できる(A)液晶性樹脂を構成する具体的化合物の好ましい例としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸、2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式(I)で表される化合物、及び下記一般式(II)で表される化合物等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、及び下記一般式(III)で表される化合物等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン等の芳香族アミン類が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(X:アルキレン(C~C)、アルキリデン、-O-、-SO-、-SO-、-S-、及び-CO-より選ばれる基である)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(Y:-(CH-(n=1~4)及び-O(CHO-(n=1~4)より選ばれる基である。)
 本発明に用いられる(A)液晶性樹脂の調製は、上記のモノマー化合物(又はモノマーの混合物)から直接重合法やエステル交換法を用いて公知の方法で行うことができ、通常は溶融重合法やスラリー重合法等が用いられる。エステル形成能を有する上記化合物類はそのままの形で重合に用いてもよく、また、重合の前段階で前駆体から該エステル形成能を有する誘導体に変性されたものでもよい。これらの重合に際しては種々の触媒の使用が可能であり、代表的なものとしては、ジアルキル錫酸化物、ジアリール錫酸化物、2酸化チタン、アルコキシチタンけい酸塩類、チタンアルコラート類、カルボン酸のアルカリ及びアルカリ土類金属塩類、BFの如きルイス酸塩等があげられる。触媒の使用量は一般にはモノマーの全質量に対して約0.001~1質量%、特に約0.01~0.2質量%が好ましい。これらの重合方法により製造されたポリマーは更に必要があれば、減圧又は不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。
 上記のような方法で得られた(A)液晶性樹脂の溶融粘度は特に限定されない。一般には成形温度での溶融粘度が剪断速度1000sec-1で10MPa以上600MPa以下のものが使用可能である。しかし、それ自体あまり高粘度のものは流動性が非常に悪化するため好ましくない。なお、上記(A)液晶性樹脂は2種以上の液晶性樹脂の混合物であってもよい。
 本発明の液晶性樹脂組成物において、(A)液晶性樹脂の好ましい含有量は、43.5~63質量%である。(A)成分の含有量が43.5質量%以上であれば流動性の点で好ましく、(A)成分の含有量が63質量%以下であれば耐熱性の点で好ましい。また、(A)成分の含有量は、より好ましくは48~60.5質量%、更により好ましくは51~59質量%、特に好ましくは53~57質量%である。
[(B1)タルク]
 (B1)タルクは、(C)エポキシ基含有共重合体と組み合わせて用いることにより、本発明の液晶性樹脂組成物から得られる成形体の接着性を向上させ、かつ、同成形体の摺動摩耗性を低減させることに寄与する。(B1)タルクは、1種単独で又は2種以上組み合わせて使用することができる。
 (B1)タルクのメディアン径が50μm以下である。上記メディアン径が50μm超であると、得られる液晶性樹脂組成物の溶融粘度が上昇しやすく、この液晶性樹脂組成物を成形した場合、モールドデポジット(以下、「MD」ともいう。)が発生しやすい。溶融粘度及びMDが低減しやすいことから、上記メディアン径は、好ましくは10~25μm、より好ましくは11~20μm、更により好ましくは12~16μmである。なお、本明細書において、メディアン径とは、レーザ回折/散乱式粒度分布測定法で測定した体積基準の中央値をいう。また、モールドデポジットとは、成形における金型への付着物をいう。
 (B1)成分の含有量は、本発明の液晶性組成物において、20~42質量%であることが好ましい。上記含有量が20~42質量%であると、溶融粘度及びMDが低減しやすい。接着性が向上しやすく、溶融粘度及びMDがより低減しやすいことから、上記含有量は、より好ましくは21~40質量%、更により好ましくは23~37質量%、特に好ましくは25~35質量%である。
[(B2)繊維状充填剤]
 本発明の液晶性樹脂組成物は、(B2)繊維状充填剤を含有することにより、耐熱性、例えば、高温剛性により評価されるような耐熱性に優れる成形体を与えることができる。(B2)繊維状充填剤は、1種単独で又は2種以上組み合わせて使用することができる。なお、高温剛性は、ISO75-1,2に準拠して荷重たわみ温度(以下、「DTUL」ともいう。)を測定することで評価される。
 (B2)繊維状充填剤の重量平均繊維長は、200μm以下であり、好ましくは25~170μmであり、より好ましくは30~150μmである。上記重量平均繊維長が200μm超であると、液晶性樹脂組成物の流動性が十分となりにくい。上記重量平均繊維長が25μm以上であると、本発明の液晶性樹脂組成物から得られる成形体は、機械的強度及び耐熱性が向上しやすい。なお、平均繊維長は実体顕微鏡画像をCCDカメラからPCに取り込み、画像測定機によって画像処理手法により測定された値を採用する。
 (B2)繊維状充填剤の好ましい平均繊維径は20μm以下であり、より好ましい平均繊維径は5~15μmである。上記平均繊維径が20μm以下であると、成形体表面の起毛を抑制しやすい。なお、平均繊維径は実体顕微鏡画像をCCDカメラからPCに取り込み、画像測定機によって画像処理手法により測定された値を採用する。
 以上の形状を満足する繊維状充填剤であれば、何れの繊維を用いることができるが、(B2)繊維状充填剤としては、例えば、ガラス繊維、ミルドファイバー、カーボン繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維、硼素繊維、チタン酸カリウム繊維、更にステンレス、アルミニウム、チタン、銅、真鍮等の金属の繊維状物等の無機質繊維状物質が挙げられる。本発明においては(B2)成分として、ミルドファイバーを使用することが好ましい。なお、本発明の液晶性樹脂組成物中の(B2)成分の形状と、配合される前の(B2)成分の形状とは異なる。上述の(B2)成分の形状は配合される前の形状である。配合される前の形状が上述の通りであれば、耐熱性に優れる成形体を得やすい。
 (B2)成分の含有量は、本発明の液晶性樹脂組成物において、好ましくは8~15質量%、より好ましくは8.5~13質量%、更により好ましくは9~11質量%である。(B2)成分の含有量が上記範囲内であると、液晶性樹脂組成物の流動性が十分に確保されつつ、液晶性樹脂組成物から得られる成形体の機械的強度及び耐熱性が向上しやすい。
 (B1)タルクと(B2)繊維状充填剤との合計の含有量は、本発明の液晶性樹脂組成物において、好ましくは35~50質量%、より好ましくは37~46質量%、更により好ましくは38~44質量%である。(B2)成分の含有量が上記範囲内であると、液晶性樹脂組成物の流動性が十分に確保されつつ、液晶性樹脂組成物から得られる成形体の機械的強度及び耐熱性が向上しやすい。
[(C)エポキシ基含有共重合体]
 本発明の液晶性組成物は、(C)エポキシ基含有共重合体を含有する。(C)エポキシ基含有共重合体は、1種単独で又は2種以上組み合わせて使用することができる。(C)エポキシ基含有共重合体としては、特に限定されず、例えば、(C1)エポキシ基含有オレフィン系共重合体及び(C2)エポキシ基含有スチレン系共重合体からなる群より選択される少なくとも1種が挙げられる。2.0~6.5質量%の(C)エポキシ基含有共重合体は、(B)タルクと組み合わせて用いることにより、本発明の液晶性樹脂組成物から得られる成形体の摺動摩耗性を低減させることに寄与する。
 (C1)エポキシ基含有オレフィン系共重合体としては、例えば、α-オレフィンに由来する繰り返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰り返し単位とから構成される共重合体が挙げられる。
 α-オレフィンは特に限定されず、例えば、エチレン、プロピレン、ブテン等が挙げられ、中でもエチレンが好ましく用いられる。α,β-不飽和酸のグリシジルエステルは下記一般式(IV)で示されるものである。α,β-不飽和酸のグリシジルエステルは、例えばアクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル、イタコン酸グリシジルエステル等であり、特にメタクリル酸グリシジルエステルが好ましい。
Figure JPOXMLDOC01-appb-C000004
 (C1)エポキシ基含有オレフィン系共重合体において、α-オレフィンに由来する繰り返し単位の含有量は87~98質量%であり、α,β-不飽和酸のグリシジルエステルに由来する繰り返し単位の含有量は13~2質量%であることが好ましい。
 本発明で用いる(C1)エポキシ基含有オレフィン系共重合体は、本発明を損なわない範囲で上記2成分以外に第3成分としてアクリロニトリル、アクリル酸エステル、メタクリル酸エステル、α-メチルスチレン、無水マレイン酸等のオレフィン系不飽和エステルの1種又は2種以上に由来する繰り返し単位を、上記2成分100質量部に対し0~48質量部含有してもよい。
 本発明の(C1)成分であるエポキシ基含有オレフィン系共重合体は、各成分に対応するモノマー及びラジカル重合触媒を用いて通常のラジカル重合法により容易に調製することができる。より具体的には、通常、α-オレフィンとα,β-不飽和酸のグリシジルエステルとをラジカル発生剤の存在下、500~4000気圧、100~300℃で適当な溶媒や連鎖移動剤の存在下又は不存在下に共重合させる方法により製造できる。また、α-オレフィンとα,β-不飽和酸のグリシジルエステル及びラジカル発生剤とを混合し、押出機の中で溶融グラフト共重合させる方法によっても製造できる。
 (C2)のエポキシ基含有スチレン系共重合体としては、例えば、スチレン類に由来する繰り返し単位とα,β-不飽和酸のグリシジルエステルに由来する繰り返し単位とから構成される共重合体が挙げられる。α,β-不飽和酸のグリシジルエステルについては、(C1)成分で説明したものと同様であるため説明を省略する。
 スチレン類としては、スチレン、α-メチルスチレン、ブロム化スチレン、ジビニルベンゼン等が挙げられ、スチレンが好ましく用いられる。
 本発明で用いる(C2)エポキシ基含有スチレン系共重合体は、上記2成分以外に第3成分として他のビニルモノマーの1種又は2種以上に由来する繰り返し単位を含有する多元共重合体であってもよい。第3成分として好適なものは、アクリロニトリル、アクリル酸エステル、メタクリル酸エステル、無水マレイン酸等のオレフィン系不飽和エステルの1種又は2種以上に由来する繰り返し単位である。これらの繰り返し単位を共重合体中に40質量%以下含有するエポキシ基含有スチレン系共重合体が(C2)成分として好ましい。
 (C2)エポキシ基含有スチレン系共重合体において、α,β-不飽和酸のグリシジルエステルに由来する繰り返し単位の含有量は2~20質量%であり、スチレン類に由来する繰り返し単位の含有量は80~98質量%であることが好ましい。
 (C2)エポキシ基含有スチレン系共重合体は、各成分に対応するモノマー及びラジカル重合触媒を用いて通常のラジカル重合法により調製することができる。より具体的には、通常、スチレン類とα,β-不飽和酸のグリシジルエステルとをラジカル発生剤の存在下、500~4000気圧、100~300℃で適当な溶媒や連鎖移動剤の存在下又は不存在下に共重合させる方法により製造できる。また、スチレン類とα,β-不飽和酸のグリシジルエステル及びラジカル発生剤とを混合し、押出機の中で溶融グラフト共重合させる方法によっても製造できる。
 なお、(C)エポキシ基含有共重合体としては、(C1)エポキシ基含有オレフィン系共重合体が耐熱性の点で好ましい。(C1)成分と(C2)成分とを併用する場合、これら成分同士の割合は、適宜、要求される特性に沿って選択することができる。
 (C)エポキシ基含有共重合体の含有量は、本発明の液晶性樹脂組成物において、2.0~6.5質量%である。(C)成分の含有量が上記範囲内であると、流動性を損なわず、摺動摩耗性が低減された成形体を得やすい。より好ましい上記含有量は2.5~6.0質量%であり、更により好ましい上記含有量は3.0~5.0質量%である。
[(D)カーボンブラック]
 本発明に任意成分として用いる(D)カーボンブラックは、樹脂着色に用いられる一般的に入手可能なものであれば、特に限定されるものではない。通常、(D)カーボンブラックには一次粒子が凝集して出来上がる塊状物が含まれているが、50μm以上の大きさの塊状物が著しく多く含まれていない限り、本発明の樹脂組成物を成形してなる成形体の表面に多くのブツ(カーボンブラックが凝集した細かいブツブツ状突起物(細かい凹凸))は発生しにくい。上記塊状物粒子径が50μm以上の粒子の含有率が20ppm以下であると、成形体表面の起毛抑制効果が高くなりやすい。好ましい含有率は5ppm以下である。
 (D)カーボンブラックの配合量としては、液晶性樹脂組成物において、0.5~5質量%の範囲が好ましい。カーボンブラックの配合量が0.5質量%以上であると、得られる樹脂組成物の漆黒性が低下しにくく、遮光性に不安が出にくい。カーボンブラックの配合量が5質量%以下であると不経済となりにくく、またブツが発生しにくい。
[(E)離型剤]
 本発明に任意成分として用いる(E)離型剤としては、一般的に入手可能なものであれば、特に限定されるものではなく、例えば、脂肪酸エステル類、脂肪酸金属塩類、脂肪酸アミド類、低分子量ポリオレフィン等が挙げられ、ペンタエリスリトールの脂肪酸エステル(例えば、ペンタエリスリトールテトラステアレート)が好ましい。
 (E)離型剤の配合量としては、液晶性樹脂組成物において、0.1~3質量%の範囲が好ましい。離型剤の配合量が0.1質量%以上であると、成形時の離型性が向上するとともに、摺動摩耗性が低減された成形体を得やすい。離型剤の配合量が3質量%以下であるとMDが低減しやすい。
[その他の成分]
 本発明の液晶性樹脂組成物には、本発明の効果を害さない範囲で、その他の重合体、その他の充填剤、一般に合成樹脂に添加される公知の物質、即ち、酸化防止剤や紫外線吸収剤等の安定剤、帯電防止剤、難燃剤、染料や顔料等の着色剤、潤滑剤、結晶化促進剤、結晶核剤等も要求性能に応じ適宜添加することができる。
 その他の充填剤とは、(B1)タルク、(B2)繊維状充填剤、及び(D)カーボンブラック以外の充填剤をいい、例えば、シリカ等の粒状充填剤が挙げられる。但し、接着性の向上、並びに、溶融粘度、MD、及び摺動摩耗性の低減等の観点から、本発明の液晶性樹脂組成物は、マイカを含有しないことが好ましい。
[耐摺動摩耗部材用液晶性樹脂組成物の調製方法]
 本発明の耐摺動摩耗部材用液晶性樹脂組成物の調製方法は特に限定されない。例えば、上記(A)、(B1)、(B2)、及び(C)成分を配合して、これらを1軸又は2軸押出機を用いて溶融混練処理することで、耐摺動摩耗部材用液晶性樹脂組成物の調製が行われる。
[耐摺動摩耗部材用液晶性樹脂組成物]
 上記のようにして得られた本発明の液晶性樹脂組成物は、MD低減の観点から、溶融粘度が70Pa・sec未満であることが好ましい。溶融時の流動性が高く、成形性に優れる点も本発明の液晶性樹脂組成物の特徴の一つである。上記溶融粘度は、より好ましくは60Pa・sec以下であり、更により好ましくは55Pa・sec以下である。上記溶融粘度の下限は特に限定されず、例えば、30Pa・sec以上でよく、40Pa・secでもよい。本明細書において、溶融粘度としては、液晶性樹脂の融点よりも10~20℃高いシリンダー温度、せん断速度1000sec-1の条件で、ISO 11443に準拠した測定方法で得られた値を採用する。
<耐摺動摩耗部材>
 本発明の液晶性樹脂組成物を用いて、耐摺動摩耗部材を製造する。本発明の耐摺動摩耗部材は、従来と同等の接着性、機械的強度、及び耐熱性を有しつつ、摺動摩耗性が低減されている。本発明の耐摺動摩耗部材は、使用時に2つ以上の部材が動的に接触するような部品に用いることができ、具体的には、例えば、FPCコネクター等のコネクター;メモリーカードソケット等のソケット;レンズホルダー等のカメラモジュール用部品;リレー等に用いることができる。
 以下に実施例を挙げて、本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
<液晶性樹脂>
・液晶性ポリエステルアミド樹脂
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃に上げ、140℃で1時間反応させた。その後、更に340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧にして、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部からポリマーを排出し、ストランドをペレタイズしてペレットを得た。得られたペレットについて、窒素気流下、300℃で2時間の熱処理を行って、目的のポリマーを得た。得られたポリマーの融点は336℃、350℃における溶融粘度は19.0Pa・sであった。なお、上記ポリマーの溶融粘度は、後述する溶融粘度の測定方法と同様にして測定した。
 (I)4-ヒドロキシ安息香酸(HBA);1380g(60モル%)
 (II)2-ヒドロキシ-6-ナフトエ酸(HNA);157g(5モル%)
 (III)テレフタル酸(TA);484g(17.5モル%)
 (IV)4,4’-ジヒドロキシビフェニル(BP);388g(12.5モル%)
 (V)4-アセトキシアミノフェノール(APAP);126g(5モル%)
 金属触媒(酢酸カリウム触媒);110mg
 アシル化剤(無水酢酸);1659g
<液晶性樹脂以外の材料>
・タルク:クラウンタルクPP(松村産業(株)製、タルク、メディアン径14.6μm)
・繊維状充填剤1:PF70E001(日東紡(株)製、ミルドファイバー、平均繊維径10μm、平均繊維長70μm(メーカー公称値))
 なお、上記のメーカー公称値は、組成物中での実測値である表1中の値とは異なっている。
・繊維状充填剤2:ECS03T-786H(日本電気硝子(株)製、ガラス繊維、平均繊維径10μm、長さ3mmのチョプドストランド)
・エポキシ基含有オレフィン系共重合体:ボンドファースト2C(住友化学(株)製、エチレン-グリシジルメタクリレート共重合体、グリシジルメタクリレートの含有量6質量%)
・カーボンブラック:VULCAN XC305(キャボットジャパン(株)製、平均粒子径20nm、粒子径50μm以上の粒子の割合が20ppm以下)
・離型剤:ペンタエリスリトールテトラステアレート(エメリーオレオケミカルズジャパン(株)製)
<耐摺動摩耗部材用液晶性樹脂組成物の製造>
 上記成分を、表1に示す割合で二軸押出機((株)日本製鋼所製TEX30α型)を用いて、シリンダー温度350℃にて溶融混練し、耐摺動摩耗部材用液晶性樹脂組成物ペレットを得た。
<重量平均繊維長>
 液晶性樹脂組成物中の繊維状充填剤の重量平均繊維長は下記の方法で測定した。
 液晶性樹脂組成物ペレット5gを600℃で2時間加熱し灰化した。灰化残渣を5質量%ポリエチレングリコール水溶液に十分分散させた後、スポイトでシャーレに移し、顕微鏡で繊維状充填剤を観察した。同時に画像測定器((株)ニレコ製LUZEXFS)を用いて繊維状充填剤の重量平均繊維長を測定した。
<溶融粘度>
 実施例及び比較例の液晶性樹脂組成物の溶融粘度を、上記ペレットを用いて測定した。具体的には、キャピラリー式レオメーター((株)東洋精機製作所製、キャピログラフ1D:ピストン径10mm)により、シリンダー温度350℃、せん断速度1000sec-1の条件での見かけの溶融粘度をISO 11443に準拠して測定した。測定には、内径1mm、長さ20mmのオリフィスを用いた。結果を表1に示す。
<曲げ試験>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で成形し、130mm×13mm×0.8mmの曲げ試験片を作製した。この試験片を用いて、ASTM D790に準拠し、曲げ強度、曲げ弾性率、及び破断歪を測定した。このうち、曲げ弾性率及び曲げ強度の測定結果を表1に示す。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 90℃
射出速度: 33mm/sec
保圧: 50MPa
[荷重たわみ温度(DTUL)]
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で成形し、測定用試験片(4mm×10mm×80mm)を得た。この試験片を用いて、ISO75-1,2に準拠した方法で荷重たわみ温度を測定した。なお、曲げ応力としては、1.8MPaを用いた。結果を表1に示す。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
射出速度: 33mm/sec
<エポキシ接着性>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で成形し、試験片(ISO試験片Type1A、厚み4mm)を得た。この試験片を2分割して、図1(a)に示すように、エポキシ系接着剤(ヘンケル社製ロックタイト3128NH)で貼り合わせた(硬化条件:80℃×30分)。その後、図1(b)に示すように、貼り合わされた試験片を設置して、引張試験機を用いて、矢印方向に荷重を加えて、剥がれたときの荷重から、接着強度を評価した。結果を表1に示す。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
射出速度: 33mm/sec
〔引張試験条件〕
 試験機:オリエンテック、テンシロンRTC-1325A
 試験速度:10mm/min
<シャルピー衝撃試験>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で測定用試験片(4mm×10mm×80mm)に成形した。この試験片を用いて、ISO 179-1に準拠した方法でシャルピー衝撃値を測定した。結果を表1に示す。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
背圧: 2.0MPa
射出速度: 33mm/sec
<摺動摩耗量>
 実施例及び比較例のペレットを、成形機(住友重機械工業(株)製 「SE100DU」)を用いて、以下の成形条件で成形し、測定用ピン(直径10mm、長さ10mm)及び測定用試験片(80mm×80mm×1mm)を得た。図2に示す通り、測定用試験片上で測定用ピンに荷重をかけ、下記の往復摺動条件で往復摺動試験を行った後、測定用ピンと測定用試験片との合計の質量減少量を算出して、摺動摩耗量とした。結果を表1に示す。
〔成形条件〕
シリンダー温度: 350℃
金型温度: 80℃
射出速度: 33mm/sec
〔往復摺動条件〕
すべり速度:5cm/sec
ストローク:20mm
荷重:9.8N(1kg重)
往復回数:3000回
Figure JPOXMLDOC01-appb-T000005
注)-:樹脂温上昇及び粘度増加により押出不可
 表1に記載の結果から明らかなように、実施例の成形体は、従来と同等の接着性、機械的強度、及び耐熱性を有しつつ、摺動摩耗性が低減されていることが確認された。

Claims (3)

  1.  (A)液晶性樹脂、
     (B1)タルク、
     (B2)繊維状充填剤、及び
     (C)エポキシ基含有共重合体
    を含有し、
     前記(B1)タルクのメディアン径は、50μm以下であり、
     前記(B2)繊維状充填剤の重量平均繊維長は、200μm以下であり、
     前記(C)エポキシ基含有共重合体の含有量は、2.0~6.5質量%である耐摺動摩耗部材用液晶性樹脂組成物。
  2.  前記(B1)タルクの含有量は、20~42質量%であり、
     前記(B2)繊維状充填剤の含有量は、8~15質量%であり、
     前記(B1)タルクと前記(B2)繊維状充填剤との合計の含有量は、35~50質量%である請求項1に記載の組成物。
  3.  請求項1又は2に記載の組成物からなる耐摺動摩耗部材。
PCT/JP2018/032096 2017-09-29 2018-08-30 耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材 WO2019065063A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019502031A JP6545416B1 (ja) 2017-09-29 2018-08-30 耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017190655 2017-09-29
JP2017-190655 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019065063A1 true WO2019065063A1 (ja) 2019-04-04

Family

ID=65902955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032096 WO2019065063A1 (ja) 2017-09-29 2018-08-30 耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材

Country Status (3)

Country Link
JP (1) JP6545416B1 (ja)
TW (1) TW201925343A (ja)
WO (1) WO2019065063A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210061994A1 (en) * 2017-12-05 2021-03-04 Ticona Llc Aromatic Polymer Composition for Use in a Camera Module

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190569A1 (en) 2019-03-20 2020-09-24 Ticona Llc Polymer composition for use in a camera module
US11722759B2 (en) 2019-03-20 2023-08-08 Ticona Llc Actuator assembly for a camera module
JP2022071598A (ja) 2020-10-28 2022-05-16 Eneos株式会社 樹脂成形品の接着剤に対する接着強度の向上方法および接着強度を向上させた複合体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000949A (ja) * 2013-06-17 2015-01-05 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物
CN106633705A (zh) * 2016-12-29 2017-05-10 江苏沃特特种材料制造有限公司 液晶聚酯复合物及其制备方法与应用
WO2017110424A1 (ja) * 2015-12-24 2017-06-29 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物、その製造方法、及び上記組成物を用いたカメラモジュール
JP2018106005A (ja) * 2016-12-26 2018-07-05 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物及びそれを用いたカメラモジュール

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254716A (ja) * 2006-02-27 2007-10-04 Toray Ind Inc 液晶性樹脂組成物およびそれからなる成形品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000949A (ja) * 2013-06-17 2015-01-05 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物
WO2017110424A1 (ja) * 2015-12-24 2017-06-29 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物、その製造方法、及び上記組成物を用いたカメラモジュール
JP2018106005A (ja) * 2016-12-26 2018-07-05 ポリプラスチックス株式会社 カメラモジュール用液晶性樹脂組成物及びそれを用いたカメラモジュール
CN106633705A (zh) * 2016-12-29 2017-05-10 江苏沃特特种材料制造有限公司 液晶聚酯复合物及其制备方法与应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210061994A1 (en) * 2017-12-05 2021-03-04 Ticona Llc Aromatic Polymer Composition for Use in a Camera Module
US11725106B2 (en) * 2017-12-05 2023-08-15 Ticona Llc Aromatic polymer composition for use in a camera module

Also Published As

Publication number Publication date
JP6545416B1 (ja) 2019-07-17
JPWO2019065063A1 (ja) 2019-11-14
TW201925343A (zh) 2019-07-01

Similar Documents

Publication Publication Date Title
JP6545416B1 (ja) 耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材
JP5680788B2 (ja) カメラモジュール用液晶性樹脂組成物
JP6581659B2 (ja) カメラモジュール用液晶性樹脂組成物及びそれを用いたカメラモジュール
JP5826411B2 (ja) カメラモジュール用液晶性樹脂組成物及びそれを用いたカメラモジュール
JP6513322B1 (ja) 耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材
JP6762228B2 (ja) カメラモジュール用液晶性樹脂組成物及びそれを用いたカメラモジュール
JP6164945B2 (ja) カメラモジュール用液晶性樹脂組成物
JP6823760B2 (ja) 耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材
JP6906123B1 (ja) 耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材
JP7199853B2 (ja) 耐摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐摺動摩耗部材
JP7101323B1 (ja) 耐ボールベアリング摺動摩耗部材用液晶性樹脂組成物及びそれを用いた耐ボールベアリング摺動摩耗部材
CN115702206B (zh) 耐球轴承滑动磨损构件用液晶性树脂组合物和使用其的耐球轴承滑动磨损构件
JP7373080B2 (ja) 導電性液晶性樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019502031

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860577

Country of ref document: EP

Kind code of ref document: A1