WO2019064969A1 - Anti-reflection film, method for producing same, and polarizing plate with anti-reflection layer - Google Patents

Anti-reflection film, method for producing same, and polarizing plate with anti-reflection layer Download PDF

Info

Publication number
WO2019064969A1
WO2019064969A1 PCT/JP2018/030156 JP2018030156W WO2019064969A1 WO 2019064969 A1 WO2019064969 A1 WO 2019064969A1 JP 2018030156 W JP2018030156 W JP 2018030156W WO 2019064969 A1 WO2019064969 A1 WO 2019064969A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
antireflective
refractive index
primer layer
Prior art date
Application number
PCT/JP2018/030156
Other languages
French (fr)
Japanese (ja)
Inventor
幸大 宮本
由佳 山▲崎▼
金谷 実
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020227037250A priority Critical patent/KR102653072B1/en
Priority to CN201880062537.7A priority patent/CN111183373B/en
Priority to KR1020207008267A priority patent/KR20200037413A/en
Publication of WO2019064969A1 publication Critical patent/WO2019064969A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an antireflective film comprising an antireflective layer consisting of a plurality of thin films on a transparent film, and a method of manufacturing the same.
  • An antireflective film is used on the viewing side surface of an image display device such as a liquid crystal display or an organic EL display for the purpose of preventing deterioration in image quality due to reflection of external light or reflection of an image, and improvement of contrast.
  • the antireflective film comprises an antireflective layer formed of a laminate of a plurality of thin films having different refractive indexes on a transparent film.
  • the polarizing plate with an anti-reflective layer is mentioned as one form of an anti-reflective film.
  • An antireflective film is attached to the surface of the polarizing plate or an antireflective film is attached to the surface of the polarizer as a protective film to obtain a polarizing plate with an antireflective layer.
  • An antireflective layer may be formed on the surface of the polarizing plate.
  • Patent Document 1 the water vapor barrier property is enhanced by forming an alternately laminated film of ITO and SiO 2 by a sputtering method and forming a silicon oxide film thereon by a plasma CVD method.
  • Patent Document 2 low moisture permeation of an antireflection film is achieved by providing a silicon nitride film of high refractive index.
  • Patent Document 3 describes that there is a high correlation between the density of the outermost layer of the antireflective layer (the layer farthest from the film substrate) and the moisture permeability.
  • JP 2000-338305 A Japanese Patent Application Publication No. 2003-139907 JP, 2009-109850, A
  • the present invention aims to provide an antireflection film excellent in water vapor barrier properties.
  • the antireflective film of the present invention is provided with an antireflective layer composed of a plurality of thin films having different refractive indexes on one main surface of a transparent film substrate.
  • the antireflective layer comprises a primer layer in contact with the transparent film substrate. It is preferable that high refractive index layers and low refractive index layers be alternately laminated on the primer layer.
  • the moisture permeability of the antireflective film is preferably 1 g / m 2 ⁇ 24 h or less.
  • the argon content of the primer layer is preferably 0.01 to 0.5 atomic% or less.
  • the primer layer is preferably a silicon oxide layer.
  • the primer layer is preferably formed by sputtering.
  • the thin film on the primer layer constituting the antireflective layer is also preferably formed by sputtering.
  • the present invention relates to a polarizing plate with an antireflection layer provided with the above-mentioned antireflection film on one side of a polarizer.
  • the antireflective film of the present invention is excellent in bath barrier properties, and even when a display provided with a polarizing plate with an antireflective layer having low moisture permeability on the surface is exposed to a high humidity environment, the amount of water penetration into the polarizer is small. And deterioration of the polarizer can be suppressed.
  • FIG. 1 is sectional drawing which shows typically the structure of the anti-reflective film concerning one Embodiment.
  • the antireflective film 100 includes the antireflective layer 5 in contact with the transparent film substrate 1.
  • the antireflective layer is a laminate of thin films of two or more layers, and the antireflective layer 5 shown in FIG. 1 is provided with a primer layer 50 on the surface in contact with the transparent film substrate 1, and the high refractive index layer 51, 53 and low refractive index layers 52 and 54 are alternately stacked.
  • Moisture permeability of the antireflection layer 5 is preferably not more than 1g / m 2 ⁇ 24h, more preferably not more than 0.7g / m 2 ⁇ 24h. 0.5 g / m 2 ⁇ 24 h or less is more preferable.
  • the transparent film substrate 1 includes a flexible transparent film 10. It is preferable that the hard coat layer 11 be provided on the side of the transparent film 10 on which the antireflection layer 5 is formed.
  • the visible light transmittance of the transparent film 10 is preferably 80% or more, more preferably 90% or more.
  • the thickness of the transparent film 10 is not particularly limited, but is preferably about 5 to 300 ⁇ m, more preferably 10 to 250 ⁇ m, and still more preferably 20 to 200 ⁇ m, from the viewpoints of strength and workability such as handleability and thin layer property.
  • thermoplastic resin which is excellent in transparency, mechanical strength, and heat stability
  • thermoplastic resins include cellulose resins such as triacetyl cellulose, polyester resins, polyether sulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, and polyolefin resins.
  • cellulose resins such as triacetyl cellulose, polyester resins, polyether sulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, and polyolefin resins.
  • acrylic resins cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • Hard coat layer By providing the hard coat layer 11 on the surface of the transparent film 10, mechanical properties such as hardness and elastic modulus of the antireflection film can be improved.
  • the hard coat layer 11 preferably has high surface hardness and excellent scratch resistance.
  • the hard coat layer 11 can be formed, for example, by applying a solution containing a curable resin on the transparent film 10.
  • the curable resin examples include thermosetting resin, ultraviolet curable resin, electron beam curable resin and the like.
  • the curable resin include various resins such as polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, oxetane resins and acrylic urethane resins. One or two or more of these curable resins can be appropriately selected and used.
  • acrylic resins, acrylic urethane resins, and epoxy resins are preferable, and among them, acrylic urethane resins are preferable, because they are high in hardness, can be cured by ultraviolet light, and are excellent in productivity.
  • the UV curable resin includes UV curable monomers, oligomers, polymers and the like.
  • the UV curable resin preferably used is, for example, a resin having a UV polymerizable functional group, and a resin containing an acrylic monomer or oligomer having 2 or more, particularly 3 to 6 of the functional groups as a component.
  • the hard coat layer 11 may have an antiglare property in order to give the antireflective film the antiglare property and the antiglare property.
  • Examples of the antiglare hard coat layer include those obtained by dispersing fine particles in the above-mentioned curable resin matrix.
  • various metal oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, antimony oxide etc., glass fine particles, polymethyl methacrylate, polystyrene, polyurethane
  • Those having transparency, such as crosslinked or uncrosslinked organic fine particles and silicone fine particles comprising various transparent polymers such as acrylic-styrene copolymer, benzoguanamine, melamine and polycarbonate, can be used without particular limitation.
  • the hard coat layer 11 can be formed, for example, by applying a solution containing a curable resin on the transparent film 10. It is preferable that the ultraviolet polymerization initiator is mix
  • the solution may contain additives such as a leveling agent, a thixotropic agent, an antistatic agent and the like.
  • the thickness of the hard coat layer 11 is not particularly limited, but is preferably 0.5 ⁇ m or more, and more preferably 1 ⁇ m or more in order to achieve high hardness. In consideration of the ease of formation by coating, the thickness of the hard coat layer is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the arithmetic mean roughness Ra of the surface of the transparent film substrate 1 on the side on which the antireflection layer 5 is formed is preferably 1.0 nm or less.
  • the arithmetic mean roughness Ra of the hard coat layer 11 is the arithmetic mean roughness of the surface of the transparent film 10 on which the antireflection layer 5 is formed.
  • Arithmetic mean roughness Ra is determined from an observation image of 1 ⁇ m square using an atomic force microscope (AFM).
  • the arithmetic mean roughness of the surface of the transparent film substrate 1 can be reduced. If the surface of the transparent film substrate 1 is smooth, defects such as pinholes of the antireflective layer 5 can be suppressed, so that an antireflective film with lower moisture permeability can be obtained.
  • the surface of the transparent film substrate 1 is treated with corona treatment, plasma treatment, flame treatment, ozone treatment, primer treatment, glow treatment, saponification treatment, coupling agent for the purpose of improving adhesion with the antireflective layer 5 and the like.
  • Surface modification treatment such as treatment may be performed.
  • An antireflective film is formed by providing the antireflective layer 5 on the transparent film substrate 1.
  • the antireflective layer 5 is provided with a primer layer 50 on the surface in contact with the transparent film substrate 1 and further includes a high refractive index layer and a low refractive index layer thereon.
  • the optical film thickness (the product of the refractive index and the thickness) of the thin film is adjusted such that the inverted phases of the incident light and the reflected light cancel each other.
  • Examples of the material of the thin film constituting the antireflective layer 5 include metal oxides, nitrides, and fluorides.
  • As a material of the primer layer 50 silicon oxide is preferable.
  • the primer layer 50 has an argon content of 0.5 atomic% or less in the film.
  • the low refractive index layers 52 and 54 have, for example, a refractive index of 1.6 or less, preferably 1.5 or less. Examples of low refractive index materials include silicon oxide and magnesium fluoride.
  • the high refractive index layers 51 and 53 have, for example, a refractive index of 1.9 or more, preferably 2.0 or more.
  • the high refractive index material examples include titanium oxide, niobium oxide, zirconium oxide, indium tin oxide (ITO), antimony-doped tin oxide (ATO) and the like.
  • ITO indium tin oxide
  • ATO antimony-doped tin oxide
  • a middle refractive index layer having a refractive index of about 1.6 to 1.9 for example, a thin film comprising titanium oxide or a mixture of the low refractive index material and the high refractive material May be provided.
  • the film forming method of the thin film forming the antireflective layer 5 is not particularly limited, and any of a wet coating method and a dry coating method may be used.
  • a dry coating method such as vacuum deposition, CVD, sputtering, electron beam evaporation and the like is preferable because a thin film having a uniform film thickness can be formed.
  • the sputtering method is preferable because it is easy to form a dense film having excellent uniformity of film thickness and high gas barrier properties.
  • silicon oxide as the primer layer 50 by sputtering.
  • the sputtering method since a plurality of thin films can be continuously formed while conveying a long film substrate in one direction (longitudinal direction) by a roll-to-roll method, productivity of the antireflective film can be improved. In order to improve the productivity of the antireflective film, it is preferable to form all the thin films constituting the antireflective layer 5 by sputtering. In the sputtering method, film formation is performed while introducing an inert gas such as argon and, if necessary, a reactive gas such as oxygen into the chamber.
  • an inert gas such as argon and, if necessary, a reactive gas such as oxygen
  • the oxide layer can be formed by sputtering either by using an oxide target or by reactive sputtering using a metal target.
  • a metal target In order to deposit an insulating oxide such as silicon oxide using an oxide target, an RF discharge is required.
  • reactive DC sputtering using a metal target is preferable.
  • the amount of argon in the film is 0.5 atomic% or less, preferably 0.4 atomic% or less.
  • the amount of argon in the sputtered film is 0.5 atomic% or less, the moisture permeability tends to be reduced, and the water vapor barrier property of the antireflection film tends to be improved.
  • the reason why the antireflective layer becomes low moisture permeable by reducing the amount of argon in the film of the primer layer is not clear, but one factor is that if argon with a large atomic radius is present in the primer layer, it is formed on the primer layer and above It is considered to be related to the fact that a path of gas such as water vapor is easily formed in the thin film.
  • argon is used as a process gas, and high energy argon is caused to collide with the target to eject material from the target and sputter particles ejected from the target are deposited on the substrate. Film formation is performed.
  • An inert gas such as argon does not generally participate in film formation, but since ionized argon has high reactivity, part of argon as a process gas is inevitably taken into the film during sputter film formation. .
  • argon which is a rare gas, has a larger atomic diameter than silicon and oxygen
  • argon incorporated into the film inhibits formation of a Si-O bond network of silicon oxide, and causes an atomic level void to be formed. It can be When a void resulting from mixing of argon is formed in the primer layer 50 which is first deposited in contact with the film substrate 1, the high refractive index layers 51, 53 and the low refractive index layers 52, 54 are sputtered thereon When the film is formed, the voids tend to grow in a columnar direction in the thickness direction, which is considered to be a path of a gas such as water vapor and the moisture permeability is increased.
  • the amount of argon contained in the primer layer 50 is preferably as small as possible, but a film obtained by sputtering film formation using argon as a process gas usually contains 0.01 atomic% or more of argon.
  • the argon content in the primer layer may be 0.05 atomic% or more, or 0.1 atomic% or more.
  • the amount of argon in the film is measured by the Rutherford backscattering (RBS) method, and the amount of argon in the silicon oxide film is a calculated value based on the sum of the contents of silicon, oxygen and argon being 100 atomic%.
  • the process pressure for forming the primer layer 50 is preferably about 0.05 to 2 Pa, more preferably about 0.07 to 1 Pa, still more preferably 0.1 to 0.5 Pa, and particularly preferably 0.1 to 0.3 Pa preferable.
  • the amount of oxygen introduced into the film forming chamber at the time of film formation of the primer layer 50 is preferably about 0.1 to 10% of the amount of argon introduced in terms of volume ratio, more preferably about 0.5 to 5%, and 1 to 3% A degree is more preferred.
  • the primer layer 50 preferably has an oxygen content less than the stoichiometric composition.
  • the film thickness of the primer layer 50 may be set to such an extent that the transparency of the transparent film substrate 1 is not impaired, and is, for example, about 1 to 10 nm.
  • the type of thin film formed on the primer layer 50 is not particularly limited. From the viewpoint of reducing the reflectance over a wide wavelength range, it is preferable to alternately provide the high refractive index layer and the refractive index.
  • the thin film 54 provided as the outermost layer (the layer farthest from the film substrate 1) of the antireflective layer 5 is preferably a low refractive index layer.
  • oxides are preferable as described above. Among them, it is preferable to alternately laminate niobium oxide (Nb 2 O 5 ) thin films 51 and 53 as high refractive index layers and silicon oxide (SiO 2 ) thin films 52 and 54 as low refractive index layers.
  • the oxygen introduction amount in sputter deposition of the low refractive index layer and the high refractive index layer on the primer layer, it is preferable to control the oxygen introduction amount so that the deposition mode is in the transition region.
  • a plasma emission monitoring method in which the plasma emission intensity of discharge is detected to control the gas introduction amount to the film forming chamber, feedback to the oxygen introduction amount is performed based on the plasma emission intensity.
  • PEM method plasma emission monitoring method
  • the film forming rate can be kept constant, so the thin film thickness becomes uniform, and the reflection is excellent in the anti-reflection characteristic A protective film is obtained.
  • the uniformity of the quality in the width direction can also be improved by providing a plurality of plasma emission measurement points in the width direction and controlling the oxygen introduction amount by the PEM independently of each other.
  • the antireflective film may be provided with an additional functional layer on the surface of the antireflective layer 5. Since the antireflective film is disposed on the outermost surface of the display, it is susceptible to contamination from the external environment (fingerprint, hand, dust, etc.). In particular, the low refractive index layer 54 such as SiO 2 provided on the outermost surface of the antireflective layer 5 has good wettability, and contaminants such as fingerprints and finger marks are easily attached. An antifouling layer (not shown) may be provided on the antireflective layer for the purpose of preventing contamination from the external environment or facilitating the removal of attached contaminants.
  • the antifouling layer preferably has a small difference in refractive index from the low refractive index layer 54 on the outermost surface of the antireflective layer 5. 1.6 or less is preferable and, as for the refractive index of an antifouling layer, 1.55 or less is more preferable.
  • a material of the antifouling layer a fluorine group-containing silane compound, a fluorine group-containing organic compound, and the like are preferable.
  • the antifouling layer can be formed by a wet method such as a reverse coating method, a die coating method or a gravure coating method, or a dry method such as a CVD method.
  • the thickness of the antifouling layer is usually about 1 to 100 nm, preferably 2 to 50 nm, more preferably 3 to 30 nm.
  • the antireflective film is used, for example, disposed on the surface of a display.
  • a polarizing plate with an antireflection layer in which the antireflection film 100 is laminated with the polarizer 8 may be bonded to the surface of the display.
  • one surface of the polarizer 8 is bonded to the main surface of the transparent film substrate 1 opposite to the surface on which the antireflection film 5 is formed.
  • a transparent film 9 is attached to the other surface of the polarizer 8.
  • the film substrate 1 has both a function as a substrate for forming the antireflection layer 5 and a function as a protective film of the polarizer 8.
  • the polarizer 8 and the film base material 1 may be bonded together, a polarizing plate may be produced, and the anti-reflective layer 5 may be formed on the film base 1 of a polarizing plate.
  • the polarizer 8 may be a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, or an ethylene / vinyl acetate copolymer-based partially saponified film, or a dichroic dye such as iodine or a dichroic dye. Examples thereof include those obtained by adsorbing a substance and uniaxially stretched, and polyene-based oriented films such as dehydrated products of polyvinyl alcohol and dehydrochlorinated products of polyvinyl chloride.
  • polyvinyl alcohol or polyvinyl alcohol-based film such as partially formalized polyvinyl alcohol adsorbs a dichromatic substance such as iodine or a dichroic dye, and is oriented in a predetermined direction because it has a high degree of polarization.
  • Alcohol (PVA) based polarizers are preferred.
  • a PVA-based polarizer can be obtained by subjecting a polyvinyl alcohol-based film to iodine dyeing and stretching.
  • a thin polarizer having a thickness of 10 ⁇ m or less can also be used as the PVA-based polarizer.
  • thin polarizers are described in, for example, JP-A-51-069644, JP-A-2000-338329, WO2010 / 100917, JP-A-4691205, JP-A-4751481, and the like. And thin polarizing films.
  • Such a thin polarizer can be obtained, for example, by a manufacturing method including a step of stretching a PVA-based resin layer and a stretching resin base material in the state of a laminate, and a step of iodine staining.
  • the same material as that described above as the material of the transparent film 10 is preferably used.
  • the material of the transparent film 9 and the material of the transparent film 10 may be the same or different.
  • Adhesives are based on acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl alcohol, polyvinyl ether, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy polymers, fluorine polymers, rubber polymers, etc. What is to be a polymer can be appropriately selected and used. For adhesion of a PVA-based polarizer, a polyvinyl alcohol-based adhesive is preferably used.
  • the antireflection film and the polarizing plate with an antireflection layer of the present invention are used for a display such as a liquid crystal display device or an organic EL display device.
  • a display such as a liquid crystal display device or an organic EL display device.
  • it when it is used as the outermost surface layer of the display, it contributes to the improvement of the visibility of the display by the reflection prevention.
  • the low moisture permeation anti-reflection film 100 provided with the predetermined primer layer 50 on the surface of the polarizer 8 it is possible to suppress the entry of moisture from the external environment into the polarizer 8. Therefore, even when the display is exposed to a high humidity environment, yellowing and fading due to deterioration of the polarizer are less likely to occur, and changes in display characteristics can be suppressed.
  • Example 1 The triacetyl cellulose film on which the hard coat layer is formed is introduced into a roll-to-thol sputtering film forming apparatus, and the surface on which the antiglare hard coat layer is formed is bombarded (plasma treatment with Ar gas) while the film travels. After that, a 3.5 nm silicon oxide layer is formed as a primer layer, and 12 nm Nb 2 O 5 layer, 28 nm SiO 2 layer, 100 nm Nb 2 O 5 layer and 85 nm SiO 2 are formed thereon. Two layers were sequentially formed into a film to produce an antireflective film.
  • the silicon oxide layer as the primer layer is formed by DC sputtering deposition by applying a power of 0.5 W / cm 2 to the Si target at a substrate temperature of -8 ° C., an argon flow rate of 300 sccm, an oxygen flow rate of 4.5 sccm and a pressure of 0.2 Pa.
  • the Si target was used for film formation of the SiO 2 layer
  • the Nb target was used for film formation of the Nb 2 O 5 layer
  • film formation was performed at a substrate temperature of ⁇ 8 ° C., an argon flow rate of 400 sccm and a pressure of 0.25 Pa.
  • the amount of oxygen introduced was controlled so that the film formation mode maintains the transition region by plasma emission monitoring (PEM) control.
  • Example 2 and Comparative Example 1 The sputter deposition conditions of the primer layer were changed as shown in Table 1, and in Comparative Example 1, the primer layer was deposited without introducing oxygen. In Comparative Example 1, the argon flow rate was changed to 1200 sccm and the pressure was changed to 0.45 Pa. An antireflection film was produced in the same manner as in Example 1 except for the above.
  • the film density and composition of the thin film constituting the antireflective layer were measured by the Rutherford backscattering (RBS) method.
  • the elemental composition using the film thickness determined from transmission electron microscope (TEM) observation of the cross section is a metal (silicon or niobium) based on the elemental composition at the center of the film thickness of each thin film.
  • the total content of oxygen, and argon was calculated as 100 atomic percent.
  • the antireflection films of Examples and Comparative Examples are bonded to one side of a polarizer, and a 30 ⁇ m-thick transparent film made of a modified acrylic polymer having a lactone ring structure is bonded to the other side of the polarizer, A polarizing plate with an antireflective layer was produced.
  • a polarizer a PVA-based polarizer obtained by stretching a polyvinyl alcohol film having an average degree of polymerization of 2700 and a thickness of 75 ⁇ m while being iodine-stained by 6 times was used.
  • a polyvinyl alcohol resin containing an acetoacetyl group (average polymerization degree 1200, saponification degree 98.5 mol%, acetoacetylation degree 5 mol%) and methylolmelamine
  • a roll bonding machine using an adhesive consisting of an aqueous solution containing a weight ratio of 3: 1 it was dried by heating in an oven.
  • the obtained polarizing plate with an antireflection layer was charged into a thermostatic chamber at 60 ° C. and 90% RH, and taken out after 72 hours.
  • a commercially available polarizing plate was placed on the backlight, and the change amount ⁇ b * of the chromaticity b * of the transmitted light before and after the heating / humidifying test was determined.
  • the antireflection films of Example 1 and Example 2 have a moisture permeability smaller than that of Comparative Example 1, and the chromaticity difference before and after the heating / humidifying test of the polarizing plate with an antireflection layer is small. Durability was shown. A clear difference was not seen in the film density of the SiO 2 layer (film thickness 85 nm) which is the outermost layer between the example and the comparative example.
  • Nb 2 O 5 has a moisture permeability larger than that of SiO 2
  • water permeation of the SiO 2 film is rate-limiting, and the moisture permeability is mainly the SiO 2 film.
  • the film density of the Nb 2 O 5 layer as compared to Examples 1 and 2 for film formation pressure of Nb 2 O 5 layer is small decreases were observed, Nb 2 O 5 It is considered that the difference in the film density of the layer hardly affects the change in the moisture permeability.
  • the film formation conditions of the primer layer are different between Examples 1 and 2 and Comparative Example 1, and the film formation is performed at a low argon introduction amount (low pressure) while introducing oxygen.
  • the amount of argon in the film was changed as compared to Example 1. From the results, in the examples, the water vapor barrier property of the antireflective film is improved (the moisture permeability is reduced) by reducing the amount of argon contained in the primer layer, and the durability of the polarizing plate with the antireflective layer is improved. It is thought that

Abstract

This anti-reflection film (100) comprises an anti-reflection layer (5), which is composed of a plurality of thin films having different refractive indexes, on one main surface of a transparent film substrate (1). The anti-reflection layer comprises a primer layer (50) that is in contact with the transparent film substrate. The primer layer has an argon content of 0.5% by atom or less. The primer layer (50) is, for example, a silicon oxide layer. It is preferable that the anti-reflection film has a water vapor permeability of 1 g/m2·24h or less. A polarizing plate (101) with an anti-reflection layer according to the present invention comprises the above-described anti-reflection film (100) on a polarizer (8).

Description

反射防止フィルムおよびその製造方法、ならびに反射防止層付き偏光板Antireflection film, method for producing the same, and polarizing plate with antireflection layer
 本発明は、透明フィルム上に複数の薄膜からなる反射防止層を備える反射防止フィルム、およびその製造方法に関する。 The present invention relates to an antireflective film comprising an antireflective layer consisting of a plurality of thin films on a transparent film, and a method of manufacturing the same.
 液晶ディスプレイや有機ELディスプレイ等の画像表示装置の視認側表面には、外光の反射や像の映り込みによる画質低下の防止、コントラスト向上等を目的として、反射防止フィルムが使用されている。反射防止フィルムは、透明フィルム上に、屈折率の異なる複数の薄膜の積層体からなる反射防止層を備える。 An antireflective film is used on the viewing side surface of an image display device such as a liquid crystal display or an organic EL display for the purpose of preventing deterioration in image quality due to reflection of external light or reflection of an image, and improvement of contrast. The antireflective film comprises an antireflective layer formed of a laminate of a plurality of thin films having different refractive indexes on a transparent film.
 反射防止フィルムの一形態として、反射防止層付き偏光板が挙げられる。偏光板の表面に反射防止フィルムを貼り合わせたり、偏光子の表面に保護フィルムとして反射防止フィルムを貼り合わせることにより、反射防止層付き偏光板が得られる。偏光板の表面に反射防止層を形成してもよい。 The polarizing plate with an anti-reflective layer is mentioned as one form of an anti-reflective film. An antireflective film is attached to the surface of the polarizing plate or an antireflective film is attached to the surface of the polarizer as a protective film to obtain a polarizing plate with an antireflective layer. An antireflective layer may be formed on the surface of the polarizing plate.
 反射防止層に水蒸気バリア性を持たせる試みがいくつか知られている。例えば、特許文献1では、スパッタ法によりITOとSiOの交互積層膜を形成し、その上にプラズマCVD法により酸化シリコン膜を形成することにより、水蒸気バリア性を高めている。特許文献2では、高屈折率の窒化シリコン膜を設けることにより、反射防止フィルムの低透湿化を図っている。特許文献3には、反射防止層の最外層(フィルム基材から最も離れた層)の密度と透湿度の間に高い相関があることが記載されている。 There are several known attempts to impart water vapor barrier properties to the antireflective layer. For example, in Patent Document 1, the water vapor barrier property is enhanced by forming an alternately laminated film of ITO and SiO 2 by a sputtering method and forming a silicon oxide film thereon by a plasma CVD method. In patent document 2, low moisture permeation of an antireflection film is achieved by providing a silicon nitride film of high refractive index. Patent Document 3 describes that there is a high correlation between the density of the outermost layer of the antireflective layer (the layer farthest from the film substrate) and the moisture permeability.
特開2000-338305号公報JP 2000-338305 A 特開2003-139907号公報Japanese Patent Application Publication No. 2003-139907 特開2009-109850号公報JP, 2009-109850, A
 偏光板の表面に水蒸気バリア性を有する反射防止層を設けることにより、高湿度環境下での偏光子の劣化が抑制され、耐久性が向上する。近年、ディスプレイにさらなる高湿耐久性が要求されるようになり、従来よりも水蒸気バリア性の高い(低透湿度の)反射防止フィルムが必要となっている。上記に鑑み、本発明は、水蒸気バリア性に優れる反射防止フィルムの提供を目的とする By providing the antireflective layer having a water vapor barrier property on the surface of the polarizing plate, the deterioration of the polarizer in a high humidity environment is suppressed, and the durability is improved. In recent years, displays have been required to have further high humidity durability, and an antireflective film (having a low moisture permeability) having a water vapor barrier property higher than that of the prior art has been required. In view of the above, the present invention aims to provide an antireflection film excellent in water vapor barrier properties.
 本発明の反射防止フィルムは、透明フィルム基材の一方の主面に、屈折率が異なる複数の薄膜からなる反射防止層を備える。反射防止層は、透明フィルム基材に接するプライマー層を含む。プライマー層上には、高屈折率層と低屈折率層とが交互に積層されていることが好ましい。反射防止フィルムの透湿度は、1g/m・24h以下が好ましい。 The antireflective film of the present invention is provided with an antireflective layer composed of a plurality of thin films having different refractive indexes on one main surface of a transparent film substrate. The antireflective layer comprises a primer layer in contact with the transparent film substrate. It is preferable that high refractive index layers and low refractive index layers be alternately laminated on the primer layer. The moisture permeability of the antireflective film is preferably 1 g / m 2 · 24 h or less.
 プライマー層のアルゴン含有量は0.01~0.5原子%以下が好ましい。プライマー層は、好ましくは酸化シリコン層である。プライマー層はスパッタ法により形成されることが好ましい。反射防止層を構成するプライマー層上の薄膜もスパッタ法により形成されることが好ましい。 The argon content of the primer layer is preferably 0.01 to 0.5 atomic% or less. The primer layer is preferably a silicon oxide layer. The primer layer is preferably formed by sputtering. The thin film on the primer layer constituting the antireflective layer is also preferably formed by sputtering.
 さらに、本発明は、偏光子の一方の面に、上記の反射防止フィルムを備える反射防止層付き偏光板に関する。 Furthermore, the present invention relates to a polarizing plate with an antireflection layer provided with the above-mentioned antireflection film on one side of a polarizer.
 本発明の反射防止フィルムはバスバリア性に優れ、低透湿度である反射防止層付偏光板を表面に備えるディスプレイが高湿環境に曝された場合でも、偏光子への水分の侵入量が小さいため、偏光子の劣化を抑制できる。 The antireflective film of the present invention is excellent in bath barrier properties, and even when a display provided with a polarizing plate with an antireflective layer having low moisture permeability on the surface is exposed to a high humidity environment, the amount of water penetration into the polarizer is small. And deterioration of the polarizer can be suppressed.
反射防止フィルムの一形態を模式的に示す断面図である。It is sectional drawing which shows typically one form of an antireflection film. 反射防止層付き偏光板の一形態を模式的に示す断面図である。It is sectional drawing which shows typically one form of a polarizing plate with a reflection prevention layer.
[反射防止フィルムの構成]
 図1は、一実施形態にかかる反射防止フィルムの構成を模式的に示す断面図である。反射防止フィルム100は、透明フィルム基材1に接して反射防止層5を備える。反射防止層は、2層以上の薄膜の積層体であり、図1に示す反射防止層5は、透明フィルム基材1と接する面にプライマー層50を備え、その上に高屈折率層51,53と低屈折率層52,54とが交互に積層されている。
[Structure of antireflective film]
FIG. 1: is sectional drawing which shows typically the structure of the anti-reflective film concerning one Embodiment. The antireflective film 100 includes the antireflective layer 5 in contact with the transparent film substrate 1. The antireflective layer is a laminate of thin films of two or more layers, and the antireflective layer 5 shown in FIG. 1 is provided with a primer layer 50 on the surface in contact with the transparent film substrate 1, and the high refractive index layer 51, 53 and low refractive index layers 52 and 54 are alternately stacked.
 反射防止層5の透湿度は、1g/m・24h以下が好ましく、0.7g/m・24h以下がより好ましく。0.5g/m・24h以下がさらに好ましい。反射防止層の透湿度を小さくすることにより、水分の侵入を防止して、水分に起因する偏光子等の劣化を抑制できる。後に詳述する通り、プライマー層に含まれるアルゴン量が少ない場合に、反射防止フィルムの透湿度が小さくなる傾向がある。 Moisture permeability of the antireflection layer 5 is preferably not more than 1g / m 2 · 24h, more preferably not more than 0.7g / m 2 · 24h. 0.5 g / m 2 · 24 h or less is more preferable. By reducing the moisture permeability of the antireflective layer, it is possible to prevent the entry of water and to suppress the deterioration of the polarizer and the like due to the water. As will be described in detail later, when the amount of argon contained in the primer layer is small, the moisture permeability of the antireflective film tends to be small.
<透明フィルム基材>
 透明フィルム基材1は、可撓性の透明フィルム10を含む。透明フィルム10の反射防止層5形成面側には、ハードコート層11が設けられていることが好ましい。
<Transparent film substrate>
The transparent film substrate 1 includes a flexible transparent film 10. It is preferable that the hard coat layer 11 be provided on the side of the transparent film 10 on which the antireflection layer 5 is formed.
(透明フィルム)
 透明フィルム10の可視光透過率は、好ましくは80%以上、より好ましくは90%以上である。透明フィルム10の厚みは特に限定されないが、強度や取扱性等の作業性、薄層性等の観点から、5~300μm程度が好ましく、10~250μmがより好ましく、20~200μmがさらに好ましい。
(Transparent film)
The visible light transmittance of the transparent film 10 is preferably 80% or more, more preferably 90% or more. The thickness of the transparent film 10 is not particularly limited, but is preferably about 5 to 300 μm, more preferably 10 to 250 μm, and still more preferably 20 to 200 μm, from the viewpoints of strength and workability such as handleability and thin layer property.
 透明フィルム10を構成する樹脂材料としては、例えば、透明性、機械強度、および熱安定性に優れる熱可塑性樹脂が挙げられる。このような熱可塑性樹脂の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(ノルボルネン系樹脂)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、およびこれらの混合物が挙げられる。 As a resin material which comprises the transparent film 10, the thermoplastic resin which is excellent in transparency, mechanical strength, and heat stability is mentioned, for example. Specific examples of such thermoplastic resins include cellulose resins such as triacetyl cellulose, polyester resins, polyether sulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, and polyolefin resins. And (meth) acrylic resins, cyclic polyolefin resins (norbornene resins), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
(ハードコート層)
 透明フィルム10の表面にハードコート層11が設けられることにより、反射防止フィルムの硬度や弾性率等の機械特性を向上できる。ハードコート層11は、表面の硬度が高く、耐擦傷性に優れるものが好ましい。ハードコート層11は、例えば、透明フィルム10上に、硬化性樹脂を含有する溶液を塗布することにより形成できる。
(Hard coat layer)
By providing the hard coat layer 11 on the surface of the transparent film 10, mechanical properties such as hardness and elastic modulus of the antireflection film can be improved. The hard coat layer 11 preferably has high surface hardness and excellent scratch resistance. The hard coat layer 11 can be formed, for example, by applying a solution containing a curable resin on the transparent film 10.
 硬化性樹脂としては、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂等が挙げられる。硬化性樹脂の種類としてはポリエステル系、アクリル系、ウレタン系、アクリルウレタン系、アミド系、シリコーン系、シリケート系、エポキシ系、メラミン系、オキセタン系、アクリルウレタン系等の各種の樹脂があげられる。これら硬化性樹脂は、一種または二種以上を、適宜に選択して使用できる。 Examples of the curable resin include thermosetting resin, ultraviolet curable resin, electron beam curable resin and the like. Examples of the curable resin include various resins such as polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, oxetane resins and acrylic urethane resins. One or two or more of these curable resins can be appropriately selected and used.
 これらの中でも、硬度が高く、紫外線硬化が可能で生産性に優れることから、アクリル系樹脂、アクリルウレタン系樹脂、およびエポキシ系樹脂が好ましく、中でもアクリルウレタン系樹脂が好ましい。紫外線硬化型樹脂には、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、例えば紫外線重合性の官能基を有するもの、中でも当該官能基を2個以上、特に3~6個有するアクリル系のモノマーやオリゴマーを成分として含むものが挙げられる。 Among these, acrylic resins, acrylic urethane resins, and epoxy resins are preferable, and among them, acrylic urethane resins are preferable, because they are high in hardness, can be cured by ultraviolet light, and are excellent in productivity. The UV curable resin includes UV curable monomers, oligomers, polymers and the like. The UV curable resin preferably used is, for example, a resin having a UV polymerizable functional group, and a resin containing an acrylic monomer or oligomer having 2 or more, particularly 3 to 6 of the functional groups as a component.
 反射防止フィルムに防眩性およびギラツキ防止性を持たせるために、ハードコート層11は防眩性を有していてもよい。防眩性ハードコート層としては、例えば、上記の硬化性樹脂マトリクス中に、微粒子を分散させたものが挙げられる。樹脂マトリクス中に分散させる微粒子としては、シリカ、アルミナ、チタニア、ジルコニア、酸化カルシウム、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン等の各種金属酸化物微粒子、ガラス微粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリル-スチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種透明ポリマーからなる架橋又は未架橋の有機系微粒子、シリコーン系微粒子等の透明性を有するものを特に制限なく使用できる。 The hard coat layer 11 may have an antiglare property in order to give the antireflective film the antiglare property and the antiglare property. Examples of the antiglare hard coat layer include those obtained by dispersing fine particles in the above-mentioned curable resin matrix. As fine particles to be dispersed in the resin matrix, various metal oxide fine particles such as silica, alumina, titania, zirconia, calcium oxide, tin oxide, indium oxide, cadmium oxide, antimony oxide etc., glass fine particles, polymethyl methacrylate, polystyrene, polyurethane Those having transparency, such as crosslinked or uncrosslinked organic fine particles and silicone fine particles comprising various transparent polymers such as acrylic-styrene copolymer, benzoguanamine, melamine and polycarbonate, can be used without particular limitation.
 ハードコート層11は、例えば、透明フィルム10上に、硬化性樹脂を含有する溶液を塗布することにより形成できる。ハードコート層を形成するための溶液には、紫外線重合開始剤が配合されていることが好ましい。微粒子を含む防眩性ハードコート層を形成するためには、硬化性樹脂に加えて上記の微粒子を含有する溶液を透明フィルム上に塗布することが好ましい。溶液中には、レベリング剤、チクソトロピー剤、帯電防止剤等の添加剤を含有させてもよい。 The hard coat layer 11 can be formed, for example, by applying a solution containing a curable resin on the transparent film 10. It is preferable that the ultraviolet polymerization initiator is mix | blended with the solution for forming a hard-coat layer. In order to form an antiglare hard coat layer containing fine particles, it is preferable to apply a solution containing the above fine particles in addition to the curable resin on a transparent film. The solution may contain additives such as a leveling agent, a thixotropic agent, an antistatic agent and the like.
 ハードコート層11の厚みは特に限定されないが、高い硬度を実現するためには、0.5μm以上が好ましく、1μm以上がより好ましい。塗布による形成の容易性を考慮すると、ハードコート層の厚みは15μm以下が好ましく、10μm以下がより好ましい。 The thickness of the hard coat layer 11 is not particularly limited, but is preferably 0.5 μm or more, and more preferably 1 μm or more in order to achieve high hardness. In consideration of the ease of formation by coating, the thickness of the hard coat layer is preferably 15 μm or less, more preferably 10 μm or less.
 透明フィルム基材1の反射防止層5形成面側の表面の算術平均粗さRaは、1.0nm以下が好ましい。透明フィルム10上にハードコート層11が形成されている場合は、ハードコート層11の算術平均粗さRaが、透明フィルム10の反射防止層5形成面側の表面の算術平均粗さとなる。算術平均粗さRaは、原子間力顕微鏡(AFM)を用いた1μm四方の観察像から求められる。 The arithmetic mean roughness Ra of the surface of the transparent film substrate 1 on the side on which the antireflection layer 5 is formed is preferably 1.0 nm or less. When the hard coat layer 11 is formed on the transparent film 10, the arithmetic mean roughness Ra of the hard coat layer 11 is the arithmetic mean roughness of the surface of the transparent film 10 on which the antireflection layer 5 is formed. Arithmetic mean roughness Ra is determined from an observation image of 1 μm square using an atomic force microscope (AFM).
 上記のように、塗布によりハードコート層11を形成すれば、透明フィルム基材1の表面の算術平均粗さを小さくできる。透明フィルム基材1の表面が平滑であれば、反射防止層5のピンホール等の欠陥を抑制できるため、より低透湿の反射防止フィルムが得られる。 As described above, when the hard coat layer 11 is formed by coating, the arithmetic mean roughness of the surface of the transparent film substrate 1 can be reduced. If the surface of the transparent film substrate 1 is smooth, defects such as pinholes of the antireflective layer 5 can be suppressed, so that an antireflective film with lower moisture permeability can be obtained.
(表面処理)
 透明フィルム基材1の表面には、反射防止層5との密着性向上等の目的で、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、プライマー処理、グロー処理、ケン化処理、カップリング剤による処理等の表面改質処理が行われてもよい。
(surface treatment)
The surface of the transparent film substrate 1 is treated with corona treatment, plasma treatment, flame treatment, ozone treatment, primer treatment, glow treatment, saponification treatment, coupling agent for the purpose of improving adhesion with the antireflective layer 5 and the like. Surface modification treatment such as treatment may be performed.
<反射防止層>
 透明フィルム基材1上に反射防止層5を設けることにより反射防止フィルムが形成される。反射防止層5は、透明フィルム基材1と接する面にプライマー層50を備え、その上に、高屈折率層および低屈折率層を備える。一般に、反射防止層は、入射光と反射光の逆転した位相が互いに打ち消し合うように、薄膜の光学膜厚(屈折率と厚みの積)が調整される。反射防止層を、屈折率の異なる複数の薄膜の多層積層体とすることにより、可視光の広帯域の波長範囲において、反射率を小さくできる。
<Antireflection layer>
An antireflective film is formed by providing the antireflective layer 5 on the transparent film substrate 1. The antireflective layer 5 is provided with a primer layer 50 on the surface in contact with the transparent film substrate 1 and further includes a high refractive index layer and a low refractive index layer thereon. In general, in the antireflection layer, the optical film thickness (the product of the refractive index and the thickness) of the thin film is adjusted such that the inverted phases of the incident light and the reflected light cancel each other. By forming the antireflective layer as a multilayer laminate of a plurality of thin films having different refractive indices, the reflectance can be reduced in the wide wavelength range of visible light.
 反射防止層5を構成する薄膜の材料としては、金属の酸化物、窒化物、フッ化物等が挙げられる。プライマー層50の材料としては、酸化シリコンが好ましい。プライマー層50は、膜中のアルゴンの含有量が0.5原子%以下である。低屈折率層52,54は、例えば屈折率が1.6以下、好ましくは1.5以下である。低屈折率材料としては、酸化シリコン、フッ化マグネシウム等が挙げられる。高屈折率層51,53は、例えば屈折率が1.9以上、好ましくは2.0以上である。高屈折率材料としては、酸化チタン、酸化ニオブ、酸化ジルコニウム、酸化インジウムスズ(ITO)、アンチモンドープ酸化スズ(ATO)等が挙げられる。低屈折率層と高屈折率層に加えて、屈折率1.6~1.9程度の中屈折率層として、例えば、酸化チタンや、上記低屈折率材料と高屈折材料の混合物からなる薄膜が設けられていてもよい。 Examples of the material of the thin film constituting the antireflective layer 5 include metal oxides, nitrides, and fluorides. As a material of the primer layer 50, silicon oxide is preferable. The primer layer 50 has an argon content of 0.5 atomic% or less in the film. The low refractive index layers 52 and 54 have, for example, a refractive index of 1.6 or less, preferably 1.5 or less. Examples of low refractive index materials include silicon oxide and magnesium fluoride. The high refractive index layers 51 and 53 have, for example, a refractive index of 1.9 or more, preferably 2.0 or more. Examples of the high refractive index material include titanium oxide, niobium oxide, zirconium oxide, indium tin oxide (ITO), antimony-doped tin oxide (ATO) and the like. In addition to the low refractive index layer and the high refractive index layer, as a middle refractive index layer having a refractive index of about 1.6 to 1.9, for example, a thin film comprising titanium oxide or a mixture of the low refractive index material and the high refractive material May be provided.
 反射防止層5を構成する薄膜の成膜方法は特に限定されず、ウェットコーティング法、ドライコーティング法のいずれでもよい。膜厚が均一な薄膜を形成できることから、真空蒸着、CVD,スパッタ、電子線蒸等のドライコーティング法が好ましい。中でも、膜厚の均一性に優れ、かつガスバリア性の高い緻密な膜を形成しやすいことから、スパッタ法が好ましい。特に、低透湿の反射防止フィルムを得るためには、プライマー層50として、酸化シリコンをスパッタ法により成膜することが好ましい。 The film forming method of the thin film forming the antireflective layer 5 is not particularly limited, and any of a wet coating method and a dry coating method may be used. A dry coating method such as vacuum deposition, CVD, sputtering, electron beam evaporation and the like is preferable because a thin film having a uniform film thickness can be formed. Among them, the sputtering method is preferable because it is easy to form a dense film having excellent uniformity of film thickness and high gas barrier properties. In particular, in order to obtain a low moisture permeation anti-reflection film, it is preferable to form silicon oxide as the primer layer 50 by sputtering.
 スパッタ法では、ロールトゥーロール方式により、長尺のフィルム基材を一方向(長手方向)に搬送しながら、複数の薄膜を連続成膜できるため、反射防止フィルムの生産性を向上できる。反射防止フィルムの生産性を向上するためには、反射防止層5を構成する全ての薄膜をスパッタ法により成膜することが好ましい。スパッタ法では、アルゴン等の不活性ガス、および必要に応じて酸素等の反応性ガスをチャンバー内に導入しながら成膜が行われる。 In the sputtering method, since a plurality of thin films can be continuously formed while conveying a long film substrate in one direction (longitudinal direction) by a roll-to-roll method, productivity of the antireflective film can be improved. In order to improve the productivity of the antireflective film, it is preferable to form all the thin films constituting the antireflective layer 5 by sputtering. In the sputtering method, film formation is performed while introducing an inert gas such as argon and, if necessary, a reactive gas such as oxygen into the chamber.
 スパッタ法による酸化物層の成膜は、酸化物ターゲットを用いる方法、および金属ターゲットを用いた反応性スパッタのいずれでも実施できる。酸化物ターゲットを用いて、酸化シリコン等の絶縁性の酸化物を成膜するためには、RF放電が必要である。高レートで金属酸化物を成膜するためには、金属ターゲットを用いた反応性DCスパッタが好ましい。 The oxide layer can be formed by sputtering either by using an oxide target or by reactive sputtering using a metal target. In order to deposit an insulating oxide such as silicon oxide using an oxide target, an RF discharge is required. In order to form a metal oxide film at a high rate, reactive DC sputtering using a metal target is preferable.
(プライマー層)
 プライマー層50は、膜中のアルゴン量が0.5原子%以下であり、好ましくは0.4原子%以下である。スパッタ膜中のアルゴン量が0.5原子%以下であることにより、透湿度が低減し、反射防止フィルムによる水蒸気バリア性が向上する傾向がある。プライマー層の膜中アルゴン量低減により反射防止層が低透湿となる理由は定かではないが、1つの要因として、原子半径の大きいアルゴンがプライマー層に存在すると、プライマー層およびその上に形成される薄膜に水蒸気等の気体のパスが形成されやすいことが関連していると考えられる。
(Primer layer)
In the primer layer 50, the amount of argon in the film is 0.5 atomic% or less, preferably 0.4 atomic% or less. When the amount of argon in the sputtered film is 0.5 atomic% or less, the moisture permeability tends to be reduced, and the water vapor barrier property of the antireflection film tends to be improved. The reason why the antireflective layer becomes low moisture permeable by reducing the amount of argon in the film of the primer layer is not clear, but one factor is that if argon with a large atomic radius is present in the primer layer, it is formed on the primer layer and above It is considered to be related to the fact that a path of gas such as water vapor is easily formed in the thin film.
 上述のように、スパッタ成膜ではプロセスガスとしてアルゴンを用い、高エネルギーのアルゴンをターゲットに衝突させてターゲットから材料を弾き出し、ターゲットから弾き出されたスパッタ粒子を基材上に着膜させることにより、成膜が行われる。アルゴン等の不活性ガスは一般には成膜には関与しないが、イオン化したアルゴンは反応性が高いため、プロセスガスとしてのアルゴンの一部が、スパッタ成膜中に不可避的に膜中に取り込まれる。 As described above, in sputtering film deposition, argon is used as a process gas, and high energy argon is caused to collide with the target to eject material from the target and sputter particles ejected from the target are deposited on the substrate. Film formation is performed. An inert gas such as argon does not generally participate in film formation, but since ionized argon has high reactivity, part of argon as a process gas is inevitably taken into the film during sputter film formation. .
 希ガスであるアルゴンは、シリコンや酸素に比べて原子径が大きいため、膜中に取り込まれたアルゴンは、酸化シリコンのSi-O結合ネットワークの形成を阻害し、原子レベルの空隙を形成する要因となり得る。フィルム基材1に接して最初に成膜されるプライマー層50にアルゴンの混入に起因する空隙が形成されると、その上に高屈折率層51,53や低屈折率層52,54をスパッタ成膜した際に、空隙が厚み方向に柱状成長しやすく、これが水蒸気等の気体のパスとなり、透湿度が高くなると考えられる。これに対して、プライマー層50に取り込まれるアルゴン量を低減させることにより、水蒸気のパスとなる空隙の生成が抑制され、水蒸気バリア性に優れる低透湿の反射防止層が形成されると考えられる。 Since argon, which is a rare gas, has a larger atomic diameter than silicon and oxygen, argon incorporated into the film inhibits formation of a Si-O bond network of silicon oxide, and causes an atomic level void to be formed. It can be When a void resulting from mixing of argon is formed in the primer layer 50 which is first deposited in contact with the film substrate 1, the high refractive index layers 51, 53 and the low refractive index layers 52, 54 are sputtered thereon When the film is formed, the voids tend to grow in a columnar direction in the thickness direction, which is considered to be a path of a gas such as water vapor and the moisture permeability is increased. On the other hand, it is considered that, by reducing the amount of argon taken into the primer layer 50, the formation of voids serving as water vapor paths is suppressed, and a low moisture permeation antireflective layer having excellent water vapor barrier properties is formed. .
 プライマー層50に含まれるアルゴン量は小さいほど好ましいが、プロセスガスとしてアルゴンを用いたスパッタ成膜により得られる膜は、通常0.01原子%以上のアルゴンを含有している。プライマー層中のアルゴン含有量は、0.05原子%以上、または0.1原子%以上でもよい。膜中のアルゴン量はラザフォード後方散乱(RBS)法により測定され、酸化シリコン膜中のアルゴン量は、シリコン、酸素およびアルゴンの含有量の合計を100原子%とした算出値である。 The amount of argon contained in the primer layer 50 is preferably as small as possible, but a film obtained by sputtering film formation using argon as a process gas usually contains 0.01 atomic% or more of argon. The argon content in the primer layer may be 0.05 atomic% or more, or 0.1 atomic% or more. The amount of argon in the film is measured by the Rutherford backscattering (RBS) method, and the amount of argon in the silicon oxide film is a calculated value based on the sum of the contents of silicon, oxygen and argon being 100 atomic%.
 プライマー層へのアルゴンの混入を抑制する方法として、成膜時のプロセス圧力を小さくすることにより平均自由行程を増大させ、アルゴンの散乱を促進することが好ましい。プライマー層50成膜時のプロセス圧力は、0.05~2Pa程度が好ましく、0.07~1Pa程度がより好ましく、0.1~0.5Paがさらに好ましく、0.1~0.3Paが特に好ましい。プライマー層50成膜時の成膜室への酸素導入量は、体積比で、アルゴン導入量の0.1~10%程度が好ましく、0.5~5%程度がより好ましく、1~3%程度がさらに好ましい。 As a method of suppressing the mixing of argon into the primer layer, it is preferable to increase the mean free path by reducing the process pressure at the time of film formation to promote the scattering of argon. The process pressure for forming the primer layer 50 is preferably about 0.05 to 2 Pa, more preferably about 0.07 to 1 Pa, still more preferably 0.1 to 0.5 Pa, and particularly preferably 0.1 to 0.3 Pa preferable. The amount of oxygen introduced into the film forming chamber at the time of film formation of the primer layer 50 is preferably about 0.1 to 10% of the amount of argon introduced in terms of volume ratio, more preferably about 0.5 to 5%, and 1 to 3% A degree is more preferred.
 スパッタ成膜時にアルゴンに加えて酸素を導入してSi-O結合ネットワークの形成を促進することにより、膜中へのアルゴンの混入が抑制される傾向がある。一方、フィルム基材1と反射防止層5との密着性を向上させるために、プライマー層50は、酸素量が化学量論組成未満であることが好ましい。プライマー層50の膜厚は、透明フィルム基材1の透明性を損なわない程度あればよく、例えば1~10nm程度である。 By introducing oxygen in addition to argon at the time of sputtering film formation to promote the formation of the Si—O bond network, mixing of argon into the film tends to be suppressed. On the other hand, in order to improve the adhesion between the film substrate 1 and the antireflective layer 5, the primer layer 50 preferably has an oxygen content less than the stoichiometric composition. The film thickness of the primer layer 50 may be set to such an extent that the transparency of the transparent film substrate 1 is not impaired, and is, for example, about 1 to 10 nm.
(プライマー層上の薄膜)
 プライマー層50上に形成される薄膜の種類は特に限定されない。広い波長範囲にわたって反射率を低減する観点から、高屈折率層と屈折率を交互に設けることが好ましい。空気界面での反射を低減するために、反射防止層5の最外層(フィルム基材1から最も離れた層)として設けられる薄膜54は、低屈折率層であることが好ましい。低屈折率層および高屈折率層の材料としては、上記のように酸化物が好ましい。中でも、高屈折率層としての酸化ニオブ(Nb)薄膜51,53と、低屈折率層としての酸化シリコン(SiO)薄膜52,54とを交互に積層することが好ましい。
(Thin film on primer layer)
The type of thin film formed on the primer layer 50 is not particularly limited. From the viewpoint of reducing the reflectance over a wide wavelength range, it is preferable to alternately provide the high refractive index layer and the refractive index. In order to reduce reflection at the air interface, the thin film 54 provided as the outermost layer (the layer farthest from the film substrate 1) of the antireflective layer 5 is preferably a low refractive index layer. As materials for the low refractive index layer and the high refractive index layer, oxides are preferable as described above. Among them, it is preferable to alternately laminate niobium oxide (Nb 2 O 5 ) thin films 51 and 53 as high refractive index layers and silicon oxide (SiO 2 ) thin films 52 and 54 as low refractive index layers.
 プライマー層上への低屈折率層および高屈折率層のスパッタ成膜は、成膜モードが遷移領域となるように酸素導入量を制御することが好ましい。例えば、放電のプラズマ発光強度を検知して、成膜室へのガス導入量を制御するプラズマエミッションモニタリング方式(PEM方式)では、プラズマ発光強度に基づいて、酸素導入量へのフィードバックが行われる。PEMにより酸素導入量を制御することにより、ロールトゥーロール方式で薄膜を成膜する場合に、成膜レートを一定に保つことができるため、薄膜の膜厚が均一となり、反射防止特性に優れる反射防止フィルムが得られる。幅方向に複数のプラズマ発光測定ポイントを設け、それぞれ独立にPEMによる酸素導入量の制御を行うことにより、幅方向の品質の均一性も向上できる。 In sputter deposition of the low refractive index layer and the high refractive index layer on the primer layer, it is preferable to control the oxygen introduction amount so that the deposition mode is in the transition region. For example, in a plasma emission monitoring method (PEM method) in which the plasma emission intensity of discharge is detected to control the gas introduction amount to the film forming chamber, feedback to the oxygen introduction amount is performed based on the plasma emission intensity. By controlling the amount of oxygen introduced by PEM, when forming a thin film by roll-to-roll method, the film forming rate can be kept constant, so the thin film thickness becomes uniform, and the reflection is excellent in the anti-reflection characteristic A protective film is obtained. The uniformity of the quality in the width direction can also be improved by providing a plurality of plasma emission measurement points in the width direction and controlling the oxygen introduction amount by the PEM independently of each other.
<反射防止層上への付加層>
 反射防止フィルムは、反射防止層5の表面に付加的な機能層が設けられていてもよい。反射防止フィルムはディスプレイの最表面に配置されるため、外部環境からの汚染(指紋、手垢、埃等)の影響を受けやすい。特に、反射防止層5の最表面に設けられるSiO等の低屈折率層54は濡れ性が良く、指紋や手垢等の汚染物質が付着しやすい。外部環境からの汚染防止や、付着した汚染物質の除去を容易とする等の目的で、反射防止層上に防汚層(不図示)が設けられていてもよい。
<Additional Layer on Antireflection Layer>
The antireflective film may be provided with an additional functional layer on the surface of the antireflective layer 5. Since the antireflective film is disposed on the outermost surface of the display, it is susceptible to contamination from the external environment (fingerprint, hand, dust, etc.). In particular, the low refractive index layer 54 such as SiO 2 provided on the outermost surface of the antireflective layer 5 has good wettability, and contaminants such as fingerprints and finger marks are easily attached. An antifouling layer (not shown) may be provided on the antireflective layer for the purpose of preventing contamination from the external environment or facilitating the removal of attached contaminants.
 防汚層は、反射防止層5の最表面の低屈折率層54との屈折率差が小さいことが好ましい。防汚層の屈折率は、1.6以下が好ましく、1.55以下がより好ましい。防汚層の材料としては、フッ素基含有のシラン系化合物や、フッ素基含有の有機化合物等が好ましい。防汚層は、リバースコート法、ダイコート法、グラビアコート法等のウエット法や、CVD法等のドライ法等により形成できる。防汚層の厚みは、通常、1~100nm程度であり、好ましくは2~50nm、より好ましくは3~30nmである。 The antifouling layer preferably has a small difference in refractive index from the low refractive index layer 54 on the outermost surface of the antireflective layer 5. 1.6 or less is preferable and, as for the refractive index of an antifouling layer, 1.55 or less is more preferable. As a material of the antifouling layer, a fluorine group-containing silane compound, a fluorine group-containing organic compound, and the like are preferable. The antifouling layer can be formed by a wet method such as a reverse coating method, a die coating method or a gravure coating method, or a dry method such as a CVD method. The thickness of the antifouling layer is usually about 1 to 100 nm, preferably 2 to 50 nm, more preferably 3 to 30 nm.
[反射防止層付き偏光板]
 反射防止フィルムは、例えばディスプレイの表面に配置して用いられる。図2に示すように、反射防止フィルム100を偏光子8と積層した反射防止層付き偏光板をディスプレイの表面に貼り合わせてもよい。図2に示す反射防止層付き偏光板101では、透明フィルム基材1の反射防止層5形成面と反対側の主面に、偏光子8の一方の面が貼り合わせられている。偏光子8の他方の面には、透明フィルム9が貼り合わせられている。この構成においては、フィルム基材1が、反射防止層5形成のための基材としての機能と、偏光子8の保護フィルムとしての機能を兼ね備えている。反射防止フィルムの作製においては、偏光子8とフィルム基材1とを貼り合わせて偏光板を作製し、偏光板のフィルム基材1上に反射防止層5を形成してもよい。
[Polarizer with antireflective layer]
The antireflective film is used, for example, disposed on the surface of a display. As shown in FIG. 2, a polarizing plate with an antireflection layer in which the antireflection film 100 is laminated with the polarizer 8 may be bonded to the surface of the display. In the antireflection film-attached polarizing plate 101 shown in FIG. 2, one surface of the polarizer 8 is bonded to the main surface of the transparent film substrate 1 opposite to the surface on which the antireflection film 5 is formed. A transparent film 9 is attached to the other surface of the polarizer 8. In this configuration, the film substrate 1 has both a function as a substrate for forming the antireflection layer 5 and a function as a protective film of the polarizer 8. In preparation of an anti-reflective film, the polarizer 8 and the film base material 1 may be bonded together, a polarizing plate may be produced, and the anti-reflective layer 5 may be formed on the film base 1 of a polarizing plate.
 偏光子8としては、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等のポリエン系配向フィルム等が挙げられる。 The polarizer 8 may be a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, or an ethylene / vinyl acetate copolymer-based partially saponified film, or a dichroic dye such as iodine or a dichroic dye. Examples thereof include those obtained by adsorbing a substance and uniaxially stretched, and polyene-based oriented films such as dehydrated products of polyvinyl alcohol and dehydrochlorinated products of polyvinyl chloride.
 中でも、高い偏光度を有することから、ポリビニルアルコールや、部分ホルマール化ポリビニルアルコール等のポリビニルアルコール系フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて所定方向に配向させたポリビニルアルコール(PVA)系偏光子が好ましい。例えば、ポリビニルアルコール系フィルムに、ヨウ素染色および延伸を施すことにより、PVA系偏光子が得られる。PVA系偏光子として、厚みが10μm以下の薄型の偏光子を用いることもできる。薄型の偏光子としては、例えば、特開昭51-069644号公報、特開2000-338329号公報、WO2010/100917号パンフレット、特許第4691205号明細書、特許第4751481号明細書等に記載されている薄型偏光膜を挙げることができる。このような薄型偏光子は、例えば、PVA系樹脂層と延伸用樹脂基材とを積層体の状態で延伸する工程と、ヨウ素染色する工程とを含む製法により得られる。 Among them, polyvinyl alcohol or polyvinyl alcohol-based film such as partially formalized polyvinyl alcohol adsorbs a dichromatic substance such as iodine or a dichroic dye, and is oriented in a predetermined direction because it has a high degree of polarization. Alcohol (PVA) based polarizers are preferred. For example, a PVA-based polarizer can be obtained by subjecting a polyvinyl alcohol-based film to iodine dyeing and stretching. A thin polarizer having a thickness of 10 μm or less can also be used as the PVA-based polarizer. Examples of thin polarizers are described in, for example, JP-A-51-069644, JP-A-2000-338329, WO2010 / 100917, JP-A-4691205, JP-A-4751481, and the like. And thin polarizing films. Such a thin polarizer can be obtained, for example, by a manufacturing method including a step of stretching a PVA-based resin layer and a stretching resin base material in the state of a laminate, and a step of iodine staining.
 透明フィルム9としては、透明フィルム10の材料として前述したものと同様の材料が好ましく用いられる。なお、透明フィルム9の材料と透明フィルム10の材料は、同一でもよく、異なっていてもよい。 As the transparent film 9, the same material as that described above as the material of the transparent film 10 is preferably used. The material of the transparent film 9 and the material of the transparent film 10 may be the same or different.
 偏光子と透明フィルムとの貼り合わせには、接着剤を用いることが好ましい。接着剤としては、アクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルアルコール、ポリビニルエーテル、酢酸ビニル/塩化ビニルコポリマー、変性ポリオレフィン、エポキシ系ポリマー、フッ素系ポリマー、ゴム系ポリマー等をベースポリマーとするものを適宜に選択して用いることができる。PVA系偏光子の接着には、ポリビニルアルコール系の接着剤が好ましく用いられる。 It is preferable to use an adhesive for bonding of the polarizer and the transparent film. Adhesives are based on acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl alcohol, polyvinyl ether, vinyl acetate / vinyl chloride copolymers, modified polyolefins, epoxy polymers, fluorine polymers, rubber polymers, etc. What is to be a polymer can be appropriately selected and used. For adhesion of a PVA-based polarizer, a polyvinyl alcohol-based adhesive is preferably used.
 本発明の反射防止フィルムおよび反射防止層付き偏光板は、液晶表示装置や有機EL表示装置等のディスプレイに用いられる。特に、ディスプレイの最表面層として用いた場合に反射防止によるディスプレイの視認性向上に寄与する。所定のプライマー層50を備える低透湿の反射防止フィルム100が、偏光子8の表面に設けられることにより、外部環境から偏光子8への水分の侵入を抑制できる。そのため、ディスプレイが高湿環境に曝された場合にも、偏光子の劣化による黄変や退色が生じ難く、表示特性の変化を抑制できる。 The antireflection film and the polarizing plate with an antireflection layer of the present invention are used for a display such as a liquid crystal display device or an organic EL display device. In particular, when it is used as the outermost surface layer of the display, it contributes to the improvement of the visibility of the display by the reflection prevention. By providing the low moisture permeation anti-reflection film 100 provided with the predetermined primer layer 50 on the surface of the polarizer 8, it is possible to suppress the entry of moisture from the external environment into the polarizer 8. Therefore, even when the display is exposed to a high humidity environment, yellowing and fading due to deterioration of the polarizer are less likely to occur, and changes in display characteristics can be suppressed.
 以下に、実施例を挙げて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.
[ハードコート層付きフィルムの作製]
 紫外線硬化型アクリル系樹脂(DIC製、商品名「GRANDIC PC-1070」、屈折率:1.52)100重量部(固形分)と、無機フィラーとしてのナノシリカ粒子50重量部とを混合して、ハードコート層形成用組成物を調製した。この組成物を、厚み100μmのセルローストリアセテートフィルム(富士フィルム製、商品名「フジタック」)の片面に、乾燥後の厚みが5μmとなるように塗布し、80℃で3分間乾燥した。その後、高圧水銀ランプを用いて、積算光量200mJ/cmの紫外線を照射し、塗布層を硬化させハードコート層を形成した。
[Preparation of film with hard coat layer]
A mixture of 100 parts by weight (solid content) of an ultraviolet curable acrylic resin (made by DIC, trade name "GRANDIC PC-1070", refractive index: 1.52) and 50 parts by weight of nanosilica particles as an inorganic filler, The composition for hard-coat layer formation was prepared. This composition was applied to one side of a 100 μm thick cellulose triacetate film (Fuji Film, trade name “Fujitack”) to a dry thickness of 5 μm and dried at 80 ° C. for 3 minutes. Thereafter, using a high pressure mercury lamp, ultraviolet rays of 200 mJ / cm 2 of integrated light quantity were irradiated to cure the coating layer, thereby forming a hard coat layer.
[実施例1]
 ハードコート層が形成されたトリアセチルセルロースフィルムを、ロールトゥートール方式のスパッタ成膜装置に導入し、フィルムを走行させながら、防眩性ハードコート層形成面にボンバード処理(Arガスによるプラズマ処理)を行った後、プライマー層として、3.5nmの酸化シリコン層を成膜し、その上に、12nmのNb層、28nmのSiO層、100nmのNb層および85nmのSiO層を順に成膜して、反射防止フィルムを作製した。
Example 1
The triacetyl cellulose film on which the hard coat layer is formed is introduced into a roll-to-thol sputtering film forming apparatus, and the surface on which the antiglare hard coat layer is formed is bombarded (plasma treatment with Ar gas) while the film travels. After that, a 3.5 nm silicon oxide layer is formed as a primer layer, and 12 nm Nb 2 O 5 layer, 28 nm SiO 2 layer, 100 nm Nb 2 O 5 layer and 85 nm SiO 2 are formed thereon. Two layers were sequentially formed into a film to produce an antireflective film.
 ボンバード処理は圧力1.5Paにて実施した。プライマー層としての酸化シリコン層は、基板温度-8℃、アルゴン流量300sccm、酸素流量4.5sccm、圧力0.2Paで、Siターゲットに0.5W/cmの電力を印加してDCスパッタ成膜を行った。SiO層の成膜にはSiターゲット、Nb層の成膜にはNbターゲットを用い、基板温度-8℃、アルゴン流量400sccm、圧力0.25Paで成膜を行った。SiO層の成膜およびNb層の成膜においては、プラズマ発光モニタリング(PEM)制御により、成膜モードが遷移領域を維持するように導入する酸素量を調整した。 Bombardment was performed at a pressure of 1.5 Pa. The silicon oxide layer as the primer layer is formed by DC sputtering deposition by applying a power of 0.5 W / cm 2 to the Si target at a substrate temperature of -8 ° C., an argon flow rate of 300 sccm, an oxygen flow rate of 4.5 sccm and a pressure of 0.2 Pa. Did. The Si target was used for film formation of the SiO 2 layer, and the Nb target was used for film formation of the Nb 2 O 5 layer, and film formation was performed at a substrate temperature of −8 ° C., an argon flow rate of 400 sccm and a pressure of 0.25 Pa. In the film formation of the SiO 2 layer and the film formation of the Nb 2 O 5 layer, the amount of oxygen introduced was controlled so that the film formation mode maintains the transition region by plasma emission monitoring (PEM) control.
[実施例2および比較例1]
 プライマー層のスパッタ成膜条件を表1に示すように変更し、比較例1では、酸素を導入せずにプライマー層を成膜した。また、比較例1では、アルゴン流量1200sccm、圧力0.45Paに変更した。それ以外は、実施例1と同様に反射防止フィルムを作製した。
Example 2 and Comparative Example 1
The sputter deposition conditions of the primer layer were changed as shown in Table 1, and in Comparative Example 1, the primer layer was deposited without introducing oxygen. In Comparative Example 1, the argon flow rate was changed to 1200 sccm and the pressure was changed to 0.45 Pa. An antireflection film was produced in the same manner as in Example 1 except for the above.
[反射防止フィルムの評価]
(透湿度)
 JIS K7129:2008 附属書Bに準じて、温度40℃、湿度90%RHの雰囲気中で反射防止フィルムの透湿度を測定した。フィルム基材の透湿度が、反射防止層の透湿度に比べて十分に大きいため、反射防止フィルム全体の透湿度が反射防止層の透湿度に等しいとみなした。
[Evaluation of antireflective film]
(Moisture permeability)
The moisture permeability of the antireflective film was measured in an atmosphere at a temperature of 40 ° C. and a humidity of 90% RH according to JIS K7129: 2008 Annex B. Since the moisture permeability of the film substrate was sufficiently larger than the moisture permeability of the antireflective layer, the moisture permeability of the entire antireflective film was considered to be equal to the moisture permeability of the antireflective layer.
(薄膜の膜密度および組成)
 反射防止層を構成する薄膜の膜密度および組成は、ラザフォード後方散乱(RBS)法により測定した。膜密度の算出においては、断面の透過型電子顕微鏡(TEM)観察から求めた膜厚を用いた、元素組成は、それぞれの薄膜の膜厚の中央における元素組成に基づいて、金属(シリコンまたはニオブ)、酸素およびアルゴンの含有量の合計を100原子%として算出した。
(Film density and composition of thin film)
The film density and composition of the thin film constituting the antireflective layer were measured by the Rutherford backscattering (RBS) method. In the calculation of the film density, the elemental composition using the film thickness determined from transmission electron microscope (TEM) observation of the cross section is a metal (silicon or niobium) based on the elemental composition at the center of the film thickness of each thin film. The total content of oxygen, and argon was calculated as 100 atomic percent.
[反射防止層付き偏光板の作製および耐久性評価]
 偏光子の一方の面に、実施例および比較例の反射防止フィルムを貼り合わせ、偏光子の他方の面に、ラクトン環構造を有する変性アクリル系ポリマーからなる厚み30μmの透明フィルムを貼り合わせて、反射防止層付き偏光板を作製した。偏光子としては、平均重合度2700、厚み75μmのポリビニルアルコールフィルムを、ヨウ素染色しながら6倍に延伸したPVA系偏光子を用いた。PVA系偏光子と透明フィルムとの接着には、アセトアセチル基を含有するポリビニルアルコール樹脂(平均重合度1200,ケン化度98.5モル%,アセトアセチル化度5モル%)とメチロールメラミンとを重量比3:1で含有する水溶液からなる接着剤を用い、ロール貼合機で貼り合わせた後、オーブン内で加熱乾燥させた。
[Preparation and Evaluation of Durability of Polarizing Plate with Antireflection Layer]
The antireflection films of Examples and Comparative Examples are bonded to one side of a polarizer, and a 30 μm-thick transparent film made of a modified acrylic polymer having a lactone ring structure is bonded to the other side of the polarizer, A polarizing plate with an antireflective layer was produced. As a polarizer, a PVA-based polarizer obtained by stretching a polyvinyl alcohol film having an average degree of polymerization of 2700 and a thickness of 75 μm while being iodine-stained by 6 times was used. For adhesion between a PVA-based polarizer and a transparent film, a polyvinyl alcohol resin containing an acetoacetyl group (average polymerization degree 1200, saponification degree 98.5 mol%, acetoacetylation degree 5 mol%) and methylolmelamine After bonding using a roll bonding machine using an adhesive consisting of an aqueous solution containing a weight ratio of 3: 1, it was dried by heating in an oven.
 得られた反射防止層付き偏光板を、60℃90%RHの恒温恒湿槽に投入し、72時間後に取り出した。バックライト上に市販の偏光板を載置し、透過光の色度bの加熱加湿試験前後での変化量Δbを求めた。 The obtained polarizing plate with an antireflection layer was charged into a thermostatic chamber at 60 ° C. and 90% RH, and taken out after 72 hours. A commercially available polarizing plate was placed on the backlight, and the change amount Δb * of the chromaticity b * of the transmitted light before and after the heating / humidifying test was determined.
 実施例および比較例の反射防止層の各層の膜特性、プライマー層の成膜条件、反射防止フィルムの透湿度、ならびに反射防止層付き偏光板の加熱加湿試験前後の透過光bの変化量を表1に示す。 The film characteristics of each layer of the antireflective layer of Example and Comparative Example, the film forming conditions of the primer layer, the moisture permeability of the antireflective film, and the change amount of the transmitted light b * before and after the heating and humidifying test of the polarizing plate with the antireflective layer It is shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1および実施例2の反射防止フィルムは、比較例1に比べて透湿度が小さく、反射防止層付き偏光板の加熱加湿試験前後の色度差が小さく、良好な耐久性を示した。最外層であるSiO層(膜厚85nm)の膜密度には、実施例と比較例で明確な差はみられなかった。 As shown in Table 1, the antireflection films of Example 1 and Example 2 have a moisture permeability smaller than that of Comparative Example 1, and the chromaticity difference before and after the heating / humidifying test of the polarizing plate with an antireflection layer is small. Durability was shown. A clear difference was not seen in the film density of the SiO 2 layer (film thickness 85 nm) which is the outermost layer between the example and the comparative example.
 NbはSiOに比べて透湿度が大きいため、SiOとNbの交互積層体膜では、SiO膜の水分の透過が律速であり、透湿度は主にSiO膜の特性に左右される。比較例1では、Nb層の成膜圧力が小さいために実施例1および実施例2に比べてNb層の膜密度が小さくなる傾向がみられたが、Nb層の膜密度の差は透湿度の変化にはほとんど影響していないと考えられる。 Since Nb 2 O 5 has a moisture permeability larger than that of SiO 2 , in the alternate stack film of SiO 2 and Nb 2 O 5 , water permeation of the SiO 2 film is rate-limiting, and the moisture permeability is mainly the SiO 2 film. Depends on the characteristics of the In Comparative Example 1, although a tendency that the film density of the Nb 2 O 5 layer as compared to Examples 1 and 2 for film formation pressure of Nb 2 O 5 layer is small decreases were observed, Nb 2 O 5 It is considered that the difference in the film density of the layer hardly affects the change in the moisture permeability.
 実施例1,2と比較例1とは、プライマー層の成膜条件が相違しており、酸素を導入しながら低アルゴン導入量(低圧)で成膜を行った実施例1,2では、比較例1に比べて膜中のアルゴン量が変化していた。この結果から、実施例においては、プライマー層に含まれるアルゴン量が低減したことにより、反射防止膜の水蒸気バリア性が向上(透湿度が低下)し、反射防止層付き偏光板の耐久性が向上したと考えられる。 The film formation conditions of the primer layer are different between Examples 1 and 2 and Comparative Example 1, and the film formation is performed at a low argon introduction amount (low pressure) while introducing oxygen. The amount of argon in the film was changed as compared to Example 1. From the results, in the examples, the water vapor barrier property of the antireflective film is improved (the moisture permeability is reduced) by reducing the amount of argon contained in the primer layer, and the durability of the polarizing plate with the antireflective layer is improved. It is thought that
  1   透明フィルム基材
  10  透明フィルム
  11  ハードコート層
  5   反射防止層
  50  プライマー層
  51,52,53,54 薄膜
  8   偏光子
  9   透明フィルム
  100 反射防止フィルム
  101 反射防止層付き偏光板
DESCRIPTION OF SYMBOLS 1 Transparent film base material 10 Transparent film 11 Hard-coat layer 5 Anti-reflective layer 50 Primer layer 51, 52, 53, 54 Thin film 8 Polarizer 9 Transparent film 100 Anti-reflective film 101 Polarizing plate with an anti-reflective layer

Claims (9)

  1.  透明フィルム基材の一方の主面に、屈折率が異なる複数の薄膜からなる反射防止層を備える反射防止フィルムであって、
     前記反射防止層は、前記透明フィルム基材に接するプライマー層を含み、
     前記プライマー層は、アルゴンの含有量が0.01~0.5原子%以下である、反射防止フィルム。
    An antireflective film comprising an antireflective layer formed of a plurality of thin films having different refractive indexes on one main surface of a transparent film substrate,
    The antireflective layer includes a primer layer in contact with the transparent film substrate,
    The primer layer has an argon content of 0.01 to 0.5 atomic% or less.
  2.  前記プライマー層が酸化シリコン層である、請求項1に記載の反射防止フィルム。 The antireflection film according to claim 1, wherein the primer layer is a silicon oxide layer.
  3.  前記反射防止層は、前記プライマー層上に、高屈折率層と低屈折率層とを交互に備える、請求項2に記載の反射防止フィルム。 The antireflective film according to claim 2, wherein the antireflective layer comprises a high refractive index layer and a low refractive index layer alternately on the primer layer.
  4.  前記高屈折率層が酸化ニオブ層であり、前記低屈折率層が酸化シリコン層であり、前記プライマー層の酸化シリコンの酸素量が、前記低屈折率層の酸化シリコンの酸素量よりも少ない、請求項3に記載の反射防止フィルム。 The high refractive index layer is a niobium oxide layer, the low refractive index layer is a silicon oxide layer, and the oxygen content of silicon oxide in the primer layer is less than the oxygen content of silicon oxide in the low refractive index layer. The antireflection film according to claim 3.
  5.  透湿度が1g/m・24h以下である、請求項1~4のいずれか1項に記載の反射防止フィルム。 The antireflective film according to any one of claims 1 to 4, which has a moisture permeability of 1 g / m 2 · 24 h or less.
  6.  前記透明フィルム基材は、前記プライマー層に接する面にハードコート層を備える、請求項1~5のいずれか1項に記載の反射防止フィルム。 The antireflective film according to any one of claims 1 to 5, wherein the transparent film substrate is provided with a hard coat layer on the surface in contact with the primer layer.
  7.  偏光子の一方の面に、請求項1~6のいずれか1項に記載の反射防止フィルムを備える反射防止層付き偏光板。 A polarizing plate with an antireflection layer comprising the antireflection film according to any one of claims 1 to 6 on one side of a polarizer.
  8.  請求項1~6のいずれか1項に記載の反射防止フィルムを製造する方法であって、
     前記プライマー層が、スパッタ法により成膜される、反射防止フィルムの製造方法。
    A method of producing an antireflective film according to any one of claims 1 to 6, comprising:
    The manufacturing method of the antireflection film in which the said primer layer is formed into a film by sputtering method.
  9.  前記反射防止層を構成するすべての薄膜がスパッタ法により成膜される、請求項8に記載の反射防止フィルムの製造方法。 The manufacturing method of the anti-reflective film of Claim 8 in which all the thin films which comprise the said anti-reflective layer are formed into a film by sputtering method.
PCT/JP2018/030156 2017-09-28 2018-08-10 Anti-reflection film, method for producing same, and polarizing plate with anti-reflection layer WO2019064969A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227037250A KR102653072B1 (en) 2017-09-28 2018-08-10 Anti-reflection film, method for producing same, and polarizing plate with anti-reflection layer
CN201880062537.7A CN111183373B (en) 2017-09-28 2018-08-10 Antireflection film, method for producing same, and polarizing plate with antireflection layer
KR1020207008267A KR20200037413A (en) 2017-09-28 2018-08-10 Anti-reflection film, manufacturing method thereof, and polarizing plate with anti-reflection layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-188384 2017-09-28
JP2017188384A JP7304129B2 (en) 2017-09-28 2017-09-28 Antireflection film, manufacturing method thereof, and polarizing plate with antireflection layer

Publications (1)

Publication Number Publication Date
WO2019064969A1 true WO2019064969A1 (en) 2019-04-04

Family

ID=65901159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030156 WO2019064969A1 (en) 2017-09-28 2018-08-10 Anti-reflection film, method for producing same, and polarizing plate with anti-reflection layer

Country Status (5)

Country Link
JP (2) JP7304129B2 (en)
KR (2) KR102653072B1 (en)
CN (1) CN111183373B (en)
TW (1) TW201919866A (en)
WO (1) WO2019064969A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112241037A (en) * 2019-07-17 2021-01-19 莫克斯泰克公司 Reflective wire grid polarizer with transparent cap
JPWO2021106788A1 (en) * 2019-11-26 2021-12-02 日東電工株式会社 Anti-reflection film and its manufacturing method, and image display device
WO2022014696A1 (en) * 2020-07-17 2022-01-20 デクセリアルズ株式会社 Optical laminate, article, and method for producing optical laminate
WO2022014701A1 (en) * 2020-07-17 2022-01-20 デクセリアルズ株式会社 Method for producing optical multilyer body
JP2022019686A (en) * 2020-07-17 2022-01-27 デクセリアルズ株式会社 Optical laminate, article, and method for producing optical laminate
WO2022054827A1 (en) * 2020-09-10 2022-03-17 デクセリアルズ株式会社 Optical laminate, article, and production method for optical laminate
CN115734951A (en) * 2020-07-03 2023-03-03 Agc株式会社 Transparent substrate with antireflection film
CN112241037B (en) * 2019-07-17 2024-05-10 莫克斯泰克公司 Reflective wire grid polarizer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106797A1 (en) * 2019-11-25 2021-06-03 日東電工株式会社 Antireflection film and image display device
JP2022065438A (en) * 2020-10-15 2022-04-27 日東電工株式会社 Polarizing plate with antireflection layer and image display unit
JP7362860B1 (en) 2022-08-30 2023-10-17 日東電工株式会社 Manufacturing method of anti-reflection film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220304A (en) * 1995-02-13 1996-08-30 Tadahiro Omi Optical product, exposure device or optical system using same, and production thereof
JP2002321302A (en) * 2001-04-26 2002-11-05 Nippon Zeon Co Ltd Polymer resin laminated material containing alicyclic structure
JP2011069995A (en) * 2009-09-25 2011-04-07 Toppan Printing Co Ltd Antireflection film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000338305A (en) 1999-05-27 2000-12-08 Dainippon Printing Co Ltd Antireflection film
JP2002371355A (en) 2001-06-14 2002-12-26 Nitto Denko Corp Method for manufacturing transparent thin film
JP4016178B2 (en) 2001-11-06 2007-12-05 ソニー株式会社 Display device and antireflection substrate
JP2007271958A (en) 2006-03-31 2007-10-18 Toppan Printing Co Ltd Antireflection laminate, its manufacturing method, optical functional filter and optical display system
JP5066989B2 (en) 2007-04-17 2012-11-07 凸版印刷株式会社 Method for producing antireflection film
JP5262066B2 (en) 2007-10-31 2013-08-14 凸版印刷株式会社 Manufacturing method of antireflection film and manufacturing method of polarizing plate including the same
JP6261540B2 (en) 2014-04-30 2018-01-17 日東電工株式会社 Transparent conductive film and method for producing the same
CN106460153B (en) * 2014-04-30 2019-05-10 日东电工株式会社 Transparent and electrically conductive film and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08220304A (en) * 1995-02-13 1996-08-30 Tadahiro Omi Optical product, exposure device or optical system using same, and production thereof
JP2002321302A (en) * 2001-04-26 2002-11-05 Nippon Zeon Co Ltd Polymer resin laminated material containing alicyclic structure
JP2011069995A (en) * 2009-09-25 2011-04-07 Toppan Printing Co Ltd Antireflection film

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112241037B (en) * 2019-07-17 2024-05-10 莫克斯泰克公司 Reflective wire grid polarizer
CN112241037A (en) * 2019-07-17 2021-01-19 莫克斯泰克公司 Reflective wire grid polarizer with transparent cap
JP7057865B2 (en) 2019-11-26 2022-04-20 日東電工株式会社 Anti-reflection film and its manufacturing method, and image display device
JPWO2021106788A1 (en) * 2019-11-26 2021-12-02 日東電工株式会社 Anti-reflection film and its manufacturing method, and image display device
CN115734951A (en) * 2020-07-03 2023-03-03 Agc株式会社 Transparent substrate with antireflection film
WO2022014696A1 (en) * 2020-07-17 2022-01-20 デクセリアルズ株式会社 Optical laminate, article, and method for producing optical laminate
WO2022014701A1 (en) * 2020-07-17 2022-01-20 デクセリアルズ株式会社 Method for producing optical multilyer body
JP2022019686A (en) * 2020-07-17 2022-01-27 デクセリアルズ株式会社 Optical laminate, article, and method for producing optical laminate
JP7101297B2 (en) 2020-07-17 2022-07-14 デクセリアルズ株式会社 Manufacturing method of optical laminate, article, optical laminate
JP2022046445A (en) * 2020-09-10 2022-03-23 デクセリアルズ株式会社 Optical laminate, article, and manufacturing method for optical laminate
JP2022046446A (en) * 2020-09-10 2022-03-23 デクセリアルズ株式会社 Method for producing optical laminate
JP7204850B2 (en) 2020-09-10 2023-01-16 デクセリアルズ株式会社 Method for manufacturing optical laminate
JP7204849B2 (en) 2020-09-10 2023-01-16 デクセリアルズ株式会社 OPTICAL LAMINATED PRODUCT, ARTICLE, AND OPTICAL LAMINATED MANUFACTURING METHOD
WO2022054828A1 (en) * 2020-09-10 2022-03-17 デクセリアルズ株式会社 Production method for optical laminate
JP2023040132A (en) * 2020-09-10 2023-03-22 デクセリアルズ株式会社 Manufacturing method for optical laminate
JP2023054799A (en) * 2020-09-10 2023-04-14 デクセリアルズ株式会社 Optical laminate, article, and production method of optical laminate
JP7273239B2 (en) 2020-09-10 2023-05-12 デクセリアルズ株式会社 OPTICAL LAMINATED PRODUCT, ARTICLE, AND OPTICAL LAMINATED MANUFACTURING METHOD
JP7273238B2 (en) 2020-09-10 2023-05-12 デクセリアルズ株式会社 Method for manufacturing optical laminate
WO2022054827A1 (en) * 2020-09-10 2022-03-17 デクセリアルズ株式会社 Optical laminate, article, and production method for optical laminate

Also Published As

Publication number Publication date
JP2019066515A (en) 2019-04-25
CN111183373B (en) 2022-01-11
JP2023057085A (en) 2023-04-20
CN111183373A (en) 2020-05-19
JP7304129B2 (en) 2023-07-06
KR102653072B1 (en) 2024-04-01
TW201919866A (en) 2019-06-01
KR20200037413A (en) 2020-04-08
KR20220149625A (en) 2022-11-08

Similar Documents

Publication Publication Date Title
JP7304129B2 (en) Antireflection film, manufacturing method thereof, and polarizing plate with antireflection layer
US10942295B2 (en) Reflection preventing film and method for manufacturing same, and reflection preventing layer- attached polarization plate
JP6799176B2 (en) Hard coat film, optical laminate and image display device
WO2017217526A1 (en) Reflection preventing film and method for manufacturing same, and reflection preventing layer-attached polarization plate
KR102405568B1 (en) Polarizing plate with antireflection layer and manufacturing method thereof
JP7102019B2 (en) Anti-reflection film, polarizing plate and display device
TW201919865A (en) Anti-reflection film
WO2021106788A1 (en) Antireflection film, method for producing same, and image display device
JP2009169306A (en) Protection film for polarizing plate, and polarizing plate
KR20150105286A (en) Anti-reflective coating film for organic light emitting diode and polarizing plate comprising the same
US20060072197A1 (en) Optical laminate and optical element
KR20170091396A (en) Transparent barrier film
JP7114669B2 (en) Antireflection film and image display device
JP7455777B2 (en) Optical laminates and image display devices
JP2001228305A (en) Antireflection layer
JP2001188103A (en) Antireflection film
WO2022080137A1 (en) Polarizing plate provided with antireflective layer, and image display device
JP2024033436A (en) Manufacturing method of anti-reflection film
WO2019031325A1 (en) Anti-reflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207008267

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861375

Country of ref document: EP

Kind code of ref document: A1