WO2019064817A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2019064817A1
WO2019064817A1 PCT/JP2018/026117 JP2018026117W WO2019064817A1 WO 2019064817 A1 WO2019064817 A1 WO 2019064817A1 JP 2018026117 W JP2018026117 W JP 2018026117W WO 2019064817 A1 WO2019064817 A1 WO 2019064817A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage means
connection mode
control device
inverter
switching
Prior art date
Application number
PCT/JP2018/026117
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 山下
達也 古▲瀬▼
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2019544310A priority Critical patent/JP6783948B2/en
Priority to CN201880060578.2A priority patent/CN111133188B/en
Publication of WO2019064817A1 publication Critical patent/WO2019064817A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a control device for a vehicle.
  • Patent Document 1 discloses a system for switching the electrical connection mode of the battery and the capacitor with respect to such a generator motor and changing the amount of power supply when the generator motor is made to function as a motor.
  • a battery and a capacitor are connected in parallel to drive relatively low voltage.
  • the battery and the capacitor are connected in series to drive relatively high voltage to assist acceleration.
  • Patent No. 6112246 gazette
  • Patent Document 1 when the battery and the capacitor are connected in series, a high voltage is applied particularly to the switching element of the high side arm among the switching elements constituting the inverter connected to the generator motor. It is necessary to raise the OFF voltage. Therefore, there are cases where dedicated parts such as replacement of switching elements are required, and utilization of the conventional circuit and sharing with other switching elements can not be achieved, and costs may increase.
  • An object of the present invention is to switch the power supply amount of a motor generator while suppressing the cost increase.
  • the vehicle control apparatus is A generator motor (70) that functions as a motor that rotationally drives a crankshaft (51) of an engine (E) of the vehicle (1), and that functions as a generator that generates a generated electric power from the rotation of the crankshaft (51) ,
  • An inverter (90) comprising a plurality of switching elements (91a-91c, 92a-92c) connected in a bridge, and connected to the generator motor (70); First storage means (46), A second storage means (47), Switching means (100) for switching the connection between the first storage means (46) and the second storage means (47) and the inverter (90) in the first connection mode and the second connection mode
  • the first storage means (46) and the second storage means (47) connected in parallel are connected to the inverter (90), and the first storage means
  • the negative electrode of (46) and the negative electrode of the second storage means (47) are connected via a ground (G), In the second connection mode, the first storage means (46) and the second storage means
  • connection state is set to the second connection mode to drive the generator motor (70)
  • connection state is set to the first connection mode after a predetermined time has elapsed. It is characterized by
  • the vehicle control apparatus Under the condition that the engine (E) is started, the connection state is the second connection mode, It is characterized by
  • connection state is the second connection mode, It is characterized by
  • the vehicle control apparatus is The first storage means (46) is a battery,
  • the second storage means (47) is a capacitor,
  • the rated voltage of the capacitor is above the nominal voltage of the battery, By the first connection mode, the battery and the capacitor are brought to the same potential. It is characterized by
  • the vehicle control apparatus is The first storage means (46) is capable of supplying power to the electric component (81) of the vehicle. It is characterized by
  • the vehicle control apparatus according to the present invention of claim 7 is
  • the second storage means (47) is a capacitor, and also serves as a smoothing capacitor of the inverter (90). It is characterized by
  • the power supply amount of the motor generator can be switched by switching the connection state.
  • the second connection mode since the first storage means and the second storage means are connected in series, more power can be supplied to the motor generator.
  • the negative electrode of the first storage means and the positive electrode of the second storage means are at the ground potential, the negative electrode of the second storage means is at the ground potential.
  • the voltage to the switching element of the high side arm can be suppressed low as viewed from the ground potential, and a dedicated part is not required. Therefore, it is possible to switch the power supply amount of the motor generator while suppressing the cost increase.
  • the startability of the engine can be improved.
  • the acceleration performance of the vehicle can be improved.
  • a voltage that is twice the nominal voltage of the battery can be supplied to the generator motor.
  • the first storage means can also be used as a power source of the electric component.
  • FIG. 1 is a side view of an example of a vehicle to which the present invention is applied.
  • the block diagram of the control system of the vehicle of FIG. The circuit diagram of control circuits, such as a generator motor. Operation
  • FIG. 1 shows a side view of a scooter type motorcycle 1 as an example of a vehicle to which the present invention is applied.
  • the front portion and the rear portion of the vehicle body are connected via the low floor portion 4.
  • the vehicle body frame is generally composed of a down tube 6 and a main pipe 7.
  • a seat 8 is disposed above the main pipe 7.
  • the steering wheel 11 is pivotally supported by the head pipe 5 and extended upward, and a front fork 12 for pivotally supporting the front wheel WF rotatably is attached to the lower side of the steering wheel 11.
  • a handle cover 13 which doubles as an instrument panel is attached.
  • an ECU 80 as a control device of the motorcycle 1 is disposed in front of the head pipe 5.
  • a bracket 15 is provided at the rear end of the down tube 6 at the rising portion of the main pipe 7.
  • the hanger bracket 18 of the swing unit 2 is swingably supported by the bracket 15 via the link member 16.
  • a 4-cycle single cylinder engine E is disposed at the front of the swing unit 2.
  • the continuously variable transmission 10 is disposed behind the engine E, and a rear wheel WR is pivotally supported by the output shaft of the reduction mechanism 9.
  • a rear shock unit 3 is interposed between the upper end of the reduction mechanism 9 and the bent portion of the main pipe 7.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • the swing unit 2 has a right case 75 on the right side in the vehicle width direction and a crankcase 74 as a left case 76 on the left side in the vehicle width direction.
  • the crankshaft 51 is rotatably supported by bearings 53 and 54 fixed to the crankcase 70.
  • a connecting rod 73 is connected to the crankshaft 51 via a crank pin 52.
  • the left case 76 doubles as a transmission chamber case, and a belt drive pulley including a movable pulley half 60 and a fixed pulley half 61 is attached to the left end of the crankshaft 51.
  • the stationary pulley half 61 is fastened to the left end of the crankshaft 51 by a nut 77.
  • the movable pulley half 60 is spline-fitted to the crankshaft 51 so as to be axially slidable.
  • a V-belt 62 is wound between the two pulley halves 60 and 61.
  • a lamp plate 57 is fixed to the crankshaft 51 on the right side of the movable pulley half 60.
  • the slide piece 58 attached to the outer peripheral end of the ramp plate 57 is engaged with the ramp plate sliding boss 59 formed at the outer peripheral end of the movable pulley half 60 in the axial direction.
  • a tapered surface is formed on the outer peripheral portion of the ramp plate 57 so as to be inclined toward the movable pulley half 60 as it goes radially outward.
  • a plurality of the tapered surfaces are provided between the tapered surface and the movable pulley half 60.
  • the weight roller 63 is accommodated.
  • the generator motor 70 functions as a motor for rotationally driving the crankshaft 51 at the time of start-up of the engine E or at the time of acceleration assist, and also functions as a generator for generating the generated electric power from the rotation of the crankshaft 51 during operation of the engine E.
  • the generator motor 70 includes an outer rotor 71 fixed to the tapered end of the crankshaft 51 with a mounting bolt 120 and a stator 72 disposed inside the outer rotor 71 and fixed to the right case 75 with a mounting bolt 121. ing.
  • a radiator 68 and a cover member 69 in which a plurality of slits are formed are attached to the right side of the blower fan 65 fixed to the outer rotor 71 by a mounting bolt 67, as shown.
  • a sprocket 55 is fixed to the crankshaft 51 between the generator motor 70 and the bearing 54.
  • a cam chain for driving a cam shaft (not shown) is wound around the sprocket 55.
  • the sprocket 55 is integrally formed with a gear 56 for transmitting power to an oil pump (not shown) for circulating engine oil.
  • FIG. 3 is a block diagram showing a configuration of a control system of the motorcycle 1.
  • the ECU 80 includes a processor such as a CPU, a storage device such as a ROM and a RAM, and an interface for transmitting and receiving signals to and from an external device.
  • the switch 30 operated by the rider and various sensors SR are connected to the ECU 80, and the fuel injection device 40, the ignition device 41, the generator motor 70, the lamp 42, the indicator 43, and the relay 44 are connected based on the detection results. Control etc.
  • a main switch that switches ON / OFF of the main power supply of the motorcycle 1
  • a starter switch that instructs starting of the engine E
  • an idle stop control permission switch that instructs whether to permit idle stop control, etc. Is included.
  • the sensor SR includes a throttle sensor 31 for detecting an accelerator operation of a rider, a crank angle sensor 32 for detecting a rotation angle of the crankshaft 51, a water temperature sensor 33 for detecting a coolant temperature of the engine E, and a vehicle speed of the motorcycle 1
  • a vehicle speed sensor 34, a rotation angle sensor 35 for detecting a rotation angle of the generator motor 70, a seating sensor 36 for detecting whether or not the rider is seated on the seat 8, and the like are included.
  • the motorcycle 1 may be subjected to idle stop control to temporarily stop the engine E when a predetermined condition is satisfied at the time of a stop such as waiting for a signal.
  • the ECU 80 may determine whether or not to execute the idle stop control based on the detection result of the idle stop control permission switch or the seating sensor 36.
  • the predetermined condition for starting the idle stop is, for example, that the idle stop control permission switch is on (permitted), and the seating speed of the rider is detected by the seating sensor 36, and the vehicle speed detected by the vehicle speed sensor 34 is a predetermined value (for example, 5 km) / H) or less, and the engine speed detected by the crank angle sensor 32 is less than or equal to a predetermined value (for example, 2000 rpm), and the throttle opening detected by the throttle sensor 31 is less than or equal to a predetermined value (for example, 5 degrees)
  • the predetermined time has elapsed in the state of.
  • the restart condition of the engine E after the idle stop is, for example, the case where the throttle opening degree is equal to or more than a predetermined value.
  • the fuel injection device 40 injects fuel into intake air of the engine E.
  • the igniter 41 ignites the mixture in the engine E.
  • the lighting device 42 is, for example, a headlight.
  • the display 43 is a device for displaying information on a lidar, such as a meter and various indicators.
  • the relay 44 is, for example, a starter relay that is turned on when the engine E is started.
  • the generator motor 70 is a three-phase brushless motor generator provided with a stator in which a three-phase winding is wound.
  • An inverter 90 for driving the generator motor 70 is connected to the generator motor 70.
  • the inverter 90 is provided with a plurality of switching elements 91a to 91c (collectively referred to as switching elements 91) and switching elements 92a to 92c (collectively referred to as switching elements 92) connected in a bridge, and the inverter 90 is a full wave. Configure a rectifier bridge circuit.
  • the switching elements 91 and 92 are N-type MOSFETs, and each have a drain D, a source S, a gate G, and a parasitic diode Di.
  • a set of the switching element 91a and the switching element 92a is connected in series between the high side wire 90a and the low side wire 90b to form a leg.
  • the inverter 90 has three pairs of legs connected in parallel, with the switching element 91 as the high side arm and the switching element 92 as the low side arm, and each connection point between the switching element 91 and the switching element 92 The coils of the corresponding phase of the generator motor 70 are connected to each other.
  • a smoothing capacitor 93 and a switching element 94 connected in series are provided between the wiring 90 a and the wiring 90 b.
  • the switching element 94 is a MOSFET as in the case of the switching elements 91 and 92 in the present embodiment.
  • the switching element 94 is turned on, for example, when the generator motor 70 is made to function as a generator, and the generated voltage is smoothed by the smoothing capacitor 93.
  • a control signal sent from the ECU 80 is input to each gate G of the switching elements 91, 92 and 94, and ON / OFF control of each element is executed.
  • the motorcycle 1 includes a storage element 46 as its main power source.
  • the storage element 46 is a lead battery with a nominal voltage of 12V.
  • the storage element 46 supplies electric power to each electric component of the motorcycle 1 such as the generator motor 70, the ECU 80, the load 81, etc., when functioning as a motor.
  • the load 81 includes, for example, electrical components of the motorcycle 1 such as the lamp 42 and the like.
  • the positive electrode of the storage element 46 is connected to the wire 90 a of the inverter 90 via the wire 112 b and the relay 110.
  • the negative electrode of the storage element 46 is connected to the ground.
  • the ECU 80 and the load 81 are connected in parallel to the storage element 46 via the fuse 113a, the switch 111 and the fuse 113b.
  • the driver having the ECU 80 and the switching circuit 100 is provided with a converter or the like that converts the voltage of the storage element 46 and supplies it.
  • the switch 111 is a main switch operated by the rider or a relay switch that is turned on / off in conjunction with the main switch.
  • the ECU 80 controls the relay 110 to turn on the contact 110b side, and after the engine E is started, turns on the contact 110a side.
  • the motorcycle 1 includes an storage element 47 that functions as an auxiliary power source for the generator motor 70 when functioning as a motor.
  • the storage element 47 is a capacitor, and for example, a lithium ion capacitor, a conductive polymer capacitor, an electric double layer capacitor, or the like can be used.
  • the rated voltage of the capacitor is equal to or higher than the nominal voltage of storage element 46 (here, 12 V).
  • the switching circuit 100 is a circuit that switches the connection state between the storage elements 46 and 47 and the inverter 90.
  • the switching circuit 100 includes a plurality of switching elements 101 to 103.
  • the switching elements 101 to 103 are MOSFETs in the same manner as the switching elements 91 and 92.
  • the switching element 101 and the switching element 102 are connected in series between the wiring 112 b and the ground.
  • the positive electrode of the storage element 47 is connected to the connection point between the switching element 101 and the switching element 102, and the negative electrode is connected to the wiring 90b.
  • the switching element 103 is connected to the negative electrode of the storage element 47 and the ground G, the source S is connected to the negative electrode of the storage element 47, and the drain D is connected to the ground G.
  • connection states of the storage elements 46 and 47 and the inverter 90 can be switched to two connection modes, if roughly classified.
  • a control signal sent from the ECU 80 is input to each gate G of the switching elements 101 to 103, and ON / OFF control of each element is executed.
  • connection modes One of the connection modes is a parallel connection mode.
  • this connection mode storage elements 46 and 47 connected in parallel are connected in parallel to inverter 90, and the negative electrodes of storage elements 46 and 47 are connected via ground G.
  • each negative electrode may be directly connected to the ground G, or may be connected via a switch or a resistor.
  • Another one of the connection modes is a series connection mode. In this connection mode, storage elements 46 and 47 connected in series are connected in parallel to inverter 90, and the negative electrode of storage element 46 and the positive electrode of storage element 47 are connected via ground G. In this case, the negative electrode of the storage element 46 and the positive electrode of the storage element 47 may be directly connected to the ground G, or may be connected via a switch or a resistor.
  • FIG. 5 shows an example of the parallel connection mode.
  • the switching element 101 is turned on, and the switching elements 102 and 103 are turned off.
  • the storage element 47 can be charged by the storage element 46, and thick arrows indicate the flow of current in that case.
  • the switching element 103 current flows through the parasitic diode Di.
  • the storage element 47 is charged to the same potential as the storage element 46.
  • the capacity of the storage element 47 may be such that the storage element 46 can be fully charged in several tens of ms.
  • the generator motor 70 can also be driven by the voltage of the storage element 46 (12 V here).
  • FIG. 6 shows another example of the parallel connection mode.
  • the switching element 101 and the switching element 103 are turned on, and the switching element 102 is turned off.
  • the generator motor 70 can be made to function as a generator to charge the storage elements 46 and 47, and thick arrows illustrate the flow of current in that case.
  • FIG. 7 shows an example of the serial connection mode.
  • the switching elements 101 and 103 are turned off, and the switching element 102 is turned on.
  • the generator motor 70 can be driven by the voltage of the storage elements 46 and 47 connected in series, and the generator motor 70 can supply a large amount of power.
  • the potential of the storage element 47 is made the same potential as the potential of the storage element 46, and the storage element is connected in series. A voltage of twice the potential difference 46 can be supplied to the generator motor 70.
  • a voltage of -12 V to +12 V is applied to inverter 90, so that the voltage to switching element 91 of the high side arm can be suppressed low when viewed from the ground potential. Not required Therefore, it is possible to switch the power supply amount of the motor generator while suppressing the cost increase.
  • FIG. 8 shows an example of processing performed when the main switch of the motorcycle 1 is turned ON, and in particular, illustrates processing for starting the engine E.
  • the switching circuit 100 is controlled to the parallel connection mode of FIG.
  • the storage element 47 can be charged by the storage element 46. It is assumed that the storage element 47 is discharged and empty while the motorcycle 1 is stopped. Therefore, in the present embodiment, first, the storage element 47 is charged.
  • S2 it is determined whether the starter switch is turned on. If it is ON, the process proceeds to S3. At S3, the switching circuit 100 is controlled to the series connection mode of FIG. As a result, more power can be supplied to the generator motor 70.
  • the parallel connection mode of S1 may be maintained until the charge amount of the storage element 47 reaches a specified amount. Whether or not the charge amount of the storage element 47 has reached a specified amount may be based on whether or not the elapsed time of the parallel connection mode has reached a specified time, or a sensor for detecting the charge amount of the storage element 47 may be used. It is good also as the reference and providing the detection result of the sensor.
  • the inverter 90 is controlled to rotationally drive the generator motor 70, and the engine E is started. Since a larger amount of power is supplied to the generator motor 70, the engine E can be started more smoothly. In particular, in a single-cylinder engine as in the present embodiment, when the engine E is stopped and started in the compression process, a large torque is required by the rotation of the crankshaft 51. However, by applying a voltage twice as high as that of the storage element 46 to the generator motor 70, the startability of the engine E can be improved. In S4, the time from the drive start of the generator motor 70 by the inverter 90 is also timed. This is timing of the discharge time of the storage element 47.
  • S5 it is determined whether the start of the engine E has succeeded. Whether or not the engine E has been successfully started can be determined from the detection result of the crank angle sensor 32, for example. If it is determined that the start is successful, the process proceeds to S6, and if it is determined that the start is not performed, the process proceeds to S7. In S7, it is determined whether the discharge time of the storage element 47, which has started counting in S4, has reached a specified time. If the specified time is reached, the process returns to S1, and the switching circuit 100 is controlled to the parallel connection mode of FIG. Thereby, overdischarge of storage element 47 can be prevented, and reverse charging and deterioration thereof can be avoided.
  • the specified time can be, for example, a time in the range of several seconds (eg, several tens of ms to several hundreds of ms) to one second. If the specified time has not been reached, the process returns to S5 and waits for the engine E to start.
  • the generator motor 70 can function as a generator, and can supply power to the load 81 while charging the storage element 46 by the power generation. Thus, one process ends.
  • the control example of FIG. 8 is also applicable to the case where the engine E is restarted after the idle stop control.
  • the process of S1 is performed during the idle stop control, and instead of the determination of the start operation of S2, the establishment determination of the restart condition (for example, whether or not there is an acceleration operation) may be performed. Is the same.
  • FIG. 9 shows an example of switching control of the switching circuit 100 after the engine E of the motorcycle 1 is started, and is mainly an example of control during traveling.
  • the series connection mode is adopted to assist the acceleration of the motorcycle 1.
  • This process can be executed when the number of revolutions of the engine E is equal to or greater than a prescribed number of revolutions.
  • the prescribed rotational speed may be lower or higher than the engine rotational speed connected to the centrifugal clutch. That is, as long as the engine E is being driven, the motorcycle 1 may be stopped or the vehicle speed may be out.
  • the amount of change on the acceleration side of the accelerator opening is calculated from the detection result of the throttle sensor 31.
  • S12 it is determined whether the amount of change calculated in S11 is equal to or greater than a specified value. If it is determined that the value is equal to or more than the specified value, it is determined that rapid acceleration is required, and the process proceeds to S13. If it is less than the specified value, one process ends.
  • the switching circuit 100 is controlled to the series connection mode of FIG. As a result, more power can be supplied to the generator motor 70.
  • the inverter 90 while controlling the inverter 90 to rotationally drive the generator motor 70, the output of the engine E is increased and accelerated. Thereby, the acceleration performance of the motorcycle 1 can be temporarily improved, and drivability can be improved. Further, measurement of the discharge time of the storage element 47 is started.
  • the process proceeds to S16, and the switching circuit 100 is controlled to the parallel connection mode of FIG. Thereby, reverse charge of storage element 47 can be prevented, and the deterioration thereof can be avoided.
  • the specified time can be, for example, a time in the range of several seconds (eg, 0.1 second) to several seconds. Thus, one process ends.
  • the switching circuit 100 is basically maintained in the parallel connection mode of FIG. 6 after the start of the engine E by the process of S6 of FIG. 8 and the storage elements 46 and 47 are charged. Therefore, when the switching circuit 100 is switched to the series connection mode of FIG. 7 in the process of S13, the storage element 47 is not charged as in S1 of FIG. A process of charging the storage element 47 may be performed as shown in S1 of FIG. 8, but omitting this process improves the reaction to the acceleration operation and can improve the drivability. On the other hand, when the switching circuit 100 is switched to the serial connection mode of FIG. 7 in the process of S13, the storage amount of the storage element 47 may be confirmed and switching may be performed when a sufficient charge amount can be confirmed. In that case, a sensor for detecting the charge amount of the storage element 47 may be provided, and the detection result of the sensor may be used as a reference.
  • FIG. 10 is a circuit diagram showing an example thereof. Points different from the circuit of the above embodiment will be described.
  • the switching circuit 100 in the example of FIG. 10 includes a plurality of switching elements 104 to 107.
  • the switching elements 104 to 107 are MOSFETs in the same manner as the switching elements 91 and 92.
  • the switching element 104 is located between the wire 90 a and the positive electrode of the storage element 47 and connected thereto.
  • the switching element 106 is located between the wire 90 b and the negative electrode of the storage element 47 and connected thereto.
  • a diode 114 is provided in the wiring 90 b.
  • the switching element 105 is located between the positive electrode of the storage element 47 and the wiring 90 c and connected to them.
  • the wiring 90c is connected to the ground.
  • the switching element 107 is located between the negative electrode of the storage element 47 and the wiring 90 c and connected thereto.
  • the switching element 104 In the case of a circuit equivalent to the parallel connection mode of FIG. 5 (charging of the storage element 47 by the storage element 46), the switching element 104 is turned on and the switching elements 105 to 107 are turned off. In the case of a circuit equivalent to the parallel connection mode of FIG. 6 (charging of the storage elements 46 and 47 by the generator motor 70), the switching elements 104 and 107 are turned on and the switching elements 105 and 106 are turned off. In the case of a circuit equivalent to the series connection mode of FIG. 7, the switching elements 105 and 106 are turned on, and the switching elements 104 and 107 are turned off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

This vehicle control device comprises: a generator motor; an inverter that is connected to the generator motor; first and second power storage means; and a switching means that switches a connection state between the first power storage means, the second power storage means, and the inverter between a first connection mode and a second connection mode. In the first connection mode: the first power storage means and the second power storage means, which are connected in parallel with each other, are connected to the inverter; and a negative electrode of the first power storage means and a negative electrode of the second power storage means are connected to each other via ground. In the second connection mode: the first power storage means and the second power storage means, which are connected in series with each other, are connected to the inverter; and the negative electrode of the first power storage means and a positive electrode of the second power storage means are connected to each other via ground.

Description

車両用制御装置Vehicle control device
 本発明は車両用制御装置に関する。 The present invention relates to a control device for a vehicle.
 車両の発電機をエンジンの始動モータやアシストモータとして利用する技術が提案されている。特許文献1には、このような発電電動機に対するバッテリとキャパシタの電気的な接続態様を切り替え、発電電動機をモータとして機能させる場合の電力供給量を変化させるシステムが開示されている。このシステムはエンジンの始動時にはバッテリとキャパシタを並列に接続して相対的に低電圧の駆動としている。一方、車両走行後の加速時においてはバッテリとキャパシタとを直列に接続して相対的に高電圧の駆動とし、加速をアシストしている。 A technology has been proposed which utilizes a generator of a vehicle as a starter motor or an assist motor of an engine. Patent Document 1 discloses a system for switching the electrical connection mode of the battery and the capacitor with respect to such a generator motor and changing the amount of power supply when the generator motor is made to function as a motor. In this system, when the engine is started, a battery and a capacitor are connected in parallel to drive relatively low voltage. On the other hand, at the time of acceleration after traveling of the vehicle, the battery and the capacitor are connected in series to drive relatively high voltage to assist acceleration.
特許第6112246号公報Patent No. 6112246 gazette
 特許文献1の構成では、バッテリとキャパシタとを直列に接続した場合、発電電動機に接続されたインバータを構成するスイッチング素子のうち、特に、ハイサイドアームのスイッチング素子に高電圧がかかり、そのON/OFF電圧を上げる必要がある。そのため、スイッチング素子の入れ替え等、専用部品を必要とする場合があり、従来回路の利用や他のスイッチング素子との共通化を図れず、コストが増加する場合がある。 In the configuration of Patent Document 1, when the battery and the capacitor are connected in series, a high voltage is applied particularly to the switching element of the high side arm among the switching elements constituting the inverter connected to the generator motor. It is necessary to raise the OFF voltage. Therefore, there are cases where dedicated parts such as replacement of switching elements are required, and utilization of the conventional circuit and sharing with other switching elements can not be achieved, and costs may increase.
 本発明の目的は、コストアップを抑制しつつ、電動発電機の電力供給量を切り替えることにある。 An object of the present invention is to switch the power supply amount of a motor generator while suppressing the cost increase.
 請求項1の本発明による車両用制御装置は、
 車両(1)のエンジン(E)のクランク軸(51)を回転駆動するモータとして機能するとともに、前記クランク軸(51)の回転から回生起電力を生成するジェネレータとして機能する発電電動機(70)と、
 ブリッジ接続された複数のスイッチング素子(91a-91c,92a-92c)を備え、前記発電電動機(70)に接続されたインバータ(90)と、
 第一の蓄電手段(46)と、
 第二の蓄電手段(47)と、
 前記第一の蓄電手段(46)及び前記第二の蓄電手段(47)と、前記インバータ(90)との接続状態を第一の接続態様と第二の接続態様とで切り替える切替手段(100)と、を備え、
 前記第一の接続態様では、並列に接続された前記第一の蓄電手段(46)及び前記第二の蓄電手段(47)が前記インバータ(90)に接続され、かつ、前記第一の蓄電手段(46)の負極と前記第二の蓄電手段(47)の負極とがグランド(G)を介して接続され、
 前記第二の接続態様では、直列に接続された前記第一の蓄電手段(46)及び前記第二の蓄電手段(47)が前記インバータ(90)に接続され、かつ、前記第一の蓄電手段(46)の負極と前記第二の蓄電手段(47)の正極とが前記グランド(G)を介して接続される、
ことを特徴とする。
The vehicle control apparatus according to the present invention of claim 1 is
A generator motor (70) that functions as a motor that rotationally drives a crankshaft (51) of an engine (E) of the vehicle (1), and that functions as a generator that generates a generated electric power from the rotation of the crankshaft (51) ,
An inverter (90) comprising a plurality of switching elements (91a-91c, 92a-92c) connected in a bridge, and connected to the generator motor (70);
First storage means (46),
A second storage means (47),
Switching means (100) for switching the connection between the first storage means (46) and the second storage means (47) and the inverter (90) in the first connection mode and the second connection mode And
In the first connection mode, the first storage means (46) and the second storage means (47) connected in parallel are connected to the inverter (90), and the first storage means The negative electrode of (46) and the negative electrode of the second storage means (47) are connected via a ground (G),
In the second connection mode, the first storage means (46) and the second storage means (47) connected in series are connected to the inverter (90), and the first storage means The negative electrode of (46) and the positive electrode of the second storage means (47) are connected via the ground (G),
It is characterized by
 請求項2の本発明による車両用制御装置は、
 前記発電電動機(70)を駆動するために前記接続状態を前記第二の接続態様とした場合、所定時間の経過後に前記接続状態を前記第一の接続態様とする、
ことを特徴とする。
The vehicle control apparatus according to the present invention of claim 2 is
When the connection state is set to the second connection mode to drive the generator motor (70), the connection state is set to the first connection mode after a predetermined time has elapsed.
It is characterized by
 請求項3の本発明による車両用制御装置は、
 前記エンジン(E)の始動を条件として、前記接続状態を前記第二の接続態様とする、
ことを特徴とする。
The vehicle control apparatus according to the present invention of claim 3 is
Under the condition that the engine (E) is started, the connection state is the second connection mode,
It is characterized by
 請求項4の本発明による車両用制御装置は、
 アクセル開度の加速側の変化量が規定値以上となったことを条件として、前記接続状態を前記第二の接続態様とする、
ことを特徴とする。
The vehicle control apparatus according to the present invention of claim 4 is
Under the condition that the amount of change on the acceleration side of the accelerator opening becomes equal to or greater than a specified value, the connection state is the second connection mode,
It is characterized by
 請求項5の本発明による車両用制御装置は、
 前記第一の蓄電手段(46)はバッテリであり、
 前記第二の蓄電手段(47)はコンデンサであり、
 前記コンデンサの定格電圧は前記バッテリの公称電圧以上であり、
 前記第一の接続態様によって、前記バッテリと前記コンデンサとが同電位とされる、
ことを特徴とする。
The vehicle control apparatus according to the present invention of claim 5 is
The first storage means (46) is a battery,
The second storage means (47) is a capacitor,
The rated voltage of the capacitor is above the nominal voltage of the battery,
By the first connection mode, the battery and the capacitor are brought to the same potential.
It is characterized by
 請求項6の本発明による車両用制御装置は、
 前記第一の蓄電手段(46)は、前記車両の電装部品(81)に電力を供給可能である、
ことを特徴とする。
The vehicle control apparatus according to the present invention of claim 6 is
The first storage means (46) is capable of supplying power to the electric component (81) of the vehicle.
It is characterized by
 請求項7の本発明による車両用制御装置は、
 前記第二の蓄電手段(47)はコンデンサであって、前記インバータ(90)の平滑コンデンサを兼用する、
ことを特徴とする。
The vehicle control apparatus according to the present invention of claim 7 is
The second storage means (47) is a capacitor, and also serves as a smoothing capacitor of the inverter (90).
It is characterized by
 請求項1の本発明によれば、前記接続状態を切り替えることで前記電動発電機の電力供給量を切り替えることができる。前記第二の接続態様においては、前記第一の蓄電手段及び前記第二の蓄電手段が直列に接続されるのでより大きな電力を前記電動発電機に供給することができる。前記第二の接続態様では、前記第一の蓄電手段の負極と前記第二の蓄電手段の正極とがグランド電位となるので、前記第二の蓄電手段の負極がグランド電位となる構成よりも、グランド電位から見てハイサイドアームの前記スイッチング素子に対する電圧を低く抑えることができ、専用部品を必須としない。このため、コストアップを抑制しつつ、電動発電機の電力供給量を切り替えることができる。 According to the present invention of claim 1, the power supply amount of the motor generator can be switched by switching the connection state. In the second connection mode, since the first storage means and the second storage means are connected in series, more power can be supplied to the motor generator. In the second connection mode, since the negative electrode of the first storage means and the positive electrode of the second storage means are at the ground potential, the negative electrode of the second storage means is at the ground potential. The voltage to the switching element of the high side arm can be suppressed low as viewed from the ground potential, and a dedicated part is not required. Therefore, it is possible to switch the power supply amount of the motor generator while suppressing the cost increase.
 請求項2の本発明によれば、前記第二の蓄電手段が過放電し、該第二の蓄電手段が逆充電されることを防止することができる。 According to the present invention of claim 2, it is possible to prevent the second storage means from being over-discharged and the second storage means from being reversely charged.
 請求項3の本発明によれば、前記エンジンの始動性を向上することができる。 According to the present invention of claim 3, the startability of the engine can be improved.
 請求項4の本発明によれば、前記車両の加速性能を向上することができる。 According to the present invention of claim 4, the acceleration performance of the vehicle can be improved.
 請求項5の本発明によれば、前記第二の接続態様において、前記バッテリの公称電圧の倍の電圧を前記発電電動機に供給することができる。 According to the present invention of claim 5, in the second connection mode, a voltage that is twice the nominal voltage of the battery can be supplied to the generator motor.
 請求項6の本発明によれば、前記第一の蓄電手段を前記電装部品の電源としても利用することができる。 According to the sixth aspect of the present invention, the first storage means can also be used as a power source of the electric component.
 請求項7の本発明によれば、部品数の増加を抑制することができる。 According to the seventh aspect of the present invention, an increase in the number of parts can be suppressed.
本発明を適用した車両の例の側面図。FIG. 1 is a side view of an example of a vehicle to which the present invention is applied. 図1のA-A線断面図。AA line sectional drawing of FIG. 図1の車両の制御系のブロック図。The block diagram of the control system of the vehicle of FIG. 発電電動機等の制御回路の回路図。The circuit diagram of control circuits, such as a generator motor. 図4の制御回路の動作説明図。Operation | movement explanatory drawing of the control circuit of FIG. 図4の制御回路の動作説明図。Operation | movement explanatory drawing of the control circuit of FIG. 図4の制御回路の動作説明図。Operation | movement explanatory drawing of the control circuit of FIG. ECUが実行する処理例を示すフローチャート。The flowchart which shows the processing example which ECU performs. ECUが実行する処理例を示すフローチャート。The flowchart which shows the processing example which ECU performs. 発電電動機等の制御回路の他の構成例を示す回路図。The circuit diagram which shows the other structural example of control circuits, such as a generator motor.
 図1は、本発明を適用した車両の一例として、スクータ型自動二輪車1の側面図を示す。車体前部と車体後部とは低床フロア部4を介して連結されている。車体フレームは、概ねダウンチューブ6とメインパイプ7とから構成されている。メインパイプ7の上方には、シート8が配置されている。 FIG. 1 shows a side view of a scooter type motorcycle 1 as an example of a vehicle to which the present invention is applied. The front portion and the rear portion of the vehicle body are connected via the low floor portion 4. The vehicle body frame is generally composed of a down tube 6 and a main pipe 7. A seat 8 is disposed above the main pipe 7.
 ハンドル11は、ヘッドパイプ5に軸支されて上方に延ばされており、一方の下方側には、前輪WFを回転自在に軸支するフロントフォーク12が取り付けられている。ハンドル11の上部には、計器盤を兼ねたハンドルカバー13が取り付けられている。また、ヘッドパイプ5の前方には、自動二輪車1の制御装置としてのECU80が配設されている。 The steering wheel 11 is pivotally supported by the head pipe 5 and extended upward, and a front fork 12 for pivotally supporting the front wheel WF rotatably is attached to the lower side of the steering wheel 11. At the top of the handle 11, a handle cover 13 which doubles as an instrument panel is attached. Further, an ECU 80 as a control device of the motorcycle 1 is disposed in front of the head pipe 5.
 ダウンチューブ6の後端で、メインパイプ7の立ち上がり部には、ブラケット15が突設されている。ブラケット15には、スイングユニット2のハンガーブラケット18がリンク部材16を介して揺動自在に支持されている。 A bracket 15 is provided at the rear end of the down tube 6 at the rising portion of the main pipe 7. The hanger bracket 18 of the swing unit 2 is swingably supported by the bracket 15 via the link member 16.
 スイングユニット2の前部には、4サイクル単気筒のエンジンEが配設されている。エンジンEの後方には無段変速機10が配設されており、減速機構9の出力軸には後輪WRが軸支されている。減速機構9の上端とメインパイプ7の屈曲部との間には、リヤショックユニット3が介装されている。スイングユニット2の上方には、エンジンEから延出した吸気管19に接続される燃料噴射装置のスロットルボディ20およびエアクリーナ14が配設されている。 At the front of the swing unit 2, a 4-cycle single cylinder engine E is disposed. The continuously variable transmission 10 is disposed behind the engine E, and a rear wheel WR is pivotally supported by the output shaft of the reduction mechanism 9. A rear shock unit 3 is interposed between the upper end of the reduction mechanism 9 and the bent portion of the main pipe 7. Above the swing unit 2 are disposed a throttle body 20 and an air cleaner 14 of a fuel injection system connected to an intake pipe 19 extending from the engine E.
 図2は、図1のA-A線断面図である。スイングユニット2は、車幅方向右側の右ケース75および車幅方向左側の左ケース76なるクランクケース74を有する。クランク軸51は、クランクケース70に固定された軸受53、54により回転自在に支持されている。クランク軸51には、クランクピン52を介してコンロッド73が連結されている。 FIG. 2 is a cross-sectional view taken along line AA of FIG. The swing unit 2 has a right case 75 on the right side in the vehicle width direction and a crankcase 74 as a left case 76 on the left side in the vehicle width direction. The crankshaft 51 is rotatably supported by bearings 53 and 54 fixed to the crankcase 70. A connecting rod 73 is connected to the crankshaft 51 via a crank pin 52.
 左ケース76は変速室ケースを兼ねており、クランク軸51の左端部には、可動側プーリ半体60と固定側プーリ半体61とからなるベルト駆動プーリが取り付けられている。固定側プーリ半体61は、クランク軸51の左端部にナット77によって締結されている。また、可動側プーリ半体60は、クランク軸51にスプライン嵌合されて軸方向に摺動可能とされる。両プーリ半体60、61の間には、Vベルト62が巻き掛けられている。 The left case 76 doubles as a transmission chamber case, and a belt drive pulley including a movable pulley half 60 and a fixed pulley half 61 is attached to the left end of the crankshaft 51. The stationary pulley half 61 is fastened to the left end of the crankshaft 51 by a nut 77. The movable pulley half 60 is spline-fitted to the crankshaft 51 so as to be axially slidable. A V-belt 62 is wound between the two pulley halves 60 and 61.
 可動側プーリ半体60の右側では、ランププレート57がクランク軸51に固定されている。ランププレート57の外周端部に取り付けられたスライドピース58は、可動側プーリ半体60の外周端で軸方向に形成されたランププレート摺動ボス部59に係合されている。また、ランププレート57の外周部には、径方向外側に向かうにつれて可動側プーリ半体60寄りに傾斜するテーパ面が形成されており、このテーパ面と可動側プーリ半体60との間に複数のウェイトローラ63が収容されている。 A lamp plate 57 is fixed to the crankshaft 51 on the right side of the movable pulley half 60. The slide piece 58 attached to the outer peripheral end of the ramp plate 57 is engaged with the ramp plate sliding boss 59 formed at the outer peripheral end of the movable pulley half 60 in the axial direction. Further, a tapered surface is formed on the outer peripheral portion of the ramp plate 57 so as to be inclined toward the movable pulley half 60 as it goes radially outward. A plurality of the tapered surfaces are provided between the tapered surface and the movable pulley half 60. The weight roller 63 is accommodated.
 クランク軸51の回転速度が増加すると、遠心力によってウェイトローラ63が径方向外側に移動する。これにより、可動側プーリ半体60が図示左方に移動して固定側プーリ半体61に接近し、その結果、両プーリ半体60、61間に挟まれたVベルト62が径方向外側に移動してその巻き掛け径が大きくなる。スイングユニット2の後方側には、両プーリ半体60、61に対応してVベルト62の巻き掛け径が可変する被動プーリ(不図示)が設けられている。エンジンEの駆動力は、上記ベルト伝達機構によって自動調整され、不図示の遠心クラッチおよび減速機構9(図1参照)を介して後輪WRに伝達される。 When the rotational speed of the crankshaft 51 is increased, the weight roller 63 is moved radially outward by the centrifugal force. As a result, the movable pulley half 60 moves to the left in the figure and approaches the fixed pulley half 61, and as a result, the V-belt 62 sandwiched between the two pulley halves 60, 61 moves radially outward. It moves and its winding diameter becomes large. On the rear side of the swing unit 2, a driven pulley (not shown) is provided corresponding to the two pulley halves 60, 61 so that the winding diameter of the V-belt 62 can be varied. The driving force of the engine E is automatically adjusted by the above-described belt transmission mechanism, and is transmitted to the rear wheel WR via a centrifugal clutch and a reduction gear mechanism 9 (see FIG. 1) (not shown).
 右ケース75の内部には、発電電動機70が配設されている。発電電動機70はエンジンEの始動時や加速アシスト時にクランク軸51を回転駆動するモータとして機能するとともに、エンジンEの運転中にクランク軸51の回転から回生起電力を生成するジェネレータとして機能する。 Inside the right case 75, a generator motor 70 is disposed. The generator motor 70 functions as a motor for rotationally driving the crankshaft 51 at the time of start-up of the engine E or at the time of acceleration assist, and also functions as a generator for generating the generated electric power from the rotation of the crankshaft 51 during operation of the engine E.
 発電電動機70は、クランク軸51の先端テーパ部に取付ボルト120で固定されたアウタロータ71と、アウタロータ71の内側に配設されて右ケース75に取付ボルト121で固定されるステータ72とから構成されている。アウタロータ71に対して取付ボルト67で固定される送風ファン65の図示右方側には、ラジエータ68および複数のスリットが形成されたカバー部材69が取り付けられている。 The generator motor 70 includes an outer rotor 71 fixed to the tapered end of the crankshaft 51 with a mounting bolt 120 and a stator 72 disposed inside the outer rotor 71 and fixed to the right case 75 with a mounting bolt 121. ing. A radiator 68 and a cover member 69 in which a plurality of slits are formed are attached to the right side of the blower fan 65 fixed to the outer rotor 71 by a mounting bolt 67, as shown.
 クランク軸51には、発電電動機70と軸受54との間に、スプロケット55が固定されている。スプロケット55には、不図示のカムシャフトを駆動するカムチェーンが巻き掛けられる。また、スプロケット55は、エンジンオイルを循環させるオイルポンプ(不図示)に動力を伝達するギヤ56と一体的に形成されている。 A sprocket 55 is fixed to the crankshaft 51 between the generator motor 70 and the bearing 54. A cam chain for driving a cam shaft (not shown) is wound around the sprocket 55. The sprocket 55 is integrally formed with a gear 56 for transmitting power to an oil pump (not shown) for circulating engine oil.
 図3は自動二輪車1の制御系の構成を示すブロック図である。ECU80はCPU等のプロセッサ、ROM、RAM等の記憶デバイス、外部デバイスとの間で信号の送信、受信を行うインタフェースを含む。ECU80には、ライダが操作するスイッチ30、各種のセンサSRが接続され、それらの検知結果に基づいて、燃料噴射装置40、点火装置41、発電電動機70、灯火器42、表示器43、リレー44等を制御する。 FIG. 3 is a block diagram showing a configuration of a control system of the motorcycle 1. As shown in FIG. The ECU 80 includes a processor such as a CPU, a storage device such as a ROM and a RAM, and an interface for transmitting and receiving signals to and from an external device. The switch 30 operated by the rider and various sensors SR are connected to the ECU 80, and the fuel injection device 40, the ignition device 41, the generator motor 70, the lamp 42, the indicator 43, and the relay 44 are connected based on the detection results. Control etc.
 スイッチ30には、例えば、自動二輪車1の主電源のON/OFFを切り替えるメインスイッチやエンジンEの始動を指示するスタータスイッチ、アイドルストップ制御を許可するか否かを指示するアイドルストップ制御許可スイッチ等が含まれる。 For example, a main switch that switches ON / OFF of the main power supply of the motorcycle 1, a starter switch that instructs starting of the engine E, an idle stop control permission switch that instructs whether to permit idle stop control, etc. Is included.
 センサSRには、ライダのアクセル操作を検知するスロットルセンサ31、クランク軸51の回転角を検知するクランク角センサ32、エンジンEの冷却水温度を検知する水温センサ33、自動二輪車1の車速を検知する車速センサ34、発電電動機70の回転角を検知する回転角センサ35、ライダがシート8に着座しているか否かを検知する着座センサ36等が含まれる。 The sensor SR includes a throttle sensor 31 for detecting an accelerator operation of a rider, a crank angle sensor 32 for detecting a rotation angle of the crankshaft 51, a water temperature sensor 33 for detecting a coolant temperature of the engine E, and a vehicle speed of the motorcycle 1 A vehicle speed sensor 34, a rotation angle sensor 35 for detecting a rotation angle of the generator motor 70, a seating sensor 36 for detecting whether or not the rider is seated on the seat 8, and the like are included.
 自動二輪車1は、信号待ち等の停車時に所定条件を満たすとエンジンEを一旦停止させるアイドルストップ制御が実行されてもよい。ECU80はアイドルストップ制御許可スイッチや着座センサ36の検知結果によりアイドルストップ制御を実行するか否かを判定してもよい。アイドルストップを開始する所定条件は、例えば、アイドルストップ制御許可スイッチがオン(許可)で、かつ着座スセンサ36でライダの着座が検知され、車速センサ34で検知される車速が所定値(例えば、5km/h)以下で、かつクランク角センサ32で検知されるエンジン回転数が所定値(例えば、2000rpm)以下で、かつスロットルセンサ31で検知されるスロットル開度が所定値(例えば、5度)以下の状態において所定時間が経過した場合である。アイドルストップ後のエンジンEの再始動条件は、例えば、スロットル開度が所定値以上の場合である。 The motorcycle 1 may be subjected to idle stop control to temporarily stop the engine E when a predetermined condition is satisfied at the time of a stop such as waiting for a signal. The ECU 80 may determine whether or not to execute the idle stop control based on the detection result of the idle stop control permission switch or the seating sensor 36. The predetermined condition for starting the idle stop is, for example, that the idle stop control permission switch is on (permitted), and the seating speed of the rider is detected by the seating sensor 36, and the vehicle speed detected by the vehicle speed sensor 34 is a predetermined value (for example, 5 km) / H) or less, and the engine speed detected by the crank angle sensor 32 is less than or equal to a predetermined value (for example, 2000 rpm), and the throttle opening detected by the throttle sensor 31 is less than or equal to a predetermined value (for example, 5 degrees) The predetermined time has elapsed in the state of. The restart condition of the engine E after the idle stop is, for example, the case where the throttle opening degree is equal to or more than a predetermined value.
 燃料噴射装置40はエンジンEの吸入空気に燃料を噴射する。点火装置41はエンジンE内の混合気を点火する。灯火器42は例えばヘッドライトである。表示器43はメータ、各種インジケータ等、ライダに情報を表示する装置である。リレー44は例えばエンジンEを始動する際にONにされるスタータリレーである。 The fuel injection device 40 injects fuel into intake air of the engine E. The igniter 41 ignites the mixture in the engine E. The lighting device 42 is, for example, a headlight. The display 43 is a device for displaying information on a lidar, such as a meter and various indicators. The relay 44 is, for example, a starter relay that is turned on when the engine E is started.
 図4を参照して発電電動機70及びその駆動回路について説明する。本実施形態の場合、発電電動機70は三相巻線が巻きまわされたステータを備える三相ブラシレスモータ発電機である。発電電動機70にはこれを駆動するインバータ90が接続されている。インバータ90はインバータ90はブリッジ接続された複数のスイッチング素子91a~91c(総称するときはスイッチング素子91という。)及びスイッチング素子92a~92c(総称するときはスイッチング素子92という。)を備え、全波整流ブリッジ回路を構成する。 The generator motor 70 and its drive circuit will be described with reference to FIG. In the case of the present embodiment, the generator motor 70 is a three-phase brushless motor generator provided with a stator in which a three-phase winding is wound. An inverter 90 for driving the generator motor 70 is connected to the generator motor 70. The inverter 90 is provided with a plurality of switching elements 91a to 91c (collectively referred to as switching elements 91) and switching elements 92a to 92c (collectively referred to as switching elements 92) connected in a bridge, and the inverter 90 is a full wave. Configure a rectifier bridge circuit.
 スイッチング素子91及び92は、本実施形態の場合、N型のMOSFETであり、ドレインD、ソースS、ゲートG及び寄生ダイオードDiを有する。スイッチング素子91aとスイッチング素子92aの組は、ハイ側の配線90aとロー側の配線90bとの間で直列に接続されて、レグを構成する。スイッチング素子91bとスイッチング素子92bの組及びスイッチング素子91cとスイッチング素子92cの組も同様であり、それぞれレグを構成する。このようにインバータ90は、スイッチング素子91をハイサイドアーム、スイッチング素子92をローサイドアームとする、並列接続された3組のレグを有しており、スイッチング素子91とスイッチング素子92との各接続点に、発電電動機70の対応する相のコイルが接続されている。 In the present embodiment, the switching elements 91 and 92 are N-type MOSFETs, and each have a drain D, a source S, a gate G, and a parasitic diode Di. A set of the switching element 91a and the switching element 92a is connected in series between the high side wire 90a and the low side wire 90b to form a leg. The same applies to the set of the switching element 91b and the switching element 92b, and the set of the switching element 91c and the switching element 92c, which respectively constitute a leg. Thus, the inverter 90 has three pairs of legs connected in parallel, with the switching element 91 as the high side arm and the switching element 92 as the low side arm, and each connection point between the switching element 91 and the switching element 92 The coils of the corresponding phase of the generator motor 70 are connected to each other.
 配線90aと配線90bとの間には、直列に接続された平滑コンデンサ93及びスイッチング素子94が設けられている。スイッチング素子94は、本実施形態の場合、スイッチング素子91及び92と同様にMOSFETである。スイッチング素子94は、例えば、発電電動機70をジェネレータとして機能させる場合にONとされ、平滑コンデンサ93によって発電電圧が平滑化される。 A smoothing capacitor 93 and a switching element 94 connected in series are provided between the wiring 90 a and the wiring 90 b. The switching element 94 is a MOSFET as in the case of the switching elements 91 and 92 in the present embodiment. The switching element 94 is turned on, for example, when the generator motor 70 is made to function as a generator, and the generated voltage is smoothed by the smoothing capacitor 93.
 スイッチング素子91、92及び94の各ゲートGにはECU80から送出される制御信号が入力され、これら各素子のON/OFF制御が実行される。 A control signal sent from the ECU 80 is input to each gate G of the switching elements 91, 92 and 94, and ON / OFF control of each element is executed.
 自動二輪車1は、その主電源として蓄電素子46を備える。蓄電素子46は本実施形態の場合、公称電圧が12Vの鉛バッテリである。蓄電素子46は、モータとして機能させる場合の発電電動機70、ECU80、負荷81等、自動二輪車1の各電気部品に電力を供給する。負荷81は例えば灯火器42等の、自動二輪車1の電装部品が含まれる。蓄電素子46の正極は、配線112b及びリレー110を介してインバータ90の配線90aに接続されている。蓄電素子46の負極はグランドに接続されている。ECU80及び負荷81は、ヒューズ113a、スイッチ111及びヒューズ113bを介して蓄電素子46に並列に接続されている。なお、ECU80と切替回路100を有するドライバーには蓄電素子46の電圧を変換して供給するコンバータ等が設けられる。スイッチ111は、ライダが操作するメインスイッチ、或いは、メインスイッチに連動してON/OFFされるリレースイッチである。スイッチ111がONの状態で、エンジンEの始動操作が行われると、ECU80はリレー110を制御して接点110b側をONとし、エンジンEの始動後には接点110a側をONとする。 The motorcycle 1 includes a storage element 46 as its main power source. In the case of this embodiment, the storage element 46 is a lead battery with a nominal voltage of 12V. The storage element 46 supplies electric power to each electric component of the motorcycle 1 such as the generator motor 70, the ECU 80, the load 81, etc., when functioning as a motor. The load 81 includes, for example, electrical components of the motorcycle 1 such as the lamp 42 and the like. The positive electrode of the storage element 46 is connected to the wire 90 a of the inverter 90 via the wire 112 b and the relay 110. The negative electrode of the storage element 46 is connected to the ground. The ECU 80 and the load 81 are connected in parallel to the storage element 46 via the fuse 113a, the switch 111 and the fuse 113b. The driver having the ECU 80 and the switching circuit 100 is provided with a converter or the like that converts the voltage of the storage element 46 and supplies it. The switch 111 is a main switch operated by the rider or a relay switch that is turned on / off in conjunction with the main switch. When the start operation of the engine E is performed with the switch 111 turned on, the ECU 80 controls the relay 110 to turn on the contact 110b side, and after the engine E is started, turns on the contact 110a side.
 自動二輪車1は、蓄電素子46とは別に、モータとして機能させる場合の発電電動機70の補助的な電源として機能する蓄電素子47を備える。蓄電素子47は本実施形態の場合、コンデンサであって、例えば、リチウムイオンキャパシタ、導電性高分子コンデンサ、電気二重層キャパシタ等を利用できる。コンデンサの定格電圧は蓄電素子46の公称電圧(ここでは12V)以上である。 Aside from the storage element 46, the motorcycle 1 includes an storage element 47 that functions as an auxiliary power source for the generator motor 70 when functioning as a motor. In the case of the present embodiment, the storage element 47 is a capacitor, and for example, a lithium ion capacitor, a conductive polymer capacitor, an electric double layer capacitor, or the like can be used. The rated voltage of the capacitor is equal to or higher than the nominal voltage of storage element 46 (here, 12 V).
 切替回路100は、蓄電素子46及び47と、インバータ90との接続状態を切り替える回路である。本実施形態の場合、切替回路100は複数のスイッチング素子101~103を備える。本実施形態の場合、スイッチング素子101~103はスイッチング素子91及び92と同様にMOSFETである。スイッチング素子101とスイッチング素子102は配線112bとグランドの間に直列に接続されている。蓄電素子47の正極は、スイッチング素子101とスイッチング素子102との接続点に接続され、負極が配線90bに接続されている。スイッチング素子103は、蓄電素子47の負極とグランドGに接続され、ソースSが蓄電素子47の負極に、ドレインDがグランドGに接続されている。 The switching circuit 100 is a circuit that switches the connection state between the storage elements 46 and 47 and the inverter 90. In the case of the present embodiment, the switching circuit 100 includes a plurality of switching elements 101 to 103. In the case of the present embodiment, the switching elements 101 to 103 are MOSFETs in the same manner as the switching elements 91 and 92. The switching element 101 and the switching element 102 are connected in series between the wiring 112 b and the ground. The positive electrode of the storage element 47 is connected to the connection point between the switching element 101 and the switching element 102, and the negative electrode is connected to the wiring 90b. The switching element 103 is connected to the negative electrode of the storage element 47 and the ground G, the source S is connected to the negative electrode of the storage element 47, and the drain D is connected to the ground G.
 スイッチング素子101~103のON/OFFを切り替えることにより、蓄電素子46及び47と、インバータ90との接続状態を、大別すると二つの接続態様に切り替えることができる。スイッチング素子101~103の各ゲートGにはECU80から送出される制御信号が入力され、これら各素子のON/OFF制御が実行される。 When the switching elements 101 to 103 are switched ON / OFF, the connection states of the storage elements 46 and 47 and the inverter 90 can be switched to two connection modes, if roughly classified. A control signal sent from the ECU 80 is input to each gate G of the switching elements 101 to 103, and ON / OFF control of each element is executed.
 接続態様の一つは並列接続態様である。この接続態様では、並列に接続された蓄電素子46及び47がインバータ90に並列に接続され、かつ、蓄電素子46及び47の各負極がグランドGを介して接続される。なお、この場合、各負極はグランドGに直接接続されてもよいし、スイッチや抵抗を介して接続されてもよい。接続態様の他の一つは直列接続態様である。この接続態様では、直列に接続された蓄電素子46及び47がインバータ90に並列に接続され、かつ、蓄電素子46の負極と蓄電素子47の正極とがグランドGを介して接続される。なお、この場合、蓄電素子46の負極と蓄電素子47の正極はグランドGに直接接続されてもよいし、スイッチや抵抗を介して接続されてもよい。 One of the connection modes is a parallel connection mode. In this connection mode, storage elements 46 and 47 connected in parallel are connected in parallel to inverter 90, and the negative electrodes of storage elements 46 and 47 are connected via ground G. In this case, each negative electrode may be directly connected to the ground G, or may be connected via a switch or a resistor. Another one of the connection modes is a series connection mode. In this connection mode, storage elements 46 and 47 connected in series are connected in parallel to inverter 90, and the negative electrode of storage element 46 and the positive electrode of storage element 47 are connected via ground G. In this case, the negative electrode of the storage element 46 and the positive electrode of the storage element 47 may be directly connected to the ground G, or may be connected via a switch or a resistor.
 図5は並列接続態様の例を示している。スイッチング素子101がON、スイッチング素子102及び103がOFFとされる。この接続態様の場合、蓄電素子46で蓄電素子47を充電することができ、太線矢印はその場合の電流の流れを例示している。スイッチング素子103では寄生ダイオードDiを電流が流れる。蓄電素子47が蓄電素子46と同電位に充電される。蓄電素子47の容量は蓄電素子46によって数十msで満充電できる程度の容量であってもよい。この接続態様は、また、蓄電素子46の電圧(ここでは12V)で発電電動機70を駆動することもできる。 FIG. 5 shows an example of the parallel connection mode. The switching element 101 is turned on, and the switching elements 102 and 103 are turned off. In the case of this connection mode, the storage element 47 can be charged by the storage element 46, and thick arrows indicate the flow of current in that case. In the switching element 103, current flows through the parasitic diode Di. The storage element 47 is charged to the same potential as the storage element 46. The capacity of the storage element 47 may be such that the storage element 46 can be fully charged in several tens of ms. In this connection mode, the generator motor 70 can also be driven by the voltage of the storage element 46 (12 V here).
 図6は並列接続態様の別の例を示している。スイッチング素子101及びスイッチング素子103がON、スイッチング素子102がOFFとされる。この接続態様の場合、発電電動機70をジェネレータとして機能させて蓄電素子46及び47を充電することができ、太線矢印はその場合の電流の流れを例示している。 FIG. 6 shows another example of the parallel connection mode. The switching element 101 and the switching element 103 are turned on, and the switching element 102 is turned off. In the case of this connection mode, the generator motor 70 can be made to function as a generator to charge the storage elements 46 and 47, and thick arrows illustrate the flow of current in that case.
 図7は直列接続態様の例を示している。スイッチング素子101及び103がOFF、スイッチング素子102がONとされる。この接続態様の場合、直列に接続された蓄電素子46及び47の電圧で発電電動機70を駆動することができ、発電電動機70により大きな電力を供給できる。本実施形態の場合、図5の並列接続態様において蓄電素子47が充電されると、蓄電素子47の電位が蓄電素子46の電位と同電位とされ、これを直列に接続することで、蓄電素子46の二倍の電位差の電圧を発電電動機70に供給できる。 FIG. 7 shows an example of the serial connection mode. The switching elements 101 and 103 are turned off, and the switching element 102 is turned on. In the case of this connection mode, the generator motor 70 can be driven by the voltage of the storage elements 46 and 47 connected in series, and the generator motor 70 can supply a large amount of power. In the case of the present embodiment, when the storage element 47 is charged in the parallel connection mode of FIG. 5, the potential of the storage element 47 is made the same potential as the potential of the storage element 46, and the storage element is connected in series. A voltage of twice the potential difference 46 can be supplied to the generator motor 70.
 このとき、蓄電素子46の負極と蓄電素子47の正極とがグランドに接続されているので、蓄電素子46の正極は+12V、蓄電素子47の負極は-12Vである。したがって、インバータ90には、-12V~+12Vの電圧が印加される。同じ電位差(24V)で、0V~24Vの電圧をインバータ90に印加する構成では、ハイサイドアームを構成するスイッチング素子91に高電圧がかかり、そのON/OFFに必要なゲートGの電圧が高くなる。そのため、高いゲート電圧を得る為の専用部品を必要とする場合があり、インバータ90を新規に設計、製造しなければならない場合がある。これはコストアップの要因となる。 At this time, since the negative electrode of the storage element 46 and the positive electrode of the storage element 47 are connected to the ground, the positive electrode of the storage element 46 is +12 V, and the negative electrode of the storage element 47 is -12 V. Therefore, a voltage of -12 V to +12 V is applied to inverter 90. In the configuration in which a voltage of 0 V to 24 V is applied to the inverter 90 with the same potential difference (24 V), a high voltage is applied to the switching element 91 forming the high side arm, and the voltage of the gate G necessary for its ON / OFF becomes high. . Therefore, special components for obtaining a high gate voltage may be required, and the inverter 90 may have to be newly designed and manufactured. This is a factor of cost increase.
 一方、本実施形態の構成によると、インバータ90には-12V~+12Vの電圧が印加されるので、グランド電位から見てハイサイドアームのスイッチング素子91に対する電圧を低く抑えることができ、専用部品を必須としない。このため、コストアップを抑制しつつ、電動発電機の電力供給量を切り替えることができる。 On the other hand, according to the configuration of the present embodiment, a voltage of -12 V to +12 V is applied to inverter 90, so that the voltage to switching element 91 of the high side arm can be suppressed low when viewed from the ground potential. Not required Therefore, it is possible to switch the power supply amount of the motor generator while suppressing the cost increase.
 <制御例>
 ECU80による切替回路100の切替制御例について図8を参照して説明する。図8は自動二輪車1のメインスイッチがONとされた場合に実行される処理例を示しており、特に、エンジンEを始動する場合の処理を例示している。
<Example of control>
An example of switching control of the switching circuit 100 by the ECU 80 will be described with reference to FIG. FIG. 8 shows an example of processing performed when the main switch of the motorcycle 1 is turned ON, and in particular, illustrates processing for starting the engine E.
 S1では切替回路100を図5の並列接続態様に制御する。これにより蓄電素子47を蓄電素子46で充電できる。自動二輪車1の停車中に蓄電素子47は放電して空になっている場合が想定される。そこで本実施形態では、まず、蓄電素子47を充電するようにしている。 At S1, the switching circuit 100 is controlled to the parallel connection mode of FIG. Thus, the storage element 47 can be charged by the storage element 46. It is assumed that the storage element 47 is discharged and empty while the motorcycle 1 is stopped. Therefore, in the present embodiment, first, the storage element 47 is charged.
 S2ではスタータスイッチがONとされたか否かを判定する。ONとされた場合、S3へ進む。S3では切替回路100を図7の直列接続態様に制御する。これにより、発電電動機70に対してより大きな電力を供給可能となる。なお、スタータスイッチがONとされたときに蓄電素子47の充電量が不十分な場合がある。その場合、蓄電素子47の充電量が規定量に達するまで、S1の並列接続態様を維持してもよい。蓄電素子47の充電量が規定量に達したか否かは、並列接続態様の経過時間が規定時間に達したか否かを基準としてもよいし、蓄電素子47の充電量を検知するセンサを設け、そのセンサの検知結果を基準としてもよい。 In S2, it is determined whether the starter switch is turned on. If it is ON, the process proceeds to S3. At S3, the switching circuit 100 is controlled to the series connection mode of FIG. As a result, more power can be supplied to the generator motor 70. When the starter switch is turned on, the charge amount of the storage element 47 may be insufficient. In that case, the parallel connection mode of S1 may be maintained until the charge amount of the storage element 47 reaches a specified amount. Whether or not the charge amount of the storage element 47 has reached a specified amount may be based on whether or not the elapsed time of the parallel connection mode has reached a specified time, or a sensor for detecting the charge amount of the storage element 47 may be used. It is good also as the reference and providing the detection result of the sensor.
 S4ではインバータ90を制御して発電電動機70を回転駆動しつつ、エンジンEを始動する。発電電動機70にはより大きな電力が供給されるので、エンジンEをよりスムーズに始動させることが可能となる。特に本実施形態のように単気筒エンジンでは、エンジンEが圧縮工程で停止していて始動する場合、クランク軸51の回転により大きなトルクが必要となる。しかし、蓄電素子46の電圧の倍の電圧を発電電動機70に印加することで、エンジンEの始動性を向上できる。S4ではまた、インバータ90による発電電動機70の駆動開始からの時間を計時する。これは蓄電素子47の放電時間の計時である。 In S4, the inverter 90 is controlled to rotationally drive the generator motor 70, and the engine E is started. Since a larger amount of power is supplied to the generator motor 70, the engine E can be started more smoothly. In particular, in a single-cylinder engine as in the present embodiment, when the engine E is stopped and started in the compression process, a large torque is required by the rotation of the crankshaft 51. However, by applying a voltage twice as high as that of the storage element 46 to the generator motor 70, the startability of the engine E can be improved. In S4, the time from the drive start of the generator motor 70 by the inverter 90 is also timed. This is timing of the discharge time of the storage element 47.
 S5ではエンジンEの始動に成功したか否かを判定する。エンジンEの始動に成功したか否かは例えばクランク角センサ32の検知結果から判定することができる。始動に成功したと判定した場合はS6へ進み、始動していないと判定した場合はS7へ進む。S7ではS4で計時を開始した蓄電素子47の放電時間が規定時間に達したか否かを判定する。規定時間に達した場合はS1へ戻り、切替回路100を図5の並列接続態様に制御する。これにより、蓄電素子47が過放電することを防止でき、その逆充電や劣化を回避することができる。規定時間は、例えば、コンマ数秒(例えば数十ms~数百ms)から1秒の範囲内の時間とすることができる。規定時間に達していない場合はS5へ戻ってエンジンEの始動を待つ。 In S5, it is determined whether the start of the engine E has succeeded. Whether or not the engine E has been successfully started can be determined from the detection result of the crank angle sensor 32, for example. If it is determined that the start is successful, the process proceeds to S6, and if it is determined that the start is not performed, the process proceeds to S7. In S7, it is determined whether the discharge time of the storage element 47, which has started counting in S4, has reached a specified time. If the specified time is reached, the process returns to S1, and the switching circuit 100 is controlled to the parallel connection mode of FIG. Thereby, overdischarge of storage element 47 can be prevented, and reverse charging and deterioration thereof can be avoided. The specified time can be, for example, a time in the range of several seconds (eg, several tens of ms to several hundreds of ms) to one second. If the specified time has not been reached, the process returns to S5 and waits for the engine E to start.
 S6では切替回路100を図6の並列接続態様に制御する。発電電動機70はジェネレータとして機能させ、その発電により蓄電素子46を充電しつつ、負荷81に電力を供給することができる。以上により一回の処理が終了する。 At S6, the switching circuit 100 is controlled to the parallel connection mode of FIG. The generator motor 70 can function as a generator, and can supply power to the load 81 while charging the storage element 46 by the power generation. Thus, one process ends.
 なお、図8の制御例はアイドルストップ制御後にエンジンEを再始動する場合にも適用できる。この場合、例えば、アイドルストップ制御中はS1の処理を行い、S2の始動操作の判定に代えて、再始動条件の成立判定(例えば加速操作があるか否か)を行えばよく、他の処理は同様である。 The control example of FIG. 8 is also applicable to the case where the engine E is restarted after the idle stop control. In this case, for example, the process of S1 is performed during the idle stop control, and instead of the determination of the start operation of S2, the establishment determination of the restart condition (for example, whether or not there is an acceleration operation) may be performed. Is the same.
 図9は自動二輪車1のエンジンEの始動後における切替回路100の切替制御例を示しており、主に走行中での制御例である。ライダが急加速操作を行った場合に直列接続態様とし、自動二輪車1の加速をアシストする。この処理はエンジンEの回転数が規定回転数以上の場合に実行することができる。規定回転数は、遠心クラッチが接続するエンジン回転数より低くてもよいし、高くてもよい。つまり、エンジンEの駆動中であれば、自動二輪車1が停止していてもよいし、車速が出ている状態であってもよい。 FIG. 9 shows an example of switching control of the switching circuit 100 after the engine E of the motorcycle 1 is started, and is mainly an example of control during traveling. When the rider performs a rapid acceleration operation, the series connection mode is adopted to assist the acceleration of the motorcycle 1. This process can be executed when the number of revolutions of the engine E is equal to or greater than a prescribed number of revolutions. The prescribed rotational speed may be lower or higher than the engine rotational speed connected to the centrifugal clutch. That is, as long as the engine E is being driven, the motorcycle 1 may be stopped or the vehicle speed may be out.
 S11では、スロットルセンサ31の検知結果からアクセル開度の加速側の変化量を演算する。S12ではS11で演算した変化量が規定値以上であるか否かを判定する。規定値以上であると判定した場合、急加速が要求されたと判断してS13へ進む。規定値未満の場合は一回の処理を終了する。 In S11, the amount of change on the acceleration side of the accelerator opening is calculated from the detection result of the throttle sensor 31. In S12, it is determined whether the amount of change calculated in S11 is equal to or greater than a specified value. If it is determined that the value is equal to or more than the specified value, it is determined that rapid acceleration is required, and the process proceeds to S13. If it is less than the specified value, one process ends.
 S13では切替回路100を図7の直列接続態様に制御する。これにより、発電電動機70に対してより大きな電力を供給可能となる。S14ではインバータ90を制御して発電電動機70を回転駆動しつつ、エンジンEの出力をアップして加速する。これにより、自動二輪車1の加速性能が一時的に向上し、ドライバビリティを向上できる。また、蓄電素子47の放電時間の計時を開始する。 At S13, the switching circuit 100 is controlled to the series connection mode of FIG. As a result, more power can be supplied to the generator motor 70. In S14, while controlling the inverter 90 to rotationally drive the generator motor 70, the output of the engine E is increased and accelerated. Thereby, the acceleration performance of the motorcycle 1 can be temporarily improved, and drivability can be improved. Further, measurement of the discharge time of the storage element 47 is started.
 S15では蓄電素子47の放電時間が規定時間に達したか否かを判定する。規定時間に達した場合はS16へ進み、切替回路100を図6の並列接続態様に制御する。これにより、蓄電素子47が逆充電されることを防止でき、その劣化を回避することができる。規定時間は、蓄電素子47の容量を大きくした場合、例えば、コンマ数秒(例えば0.1秒)から数秒の範囲内の時間とすることができる。以上により一回の処理を終了する。 In S15, it is determined whether or not the discharge time of the storage element 47 has reached a specified time. If the specified time is reached, the process proceeds to S16, and the switching circuit 100 is controlled to the parallel connection mode of FIG. Thereby, reverse charge of storage element 47 can be prevented, and the deterioration thereof can be avoided. When the capacity of the storage element 47 is increased, the specified time can be, for example, a time in the range of several seconds (eg, 0.1 second) to several seconds. Thus, one process ends.
 なお、本実施形態の場合、図8のS6の処理によりエンジンEの始動後は基本的に切替回路100が図6の並列接続態様に維持され、蓄電素子46及び47が充電される。したがって、S13の処理において切替回路100を図7の直列接続態様へ切り替えるにあたり、図8のS1のように蓄電素子47を充電することはしていない。図8のS1のように蓄電素子47を充電する処理を行ってもよいが、この処理を省略する方が加速操作に対する反応がよくなりドライバビリティを向上できる。一方、S13の処理において切替回路100を図7の直列接続態様へ切り替えるにあたり、蓄電素子47の蓄電量を確認し、十分な充電量が確認できた場合に切り替えてもよい。その場合、蓄電素子47の充電量を検知するセンサを設け、そのセンサの検知結果を基準としてもよい。 In the case of this embodiment, the switching circuit 100 is basically maintained in the parallel connection mode of FIG. 6 after the start of the engine E by the process of S6 of FIG. 8 and the storage elements 46 and 47 are charged. Therefore, when the switching circuit 100 is switched to the series connection mode of FIG. 7 in the process of S13, the storage element 47 is not charged as in S1 of FIG. A process of charging the storage element 47 may be performed as shown in S1 of FIG. 8, but omitting this process improves the reaction to the acceleration operation and can improve the drivability. On the other hand, when the switching circuit 100 is switched to the serial connection mode of FIG. 7 in the process of S13, the storage amount of the storage element 47 may be confirmed and switching may be performed when a sufficient charge amount can be confirmed. In that case, a sensor for detecting the charge amount of the storage element 47 may be provided, and the detection result of the sensor may be used as a reference.
 <他の実施形態>
 平滑コンデンサ93と蓄電素子47とを兼用してもよい。これにより部品数の増加を抑制することができる。図10はその一例を示す回路図である。上記実施形態の回路と異なる点について説明する。
Other Embodiments
The smoothing capacitor 93 and the storage element 47 may be used in combination. This can suppress an increase in the number of parts. FIG. 10 is a circuit diagram showing an example thereof. Points different from the circuit of the above embodiment will be described.
 図10の例の切替回路100は、複数のスイッチング素子104~107を備える。本実施形態の場合、スイッチング素子104~107はスイッチング素子91及び92と同様にMOSFETである。スイッチング素子104は、配線90aと蓄電素子47の正極との間に位置してこれらに接続されている。スイッチング素子106は、配線90bと蓄電素子47の負極との間に位置してこれらに接続されている。配線90bにはダイオード114が設けられている。 The switching circuit 100 in the example of FIG. 10 includes a plurality of switching elements 104 to 107. In the case of this embodiment, the switching elements 104 to 107 are MOSFETs in the same manner as the switching elements 91 and 92. The switching element 104 is located between the wire 90 a and the positive electrode of the storage element 47 and connected thereto. The switching element 106 is located between the wire 90 b and the negative electrode of the storage element 47 and connected thereto. A diode 114 is provided in the wiring 90 b.
 スイッチング素子105は蓄電素子47の正極と配線90cとの間に位置してこれらに接続されている。配線90cはグランドに接続されている。スイッチング素子107は蓄電素子47の負極と配線90cとの間に位置してこれらに接続されている。スイッチング素子104~107のON/OFFを切り替えることにより、蓄電素子46及び47と、インバータ90との接続状態を切り替えることができる。 The switching element 105 is located between the positive electrode of the storage element 47 and the wiring 90 c and connected to them. The wiring 90c is connected to the ground. The switching element 107 is located between the negative electrode of the storage element 47 and the wiring 90 c and connected thereto. By switching ON / OFF switching elements 104 to 107, the connection state between storage elements 46 and 47 and inverter 90 can be switched.
 図5の並列接続態様(蓄電素子46による蓄電素子47の充電)と等価な回路とする場合、スイッチング素子104をONとし、スイッチング素子105~107をOFFとする。図6の並列接続態様(発電電動機70による蓄電素子46及び47の充電)と等価な回路とする場合、スイッチング素子104、107をONとし、スイッチング素子105、106をOFFとする。図7の直列接続態様と等価な回路とする場合、スイッチング素子105及び106をONとし、スイッチング素子104及び107をOFFとする。 In the case of a circuit equivalent to the parallel connection mode of FIG. 5 (charging of the storage element 47 by the storage element 46), the switching element 104 is turned on and the switching elements 105 to 107 are turned off. In the case of a circuit equivalent to the parallel connection mode of FIG. 6 (charging of the storage elements 46 and 47 by the generator motor 70), the switching elements 104 and 107 are turned on and the switching elements 105 and 106 are turned off. In the case of a circuit equivalent to the series connection mode of FIG. 7, the switching elements 105 and 106 are turned on, and the switching elements 104 and 107 are turned off.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the following claims are attached to disclose the scope of the present invention.

Claims (7)

  1.  車両(1)のエンジン(E)のクランク軸(51)を回転駆動するモータとして機能するとともに、前記クランク軸(51)の回転から回生起電力を生成するジェネレータとして機能する発電電動機(70)と、
     ブリッジ接続された複数のスイッチング素子(91a-91c,92a-92c)を備え、前記発電電動機(70)に接続されたインバータ(90)と、
     第一の蓄電手段(46)と、
     第二の蓄電手段(47)と、
     前記第一の蓄電手段(46)及び前記第二の蓄電手段(47)と、前記インバータ(90)との接続状態を第一の接続態様と第二の接続態様とで切り替える切替手段(100)と、を備え、
     前記第一の接続態様では、並列に接続された前記第一の蓄電手段(46)及び前記第二の蓄電手段(47)が前記インバータ(90)に接続され、かつ、前記第一の蓄電手段(46)の負極と前記第二の蓄電手段(47)の負極とがグランド(G)を介して接続され、
     前記第二の接続態様では、直列に接続された前記第一の蓄電手段(46)及び前記第二の蓄電手段(47)が前記インバータ(90)に接続され、かつ、前記第一の蓄電手段(46)の負極と前記第二の蓄電手段(47)の正極とが前記グランド(G)を介して接続される、
    ことを特徴とする車両用制御装置。
    A generator motor (70) that functions as a motor that rotationally drives a crankshaft (51) of an engine (E) of the vehicle (1), and that functions as a generator that generates a generated electric power from the rotation of the crankshaft (51) ,
    An inverter (90) comprising a plurality of switching elements (91a-91c, 92a-92c) connected in a bridge, and connected to the generator motor (70);
    First storage means (46),
    A second storage means (47),
    Switching means (100) for switching the connection between the first storage means (46) and the second storage means (47) and the inverter (90) in the first connection mode and the second connection mode And
    In the first connection mode, the first storage means (46) and the second storage means (47) connected in parallel are connected to the inverter (90), and the first storage means The negative electrode of (46) and the negative electrode of the second storage means (47) are connected via a ground (G),
    In the second connection mode, the first storage means (46) and the second storage means (47) connected in series are connected to the inverter (90), and the first storage means The negative electrode of (46) and the positive electrode of the second storage means (47) are connected via the ground (G),
    Control device for vehicles characterized by the above.
  2.  請求項1に記載の車両用制御装置であって、
     前記発電電動機(70)を駆動するために前記接続状態を前記第二の接続態様とした場合、所定時間の経過後に前記接続状態を前記第一の接続態様とする、
    ことを特徴とする車両用制御装置。
    The vehicle control device according to claim 1, wherein
    When the connection state is set to the second connection mode to drive the generator motor (70), the connection state is set to the first connection mode after a predetermined time has elapsed.
    Control device for vehicles characterized by the above.
  3.  請求項1に記載の車両用制御装置であって、
     前記エンジン(E)の始動を条件として、前記接続状態を前記第二の接続態様とする、
    ことを特徴とする車両用制御装置。
    The vehicle control device according to claim 1, wherein
    Under the condition that the engine (E) is started, the connection state is the second connection mode,
    Control device for vehicles characterized by the above.
  4.  請求項1に記載の車両用制御装置であって、
     アクセル開度の加速側の変化量が規定値以上となったことを条件として、前記接続状態を前記第二の接続態様とする、
    ことを特徴とする車両用制御装置。
    The vehicle control device according to claim 1, wherein
    Under the condition that the amount of change on the acceleration side of the accelerator opening becomes equal to or greater than a specified value, the connection state is the second connection mode,
    Control device for vehicles characterized by the above.
  5.  請求項1に記載の車両用制御装置であって、
     前記第一の蓄電手段(46)はバッテリであり、
     前記第二の蓄電手段(47)はコンデンサであり、
     前記コンデンサの定格電圧は前記バッテリの公称電圧以上であり、
     前記第一の接続態様によって、前記バッテリと前記コンデンサとが同電位とされる、
    ことを特徴とする車両用制御装置。
    The vehicle control device according to claim 1, wherein
    The first storage means (46) is a battery,
    The second storage means (47) is a capacitor,
    The rated voltage of the capacitor is above the nominal voltage of the battery,
    By the first connection mode, the battery and the capacitor are brought to the same potential.
    Control device for vehicles characterized by the above.
  6.  請求項1に記載の車両用制御装置であって、
     前記第一の蓄電手段(46)は、前記車両の電装部品(81)に電力を供給可能である、
    ことを特徴とする車両用制御装置。
    The vehicle control device according to claim 1, wherein
    The first storage means (46) is capable of supplying power to the electric component (81) of the vehicle.
    Control device for vehicles characterized by the above.
  7.  請求項1に記載の車両用制御装置であって、
     前記第二の蓄電手段(47)はコンデンサであって、前記インバータ(90)の平滑コンデンサを兼用する、
    ことを特徴とする車両用制御装置。
    The vehicle control device according to claim 1, wherein
    The second storage means (47) is a capacitor, and also serves as a smoothing capacitor of the inverter (90).
    Control device for vehicles characterized by the above.
PCT/JP2018/026117 2017-09-29 2018-07-11 Vehicle control device WO2019064817A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019544310A JP6783948B2 (en) 2017-09-29 2018-07-11 Vehicle control device
CN201880060578.2A CN111133188B (en) 2017-09-29 2018-07-11 Vehicle control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-190881 2017-09-29
JP2017190881 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019064817A1 true WO2019064817A1 (en) 2019-04-04

Family

ID=65901634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026117 WO2019064817A1 (en) 2017-09-29 2018-07-11 Vehicle control device

Country Status (3)

Country Link
JP (1) JP6783948B2 (en)
CN (1) CN111133188B (en)
WO (1) WO2019064817A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412637A (en) * 1990-04-26 1992-01-17 Nippondenso Co Ltd Battery series-parallel changeover controller
JP2000291983A (en) * 1999-04-07 2000-10-20 Sanyo Electric Co Ltd Power supply device for air conditioner
JP2017002893A (en) * 2015-06-04 2017-01-05 スズキ株式会社 Engine driving control system and vehicle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460708B2 (en) * 2000-03-29 2010-05-12 株式会社東芝 Permanent magnet motor control device that combines engine starter and generator
JP3896258B2 (en) * 2001-04-25 2007-03-22 株式会社日立製作所 Automotive power supply
JP4558096B2 (en) * 2008-10-23 2010-10-06 三菱電機株式会社 Electric vehicle propulsion control device
CN102811887B (en) * 2010-03-29 2015-12-02 松下知识产权经营株式会社 Vehicle power source device
WO2015092886A1 (en) * 2013-12-18 2015-06-25 新電元工業株式会社 Internal combustion engine control circuit and internal combustion engine control method
DE102016209698B4 (en) * 2015-06-04 2024-03-28 Suzuki Motor Corporation Internal combustion engine drive control system and vehicle
US9915239B2 (en) * 2016-03-22 2018-03-13 Ford Global Technologies, Llc Vehicle start-stop system
CN105927449A (en) * 2016-05-05 2016-09-07 安徽江淮汽车股份有限公司 Engine starting system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412637A (en) * 1990-04-26 1992-01-17 Nippondenso Co Ltd Battery series-parallel changeover controller
JP2000291983A (en) * 1999-04-07 2000-10-20 Sanyo Electric Co Ltd Power supply device for air conditioner
JP2017002893A (en) * 2015-06-04 2017-01-05 スズキ株式会社 Engine driving control system and vehicle

Also Published As

Publication number Publication date
CN111133188A (en) 2020-05-08
JPWO2019064817A1 (en) 2020-10-22
CN111133188B (en) 2021-12-21
JP6783948B2 (en) 2020-11-11

Similar Documents

Publication Publication Date Title
JP3824132B2 (en) Engine start control device
US8498801B2 (en) Engine start control system and method
TW558608B (en) Engine starting control apparatus
JP4851184B2 (en) Rotating electrical machine system
CN1133000C (en) Device for controlling automatic stopping of starting engine
JP4039604B2 (en) Engine starter for small motorcycles
JP6216672B2 (en) Three-phase AC power generation starter device
CN112805465B (en) Engine restarting device
CN110506159B (en) Engine start control device
JP6802378B2 (en) Vehicle
JP3998119B2 (en) Engine start control device
CN1098413C (en) Device for controlling automatic stopping of starting engine
JP7215950B2 (en) engine starting device
EP2772642B1 (en) Engine control device with means for determining a status of a battery
JP6108568B1 (en) Engine start control device for saddle riding type vehicle
ITTO990472A1 (en) SERVOMOTOR WITH MOTOR STARTING FUNCTIONS
JP6783948B2 (en) Vehicle control device
JP6749501B2 (en) Start control device
JP5373449B2 (en) Three-phase motor controller
JP7147130B2 (en) Drive control device for hybrid vehicle
JP6434707B2 (en) Three-phase AC power generation starter device
JP2016070144A (en) Control device for internal combustion engine
JP6216671B2 (en) Three-phase AC power generation starter device
JP2016070143A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861047

Country of ref document: EP

Kind code of ref document: A1