JP6749501B2 - Start control device - Google Patents

Start control device Download PDF

Info

Publication number
JP6749501B2
JP6749501B2 JP2019544311A JP2019544311A JP6749501B2 JP 6749501 B2 JP6749501 B2 JP 6749501B2 JP 2019544311 A JP2019544311 A JP 2019544311A JP 2019544311 A JP2019544311 A JP 2019544311A JP 6749501 B2 JP6749501 B2 JP 6749501B2
Authority
JP
Japan
Prior art keywords
piston
switching
engine
control
storage element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2019544311A
Other languages
Japanese (ja)
Other versions
JPWO2019064818A1 (en
Inventor
明彦 山下
明彦 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2019064818A1 publication Critical patent/JPWO2019064818A1/en
Application granted granted Critical
Publication of JP6749501B2 publication Critical patent/JP6749501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Description

本発明はエンジンの始動制御装置に関する。 The present invention relates to an engine start control device.

エンジンを始動する際に、エンジンのピストンの位置が圧縮行程にある場合、シリンダ内の空気圧に抗してピストンが圧縮行程を乗り越える必要がある。車両の発電機をエンジンの始動モータとして利用する構成においては、発電電動機の駆動トルクが圧縮行程を乗り越えるために不十分な場合がある。 When the engine is started and the piston of the engine is in the compression stroke, the piston needs to overcome the compression stroke against the air pressure in the cylinder. In the configuration in which the vehicle generator is used as the engine starting motor, the drive torque of the generator motor may be insufficient to overcome the compression stroke.

このようなエンジンの始動性を改善するための技術として所謂スイングバック制御が知られている。特許文献1のスイングバック制御では、一旦、ピストンを所定の位置(例えば、下死点)まで逆転駆動して、圧縮上死点までの助走距離を長くする。これにより、エンジン始動時に、慣性力を利用してピストンが圧縮上死点を乗り越えることができ、エンジンの始動性を改善することができる。 So-called swing-back control is known as a technique for improving the startability of such an engine. In the swing-back control of Patent Document 1, the piston is once driven in reverse to a predetermined position (for example, bottom dead center) to lengthen the approach distance to the compression top dead center. With this, when the engine is started, the piston can overcome the compression top dead center by utilizing the inertial force, and the startability of the engine can be improved.

特開2010−223135号公報JP, 2010-223135, A

スイングバック制御の代替策として、より大型の発電電動機の使用やより大容量のバッテリの使用が考えられるが、いずれも重量増の点で不利である。 As an alternative to swingback control, it is possible to use a larger generator-motor or a battery with a larger capacity, but both of them are disadvantageous in terms of weight increase.

本発明の目的は、重量増を抑制しつつ、発電電動機の駆動トルクを増大させることにある。 An object of the present invention is to increase the drive torque of the generator motor while suppressing an increase in weight.

請求項1の本発明による車両用制御装置は、
エンジン(E)のクランク軸(51)を回転駆動するモータとして機能するとともに、前記クランク軸(51)の回転から回生起電力を生成するジェネレータとして機能する発電電動機(70)と、
前記発電電動機に電力を供給可能な供給手段(45)と、
前記エンジン(E)のピストンが圧縮行程の所定の領域に位置しているか否かを判定し、位置していると判定した場合は第一の始動制御を、位置していないと判定した場合は第二の始動制御を実行する制御手段(80)と、を備え、
前記供給手段(45)は、蓄電手段(46)とコンデンサ(47)とを含み、
前記第一の始動制御は、前記蓄電手段(46)と前記コンデンサ(47)の電荷を前記供給手段(45)に供給させる制御であり、
前記第二の始動制御は、前記蓄電手段(46)の電荷を前記供給手段(45)に供給させる制御である、
ことを特徴とする。
The vehicle control device according to the present invention of claim 1 is
A generator motor (70) that functions as a motor that rotationally drives the crankshaft (51) of the engine (E), and that functions as a generator that generates regenerative electromotive force from the rotation of the crankshaft (51),
Supply means (45) capable of supplying electric power to the generator motor,
It is determined whether the piston of the engine (E) is located in a predetermined region of the compression stroke, if it is determined that the first start control, if it is not located, And a control means (80) for executing the second start control,
The supply means (45) includes a storage means (46) and a capacitor (47),
The first starting control is a control for supplying the charge of the storage means (46) and the capacitor (47) to the supply means (45),
The second start control is a control for supplying the charge of the storage means (46) to the supply means (45),
It is characterized by

請求項2の本発明による車両用制御装置は、
前記制御手段(80)は、前記ピストンの位置が不明な場合に、前記第一の始動制御を開始してから前記ピストンが前記所定の領域に位置しているか否かを判定し、位置していないと判定した場合は前記第二の始動制御に切り替える、
ことを特徴とする。
The vehicle control device according to the present invention of claim 2 is
The control means (80), when the position of the piston is unknown, determines whether or not the piston is located in the predetermined region after starting the first start control, and is located. If it is determined that there is no, switch to the second start control,
It is characterized by

請求項3の本発明による車両用制御装置は、
前記供給手段(45)は、前記蓄電手段(46)と前記コンデンサ(47)との接続状態を、直列接続態様と並列接続態様とで切り替える切替手段(100)を含み、
前記切替手段(100)は、前記蓄電手段(46)と前記コンデンサ(47)の電荷を供給する場合に前記接続状態を前記直列接続態様に切り替え、前記蓄電手段(46)の電荷を供給する場合に前記接続状態を前記並列接続態様に切り替える、
ことを特徴とする。
The vehicle control device according to the present invention of claim 3 is
The supply means (45) includes a switching means (100) for switching the connection state between the storage means (46) and the capacitor (47) between a serial connection mode and a parallel connection mode,
The switching means (100) switches the connection state to the series connection mode when supplying the electric charge of the storage means (46) and the capacitor (47), and supplies the electric charge of the storage means (46). Switching the connection state to the parallel connection mode,
It is characterized by

請求項4の本発明による車両用制御装置は、
前記制御手段(80)は、アイドルストップ制御により前記エンジンを停止した場合に、前記ピストンの位置の情報を保存し、再始動する場合には該情報に基づいて前記ピストンが前記所定の領域に位置しているか否かを判定する、
ことを特徴とする。
The vehicle control device according to the present invention of claim 4 is
The control means (80) stores information on the position of the piston when the engine is stopped by idle stop control, and when restarting the engine, positions the piston in the predetermined region based on the information. Determine whether or not
It is characterized by

請求項5の本発明による車両用制御装置は、
前記発電電動機(70)の回転角を検知するセンサ(35)を備え、
前記制御手段(80)は、前記センサ(35)の検知結果に基づいて前記ピストンが前記所定の領域に位置しているか否かを判定する、
ことを特徴とする。
The vehicle control device according to the present invention of claim 5 is
A sensor (35) for detecting the rotation angle of the generator motor (70) is provided,
The control means (80) determines whether or not the piston is located in the predetermined region based on the detection result of the sensor (35),
It is characterized by

請求項1の本発明によれば、前記ピストンの位置が前記所定の領域にあるか否かに応じて前記第一の始動制御と前記第二の始動制御とが選択的に実行される。前記ピストンに対して相対的に高い空気圧が作用する位置の場合に前記第一の始動制御が実行され、前記蓄電手段と前記コンデンサの電荷が前記発電電動機に供給される。これにより、前記発電電動機がより大きな駆動力を出力し、前記エンジンの始動性を向上できる。供給電荷増大のために前記コンデンサを用いることで、重量増を抑制しつつ前記発電電動機の駆動トルクを増大させることができる。前記ピストンに対して相対的に低い空気圧が作用する位置の場合に前記第二の始動制御が実行され、前記蓄電手段の電荷が前記発電電動機に供給される。前記コンデンサに充電された電荷を不必要に消費することを防止できる。 According to the present invention of claim 1, the first start control and the second start control are selectively executed depending on whether or not the position of the piston is in the predetermined region. The first start-up control is executed when the position where a relatively high air pressure acts on the piston is applied, and the electric charge of the storage means and the capacitor is supplied to the generator motor. As a result, the generator motor outputs a larger driving force and the startability of the engine can be improved. By using the capacitor to increase the supply charge, it is possible to increase the driving torque of the generator motor while suppressing the increase in weight. The second starting control is executed when the position where a relatively low air pressure acts on the piston is applied, and the electric charge of the power storage unit is supplied to the generator motor. It is possible to prevent unnecessary consumption of the electric charge charged in the capacitor.

請求項2の本発明によれば、前記ピストンの位置が不明な場合に、早期に前記エンジンの始動を行うことができる。 According to the present invention of claim 2, when the position of the piston is unknown, the engine can be started early.

請求項3の本発明によれば、比較的簡単な構成で電荷の供給態様を切り替えることができ、また、前記並列接続態様において前記コンデンサを前記蓄電手段によって充電することができる。 According to the third aspect of the present invention, the charge supply mode can be switched with a relatively simple structure, and the capacitor can be charged by the storage means in the parallel connection mode.

請求項4の本発明によれば、前記アイドルストップ制御から再始動する場合に前記ピストンの位置検知を不要にしつつ、前記ピストンの位置判定精度を向上できる。 According to the present invention of claim 4, the position determination accuracy of the piston can be improved while eliminating the position detection of the piston when restarting from the idle stop control.

請求項5の本発明によれば、前記発電電動機の回転角検知と前記ピストンの位置検知とで前記センサを兼用することができる。 According to the present invention of claim 5, the sensor can be used both for detecting the rotation angle of the generator motor and for detecting the position of the piston.

本発明を適用した車両の例の側面図。The side view of the example of the vehicle to which the present invention is applied. 図1のA−A線断面図。Sectional view on the AA line of FIG. 図1の車両の制御系のブロック図。The block diagram of the control system of the vehicle of FIG. 発電電動機等の制御回路の回路図。A circuit diagram of a control circuit of a generator motor, etc. 図4の制御回路の動作説明図。FIG. 5 is an operation explanatory diagram of the control circuit of FIG. 4. 図4の制御回路の動作説明図。FIG. 5 is an operation explanatory diagram of the control circuit of FIG. 4. 図4の制御回路の動作説明図。FIG. 5 is an operation explanatory diagram of the control circuit of FIG. 4. ピストンの位置判定の例を示す説明図。Explanatory drawing which shows the example of position determination of a piston. ECUが実行する処理例を示すフローチャート。The flowchart which shows the process example which ECU performs. ECUが実行する処理例を示すフローチャート。The flowchart which shows the process example which ECU performs. 発電電動機等の制御回路の他の構成例を示す回路図。The circuit diagram showing other examples of composition of a control circuit, such as a generator motor. 発電電動機等の制御回路の他の構成例を示す回路図。The circuit diagram showing other examples of composition of a control circuit, such as a generator motor. 図12の制御回路の動作説明図。FIG. 13 is an operation explanatory diagram of the control circuit of FIG. 12. 図12の制御回路の動作説明図。FIG. 13 is an operation explanatory diagram of the control circuit of FIG. 12. 図12の制御回路の動作説明図。FIG. 13 is an operation explanatory diagram of the control circuit of FIG. 12. 発電電動機等の制御回路の他の構成例を示す回路図。The circuit diagram showing other examples of composition of a control circuit, such as a generator motor.

図1は、本発明を適用した車両の一例として、スクータ型自動二輪車1の側面図を示す。車体前部と車体後部とは低床フロア部4を介して連結されている。車体フレームは、概ねダウンチューブ6とメインパイプ7とから構成されている。メインパイプ7の上方には、シート8が配置されている。 FIG. 1 shows a side view of a scooter type motorcycle 1 as an example of a vehicle to which the present invention is applied. The front portion of the vehicle body and the rear portion of the vehicle body are connected via a low floor portion 4. The vehicle body frame is generally composed of a down tube 6 and a main pipe 7. A seat 8 is arranged above the main pipe 7.

ハンドル11は、ヘッドパイプ5に軸支されて上方に延ばされており、一方の下方側には、前輪WFを回転自在に軸支するフロントフォーク12が取り付けられている。ハンドル11の上部には、計器盤を兼ねたハンドルカバー13が取り付けられている。また、ヘッドパイプ5の前方には、自動二輪車1の制御装置としてのECU80が配設されている。 The handle 11 is rotatably supported by the head pipe 5 and extends upward. A front fork 12 rotatably rotatably supporting the front wheel WF is attached to one lower side of the handle 11. A handle cover 13 that doubles as an instrument panel is attached to the upper portion of the handle 11. Further, in front of the head pipe 5, an ECU 80 is arranged as a control device of the motorcycle 1.

ダウンチューブ6の後端で、メインパイプ7の立ち上がり部には、ブラケット15が突設されている。ブラケット15には、スイングユニット2のハンガーブラケット18がリンク部材16を介して揺動自在に支持されている。 A bracket 15 is provided so as to project from the rear end of the down tube 6 to the rising portion of the main pipe 7. A hanger bracket 18 of the swing unit 2 is swingably supported by the bracket 15 via a link member 16.

スイングユニット2の前部には、4サイクル単気筒のエンジンEが配設されている。エンジンEの後方には無段変速機10が配設されており、減速機構9の出力軸には後輪WRが軸支されている。減速機構9の上端とメインパイプ7の屈曲部との間には、リヤショックユニット3が介装されている。スイングユニット2の上方には、エンジンEから延出した吸気管19に接続される燃料噴射装置のスロットルボディ20およびエアクリーナ14が配設されている。 A 4-cycle single-cylinder engine E is arranged at the front of the swing unit 2. A continuously variable transmission 10 is arranged behind the engine E, and a rear wheel WR is pivotally supported on an output shaft of the reduction mechanism 9. The rear shock unit 3 is interposed between the upper end of the speed reduction mechanism 9 and the bent portion of the main pipe 7. Above the swing unit 2, a throttle body 20 and an air cleaner 14 of a fuel injection device connected to an intake pipe 19 extending from the engine E are arranged.

図2は、図1のA−A線断面図である。スイングユニット2は、車幅方向右側の右ケース75および車幅方向左側の左ケース76なるクランクケース74を有する。クランク軸51は、クランクケース74に固定された軸受53、54により回転自在に支持されている。クランク軸51には、クランクピン52を介してコンロッド73が連結されている。 FIG. 2 is a sectional view taken along the line AA of FIG. The swing unit 2 has a right case 75 on the right side in the vehicle width direction and a crank case 74 that is a left case 76 on the left side in the vehicle width direction. The crankshaft 51 is rotatably supported by bearings 53 and 54 fixed to a crankcase 74 . A connecting rod 73 is connected to the crankshaft 51 via a crankpin 52.

左ケース76は変速室ケースを兼ねており、クランク軸51の左端部には、可動側プーリ半体60と固定側プーリ半体61とからなるベルト駆動プーリが取り付けられている。固定側プーリ半体61は、クランク軸51の左端部にナット77によって締結されている。また、可動側プーリ半体60は、クランク軸51にスプライン嵌合されて軸方向に摺動可能とされる。両プーリ半体60、61の間には、Vベルト62が巻き掛けられている。 The left case 76 also serves as a transmission chamber case, and a belt drive pulley including a movable pulley half body 60 and a fixed pulley half body 61 is attached to the left end of the crankshaft 51. The fixed pulley half 61 is fastened to the left end of the crankshaft 51 by a nut 77. Further, the movable pulley half body 60 is spline-fitted to the crankshaft 51 and is slidable in the axial direction. A V-belt 62 is wound around the two pulley halves 60 and 61.

可動側プーリ半体60の右側では、ランププレート57がクランク軸51に固定されている。ランププレート57の外周端部に取り付けられたスライドピース58は、可動側プーリ半体60の外周端で軸方向に形成されたランププレート摺動ボス部59に係合されている。また、ランププレート57の外周部には、径方向外側に向かうにつれて可動側プーリ半体60寄りに傾斜するテーパ面が形成されており、このテーパ面と可動側プーリ半体60との間に複数のウェイトローラ63が収容されている。 On the right side of the movable pulley half 60, a ramp plate 57 is fixed to the crankshaft 51. The slide piece 58 attached to the outer peripheral end of the ramp plate 57 is engaged with a ramp plate sliding boss 59 formed in the axial direction at the outer peripheral end of the movable pulley half body 60. Further, on the outer peripheral portion of the ramp plate 57, a tapered surface is formed which is inclined toward the movable pulley half body 60 toward the outer side in the radial direction. A plurality of tapered surfaces are formed between the tapered surface and the movable pulley half body 60. The weight roller 63 is accommodated.

クランク軸51の回転速度が増加すると、遠心力によってウェイトローラ63が径方向外側に移動する。これにより、可動側プーリ半体60が図示左方に移動して固定側プーリ半体61に接近し、その結果、両プーリ半体60、61間に挟まれたVベルト62が径方向外側に移動してその巻き掛け径が大きくなる。スイングユニット2の後方側には、両プーリ半体60、61に対応してVベルト62の巻き掛け径が可変する被動プーリ(不図示)が設けられている。エンジンEの駆動力は、上記ベルト伝達機構によって自動調整され、不図示の遠心クラッチおよび減速機構9(図1参照)を介して後輪WRに伝達される。 When the rotation speed of the crankshaft 51 increases, the weight roller 63 moves radially outward due to the centrifugal force. As a result, the movable pulley half body 60 moves leftward in the drawing to approach the fixed pulley half body 61, and as a result, the V-belt 62 sandwiched between the pulley half bodies 60, 61 moves radially outward. It moves to increase the winding diameter. A driven pulley (not shown) in which the winding diameter of the V belt 62 is variable is provided on the rear side of the swing unit 2 in correspondence with both pulley halves 60 and 61. The driving force of the engine E is automatically adjusted by the belt transmission mechanism and is transmitted to the rear wheels WR via a centrifugal clutch and a reduction mechanism 9 (see FIG. 1) (not shown).

右ケース75の内部には、発電電動機70が配設されている。発電電動機70はエンジンEの始動時や加速アシスト時にクランク軸51を回転駆動するモータとして機能するとともに、エンジンEの運転中にクランク軸51の回転から回生起電力を生成するジェネレータとして機能する。 The generator motor 70 is disposed inside the right case 75. The generator motor 70 functions as a motor that rotationally drives the crankshaft 51 at the time of starting the engine E or assisting acceleration, and also functions as a generator that generates regenerative electromotive force from the rotation of the crankshaft 51 during operation of the engine E.

発電電動機70は、クランク軸51の先端テーパ部に取付ボルト120で固定されたアウタロータ71と、アウタロータ71の内側に配設されて右ケース75に取付ボルト121で固定されるステータ72とから構成されている。アウタロータ71に対して取付ボルト67で固定される送風ファン65の図示右方側には、ラジエータ68および複数のスリットが形成されたカバー部材69が取り付けられている。 The generator motor 70 is composed of an outer rotor 71 fixed to the tapered portion of the crankshaft 51 with a mounting bolt 120, and a stator 72 disposed inside the outer rotor 71 and fixed to the right case 75 with a mounting bolt 121. ing. A radiator 68 and a cover member 69 having a plurality of slits are attached to the right side in the drawing of the blower fan 65 fixed to the outer rotor 71 with a mounting bolt 67.

クランク軸51には、発電電動機70と軸受54との間に、スプロケット55が固定されている。スプロケット55には、不図示のカムシャフトを駆動するカムチェーンが巻き掛けられる。また、スプロケット55は、エンジンオイルを循環させるオイルポンプ(不図示)に動力を伝達するギヤ56と一体的に形成されている。 A sprocket 55 is fixed to the crankshaft 51 between the generator motor 70 and the bearing 54. A cam chain that drives a cam shaft (not shown) is wound around the sprocket 55. The sprocket 55 is integrally formed with a gear 56 that transmits power to an oil pump (not shown) that circulates engine oil.

図3は自動二輪車1の制御系の構成を示すブロック図である。ECU80はCPU等のプロセッサ、ROM、RAM等の記憶デバイス、外部デバイスとの間で信号の送信、受信を行うインタフェースを含む。ECU80には、ライダが操作するスイッチ30、各種のセンサSRが接続され、それらの検知結果に基づいて、燃料噴射装置40、点火装置41、発電電動機70、灯火器42、表示器43、リレー44等を制御する。 FIG. 3 is a block diagram showing the configuration of the control system of the motorcycle 1. The ECU 80 includes a processor such as a CPU, a storage device such as a ROM and a RAM, and an interface that transmits and receives signals to and from an external device. A switch 30 operated by a rider and various sensors SR are connected to the ECU 80, and based on the detection results thereof, the fuel injection device 40, the ignition device 41, the generator motor 70, the lighting device 42, the display device 43, the relay 44. Etc.

スイッチ30には、例えば、自動二輪車1の主電源のON/OFFを切り替えるメインスイッチやエンジンEの始動を指示するスタータスイッチ、アイドルストップ制御を許可するか否かを指示するアイドルストップ制御許可スイッチ等が含まれる。 The switch 30 is, for example, a main switch for switching ON/OFF of the main power source of the motorcycle 1, a starter switch for instructing the start of the engine E, an idle stop control permission switch for instructing whether or not idle stop control is permitted, and the like. Is included.

センサSRには、ライダのアクセル操作を検知するスロットルセンサ31、クランク軸51の回転角を検知するクランク角センサ32、エンジンEの冷却水温度を検知する水温センサ33、自動二輪車1の車速を検知する車速センサ34、発電電動機70の回転角を検知する回転角センサ35、ライダがシート8に着座しているか否かを検知する着座センサ36、吸気圧を検知する吸気圧センサ37等が含まれる。 The sensor SR includes a throttle sensor 31 for detecting an accelerator operation of a rider, a crank angle sensor 32 for detecting a rotation angle of the crankshaft 51, a water temperature sensor 33 for detecting a cooling water temperature of the engine E, and a vehicle speed of the motorcycle 1. A vehicle speed sensor 34, a rotation angle sensor 35 for detecting the rotation angle of the generator motor 70, a seating sensor 36 for detecting whether or not the rider is seated on the seat 8, an intake pressure sensor 37 for detecting intake pressure, and the like are included. ..

自動二輪車1は、信号待ち等の停車時に所定条件を満たすとエンジンEを一旦停止させるアイドルストップ制御が実行されてもよい。ECU80はアイドルストップ制御許可スイッチや着座センサ36の検知結果によりアイドルストップ制御を実行するか否かを判定してもよい。アイドルストップを開始する所定条件は、例えば、アイドルストップ制御許可スイッチがオン(許可)で、かつ着座スセンサ36でライダの着座が検知され、車速センサ34で検知される車速が所定値(例えば、5km/h)以下で、かつクランク角センサ32で検知されるエンジン回転数が所定値(例えば、2000rpm)以下で、かつスロットルセンサ31で検知されるスロットル開度が所定値(例えば、5度)以下の状態において所定時間が経過した場合である。アイドルストップ後のエンジンEの再始動条件は、例えば、スロットル開度が所定値以上の場合である。 The motorcycle 1 may execute an idle stop control in which the engine E is temporarily stopped when a predetermined condition is satisfied when the vehicle is stopped such as waiting for a signal. The ECU 80 may determine whether to execute the idle stop control based on the detection results of the idle stop control permission switch and the seating sensor 36. The predetermined condition for starting the idle stop is, for example, that the idle stop control permission switch is on (permitted), the seating sensor 36 detects the rider's seating, and the vehicle speed detected by the vehicle speed sensor 34 is a predetermined value (for example, 5 km. /H) or less, the engine speed detected by the crank angle sensor 32 is a predetermined value (for example, 2000 rpm) or less, and the throttle opening detected by the throttle sensor 31 is a predetermined value (for example, 5 degrees) or less. This is a case where a predetermined time has elapsed in the state of. The restart condition of the engine E after the idle stop is, for example, when the throttle opening is equal to or larger than a predetermined value.

燃料噴射装置40はエンジンEの吸入空気に燃料を噴射する。点火装置41はエンジンE内の混合気を点火する。灯火器42は例えばヘッドライトである。表示器43はメータ、各種インジケータ等、ライダに情報を表示する装置である。リレー44は例えばエンジンEを始動する際にONにされるスタータリレーである。 The fuel injection device 40 injects fuel into intake air of the engine E. The ignition device 41 ignites the air-fuel mixture in the engine E. The lighting device 42 is, for example, a headlight. The display 43 is a device such as a meter and various indicators that displays information on the rider. The relay 44 is, for example, a starter relay that is turned on when the engine E is started.

図4を参照して発電電動機70及びその駆動回路について説明する。本実施形態の場合、発電電動機70は三相巻線が巻きまわされたステータを備える三相ブラシレスモータ発電機である。発電電動機70にはこれを駆動するインバータ90が接続されている。インバータ90はインバータ90はブリッジ接続された複数のスイッチング素子91a〜91c(総称するときはスイッチング素子91という。)及びスイッチング素子92a〜92c(総称するときはスイッチング素子92という。)を備え、全波整流ブリッジ回路を構成する。 The generator motor 70 and its drive circuit will be described with reference to FIG. In the case of the present embodiment, the generator motor 70 is a three-phase brushless motor generator including a stator around which a three-phase winding is wound. An inverter 90 for driving the generator motor 70 is connected to the generator motor 70. The inverter 90 includes a plurality of bridge-connected switching elements 91a to 91c (collectively referred to as switching element 91) and switching elements 92a to 92c (collectively referred to as switching element 92), and full wave. Configure a rectifying bridge circuit.

スイッチング素子91及び92は、本実施形態の場合、N型のMOSFETであり、ドレインD、ソースS、ゲートG及び寄生ダイオードDiを有する。スイッチング素子91aとスイッチング素子92aの組は、ハイ側の配線90aとロー側の配線90bとの間で直列に接続されて、レグを構成する。スイッチング素子91bとスイッチング素子92bの組及びスイッチング素子91cとスイッチング素子92cの組も同様であり、それぞれレグを構成する。このようにインバータ90は、スイッチング素子91をハイサイドアーム、スイッチング素子92をローサイドアームとする、並列接続された3組のレグを有しており、スイッチング素子91とスイッチング素子92との各接続点に、発電電動機70の対応する相のコイルが接続されている。 In the case of this embodiment, the switching elements 91 and 92 are N-type MOSFETs, and have a drain D, a source S, a gate G, and a parasitic diode Di. The set of the switching element 91a and the switching element 92a is connected in series between the high-side wiring 90a and the low-side wiring 90b to form a leg. The same applies to the set of the switching element 91b and the switching element 92b and the set of the switching element 91c and the switching element 92c, and each constitutes a leg. As described above, the inverter 90 has three sets of legs that are connected in parallel and have the switching element 91 as the high side arm and the switching element 92 as the low side arm, and each connection point between the switching element 91 and the switching element 92. The coil of the corresponding phase of the generator motor 70 is connected to the.

配線90aと配線90bとの間には、直列に接続された平滑コンデンサ93及びスイッチング素子94が設けられている。スイッチング素子94は、本実施形態の場合、スイッチング素子91及び92と同様にMOSFETである。スイッチング素子94は、例えば、発電電動機70をジェネレータとして機能させる場合にONとされ、平滑コンデンサ93によって発電電圧が平滑化される。 A smoothing capacitor 93 and a switching element 94 connected in series are provided between the wiring 90a and the wiring 90b. In the case of this embodiment, the switching element 94 is a MOSFET like the switching elements 91 and 92. The switching element 94 is turned on, for example, when the generator motor 70 functions as a generator, and the generated voltage is smoothed by the smoothing capacitor 93.

スイッチング素子91、92及び94の各ゲートGにはECU80から送出される制御信号が入力され、これら各素子のON/OFF制御が実行される。 A control signal sent from the ECU 80 is input to each gate G of the switching elements 91, 92 and 94, and ON/OFF control of each of these elements is executed.

電圧供給回路45は、インバータ90を介して発電電動機70に電力を供給する電源である。電圧供給回路45は、蓄電素子46、47及び切替回路100を含む。 The voltage supply circuit 45 is a power supply that supplies electric power to the generator motor 70 via the inverter 90. The voltage supply circuit 45 includes power storage elements 46 and 47 and a switching circuit 100.

蓄電素子46は自動二輪車1の主電源である。蓄電素子46は本実施形態の場合、公称電圧が12Vの鉛バッテリである。蓄電素子46は、モータとして機能させる場合の発電電動機70、ECU80、負荷81等、自動二輪車1の各電気部品に電力を供給する。負荷81は例えば灯火器42等の、自動二輪車1の電装部品が含まれる。蓄電素子46の正極は、配線112b及びリレー110を介してインバータ90の配線90aに接続されている。蓄電素子46の負極はグランドに接続されている。ECU80及び負荷81は、ヒューズ113a、スイッチ111及びヒューズ113bを介して蓄電素子46に並列に接続されている。なお、ECU80等には蓄電素子46の電圧を変換して供給するコンバータ等が設けられる。スイッチ111は、ライダが操作するメインスイッチ、或いは、メインスイッチに連動してON/OFFされるリレースイッチである。スイッチ111がONの状態で、エンジンEの始動操作が行われると、ECU80はリレー110を制御して接点110b側をONとし、エンジンEの始動後には接点110a側をONとする。 The power storage element 46 is the main power source of the motorcycle 1. In the case of this embodiment, the storage element 46 is a lead battery having a nominal voltage of 12V. The storage element 46 supplies electric power to each electric component of the motorcycle 1, such as the generator motor 70, the ECU 80, and the load 81 when functioning as a motor. The load 81 includes electric components of the motorcycle 1, such as the lighting device 42. The positive electrode of the storage element 46 is connected to the wiring 90a of the inverter 90 via the wiring 112b and the relay 110. The negative electrode of the storage element 46 is connected to the ground. The ECU 80 and the load 81 are connected in parallel to the storage element 46 via the fuse 113a, the switch 111, and the fuse 113b. It should be noted that the ECU 80 and the like are provided with a converter or the like that converts and supplies the voltage of the storage element 46. The switch 111 is a main switch operated by the rider, or a relay switch that is turned on/off in conjunction with the main switch. When the engine E is started while the switch 111 is on, the ECU 80 controls the relay 110 to turn on the contact 110b side, and after the engine E is started, turns on the contact 110a side.

蓄電素子47は、モータとして機能させる場合の発電電動機70の補助的な電源である。蓄電素子47は本実施形態の場合、コンデンサであって、例えば、リチウムイオンキャパシタ、導電性高分子コンデンサ、電気二重層キャパシタ等を利用できる。コンデンサの定格電圧は蓄電素子46の公称電圧(ここでは12V)以上である。 The power storage element 47 is an auxiliary power source of the generator motor 70 when it functions as a motor. In the present embodiment, the storage element 47 is a capacitor, and for example, a lithium ion capacitor, a conductive polymer capacitor, an electric double layer capacitor, or the like can be used. The rated voltage of the capacitor is equal to or higher than the nominal voltage of the storage element 46 (here, 12 V).

切替回路100は、蓄電素子46及び47と、インバータ90との接続状態を切り替える回路である。本実施形態の場合、切替回路100は複数のスイッチング素子101〜103を備える。本実施形態の場合、スイッチング素子101〜103はスイッチング素子91及び92と同様にMOSFETである。 The switching circuit 100 is a circuit that switches the connection state between the storage elements 46 and 47 and the inverter 90. In the case of this embodiment, the switching circuit 100 includes a plurality of switching elements 101 to 103. In the case of the present embodiment, the switching elements 101 to 103 are MOSFETs like the switching elements 91 and 92.

スイッチング素子102とスイッチング素子103は配線112bとグランドの間に直列に接続されている。蓄電素子47の負極は、スイッチング素子102とスイッチング素子103との接続点に接続され、正極が配線112cに接続されている。スイッチング素子101は、蓄電素子47とスイッチング素子102との間において配線112bを断続するように設けられ、そのドレインDが蓄電素子47の正極に、そのソースSがスイッチング素子102のドレイン及び蓄電素子46の正極に、それぞれ接続されている。 The switching element 102 and the switching element 103 are connected in series between the wiring 112b and the ground. The negative electrode of the power storage element 47 is connected to the connection point between the switching element 102 and the switching element 103, and the positive electrode is connected to the wiring 112c. Switching element 101 is provided so as to connect and disconnect wiring 112b between power storage element 47 and switching element 102, and its drain D is the positive electrode of power storage element 47 and its source S is the drain of switching element 102 and power storage element 46. Are respectively connected to the positive electrodes of.

スイッチング素子101〜103のON/OFFを切り替えることにより、蓄電素子46と蓄電素子47との接続状態、並びに、これらと発電電動機70(インバータ90)との接続状態を、大別すると二つの接続態様に切り替えることができる。スイッチング素子101〜103の各ゲートGにはECU80から送出される制御信号が入力され、これら各素子のON/OFF制御が実行される。比較的簡単な回路構成で発電電動機70に対する供給電圧を切り替えることができる。 By switching ON/OFF of the switching elements 101 to 103, the connection state between the power storage element 46 and the power storage element 47 and the connection state between these and the generator motor 70 (inverter 90) can be roughly divided into two connection modes. You can switch to. A control signal sent from the ECU 80 is input to each gate G of the switching elements 101 to 103, and ON/OFF control of each of these elements is executed. The supply voltage to the generator motor 70 can be switched with a relatively simple circuit configuration.

接続態様の一つは並列接続態様である。この接続態様では、並列に接続された蓄電素子46及び47がインバータ90に並列に接続される。発電電動機70(インバーター90)には蓄電素子46の電荷(換言すると蓄電素子46の電圧)が供給される。接続態様の他の一つは直列接続態様である。この接続態様では、直列に接続された蓄電素子46及び47がインバータ90に並列に接続される。発電電動機70(インバーター90)には蓄電素子46及び47の電荷(換言すると蓄電素子46の電圧と蓄電素子47の電圧との和の電圧)が供給される。 One of the connection modes is a parallel connection mode. In this connection mode, the storage elements 46 and 47 connected in parallel are connected in parallel to the inverter 90. The generator motor 70 (inverter 90) is supplied with the electric charge of the storage element 46 (in other words, the voltage of the storage element 46). Another one of the connection modes is a serial connection mode. In this connection mode, the storage elements 46 and 47 connected in series are connected in parallel to the inverter 90. The generator motor 70 (inverter 90) is supplied with the charges of the storage elements 46 and 47 (in other words, the sum of the voltage of the storage element 46 and the voltage of the storage element 47).

図5は並列接続態様の例を示している。スイッチング素子103がON、スイッチング素子101及び102がOFFとされる。この接続態様では、蓄電素子46の電荷、つまり、蓄電素子46の電圧(ここでは12V)を発電電動機70に供給することができる。また、この接続態様の場合、蓄電素子46で蓄電素子47を充電することができる。太線矢印は電流の流れを例示している。スイッチング素子101では寄生ダイオードDiを電流が流れる。蓄電素子47が蓄電素子46と同電位に充電される。蓄電素子47の容量は蓄電素子46によって数十ミリSecで満充電できる程度の容量であってもよい。 FIG. 5 shows an example of a parallel connection mode. The switching element 103 is turned on and the switching elements 101 and 102 are turned off. In this connection mode, the charge of the storage element 46, that is, the voltage of the storage element 46 (here, 12 V) can be supplied to the generator motor 70. In the case of this connection mode, the power storage element 47 can be charged by the power storage element 46. Thick line arrows exemplify the flow of current. In the switching element 101, a current flows through the parasitic diode Di. Power storage element 47 is charged to the same potential as power storage element 46. The storage element 47 may have a capacity such that the storage element 46 can be fully charged in several tens of millimeters Sec.

図6は並列接続態様の別の例を示している。スイッチング素子101及びスイッチング素子103がON、スイッチング素子102がOFFとされる。この接続態様の場合、発電電動機70をジェネレータとして機能させて蓄電素子46及び47を充電することができ、太線矢印はその場合の電流の流れを例示している。 FIG. 6 shows another example of the parallel connection mode. The switching element 101 and the switching element 103 are turned on, and the switching element 102 is turned off. In the case of this connection mode, the generator motor 70 can function as a generator to charge the storage elements 46 and 47, and the thick arrows exemplify the current flow in that case.

図7は直列接続態様の例を示している。スイッチング素子101及び103がOFF、スイッチング素子102がONとされる。この接続態様の場合、直列に接続された蓄電素子46及び47の各電荷、つまり、各電圧の和の電圧で発電電動機70を駆動することができ、発電電動機70により大きな電力を供給できる。本実施形態の場合、図5の並列接続態様において蓄電素子47が充電されると、蓄電素子47の電位が蓄電素子46の電位と同電位とされ、これを直列に接続することで、蓄電素子46の二倍の電位差の電圧を発電電動機70に供給できる。 FIG. 7 shows an example of a serial connection mode. The switching elements 101 and 103 are turned off, and the switching element 102 is turned on. In the case of this connection mode, the generator motor 70 can be driven by each charge of the storage elements 46 and 47 connected in series, that is, the sum of the voltages, and a large amount of power can be supplied to the generator motor 70. In the case of this embodiment, when the storage element 47 is charged in the parallel connection mode of FIG. 5, the potential of the storage element 47 becomes the same potential as the potential of the storage element 46, and by connecting this in series, the storage element A voltage having a potential difference twice as large as 46 can be supplied to the generator motor 70.

<ピストンの位置の検知と電圧の切替>
本実施形態では、エンジンEの始動の際、発電電動機70に供給する電圧をエンジンEのピストンの位置を判定して切り替える。ピストンの位置の検知方法に制限はないが、その一例を図8を参照して説明する。
<Detection of piston position and switching of voltage>
In the present embodiment, when the engine E is started, the voltage supplied to the generator motor 70 is switched by determining the position of the piston of the engine E. There is no limitation on the method of detecting the position of the piston, but an example thereof will be described with reference to FIG.

図8の例は、吸気圧センサ37、クランク角センサ32及び回転角センサ35の検知結果からピストンの位置を判定する例を示している。これらセンサをピストンの位置検知に兼用することで部品数を削減できる。 The example of FIG. 8 shows an example in which the position of the piston is determined from the detection results of the intake pressure sensor 37, the crank angle sensor 32, and the rotation angle sensor 35. The number of parts can be reduced by using these sensors also for detecting the position of the piston.

エンジンEの行程判定は吸気圧センサ37の検知結果に基づいて行うことができる。クランク角センサ32は、本実施形態の場合、クランク軸51に設けられたパルサロータと、パルサロータの歯部を検知する磁気センサとから構成される。パルサロータは、周方向に22.5度の検知幅を有する4個の短リラクタと、周方向に82.5度の検知幅を有する1個の長リラクタとを、37.5度間隔で配置した形状とされている。 The stroke determination of the engine E can be performed based on the detection result of the intake pressure sensor 37. In the case of the present embodiment, the crank angle sensor 32 is composed of a pulsar rotor provided on the crankshaft 51 and a magnetic sensor for detecting a tooth portion of the pulsar rotor. The pulsar rotor has four short reluctors having a detection width of 22.5 degrees in the circumferential direction and one long reluctor having a detection width of 82.5 degrees in the circumferential direction, which are arranged at intervals of 37.5 degrees. It is shaped.

回転角センサ35は、発電電動機70が備えるロータに設けられた永久磁石を被検知体とし、その回転に伴う磁束変化を検知するセンサであり、ここでは、U相、V相、W相の各相に対応する3つのホール素子によって構成されている。回転角センサ35は、W相、U相、V相が、それぞれ30度幅のパルス信号を30度間隔で出力するように構成されている。これによりクランク軸51の回転角を10度毎に検知できる。 The rotation angle sensor 35 is a sensor that detects a change in magnetic flux due to the rotation of a permanent magnet provided on a rotor included in the generator motor 70 as a detected body. Here, each of the U phase, the V phase, and the W phase It is composed of three Hall elements corresponding to the phases. The rotation angle sensor 35 is configured to output a pulse signal having a width of 30 degrees for each of the W phase, the U phase, and the V phase at intervals of 30 degrees. Thereby, the rotation angle of the crankshaft 51 can be detected every 10 degrees.

クランク軸51の回転角とパルサロータの各歯部及び回転角センサ35とは図8に例示するように一定の位置関係にあり、クランク角センサ32及び回転角センサ35の検知結果からクランク軸51の回転角を判定できる。更に、吸気圧センサ37の検知結果からエンジンEの行程判定を行うことができる。したがって、これらの判定結果によりエンジンEのピストンの位置を判定することができる。本実施形態ではピストンの位置が圧縮上死点の場合にクランク角が0度になるように設定されている。なお、センサの構成によっては、ピストン位置の判定に用いるセンサ数を減らすことができる。例えば、行程も含めてクランク角の絶対角を検知可能なセンサを採用した場合、吸気圧センサ37や回転角センサ35はピストンの位置判定に必須ではない場合がある。 The rotation angle of the crankshaft 51 and the teeth of the pulsar rotor and the rotation angle sensor 35 have a fixed positional relationship as illustrated in FIG. 8, and from the detection results of the crank angle sensor 32 and the rotation angle sensor 35 , the crankshaft 51 The rotation angle can be determined. Furthermore, the stroke of the engine E can be determined from the detection result of the intake pressure sensor 37. Therefore, the position of the piston of the engine E can be determined based on these determination results. In this embodiment, the crank angle is set to 0 degree when the piston position is at compression top dead center. Depending on the sensor configuration, the number of sensors used to determine the piston position can be reduced. For example, when a sensor capable of detecting the absolute angle of the crank angle including the stroke is adopted, the intake pressure sensor 37 and the rotation angle sensor 35 may not be essential for the piston position determination.

エンジンEのピストンの位置が圧縮行程にある場合、エンジンEのシリンダ内の空気圧に抗してピストンが圧縮行程を乗り越える必要がある。本実施形態ではピストンが圧縮行程の所定の領域(図8において一例として示す増圧領域。)に位置していると判定した場合は図7の直列接続態様を採用する。ピストンに対して相対的に高い空気圧が作用する位置の場合には蓄電素子46の電圧と蓄電素子47の電荷(和の電圧)が発電電動機70に供給される。これにより、発電電動機70がより大きな駆動力を出力し、エンジンEの始動性を向上できる。供給電荷増大のために蓄電素子47としてコンデンサを用いることで、重量増を抑制しつつ発電電動機70の駆動トルクを増大させることができる。 When the position of the piston of the engine E is in the compression stroke, the piston needs to overcome the compression stroke against the air pressure in the cylinder of the engine E. In this embodiment, when it is determined that the piston is located in a predetermined region of the compression stroke (a pressure increasing region shown as an example in FIG. 8), the serial connection mode of FIG. 7 is adopted. In the position where a relatively high air pressure acts on the piston, the voltage of the storage element 46 and the charge (the sum voltage) of the storage element 47 are supplied to the generator motor 70. As a result, the generator motor 70 outputs a larger driving force and the startability of the engine E can be improved. By using a capacitor as the storage element 47 for increasing the supply charge, the drive torque of the generator motor 70 can be increased while suppressing the increase in weight.

ピストンが増圧領域に位置していないと判定した場合は図5の並列接続態様を採用する。ピストンに対して相対的に低い空気圧が作用する位置の場合には蓄電素子46の電荷(電圧)が発電電動機70に供給される。蓄電素子47に充電された電荷を不必要に消費することを防止できる。 When it is determined that the piston is not located in the pressure boosting region, the parallel connection mode of FIG. 5 is adopted. In the position where a relatively low air pressure acts on the piston, the electric charge (voltage) of the storage element 46 is supplied to the generator motor 70. Unnecessary consumption of the electric charge charged in the storage element 47 can be prevented.

増圧領域は、圧縮上死点から、圧縮下死点側へ、所定のクランク角の範囲とすることができ、図8の例のように圧縮上死点を0度とすると、例えば、0度〜−120度(240度)の範囲、より狭い範囲とする場合、0度〜−60度(300度)の範囲、或いは、0度〜−30度(330度)の範囲とすることができる。図8の例では、増圧領域を0度〜−60度(300度)の範囲としている。 The pressure boosting region can be set to a range of a predetermined crank angle from the compression top dead center to the compression bottom dead center side. When the compression top dead center is 0 degree as in the example of FIG. 0 to -60 degrees (300 degrees), or 0 to -30 degrees (330 degrees). it can. In the example of FIG. 8, the pressure increase region is in the range of 0 degree to −60 degrees (300 degrees).

なお、本実施形態の場合、単気筒エンジンを例示したが多気筒エンジンにも同様の制御を適用可能であり、その場合、いずれかのピストンの位置が増圧領域にあるか否かにより制御を切り替えればよい。 In addition, in the case of the present embodiment, the single cylinder engine is illustrated, but the same control can be applied to a multi-cylinder engine, and in that case, the control is performed depending on whether or not one of the piston positions is in the pressure increasing region. Just switch.

<制御例>
ECU80によるエンジンEの始動制御例について図9を参照して説明する。図9は自動二輪車1のメインスイッチがONとされた場合に実行される処理例を示しており、特に、エンジンEを始動する場合の処理を例示している。
<Control example>
An example of starting control of the engine E by the ECU 80 will be described with reference to FIG. FIG. 9 shows an example of processing executed when the main switch of the motorcycle 1 is turned on, and particularly illustrates processing executed when the engine E is started.

S1では切替回路100を図5の並列接続態様に制御する。これにより蓄電素子47を蓄電素子46で充電できる。自動二輪車1の停車中に蓄電素子47は放電して空になっている場合が想定される。そこで本実施形態では、まず、蓄電素子47を充電するようにしている。 In S1, the switching circuit 100 is controlled in the parallel connection mode of FIG. This allows the storage element 47 to be charged by the storage element 46. It is assumed that the storage element 47 is discharged and emptied while the motorcycle 1 is stopped. Therefore, in the present embodiment, first, the storage element 47 is charged.

S2ではスタータスイッチがONとされたか否かを判定する。ONとされた場合、S3へ進む。S3では切替回路100を図7の直列接続態様に切り替えた始動制御を行う。これにより、発電電動機70に対してより大きな電力を供給可能となる。 In S2, it is determined whether the starter switch is turned on. If it is turned on, the process proceeds to S3. In S3, the start control is performed by switching the switching circuit 100 to the serial connection mode of FIG. As a result, it becomes possible to supply more electric power to the generator motor 70.

ここで、図8に例示したピストンの位置の検知のための構成例の場合、エンジンEをある程度回転させて各検知結果を取得する必要がある。また、自動二輪車1がアイドルストップではなく停車された場合、エンジンEの始動段階ではピストンの位置が不明である。そこで、ピストンの位置を判定するために発電電動機70によりエンジンEをある程度回転させる必要がある。その際、図5の並列接続態様での発電電動機70の駆動も可能であるが、ピストンの位置が図8の増圧領域にある場合、空気圧に打ち勝って圧縮上死点を乗り越えることが困難な場合がある。そこで、本実施形態ではS3では切替回路100を図7の直列接続態様に制御している。このような制御により、ピストンの位置が不明な始動時に、早期にエンジンEの始動を行うことができる。 Here, in the case of the configuration example for detecting the piston position illustrated in FIG. 8, it is necessary to rotate the engine E to some extent and acquire each detection result. Further, when the motorcycle 1 is stopped instead of idle stop, the position of the piston is unknown at the starting stage of the engine E. Therefore, it is necessary to rotate the engine E to some extent by the generator motor 70 in order to determine the position of the piston. At that time, although it is possible to drive the generator motor 70 in the parallel connection mode of FIG. 5, it is difficult to overcome the air pressure and overcome the compression top dead center when the position of the piston is in the pressure increasing region of FIG. There are cases. Therefore, in the present embodiment, the switching circuit 100 is controlled in the series connection mode of FIG. 7 in S3. By such control, the engine E can be started early when the piston position is unknown.

なお、スタータスイッチがONとされたときに蓄電素子47の充電量が不十分な場合がある。その場合、蓄電素子47の充電量が規定量に達するまで、S1の並列接続態様を維持してもよい。蓄電素子47の充電量が規定量に達したか否かは、並列接続態様の経過時間が規定時間に達したか否かを基準としてもよいし、蓄電素子47の充電量を検知するセンサを設け、そのセンサの検知結果を基準としてもよい。 The charge amount of the storage element 47 may be insufficient when the starter switch is turned on. In that case, the parallel connection mode of S1 may be maintained until the charge amount of the power storage element 47 reaches a specified amount. Whether or not the charge amount of the storage element 47 has reached the specified amount may be based on whether or not the elapsed time in the parallel connection mode has reached the specified time, or a sensor that detects the charge amount of the storage element 47 may be used. It may be provided and the detection result of the sensor may be used as a reference.

S4ではインバータ90を制御して発電電動機70を回転駆動しつつ、エンジンEを始動する。発電電動機70にはより大きな電力が供給されるので、エンジンEをよりスムーズに始動させることが可能となる。 In S4, the engine E is started while controlling the inverter 90 to drive the generator motor 70 to rotate. Since more electric power is supplied to the generator motor 70, the engine E can be started more smoothly.

S5では吸気圧センサ37、クランク角センサ32及び回転角センサ35の検知結果を取得する。S6ではS5で取得した検知結果からピストンの位置が増圧領域にあるか否かを判定する。S7ではS6の判定の結果、ピストンの位置が増圧領域にある場合はS8へ進み、増圧領域にない場合はS9へ進む。 In S5, the detection results of the intake pressure sensor 37, the crank angle sensor 32, and the rotation angle sensor 35 are acquired. In S6, it is determined from the detection result obtained in S5 whether the position of the piston is in the pressure increasing region. In S7, as a result of the determination in S6, if the piston position is in the pressure increasing region, the process proceeds to S8, and if it is not in the pressure increasing region, the process proceeds to S9.

S8では切替回路100を図7の直列接続態様に切り替えた始動制御を行う(既に直列接続態様であった場合はそのまま維持する)。S9では切替回路100を図5の並列接続態様に切り替えた始動制御を行う。 In step S8, the start control is performed by switching the switching circuit 100 to the series connection mode of FIG. In S9, the start control is performed by switching the switching circuit 100 to the parallel connection mode of FIG.

S10ではエンジンEの始動に成功したか否かを判定する。エンジンEの始動に成功したか否かは例えばクランク角センサ32の検知結果から判定することができる。始動に成功したと判定した場合はS11へ進む。始動していないと判定した場合はS5へ戻り、同様の処理を繰り返す。S8とS9の処理によりピストンの位置に応じて、発電電動機70に供給される電圧が切り替えられることになる。 In S10, it is determined whether the engine E has been successfully started. Whether or not the engine E has been successfully started can be determined, for example, from the detection result of the crank angle sensor 32. If it is determined that the start is successful, the process proceeds to S11. If it is determined that the engine has not started, the process returns to S5 and the same processing is repeated. By the processes of S8 and S9, the voltage supplied to the generator motor 70 is switched according to the position of the piston.

S11では切替回路100を図6の並列接続態様に制御する。発電電動機70はジェネレータとして機能させ、その発電により蓄電素子46を充電しつつ、負荷81に電力を供給することができる。以上により一回の処理が終了する。 In S11, the switching circuit 100 is controlled in the parallel connection mode of FIG. The generator motor 70 can function as a generator, and can generate electric power to charge the storage element 46 and supply electric power to the load 81. With the above, one processing is completed.

次に、図10はエンジンEのアイドルストップ制御後、再始動する場合の処理例を例示している。S21ではアイドルストップを開始する条件が成立したか否かを判定する。この条件の例は上述した通りである。成立した場合はS22へ進み、成立していない場合は一回の処理を終了する。 Next, FIG. 10 illustrates a processing example in the case where the engine E is restarted after the idle stop control. In S21, it is determined whether or not the condition for starting the idle stop is satisfied. An example of this condition is as described above. When it is established, the process proceeds to S22, and when it is not established, one processing is ended.

S22ではエンジンEを停止する。S23ではエンジンEの停止の直前の吸気圧センサ37、クランク角センサ32及び回転角センサ35の検知結果に基づいてピストンの位置を判定し、その判定結果を示す情報をECU80が備えるメモリに保存する。 In S22, the engine E is stopped. In S23, the position of the piston is determined based on the detection results of the intake pressure sensor 37, the crank angle sensor 32, and the rotation angle sensor 35 immediately before the engine E is stopped, and the information indicating the determination result is stored in the memory provided in the ECU 80. ..

S24では再始動条件が成立したか否かを判定する。再始動条件は、例えば、ブレーキOFFで、かつ、アクセルONである。S25ではS23で保存したピストンの位置情報を読み出す。S26ではS25で読み出した位置情報に基づいて、ピストンが増圧領域にあるか否かを判定する。ピストンの位置が増圧領域にある場合はS27へ進み、増圧領域にない場合はS28へ進む。 In S24, it is determined whether or not the restart condition is satisfied. The restart condition is, for example, brake OFF and accelerator ON. In S25 reads the position information of the piston and stored at S 23. In S26, it is determined whether or not the piston is in the pressure increasing region based on the position information read in S25. When the position of the piston is in the pressure increasing region, the process proceeds to S27, and when it is not in the pressure increasing region, the process proceeds to S28.

S27では切替回路100を図7の直列接続態様に切り替えた始動制御を行う。S28では切替回路100を図5の並列接続態様に切り替えた始動制御を行う。S29ではエンジンEを再始動し、S30ではエンジンEの再始動に成功したか否かを判定する。エンジンEの再始動に成功したか否かは例えばクランク角センサ32の検知結果から判定することができる。再始動に成功したと判定した場合はS31へ進み、始動していないと判定した場合はS32へ進む。 In S27, the start control is performed by switching the switching circuit 100 to the serial connection mode of FIG. In S28, the start control is performed by switching the switching circuit 100 to the parallel connection mode of FIG. In S29, the engine E is restarted, and in S30, it is determined whether or not the restart of the engine E is successful. Whether or not the engine E has been restarted successfully can be determined from the detection result of the crank angle sensor 32, for example. When it is determined that the restart is successful, the process proceeds to S31, and when it is determined that the restart has not been performed, the process proceeds to S32.

S31では切替回路100を図6の並列接続態様に制御する。発電電動機70はジェネレータとして機能させ、その発電により蓄電素子46を充電しつつ、負荷81に電力を供給することができる。以上により一回の処理が終了する。 In S31, the switching circuit 100 is controlled in the parallel connection mode of FIG. The generator motor 70 can function as a generator, and can generate electric power to charge the storage element 46 and supply electric power to the load 81. With the above, one processing is completed.

S32では、吸気圧センサ37、クランク角センサ32及び回転角センサ35の検知結果を取得する。S33ではS32で取得した検知結果に基づいてピストンの位置を判定し、S26へ戻って同様の処理を繰り返す。S27とS28の処理によりピストンの位置に応じて、発電電動機70に供給される電圧が切り替えられることになる。 In S32, the detection results of the intake pressure sensor 37, the crank angle sensor 32, and the rotation angle sensor 35 are acquired. In S33, the position of the piston is determined based on the detection result obtained in S32, the process returns to S26 and the same processing is repeated. By the processes of S27 and S28, the voltage supplied to the generator motor 70 is switched according to the position of the piston.

このように図10の処理例では、アイドルストップ制御から再始動する場合に、まずはS23で保存したピストンの位置情報を利用するので、ピストンの位置検知を不要にしつつ、ピストンの位置判定精度を向上できる。 As described above, in the processing example of FIG. 10, when restarting from the idle stop control, the position information of the piston stored in S23 is first used, so that the position detection accuracy of the piston is improved while the position detection of the piston is unnecessary. it can.

<他の実施形態>
<切替回路の他の構成例1>
平滑コンデンサ93と蓄電素子47とを兼用してもよい。これにより部品数の増加を抑制することができる。図11はその一例を示す回路図である。上記実施形態の回路と異なる点について説明する。
<Other Embodiments>
<Other configuration example 1 of switching circuit>
The smoothing capacitor 93 and the storage element 47 may be used together. As a result, an increase in the number of parts can be suppressed. FIG. 11 is a circuit diagram showing an example thereof. Differences from the circuit of the above embodiment will be described.

図11の例の切替回路100は、複数のスイッチング素子104〜107を備える。本実施形態の場合、スイッチング素子104〜107はスイッチング素子91及び92と同様にMOSFETである。スイッチング素子104は、配線90aと蓄電素子47の正極との間に位置してこれらに接続されている。スイッチング素子104のドレインDは蓄電素子47の正極に、ソースSは配線90aにそれぞれ接続されている。 The switching circuit 100 in the example of FIG. 11 includes a plurality of switching elements 104 to 107. In this embodiment, the switching elements 104 to 107 are MOSFETs like the switching elements 91 and 92. The switching element 104 is located between and connected to the wiring 90a and the positive electrode of the storage element 47. The drain D of the switching element 104 is connected to the positive electrode of the storage element 47, and the source S is connected to the wiring 90a.

スイッチング素子105は蓄電素子46の正極と蓄電素子47の正極との間に設けられており、そのソースSが配線90cを介して蓄電素子46の正極に接続され、そのドレインDが蓄電素子47の正極に接続されている。 Switching element 105 is provided between the positive electrode of power storage element 46 and the positive electrode of power storage element 47, the source S of which is connected to the positive electrode of power storage element 46 via wiring 90c, and the drain D of which is connected to the positive electrode of power storage element 47. It is connected to the positive electrode.

スイッチング素子106は、配線90bと蓄電素子47の負極との間に位置してこれらに接続されており、そのソースSが配線90bに、そのドレインDが蓄電素子47の負極にそれぞれ接続されている。 The switching element 106 is located between and connected to the wiring 90b and the negative electrode of the power storage element 47, and the source S thereof is connected to the wiring 90b and the drain D thereof is connected to the negative electrode of the power storage element 47, respectively. ..

スイッチング素子107は蓄電素子46の正極と蓄電素子47の負極との間に設けられており、そのドレインDが配線90cを介して蓄電素子46の正極に接続され、そのソースSが蓄電素子47の負極に接続されている。配線90cと配線90aとの間にはダイオード114が設けられている。 Switching element 107 is provided between the positive electrode of power storage element 46 and the negative electrode of power storage element 47, its drain D is connected to the positive electrode of power storage element 46 via wiring 90c, and its source S is of power storage element 47. It is connected to the negative electrode. A diode 114 is provided between the wiring 90c and the wiring 90a.

スイッチング素子104〜107のON/OFFを切り替えることにより、蓄電素子46及び47と、発電電動機70(インバータ90)との接続状態を切り替えることができる。 By switching ON/OFF of the switching elements 104 to 107, the connection state between the storage elements 46 and 47 and the generator motor 70 (inverter 90) can be switched.

図5の並列接続態様と等価な回路とする場合、スイッチング素子104、105及び107をOFFとし、スイッチング素子106をONとする。図6の並列接続態様と等価な回路とする場合、スイッチング素子105と106をONとし、スイッチング素子107をOFFとする。図7の直列接続態様と等価な回路とする場合、スイッチング素子104と107をONとし、スイッチング素子105と106をOFFとする。 When the circuit is equivalent to the parallel connection mode of FIG. 5, the switching elements 104, 105 and 107 are turned off and the switching element 106 is turned on. When the circuit is equivalent to the parallel connection mode of FIG. 6, the switching elements 105 and 106 are turned on and the switching element 107 is turned off. When the circuit is equivalent to the serial connection mode of FIG. 7, the switching elements 104 and 107 are turned on and the switching elements 105 and 106 are turned off.

<切替回路の他の構成例2>
図4及び図11の回路例では、直列接続態様においてハイサイドアームを構成するスイッチング素子91に高電圧がかかり、そのON/OFFに必要なゲートGの電圧が高くなる。図12の回路例はスイッチング素子91に係る電圧を低くするものである。図4の回路と異なる点について説明する。
<Other configuration example 2 of switching circuit>
In the circuit examples of FIGS. 4 and 11, a high voltage is applied to the switching element 91 forming the high side arm in the serial connection mode, and the voltage of the gate G required to turn it on/off becomes high. The circuit example of FIG. 12 lowers the voltage applied to the switching element 91. Differences from the circuit of FIG. 4 will be described.

切替回路100は複数のスイッチング素子201〜203を備える。本実施形態の場合、スイッチング素子201〜203はスイッチング素子91及び92と同様にMOSFETである。スイッチング素子201とスイッチング素子202は配線112bとグランドの間に直列に接続されている。蓄電素子47の正極は、スイッチング素子201とスイッチング素子202との接続点に接続され、負極が配線90bに接続されている。スイッチング素子203は、蓄電素子47の負極とグランドに接続され、ソースSが蓄電素子47の負極に、ドレインDがグランドに接続されている。 The switching circuit 100 includes a plurality of switching elements 201 to 203. In the case of the present embodiment, the switching elements 201 to 203 are MOSFETs like the switching elements 91 and 92. The switching element 201 and the switching element 202 are connected in series between the wiring 112b and the ground. The positive electrode of the power storage element 47 is connected to the connection point between the switching element 201 and the switching element 202, and the negative electrode is connected to the wiring 90b. The switching element 203 is connected to the negative electrode of the power storage element 47 and the ground, the source S is connected to the negative electrode of the power storage element 47, and the drain D is connected to the ground.

スイッチング素子201〜203のON/OFFを切り替えることにより、蓄電素子46及び47と、インバータ90との接続状態を、大別すると二つの接続態様に切り替えることができる。スイッチング素子201〜203の各ゲートGにはECU80から送出される制御信号が入力され、これら各素子のON/OFF制御が実行される。 By switching ON/OFF of the switching elements 201 to 203 , the connection states of the storage elements 46 and 47 and the inverter 90 can be broadly switched to two connection modes. A control signal sent from the ECU 80 is input to each gate G of the switching elements 201 to 203, and ON/OFF control of each of these elements is executed.

図5〜図7の接続態様に対応する接続態様を図13〜図15に示す。 13 to 15 show connection modes corresponding to the connection modes of FIGS. 5 to 7.

図13は並列接続態様の例を示している。スイッチング素子201がON、スイッチング素子202及び203がOFFとされる。この接続態様では、蓄電素子46の電圧(ここでは12V)を発電電動機70に供給することができる。また、この接続態様の場合、蓄電素子46で蓄電素子47を充電することができる。太線矢印は電流の流れを例示している。スイッチング素子203では寄生ダイオードDiを電流が流れる。 FIG. 13 shows an example of a parallel connection mode. The switching element 201 is turned on and the switching elements 202 and 203 are turned off. In this connection mode, the voltage of the storage element 46 (here, 12 V) can be supplied to the generator motor 70. In the case of this connection mode, the power storage element 47 can be charged by the power storage element 46. Thick line arrows exemplify the flow of current. In the switching element 203, a current flows through the parasitic diode Di.

図14は並列接続態様の別の例を示している。スイッチング素子201及びスイッチング素子203がON、スイッチング素子202がOFFとされる。この接続態様の場合、発電電動機70をジェネレータとして機能させて蓄電素子46及び47を充電することができ、太線矢印はその場合の電流の流れを例示している。 FIG. 14 shows another example of the parallel connection mode. The switching element 201 and the switching element 203 are turned on, and the switching element 202 is turned off. In the case of this connection mode, the generator motor 70 can function as a generator to charge the storage elements 46 and 47, and the thick arrows exemplify the current flow in that case.

図15は直列接続態様の例を示している。スイッチング素子201及び203がOFF、スイッチング素子202がONとされる。この接続態様の場合、直列に接続された蓄電素子46及び47の電圧で発電電動機70を駆動することができ、発電電動機70により大きな電力を供給できる。本実施形態の場合、図13の並列接続態様において蓄電素子47が充電されると、蓄電素子47の電位が蓄電素子46の電位と同電位とされ、これを直列に接続することで、蓄電素子46の二倍の電位差の電圧を発電電動機70に供給できる。 FIG. 15 shows an example of a serial connection mode. The switching elements 201 and 203 are turned off, and the switching element 202 is turned on. In the case of this connection mode, the generator motor 70 can be driven by the voltage of the storage elements 46 and 47 connected in series, and a large amount of electric power can be supplied to the generator motor 70. In the case of the present embodiment, when the storage element 47 is charged in the parallel connection mode of FIG. 13, the potential of the storage element 47 becomes the same potential as the potential of the storage element 46, and by connecting this in series, the storage element A voltage having a potential difference twice as large as 46 can be supplied to the generator motor 70.

このとき、蓄電素子46の負極と蓄電素子47の正極とがグランドに接続されているので、蓄電素子46の正極は+12V、蓄電素子47の負極は−12Vである。したがって、発電電動機70(インバータ90)には、−12V〜+12Vの電圧が印加される。同じ電位差(24V)で、0V〜24Vの電圧をインバータ90に印加する構成では、ハイサイドアームを構成するスイッチング素子91に高電圧がかかり、そのON/OFFに必要なゲートGの電圧が高くなる。そのため、高いゲート電圧を得る為の専用部品を必要とする場合があり、インバータ90を新規に設計、製造しなければならない場合がある。これはコストアップの要因となる。 At this time, since the negative electrode of the power storage element 46 and the positive electrode of the power storage element 47 are connected to the ground, the positive electrode of the power storage element 46 is +12V and the negative electrode of the power storage element 47 is -12V. Therefore, a voltage of -12V to +12V is applied to the generator motor 70 (inverter 90). In the configuration in which a voltage of 0 V to 24 V is applied to the inverter 90 with the same potential difference (24 V), a high voltage is applied to the switching element 91 that constitutes the high side arm, and the voltage of the gate G required to turn it on/off increases. .. Therefore, a dedicated component for obtaining a high gate voltage may be required, and the inverter 90 may have to be newly designed and manufactured. This causes a cost increase.

一方、本実施形態の構成によると、インバータ90には−12V〜+12Vの電圧が印加されるので、グランド電位から見てハイサイドアームのスイッチング素子91に対する電圧を低く抑えることができ、専用部品を必須としない。このため、コストアップを抑制しつつ、電動発電機70の電力供給量を切り替えることができる。 On the other hand, according to the configuration of the present embodiment, since the voltage of −12V to +12V is applied to the inverter 90, the voltage applied to the switching element 91 of the high side arm can be suppressed to a low level when viewed from the ground potential, and a dedicated component is used. Not required. Therefore, it is possible to switch the power supply amount of the motor generator 70 while suppressing cost increase.

<切替回路の他の構成例3>
図12〜図15で説明した構成例2において、平滑コンデンサ93と蓄電素子47とを兼用してもよい。これにより部品数の増加を抑制することができる。図16はその一例を示す回路図である。構成例2と異なる点について説明する。
<Other Configuration Example 3 of Switching Circuit>
In the configuration example 2 described with reference to FIGS. 12 to 15, the smoothing capacitor 93 and the storage element 47 may be combined. As a result, an increase in the number of parts can be suppressed. FIG. 16 is a circuit diagram showing an example thereof. Differences from the configuration example 2 will be described.

図16の例の切替回路100は、複数のスイッチング素子204〜207を備える。本実施形態の場合、スイッチング素子204〜207はMOSFETである。スイッチング素子204は、配線90aと蓄電素子47の正極との間に位置してこれらに接続されている。スイッチング素子206は、配線90bと蓄電素子47の負極との間に位置してこれらに接続されている。配線90bにはダイオード208が設けられている。 The switching circuit 100 in the example of FIG. 16 includes a plurality of switching elements 204 to 207. In the case of this embodiment, the switching elements 204 to 207 are MOSFETs. The switching element 204 is located between and connected to the wiring 90a and the positive electrode of the storage element 47. The switching element 206 is located between and connected to the wiring 90b and the negative electrode of the storage element 47. A diode 208 is provided on the wiring 90b.

スイッチング素子205は蓄電素子47の正極と配線90cとの間に位置してこれらに接続されている。配線90cはグランドに接続されている。スイッチング素子207は蓄電素子47の負極と配線90cとの間に位置してこれらに接続されている。スイッチング素子204〜207のON/OFFを切り替えることにより、蓄電素子46及び47と、インバータ90との接続状態を切り替えることができる。 The switching element 205 is located between and connected to the positive electrode of the storage element 47 and the wiring 90c. The wiring 90c is connected to the ground. The switching element 207 is located between the negative electrode of the storage element 47 and the wiring 90c, and is connected to these. By switching ON/OFF of the switching elements 204 to 207, the connection state between the storage elements 46 and 47 and the inverter 90 can be switched.

図13の並列接続態様(蓄電素子46による蓄電素子47の充電)と等価な回路とする場合、スイッチング素子204をONとし、スイッチング素子205〜207をOFFとする。図14の並列接続態様(発電電動機70による蓄電素子46及び47の充電)と等価な回路とする場合、スイッチング素子204、207をONとし、スイッチング素子205、206をOFFとする。図15の直列接続態様と等価な回路とする場合、スイッチング素子205及び206をONとし、スイッチング素子204及び207をOFFとする。 When the circuit is equivalent to the parallel connection mode (charging of the power storage element 47 by the power storage element 46) in FIG. 13, the switching element 204 is turned on and the switching elements 205 to 207 are turned off. When the circuit is equivalent to the parallel connection mode (charging of the storage elements 46 and 47 by the generator motor 70) of FIG. 14, the switching elements 204 and 207 are turned on and the switching elements 205 and 206 are turned off. When the circuit is equivalent to the series connection mode of FIG. 15, the switching elements 205 and 206 are turned on and the switching elements 204 and 207 are turned off.

本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.

Claims (5)

エンジン(E)のクランク軸(51)を回転駆動するモータとして機能するとともに、前記クランク軸(51)の回転から回生起電力を生成するジェネレータとして機能する発電電動機(70)と、
前記発電電動機に電力を供給可能な供給手段(45)と、
前記エンジン(E)のピストンが圧縮行程の所定の領域に位置しているか否かを判定し、位置していると判定した場合は第一の始動制御を、位置していないと判定した場合は第二の始動制御を実行する制御手段(80)と、を備え、
前記供給手段(45)は、蓄電手段(46)とコンデンサ(47)とを含み、
前記第一の始動制御は、前記蓄電手段(46)と前記コンデンサ(47)の電荷を前記供給手段(45)に供給させる制御であり、
前記第二の始動制御は、前記蓄電手段(46)の電荷を前記供給手段(45)に供給させる制御である、
ことを特徴とする始動制御装置。
A generator motor (70) that functions as a motor that rotationally drives the crankshaft (51) of the engine (E), and that functions as a generator that generates regenerative electromotive force from the rotation of the crankshaft (51),
Supply means (45) capable of supplying electric power to the generator motor,
It is determined whether the piston of the engine (E) is located in a predetermined region of the compression stroke, if it is determined that the first start control, if it is not located, And a control means (80) for executing the second start control,
The supply means (45) includes a storage means (46) and a capacitor (47),
The first starting control is a control for supplying the charge of the storage means (46) and the capacitor (47) to the supply means (45),
The second start control is a control for supplying the charge of the storage means (46) to the supply means (45),
A starting control device characterized by the above.
請求項1に記載の始動制御装置であって、
前記制御手段(80)は、前記ピストンの位置が不明な場合に、前記第一の始動制御を開始してから前記ピストンが前記所定の領域に位置しているか否かを判定し、位置していないと判定した場合は前記第二の始動制御に切り替える、
ことを特徴とする始動制御装置。
The starting control device according to claim 1, wherein
The control means (80), when the position of the piston is unknown, determines whether or not the piston is located in the predetermined region after starting the first start control, and is located. If it is determined that there is no, switch to the second start control,
A starting control device characterized by the above.
請求項1に記載の始動制御装置であって、
前記供給手段(45)は、前記蓄電手段(46)と前記コンデンサ(47)との接続状態を、直列接続態様と並列接続態様とで切り替える切替手段(100)を含み、
前記切替手段(100)は、前記蓄電手段(46)と前記コンデンサ(47)の電荷を供給する場合に前記接続状態を前記直列接続態様に切り替え、前記蓄電手段(46)の電荷を供給する場合に前記接続状態を前記並列接続態様に切り替える、
ことを特徴とする始動制御装置。
The starting control device according to claim 1, wherein
The supply means (45) includes a switching means (100) for switching the connection state between the storage means (46) and the capacitor (47) between a serial connection mode and a parallel connection mode,
The switching means (100) switches the connection state to the series connection mode when supplying the electric charge of the storage means (46) and the capacitor (47), and supplies the electric charge of the storage means (46). Switching the connection state to the parallel connection mode,
A starting control device characterized by the above.
請求項1に記載の始動制御装置であって、
前記制御手段(80)は、アイドルストップ制御により前記エンジンを停止した場合に、前記ピストンの位置の情報を保存し、再始動する場合には該情報に基づいて前記ピストンが前記所定の領域に位置しているか否かを判定する、
ことを特徴とする始動制御装置。
The starting control device according to claim 1, wherein
The control means (80) stores information on the position of the piston when the engine is stopped by idle stop control, and when restarting the engine, positions the piston in the predetermined region based on the information. Determine whether or not
A starting control device characterized by the above.
請求項1に記載の始動制御装置であって、
前記発電電動機(70)の回転角を検知するセンサ(35)を備え、
前記制御手段(80)は、前記センサ(35)の検知結果に基づいて前記ピストンが前記所定の領域に位置しているか否かを判定する、
ことを特徴とする始動制御装置。
The starting control device according to claim 1, wherein
A sensor (35) for detecting the rotation angle of the generator motor (70) is provided,
The control means (80) determines whether or not the piston is located in the predetermined region based on the detection result of the sensor (35),
A starting control device characterized by the above.
JP2019544311A 2017-09-29 2018-07-11 Start control device Expired - Fee Related JP6749501B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017190876 2017-09-29
JP2017190876 2017-09-29
PCT/JP2018/026118 WO2019064818A1 (en) 2017-09-29 2018-07-11 Start control device

Publications (2)

Publication Number Publication Date
JPWO2019064818A1 JPWO2019064818A1 (en) 2020-08-06
JP6749501B2 true JP6749501B2 (en) 2020-09-02

Family

ID=65901614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019544311A Expired - Fee Related JP6749501B2 (en) 2017-09-29 2018-07-11 Start control device

Country Status (2)

Country Link
JP (1) JP6749501B2 (en)
WO (1) WO2019064818A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0195573U (en) * 1987-12-15 1989-06-23
JP2581986Y2 (en) * 1992-09-04 1998-09-24 日産ディーゼル工業株式会社 Vehicle starting device
JP5247554B2 (en) * 2009-03-24 2013-07-24 本田技研工業株式会社 Engine start control device
JP6216672B2 (en) * 2014-03-27 2017-10-18 本田技研工業株式会社 Three-phase AC power generation starter device
JP2016194267A (en) * 2015-03-31 2016-11-17 新電元工業株式会社 Engine start control device
JP6112246B2 (en) * 2015-06-04 2017-04-12 スズキ株式会社 Engine drive control system and vehicle

Also Published As

Publication number Publication date
WO2019064818A1 (en) 2019-04-04
JPWO2019064818A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP5361590B2 (en) Engine start control device
JP5241021B2 (en) Engine start control device
TW558608B (en) Engine starting control apparatus
JP3824132B2 (en) Engine start control device
JP4851184B2 (en) Rotating electrical machine system
CN112805465B (en) Engine restarting device
JP6216672B2 (en) Three-phase AC power generation starter device
JP3998119B2 (en) Engine start control device
JP6715389B2 (en) Engine start control device
EP3147496B1 (en) Engine start control system for saddle-ride type vehicles
JP5247554B2 (en) Engine start control device
CN111749827B (en) Engine starting device
JP6515786B2 (en) Engine start control device
JP6749501B2 (en) Start control device
JP6783948B2 (en) Vehicle control device
JP5373449B2 (en) Three-phase motor controller
JP6434707B2 (en) Three-phase AC power generation starter device
JP6912678B2 (en) Engine unit with MT type shift pedal and straddle vehicle equipped with the same engine unit
JP6216671B2 (en) Three-phase AC power generation starter device
ITTO20011136A1 (en) ENGINE STARTING CONTROL EQUIPMENT.

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6749501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees