WO2019064511A1 - 電子ビーム装置及びデバイス製造方法 - Google Patents
電子ビーム装置及びデバイス製造方法 Download PDFInfo
- Publication number
- WO2019064511A1 WO2019064511A1 PCT/JP2017/035556 JP2017035556W WO2019064511A1 WO 2019064511 A1 WO2019064511 A1 WO 2019064511A1 JP 2017035556 W JP2017035556 W JP 2017035556W WO 2019064511 A1 WO2019064511 A1 WO 2019064511A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electron beam
- light
- optical
- electron
- beam apparatus
- Prior art date
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 252
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 230000003287 optical effect Effects 0.000 claims abstract description 472
- 238000005286 illumination Methods 0.000 claims abstract description 126
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 230000010287 polarization Effects 0.000 claims description 30
- 238000009826 distribution Methods 0.000 claims description 22
- 238000001459 lithography Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 17
- 230000009467 reduction Effects 0.000 claims description 15
- 230000004075 alteration Effects 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 10
- 238000007493 shaping process Methods 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 9
- 238000005520 cutting process Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 72
- 239000010408 film Substances 0.000 description 41
- 239000002585 base Substances 0.000 description 28
- 238000012937 correction Methods 0.000 description 24
- 230000004048 modification Effects 0.000 description 21
- 238000012986 modification Methods 0.000 description 21
- 239000011295 pitch Substances 0.000 description 18
- 238000012545 processing Methods 0.000 description 17
- 238000005259 measurement Methods 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 241001147444 Giardia lamblia virus Species 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 230000005405 multipole Effects 0.000 description 12
- 238000001514 detection method Methods 0.000 description 11
- 230000007246 mechanism Effects 0.000 description 10
- 230000004888 barrier function Effects 0.000 description 9
- 230000000295 complement effect Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000005192 partition Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 239000003513 alkali Substances 0.000 description 4
- 239000013256 coordination polymer Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000007687 exposure technique Methods 0.000 description 4
- 230000000737 periodic effect Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- 241000226585 Antennaria plantaginifolia Species 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/06—Electron sources; Electron guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/305—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
Definitions
- the present invention relates to an electron beam apparatus and a device manufacturing method, and in particular, uses an electron beam apparatus and an electron beam apparatus which irradiate light to a photoelectric element and irradiate an electron generated from the photoelectric element as an electron beam to a target. It relates to a device manufacturing method.
- complementary lithography has been proposed in which an immersion exposure technique using an ArF light source and a charged particle beam exposure technique (for example, an electron beam exposure technique) are used complementarily.
- a simple line and space pattern (hereinafter, appropriately abbreviated as an L / S pattern) is formed by utilizing double patterning or the like in immersion exposure using an ArF light source.
- line patterns are cut or vias are formed through exposure using an electron beam.
- an electron beam exposure apparatus provided with a multi-beam optical system that turns on and off a beam using a plurality of blanking apertures can be used (see, for example, Patent Document 1).
- Patent Document 1 an electron beam exposure apparatus as well as the blanking aperture system.
- an electron beam apparatus comprising an electron optical system that irradiates a target with electrons generated from a photoelectric element as an electron beam, the illumination system and the illumination light from the illumination system being deflected.
- An electron beam apparatus is provided, which irradiates the photoelectric element with at least one light beam generated from a plurality of light beams deflected by the second deflection unit.
- an electron beam apparatus comprising an electron optical system for irradiating a target with electrons generated from a photoelectric element as an electron beam, comprising: an illumination system; and illumination light from the illumination system. And an optical device for generating a plurality of light beams, and a first optical system positioned between the optical device and the photoelectric element, wherein the optical system of the illumination system and the first optical system is substantially coaxial.
- An electron beam apparatus is provided in which the electron beam generated from the photoelectric element is irradiated to the target by the electron optical system as a second optical system.
- an electron beam apparatus comprising an electron optical system for irradiating a target with electrons generated from a photoelectric element as an electron beam, comprising: an illumination system; and illumination light from the illumination system. And an optical device generating a plurality of light beams, and a first optical system positioned between the optical device and the photoelectric element, the optical device comprising a plurality of movable reflective elements which can be individually controlled. And generating the plurality of light beams by reflecting the illumination light using the plurality of movable reflection elements, and the arrangement surface of the plurality of movable reflection elements is with respect to the optical axis of the first optical system.
- An electron beam apparatus is provided in which an electron beam generated from the photoelectric element, which forms an angle less than 45 degrees, is irradiated to the target by the electron optical system as a second optical system.
- an electron beam apparatus comprising an electron optical system for irradiating a target with electrons generated from a photoelectric element as an electron beam, comprising: an illumination system; and illumination light from the illumination system.
- An electron beam apparatus is provided that generates the plurality of light beams, and the arrangement surface of the plurality of movable reflective elements forms an angle of less than 45 degrees with respect to at least one of the illumination system and the vertical axis.
- an electron beam apparatus comprising an electron optical system for irradiating a target with electrons generated from a photoelectric element as an electron beam, comprising: an illumination system; and illumination light from the illumination system.
- An electron beam apparatus is provided in which the plurality of light beams are generated, and the optical device is arranged such that a surface including the arrangement surface of the plurality of movable reflective elements does not intersect the light path of the illumination light. .
- an electron beam apparatus comprising an electron optical system for irradiating a target with electrons generated from a photoelectric element as an electron beam, comprising: an illumination system; and illumination light from the illumination system.
- An optical device for generating a plurality of light beams the optical device having a plurality of individually controllable movable reflective elements, and reflecting the illumination light using the plurality of movable reflective elements.
- the optical device generates the plurality of light beams, and a surface including the arrangement surface of the plurality of movable reflective elements is generated by the optical device, and an optical path of the plurality of light beams irradiated to the photoelectric element
- An electron beam device is provided which is arranged so as not to intersect with.
- a device manufacturing method including a lithography step, wherein the lithography step includes forming a line and space pattern on a target, and any one of the first to sixth aspects. And c. Cutting the line pattern forming the line and space pattern using the electron beam apparatus according to the above.
- FIG. 1 schematically shows a configuration of an exposure apparatus according to an embodiment. It is a longitudinal cross section which shows an electron beam optical unit.
- FIG. 3A is a partially omitted longitudinal sectional view showing the photoelectric device
- FIG. 3B is a plan view partially showing the photoelectric device.
- FIG. 4A is a view showing the configuration of the electron beam optical system as viewed from the + X direction
- FIG. 4B is a view showing the configuration of the electron beam optical system as viewed from the ⁇ Y direction.
- FIG. 5 is a diagram for explaining the correction of the reduction ratio in the X-axis direction and the Y-axis direction by the first electrostatic lens. It is a perspective view which shows the external appearance of the 45 electron beam optical system supported by the base plate in the suspended state.
- FIG. 9A is a perspective view showing a light diffraction type light valve
- FIG. 9B is a side view showing the light diffraction type light valve. It is a top view which shows a pattern generator.
- FIG. 14A and FIG. 14B are diagrams for explaining the correction of the shape change (rounding of four corners) of the cut pattern caused by the blur caused by the optical system and the resist blur.
- FIG. 15B are diagrams for explaining correction of distortion common to a plurality of electron beam optical systems. It is a top view showing an example of a pattern generator which has a ribbon row for backup.
- FIG. 17A and FIG. 17B are diagrams for explaining the ribbon row for correction.
- FIG. 18A is an explanatory view showing a method without using an aperture
- FIG. 18B is an explanatory view showing a method using an aperture. It is a figure which shows the deflection
- FIG. 22 is a diagram for describing a method of compensating a field curvature which the electron beam optical system has as an aberration. It is a figure which shows an example of the multi-pitch type aperture integrated photoelectric element in which the aperture row
- FIG. 24 (A) to 24 (C) are diagrams showing a procedure for forming a cut pattern for cutting line patterns having different pitches by using the aperture integrated photoelectric device of FIG.
- FIG. 25A is a view for explaining an example of the configuration of the separate-aperture type photoelectric device
- FIGS. 25B to 25E are views showing various configuration examples of the aperture plate
- FIG. 26A to FIG. 26E are views showing various configuration examples of the aperture integrated photoelectric device. It is explanatory drawing which shows the structure which does not use the holder holding a vacuum partition. It is a figure for describing one embodiment of a device manufacturing method.
- FIG. 1 schematically shows the configuration of an exposure apparatus 100 according to an embodiment. Since the exposure apparatus 100 is provided with a plurality of electron beam optical systems as described later, hereinafter, the Z axis is parallel to the optical axis of the electron beam optical system, and the exposure will be described later in a plane perpendicular to the Z axis.
- the scanning direction in which the wafer W is moved is taken as the Y-axis direction
- the direction orthogonal to the Z-axis and Y-axis is taken as the X-axis direction
- the rotational (tilting) directions about the X-axis, Y-axis and Z-axis are respectively ⁇ x, ⁇ y
- the description will be made as the and ⁇ z directions.
- the exposure apparatus 100 includes a stage chamber 10 installed on a floor surface F of a clean room, a stage system 14 disposed in an exposure chamber 12 inside the stage chamber 10, and an optical system disposed above the stage system 14. It has 18 and.
- the optical system 18 includes an electron beam optical unit 18A and an optical unit 18B suspended and supported from the ceiling of the clean room by a suspension support mechanism (not shown).
- the stage chamber 10 is a vacuum chamber capable of evacuating the inside thereof although illustration of both end portions in the Y-axis direction is omitted in FIG. 1.
- the stage chamber 10 supports the bottom wall 10a parallel to the XY plane disposed on the floor surface F, the top wall (ceiling wall) 10b, and the bottom wall 10a, and supports the top wall 10b horizontally from below.
- a peripheral wall 10c (only a part of the -X side portion is shown in FIG. 1).
- An opening 10d is formed in the upper wall 10b.
- a plurality of electron beam optical systems 70 provided in the electron beam optical unit 18A are disposed in the opening 10d.
- the 45 electron beam optical systems 70 are respectively fixed to the lower surface (the surface on the ⁇ Z side) of the housing 19.
- the lower surface of the housing 19 and the upper wall 10b of the stage chamber 10 are sealed by a metal bellows 16 surrounding the periphery of the opening 10d.
- the housing 19 is supported by a frame (not shown) with the upper and lower surfaces substantially parallel to the XY plane.
- the method of supporting the electron beam optical unit 18A is not limited to this method.
- the stage system 14 is supported by a platen 22 supported on the bottom wall 10a via a plurality of vibration isolation members 20, and supported by the weight cancellation device 24 on the platen 22 and is predetermined in the X-axis direction and the Y-axis direction.
- the wafer stage WST is movable with a stroke of, for example, 50 mm, and can be finely moved in the remaining four degrees of freedom (Z axis, .theta.x, .theta.y and .theta.z directions), and a stage drive system 26 (FIG. 1 includes only a part of them (see FIG. 12) and a position measurement system 28 (not shown in FIG. 1, refer to FIG. 12) for measuring positional information in the direction of 6 degrees of freedom of wafer stage WST. .
- Wafer stage WST adsorbs and holds wafer W via an electrostatic chuck (not shown) provided on the upper surface thereof.
- Wafer stage WST has a member with a frame shape in the XZ cross section, and mover 30a of motor 30 having a yoke and a magnet (both not shown) is integrally fixed in its inside (hollow part).
- a stator 30b of a motor 30 formed of a coil unit extending in the Y-axis direction is inserted into the inside (hollow part) of the mover 30a.
- the stator 30 b is connected to the X-stage 31 moving in the X-axis direction on the surface plate 22 at both ends in the longitudinal direction (Y-axis direction). As shown in FIG.
- the X-stage 31 has a pair of support portions which have an X-axis direction as a longitudinal direction and are separated by a predetermined distance in the Y-axis direction, and the pair of support portions Both ends are fixed.
- the X stage 31 is integrated with the wafer stage WST by an X stage drive system 32 (not shown in FIG. 1, refer to FIG. 12) constituted by a uniaxial drive mechanism that does not cause magnetic flux leakage, for example, a feed screw mechanism using a ball screw. Is moved with a predetermined stroke in the X-axis direction.
- the X stage drive system 32 may be configured by a uniaxial drive mechanism provided with an ultrasonic motor as a drive source. In any case, the influence of the magnetic field fluctuation due to the magnetic flux leakage on the positioning of the electron beam is negligible.
- the motor 30 can move the mover 30a relative to the stator 30b in the Y-axis direction by a predetermined stroke, for example, 50 mm, and can finely move the mover 30a in the X-axis direction, the Z-axis direction, the ⁇ x direction, the ⁇ y direction, and the ⁇ z direction Closed magnetic field type and moving magnet type motor.
- a wafer stage drive system that moves wafer stage WST in the direction of six degrees of freedom by motor 30 is configured.
- the wafer stage drive system will be referred to as wafer stage drive system 30 using the same reference numerals as motor 30.
- the X stage drive system 32 and the wafer stage drive system 30 move the wafer stage WST in the X axis direction and the Y axis direction with a predetermined stroke, for example, 50 mm, and the remaining four degrees of freedom (Z axis, ⁇ x,
- the above-mentioned stage drive system 26 is configured to move slightly in the ⁇ y and ⁇ z directions).
- the X stage drive system 32 and the wafer stage drive system 30 are controlled by the main controller 110 (see FIG. 12).
- the weight cancellation device 24 includes a metal bellows type air spring (hereinafter abbreviated as air spring) 24a whose upper end is connected to the lower surface of the wafer stage WST, and a base slider 24b connected to the lower end of the air spring 24a. have.
- the base slider 24b is provided with a bearing (not shown) for spouting the air inside the air spring 24a to the upper surface of the platen 22, and the bearing surface of the pressurized air ejected from the bearing and the upper surface of the platen 22.
- the weight cancellation device 24, the wafer stage WST (including the mover 30a), and the own weight of the wafer W are supported by the static pressure (pressure in the gap) between them.
- compressed air is supplied to the air spring 24 a through a pipe (not shown) connected to the wafer stage WST.
- the base slider 24b is supported in a non-contact manner on the surface plate 22 via a kind of differential pumping type of static air bearing, and the air ejected from the bearing portion toward the surface plate 22 is exposed to the surrounding (exposure chamber 12) are prevented from leaking out.
- a pair of pillars are provided sandwiching air spring 24a in the Y-axis direction, and a plate spring provided at the lower end of the pillar is connected to air spring 24a.
- FIG. 2 shows a longitudinal sectional view of the electron beam optical unit 18A.
- the electron beam optical unit 18A includes a housing 19 in which a vacuum chamber 34 is formed.
- the vacuum chamber 34 has a first plate 36 constituting an upper wall (ceiling wall), a second plate (hereinafter referred to as a base plate) 38 constituting a bottom wall, and a cylindrical shape surrounding the first plate 36 and the base plate 38. Are separated from the side wall portion 40 and the like.
- the vacuum chamber 34 can evacuate the interior to a high degree of vacuum.
- a plurality of through holes 36a extending in the Z-axis direction correspond to the arrangement of the 45 electron beam optical systems 70 described above at predetermined intervals in the XY two-dimensional direction.
- 45 pieces are formed.
- a cylindrical holder 52 having a flange portion 52a at the upper end is disposed with almost no gap.
- Each holder 52 holds, at its upper end, a partition member 81 made of a light transmitting member such as quartz glass functioning as a vacuum partition.
- the partition member 81 is suitably described also as the vacuum partition 81.
- the photoelectric element 54 is disposed below the partition wall member 81 via a predetermined clearance (gap, gap).
- the material of the light transmitting member constituting the partition member 81 is not limited to quartz glass, and any material having transparency to the wavelength of light used in the optical unit 18B may be used.
- the photoelectric device 54 has a base 56 made of a light transmitting member such as quartz glass and the lower surface of the base 56.
- a light shielding film (aperture film) 58 made of vapor-deposited chromium or the like, and a layer (alkali photoelectric conversion) of an alkaline photoelectric film (photoelectric conversion film) deposited (e.g. vapor deposited) on the lower surface side of the substrate 56 and the light shielding film 58 Layer (alkaline photoelectric layer) 60.
- a large number of apertures 58 a are formed in the light shielding film 58.
- a large number of apertures 58a are formed in the light shielding film 58 in a predetermined positional relationship (FIG. B) see).
- the number of apertures 58a may be the same as the number of multi beams described later, or may be more than the number of multi beams.
- the alkaline photoelectric layer 60 is also disposed inside the aperture 58a, and the base 56 and the alkaline photoelectric layer 60 are in contact at the aperture 58a.
- the base 56, the light shielding film 58, and the alkaline photoelectric layer 60 are integrally formed, and at least a part of the photoelectric element 54 is formed.
- the material of the substrate 56 is not limited to quartz glass, and may be, for example, a material having transparency to the wavelength of light used in the optical unit 18B, such as sapphire.
- the alkali photoelectric layer 60 is a multi-alkali photocathode using two or more types of alkali metals.
- the multialkali photocathode is a photocathode characterized by high durability, capable of generating electrons with green light having a wavelength of 500 nm band, and high quantum efficiency QE of the photoelectric effect of about 10%.
- the alkali photoelectric layer 60 is used as a kind of electron gun that generates an electron beam by the photoelectric effect of laser light, a material having a high conversion efficiency of 10 [mA / W] is used.
- the electron emission surface of the alkaline photoelectric layer 60 is the lower surface in FIG. 3A, that is, the surface on the opposite side to the upper surface of the base material 56.
- the base plate 38 has a plurality of (45 in the present embodiment) centers of which are substantially located on the optical axis AXe of the plurality (45 in the present embodiment) electron beam optical systems 70.
- the recess 38a is formed.
- Each recess 38a has a predetermined depth from the upper surface of the base plate 38, and a through hole 38b functioning as a throttling portion is formed on the inner bottom surface.
- the through hole 38b is also referred to as a narrowed portion 38b. The throttling portion 38b will be further described later.
- the electron beam optical system 70 On the lower surface of the base plate 38, 45 electron beam optical systems 70 are fixed in a suspended state.
- the support of the electron beam optical system 70 is not limited to this.
- the electron beam optical system 70 of 45 may be supported by a support member different from the base plate 38 and the support member may be supported by the housing 19 .
- FIGS. 4A and 4B show an example of a schematic configuration of the electron beam optical system 70 together with the corresponding photoelectric element 54 and the like.
- FIG. 4A shows a schematic configuration of the electron beam optical system 70 as viewed from the + X direction
- FIG. 4B shows a schematic configuration of the electron beam optical system 70 as viewed from the ⁇ Y direction.
- the electron beam optical system 70 includes a lens barrel 104 (which may be called a housing 104) and a pair of electromagnetic lenses 70a and 70b held by the lens barrel 104. And an electrostatic multipole 70c.
- the objective lens of the electron beam optical system 70 and the electrostatic multipole 70 c irradiate an alkaline photoelectric layer 54 with a plurality of laser beams (hereinafter also referred to as a beam or a light beam as appropriate) LB to form an alkaline photoelectric layer (hereinafter It is disposed on the beam path (which may also be called a path) of the electrons (electron beam EB) emitted by photoelectric conversion in layers 60 (abbreviated as layers).
- the pair of electromagnetic lenses 70a and 70b are disposed in the vicinity of the upper end and the lower end in the lens barrel 104, respectively, and they are separated in the vertical direction.
- An electrostatic multipole 70c is disposed in the lens barrel 104 between the pair of electromagnetic lenses 70a and 70b.
- the electromagnetic lenses 70 a and 70 b may be disposed outside the lens barrel 104.
- the electrostatic multipole 70c is disposed at a beam waist portion on a beam path of an electron beam (hereinafter also referred to as a beam as appropriate) EB narrowed by an objective lens. For this reason, the plurality of electron beams EB passing through the electrostatic multipole 70c may mutually repel each other by the coulomb force acting between them, and the magnification may change.
- An electrostatic multipole 70 c having a second electrostatic lens 70 c 2 is provided inside the electron beam optical system 70.
- each of the first electrostatic lens 70c 1 and the second electrostatic lens 70c 2 is, irradiation position control of the XY magnification correction and the electron beam (and the irradiation position shift correction) may be performed.
- the electrostatic lens 70c 1 may be allowed to the axial direction of the magnification adjustment different from the X-axis direction and the Y-axis direction. Further, it may be omitted first electrostatic lens 70c 1 and one of the second electrostatic lens 70c 2, an electrostatic multipole 70c may also have additional electrostatic lenses.
- the second electrostatic lens 70c 2 corrects the irradiation position displacement of the beam EB due to various vibrations and the like (the projection position shift of the cut pattern to be described later) at once.
- the second electrostatic lens 70c 2 is deflection control of the beam EB in performing the following control for the wafer W beam EB during exposure, i.e., it is also used for the irradiation position control of the beam EB.
- the electrostatic multipole 70c is replaced with a static light capable of controlling the electron beam deflection.
- An electrostatic deflection lens consisting of an electrostatic lens may be used.
- the reduction magnification of the electron beam optical system 70 is, for example, 1/50 in design without performing magnification correction.
- Other scaling factors such as 1/30 and 1/20 may be used.
- FIG. 6 is a perspective view showing the appearance of the 45 electron beam optical system 70 supported in a suspended state on the base plate 38.
- each of the lens barrels 104 has an opening (the exit of the electron beam), and the inside of the lens barrel 104 is in communication with the exposure chamber 12 inside the stage chamber 10.
- the exposure chamber 12 is a vacuum chamber having a lower degree of vacuum (higher pressure) than the vacuum chamber 34.
- the degree of vacuum of the exposure chamber 12 may be substantially the same as the degree of vacuum of the vacuum chamber 34, or may be higher than the degree of vacuum of the vacuum chamber 34.
- an electron beam outlet 104a is formed at the exit end of the lens barrel 104.
- two pairs of reflected electron are formed.
- a detection device 106 is arranged. Specifically, both sides in the X axis direction with respect to the optical axis AXe the electron beam optical system 70 (coincides with the optical axis AXp of the projection system to be described later (see FIGS. 7 and 8)), a pair of backscattered electron detector 106x 1 , 106 x 2 are provided.
- a pair of backscattered electron detectors 106y 1 and 106y 2 are provided on both sides in the Y-axis direction with respect to the optical axis AXe.
- Each of the two pairs of backscattered electron detection devices 106 is formed of, for example, a semiconductor detector, and detects and detects a reflected component generated from a detection target mark such as an alignment mark or a reference mark on a wafer.
- a detection signal corresponding to the reflected electrons is sent to the signal processing unit 108 (see FIG. 12).
- the signal processing unit 108 amplifies the detection signals of the plurality of backscattered electron detection units 106 by an amplifier (not shown) and then performs signal processing, and sends the processing result to the main control unit 110 (see FIG. 12).
- the backscattered electron detection device 106 may or may not be provided only on a part (at least one) of the 45 electron beam optical systems 70.
- the optical axis AXe of the electron beam optical system 70 should be drawn between the photoelectric element 54 and the wafer W as shown in FIG. 2, but in FIGS. 4A and 4B. For convenience of illustration, it is shown extending to the upper side of the vacuum barrier 81. Note that the exposure apparatus 100 may not include the backscattered electron detection device 106.
- the backscattered electron detectors 106 x1 , 106 x2 , 106 y1 , and 106 y2 are attached to the lens barrel 104, for example.
- a cooling plate having openings individually facing the outlets 104a of the plurality of lens barrels 104 is provided, and the backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 are provided in the openings of the cooling plate. It may be arranged. In this case, the backscattered electron detector may be attached to the cooling plate. Note that the exposure apparatus 100 may not have a cooling plate.
- the base plate 38 is formed with the above-described diaphragm 38b on the optical axis AXe. Further, on the optical axis AXe, the center of the arrangement region of the large number of apertures 58a provided on the upper side of the photoelectric layer 60 (here, coincident with the central axis of the holder 52) substantially coincides.
- the throttling portion 38b can be provided to make the degree of vacuum of the vacuum chamber 34 different from that of the exposure chamber 12. However, the throttling portion 38b or the like may not be provided.
- the inside of the lens barrel 104 is surrounded by the first space at the center where the electron beam passes through the vacuum chamber 34 and the periphery of the first space, and the electromagnetic lenses 70a and 70b and the electrostatic multipole 70c are formed inside.
- the second space may be separated into a second space for storing the second space, and the second space may be opened to the space outside the stage chamber 10.
- the first space may be partitioned by, for example, a stainless steel tube which penetrates the center of the electromagnetic lenses 70a and 70b and the electrostatic multipole 70c.
- an extraction electrode 112 for accelerating electrons emitted from the photoelectric layer 60 is disposed below the holding position of the photoelectric element 54. As shown in FIG. 4 and the like, the extraction electrode 112 is located between the electron beam optical system 70 and the photoelectric element 54. In the present embodiment, the extraction electrode 112 is located between the base plate 38 and the photoelectric element 54. The extraction electrode 112 may be supported by the base plate 38 or may be supported by the first plate 36.
- the optical unit 18B includes a frame (also referred to as a lens barrel surface plate) 17 disposed above the electron beam optical unit 18A, and a plurality of (45 in the present embodiment) supported by the frame 17. And a light emitting device 80 (which may also be called a light optical system).
- the frame 17 is supported independently of the housing 19 via a support mechanism with an anti-vibration function (not shown).
- a plurality of (45 in the present embodiment) through holes 17 a extending in the Z-axis direction are formed at positions corresponding to the openings 36 a of the 45 of the first plate 36.
- a lens barrel 86a (which may be called a housing 86a) of a projection system, which will be described later and which constitutes a part of the light irradiation device 80, is inserted and fixed.
- the 45 light irradiation devices 80 are arranged in the XY plane in an arrangement corresponding to each of the 45 photoelectric elements 54 (holders 52) (therefore, an arrangement corresponding to the electron beam optical system 70).
- the space in which the optical unit 18B is disposed is an atmospheric pressure space or a space slightly positive pressure than the atmospheric pressure.
- each of the 45 light irradiators 80 at least one light beam from the light irradiator 80 is irradiated to the photoelectric layer 60 through the aperture 58 a of the photoelectric element 54.
- the number of light irradiation devices 80 and the number of photoelectric elements 54 may not be equal.
- the number of light irradiation devices 180 may be larger than the number of photoelectric elements 54.
- FIG. 7 shows the light emitting device 80 of FIG. 1 together with the corresponding photoelectric elements 54 and the like.
- the light irradiation device 80 receives light (illumination light) from the illumination system 82 via the illumination system 82 and the first reflection surface 98a, and generates a plurality of light beams (patterned lights) from the incident illumination light.
- the first reflection surface 98 a and the second reflection surface 98 b are different reflection surfaces formed (provided) on the same reflection optical element 98 such as a prism.
- the pattern generator 84 may be referred to as a spatial light modulator that spatially modulates and emits at least one state of the amplitude, phase, and polarization of light traveling in a predetermined direction. Also, the pattern generator 84 may be referred to as an optical device. The pattern generator 84 may generate an optical pattern composed of, for example, light and dark patterns.
- the illumination system 82 forms a light source 82a that generates a laser beam LB (illumination light), and the laser beam LB into one or more rectangular beams having a long cross section in the X-axis direction. And a forming optical system 82b.
- the light source 82a and the shaping optical system 82b are held by a lens barrel 83 (which may be called a housing 83). That is, the illumination system 82 is disposed inside the lens barrel 83.
- a laser diode that continuously oscillates a visible light or a wavelength near the visible light for example, a laser beam having a wavelength of 405 nm is used.
- a laser diode that intermittently emits (oscillates) laser light may be used as the light source 82a.
- a combination of a laser diode and a switching element such as an AO deflector or an AOM (acousto-optic modulator) may be used in place of the light source 82a to intermittently emit laser light.
- the illumination system 82 may not include the light source 82a, and the light source may be provided outside the apparatus. In this case, illumination light from a light source outside the apparatus may be guided to the illumination system 82 using a light transmission member such as an optical fiber.
- the shaping optical system 82b includes a plurality of optical elements sequentially disposed on the optical path of the laser beam LB from the light source 82a.
- the plurality of optical elements can include, for example, a diffractive optical element (also referred to as DOE), a lens (for example, a condenser lens), a mirror, and the like.
- the shaping optical system 82b includes, for example, a diffractive optical element located at the incident end
- the beam LB is on the emission surface side of the diffractive optical element
- In-plane intensity of the laser beam LB so as to have a large light intensity distribution in a plurality of rectangular regions (in the present embodiment, elongated slits) long in the X-axis direction aligned at predetermined intervals in the Y-axis direction on a predetermined surface. Transform the distribution.
- the diffractive optical element generates a plurality of rectangular beams (slit-like beams) LB having a plurality of rectangular cross sections elongated in the X-axis direction aligned at predetermined intervals in the Y-axis direction by incidence of the beam LB from the light source 82a. .
- a number of slit beams LB according to the configuration of the pattern generator 84 are generated.
- the element for converting the in-plane intensity distribution of the laser beam LB is not limited to the diffractive optical element, and may be a refractive optical element or a reflective optical element, or may be a spatial light modulator.
- a reflective spatial light modulator is used as the pattern generator 84, as shown in FIGS. 7 and 8, it is located at the end of the shaping optical system 82b.
- the above-described reflective optical element 98 is disposed as an optical element for bending an optical path.
- the reflective optical element 98 is disposed inside a lens barrel 99 (may be called a housing 99) between the lens barrel 83 of the illumination system 82 and the lens barrel 86a of the projection system 86, as shown in FIG. There is.
- the reflective optical element 98 is held by the lens barrel 99 via a support member.
- the lens barrel 99 is disposed on a lens barrel 86 a held by the frame 17.
- the lens barrel 99 may be mounted on the lens barrel 86a, or the positions of the lens barrel 99 and the lens barrel 83 with respect to the lens barrel 86a (projection system 86) may be changeable using an actuator or the like. good.
- the reflective optical element 98 may be movable with respect to the lens barrel 99 (the position, the inclination, the attitude, and the like can be changed).
- the final lens 96 of the illumination system 82 condenses a plurality of cross-sectional rectangular (slit-like) beams LB generated by the diffractive optical element in the Y-axis direction and irradiates the first reflective surface 98 a of the reflective optical element 98 .
- a condensing lens such as a cylindrical lens long in the X-axis direction can be used.
- a reflective optical member such as a focusing mirror or a diffractive optical element may be used.
- both the first reflection surface 98 a and the second reflection surface 98 b are flat.
- the first reflection surface 98a is not limited to a flat surface, and may have a shape having a curvature.
- the function of the condensing lens can also be used.
- the light beam incident on the reflective optical element 98 may not be a beam having a rectangular cross section (slit shape).
- the reflective optical element 98 is a member having a first reflective surface 98 a and a second reflective surface 98 b and having a pentagonal shape in a side view and having a predetermined length in the X-axis direction.
- the first reflection surface 98 a and the second reflection surface 98 b intersect with each other, and the line of intersection is a line parallel to the X axis.
- the first reflection surface 98a forms an angle (+ ⁇ 1 ) with respect to the XZ plane
- the second reflection surface 98b forms an angle ( ⁇ with respect to the XZ plane).
- Make 2 ).
- the first reflection surface 98a and the second reflection surface 98b form an obtuse angle.
- the light from the illumination system 82 located on one side along the optical axis direction with respect to the reflective optical element 98 is transmitted to the other along the optical axis direction with respect to the reflective optical element 98 via the pattern generator 84. It can be led to a projection system 86 located on the side.
- illumination light (for convenience, referred to as a first beam) incident from the illumination system 82 (final lens 96) to the reflective optical element 98 along the optical axis AXi, for example, is reflected by the first reflective surface 98a.
- the light beam is deflected at a predetermined angle 2 ⁇ 1 toward the pattern generator 84 (see FIG. 8).
- the other plural illumination lights (light beams) are also deflected toward the pattern generator 84 by the first reflection surface 98a. That is, in the present embodiment, the first reflection surface 98 a constitutes at least a part of a first deflection unit that deflects a plurality of light beams from the illumination system 82 (final lens 96) toward the pattern generator 84.
- a plurality of light beams including the first beam directed from the first reflection surface 98 a to the pattern generator 84 obliquely downward from the first reflection surface 98 a (a direction crossing the optical axis AXi and approaches the projection system 86 Direction).
- the specularly reflected light of the above-mentioned first beam generated by the pattern generator 84 is reflected by the second reflecting surface 98 b and deflected toward the projection system 86 by a predetermined angle 2 ⁇ 2 (FIG. 8) reference). Further, a plurality of other light beams (diffracted light) generated by the pattern generator 84 are also deflected toward the projection system 86 by the second reflection surface 98 b.
- the second reflection surface 98 b constitutes at least a part of a second deflection unit that deflects a plurality of light beams from the pattern generator 84 toward the projection system 86, and the first reflection surface 98 a And the second reflective surface 98b constitute at least a part of the deflecting unit.
- the specularly reflected light from the pattern generator 84 is obliquely downward from the pattern generator 84 (across the optical axis AXi because the first beam directed from the first reflection surface 98 a to the pattern generator 84 is advancing obliquely downward.
- the light travels in the direction toward the projection system 86) and reaches the second reflective surface 98b located below the first reflective surface 98a.
- the first reflection surface and the second reflection surface are formed on different surfaces of the same reflection optical element, but the first reflection surface and the second reflection surface may be separate mirrors, etc. You may comprise with a reflective optical element. In this case, the first reflecting surface and the second reflecting surface may be moved separately.
- the pattern generator 84 is disposed on the optical path of the plurality of slit-like beams reflected (deflected) by the first reflecting surface 98a, as shown in FIG.
- the pattern generator 84 is disposed parallel to the XZ plane.
- the pattern generator 84 is disposed on the surface on the ⁇ Y side of the circuit board 102, a part of which is exposed to the outside of the lens barrel 99.
- the pattern generator 84 is disposed inside the lens barrel 99.
- a heat sink 103 for heat radiation is disposed to face each other, and the heat sink 103 is connected to the circuit board 102 via a plurality of connection members 105.
- the heat sink 103 is fixed to the lens barrel 99 in a contact state.
- a Peltier element may be used as the connection member 105.
- at least one of the pattern generator and the circuit board 102 can be cooled by heat radiation through the heat sink 103.
- the heat sink 103 and the like are not shown.
- the pattern generator 84 is not limited to the case where the pattern generator 84 is disposed parallel to the XZ plane, and may be disposed parallel to a plane intersecting the XZ plane. Further, the installation surface of the pattern generator 84 may not be the circuit board 102. Further, the mechanism for cooling at least one of the pattern generator 84 and the circuit board 84 may not be a heat sink.
- the pattern generator 84 is configured by a light diffraction type light valve (GLV (registered trademark)) which is a kind of programmable spatial light modulator.
- the light diffraction type light valve GLV is a fine structure of silicon nitride film called “ribbon” on a silicon substrate (chip) 84 a (hereinafter referred to as “ribbon”).
- the space light modulator is formed by several thousands of scales).
- the driving principle of GLV is as follows.
- the GLV By electrically controlling the deflection of the ribbon 84b, the GLV functions as a programmable diffraction grating, and has high resolution, high speed (responsiveness 250 kHz to 1 MHz), high accuracy, dimming, modulation, and laser light Enable switching. GLVs are classified as micro-electro-mechanical systems (MEMS).
- the ribbon 84 b is made of an amorphous silicon nitride film (Si 3 N 4 ) which is a kind of high temperature ceramic having strong characteristics in hardness, durability, and chemical stability. Each ribbon has a width of 2 to 4 ⁇ m and a length of 100 to 300 ⁇ m.
- the ribbon 84b is covered with an aluminum thin film, and has the function of both a reflector and an electrode.
- the ribbon is stretched across the common electrode 84c, and when a control voltage is supplied to the ribbon 84b from a driver (not shown in FIGS. 9A and 9B), the ribbon is bent toward the substrate 84a by static electricity. .
- the control voltage is lost, the ribbon 84b returns to its original state due to the high tension inherent to the silicon nitride film. That is, the ribbon 84b is a kind of movable reflective element.
- GLV GLV
- an active ribbon whose position changes due to the application of voltage
- a type where a bias ribbon falling to the ground and whose position is invariable alternates and a type in which all are active ribbons.
- the latter type is used in the form.
- the pattern generator 84 made of GLV on the -Y side surface of the circuit board 102 shown in FIG. It is attached.
- the circuit board 102 is provided with a CMOS driver (not shown) for supplying a control voltage to the ribbon 84 b.
- a pattern generator 84 including a CMOS driver is referred to.
- the ribbon row 85 having, for example, 6000 ribbons 84b has the Y axis along the longitudinal direction (direction in which the ribbons 84b are aligned) as the X axis direction.
- 12 rows are formed on the silicon substrate at predetermined intervals in the direction.
- the ribbons 84b of each ribbon row 85 are stretched on the common electrode.
- each ribbon 84 b is driven mainly by switching (on / off) of the laser light by applying and releasing the constant level voltage.
- the GLV can adjust the diffracted light intensity according to the applied voltage
- the applied voltage is finely adjusted when the intensity of at least a part of the plurality of beams from the pattern generator 84 needs to be adjusted.
- a plurality of light beams having different intensities can be generated from pattern generator 84.
- twelve slit-like beams are generated by the diffractive optical element in the illumination system 82, and the twelve beams form a plurality of optical elements (including the final lens 96) constituting the forming optical system 82b,
- a slit-like beam LB long in the X-axis direction is irradiated to the center of each ribbon row 85 via the first reflection surface 98 a of the reflection optical element 98.
- the irradiation area of the beam LB to each ribbon 84b is a square area.
- the irradiation area of the beam LB to each ribbon 84b may not be a square area. It may be a rectangular area long in the X axis direction or long in the Z axis direction.
- the irradiation area (illumination area of the illumination system 82) of the 12 beams on the light receiving surface of the pattern generator 84 has a length in the X axis direction of S mm and a length in the Z axis direction of T mm. It can be said that it is a rectangular area.
- 72000 apertures 58 a are formed in the light shielding film 58 of the photoelectric element 54 so that the 72000 beams generated by the pattern generator 84 can be individually irradiated.
- the number of apertures 58a need not be the same as the number of beams (multi-beams) that can be irradiated by, for example, the pattern generator 84, and a photoelectric element including apertures 58a to which 72000 beams (laser beams) correspond.
- the number of movable reflective elements (ribbons 84b) included in the pattern generator 84 may be different from the number of apertures 58a.
- the size of each of the plurality of apertures 58a on the photoelectric element 54 may be smaller than the size of the cross section of the corresponding beam.
- the number of movable reflective elements (ribbons 84 b) included in the pattern generator 84 may be different from the number of beams generated by the pattern generator 84.
- Light from a plurality of (for example, several) movable elements (ribbons 84b) may be irradiated to one aperture 58a.
- a plurality of (two) movable reflective elements (ribbons) 1 The switching of a book beam may be performed. Further, the number of pattern generators 84 and the number of photoelectric elements 54 may not be equal.
- the plurality of beams generated by the pattern generator 84 are reflected by the second reflection surface 98b of the reflection optical element 98 for deflecting the optical path, as shown in FIG. Is incident on a first lens 94 (see FIG. 8) located at the incident end of the lens.
- the projection system 86 is sequentially disposed on the optical path of the light beam from the pattern generator 84 through the second reflecting surface 98b, and has a plurality of lenses having a common optical axis AXp in the Z-axis direction. Is equipped. The plurality of lenses are held by a lens barrel 86a.
- the projection system 86 is a reduction optical system, and its projection magnification is, for example, about 1 ⁇ 4.
- the projection system is not limited to the refractive optical system, and may be a reflective optical system or a catadioptric optical system.
- the projection magnification of the projection system 86 is not limited to 1 ⁇ 4 reduction magnification, and may be, for example, 1 ⁇ 5 or 1/10 reduction magnification, or equal magnification or enlargement magnification.
- the reflective optical element 98 having the first reflective surface 98a and the second reflective surface 98b is disposed on the ⁇ Z side of the illumination system 82, and the projection system 86 2) It is disposed on the -Z side of the reflecting surface 98b.
- the illumination system 82 is disposed in the space (first space) inside the lens barrel 83
- the projection system 86 is disposed in the space (second space) inside the lens barrel 86a.
- the reflective optical element 89 having the reflective surface 89 b and the pattern generator 84 are disposed in a space (third space) inside the lens barrel 99 between the first space and the second space.
- the pattern generator 84 is arranged such that the surface including the arrangement surface of the plurality of ribbons 84b (movable reflection elements) does not intersect the optical path of the illumination light from the illumination system 82 to the first reflection surface 98a. It is done.
- the arrangement surface of the plurality of ribbons 84 b (movable reflection element) means a surface including the reflection surfaces of the plurality of ribbons 84 b in the initial state. This arrangement surface may be any of a virtual surface on which the reflective surfaces of the plurality of ribbons 84b should be located and a surface on which the reflective surfaces of the plurality of ribbons 84b are disposed in the initial state.
- a state in which the CMOS driver for driving the ribbon 84b is not energized corresponds to the initial state.
- miniaturization of the optical unit 18B can be achieved.
- the size of the cross section orthogonal to the Z axis of the optical unit 18B can be reduced. Therefore, it becomes possible to arrange the plurality of light irradiation devices 80 in a space-saving manner, and in the desired state of the plurality of electron beam optical systems 70 in the X and Y directions, regardless of the size (arrangement) of the optical unit 18B. It can be juxtaposed.
- a surface including the arrangement surface of the plurality of ribbons 84b (movable reflection elements) is generated by the pattern generator 84, and the optical paths of the plurality of light beams directed to the photoelectric element 54, ie, the second reflection surface 89b. And photoelectric element 54 so as not to cross the optical path of the plurality of light beams. That is, in the pattern generator 84, the projection system 86 and the photoelectric conversion element are arranged so that the surface including the arrangement surface of the plurality of ribbons 84b (movable reflection elements) does not intersect the light path between the second reflection surface 89b and the projection system 86.
- the optical path of the light beam irradiated to the photoelectric element 54 is not intersected with the optical paths of a plurality of light beams from the pattern generator 84 deflected by the second reflecting surface 89b. It is arranged not to intersect with. Thereby, miniaturization of the optical unit 18B can be achieved.
- the plurality of light irradiation devices 80 can be disposed in a space-saving manner. Therefore, the plurality of electron beam optical systems 70 can be juxtaposed in a desired state in the X and Y directions, regardless of the size (arrangement) of the optical unit 18B.
- the optical axis AXi of the shaping optical system 82 b and the optical axis AXp of the projection system 86 are substantially coaxial with each other in the vertical direction (Z-axis direction).
- the reflective surface of the movable reflective element (ribbon 84b) is substantially parallel to all of the optical axis AXi, the optical axis AXp, and the vertical axis in both on and off states.
- the projection system 86 projects the light from the pattern generator 84 through the second reflection surface 98 b onto the photoelectric element 54 through the vacuum barrier 81 to obtain a plurality of, for example, 72000 apertures 58 a.
- the aperture 58a is assumed to be a rectangle long in the X-axis direction unless otherwise specified. However, the aperture 58a may be a rectangle or square long in the Y-axis direction, or other polygons, ellipses, etc. It may be a shape.
- the projection system 86 may be provided with an optical characteristic adjustment device 87 capable of adjusting the optical characteristic of the projection system 86.
- an optical characteristic adjustment device a device capable of changing at least the projection magnification (magnification) in the X-axis direction by moving some of the optical elements constituting the projection system 86, for example, a lens, or An apparatus for changing the pressure of the airtight space formed between a plurality of lenses can be used.
- the optical property adjusting device a device for deforming an optical member constituting the projection system 86 or a device for giving a heat distribution to an optical member constituting the projection system 86 may be used.
- an optical characteristic adjustment device is provided side by side with all of the 45 light irradiation devices 80.
- the optical property adjustment device 87 of 45 is controlled by the control unit 11 based on an instruction of the main control device 110 (see FIG. 12).
- the optical characteristic adjustment device may be provided to only a part (one or two or more) of the plurality of light irradiation devices 80.
- an intensity modulation element capable of changing the intensity of at least one of the plurality of beams generated by the pattern generator 84 and irradiated to the photoelectric layer 60 may be provided inside the projection system 86.
- the changing of the intensities of the plurality of beams applied to the photoelectric layer 60 includes nulling the intensity of some of the plurality of beams.
- the projection system 86 may be provided with a phase modulation element capable of changing the phase of at least one of the plurality of beams irradiated to the photoelectric layer 60, or may be provided with a polarization modulation element capable of changing the polarization state.
- the optical axis of the shaping optical system 82b of the illumination system 82 (coincident with the optical axis of the final lens 96) AXi and the optical axis AXp of the projection system 86 are both Z Although parallel to the axis, the optical axis AXi and the optical axis AXp may be nonparallel. In other words, the optical axis AXi and the optical axis AXp may intersect at a predetermined angle.
- the exposure apparatus 100 is provided with a relative position measurement system 29 capable of measuring relative position information in the XY plane of the electron beam optical unit 18A and the optical unit 18B (see FIGS. 1 and 12).
- the relative position measurement system 29 is configured by a pair of two-dimensional encoder systems 29a and 29b shown in FIG.
- a pair of scale members 33a and 33b are fixed in the vicinity of both ends in the Y-axis direction on the top surface of the first plate 36 of the housing 19, as shown in FIG.
- Heads 35a and 35b are fixed to the lower surface of the frame 17 so as to face each of the heads 33b.
- On the scale members 33a and 33b for example, two-dimensional diffraction gratings with a pitch of 1 ⁇ m are formed, with the X-axis direction and the Y-axis direction as periodic directions.
- the head 35a configures a two-dimensional encoder 29a that measures positional information of the housing 19 in the X-axis direction and the Y-axis direction using the scale 33a.
- the head 35 b configures a two-dimensional encoder 29 b that measures positional information of the housing 19 in the X-axis direction and the Y-axis direction using the scale member 33 b.
- the position information measured by the pair of two-dimensional encoders 29a and 29b is supplied to the main controller 110, and the main controller 110 controls the frame 17 based on the position information measured by the pair of two-dimensional encoders 29a and 29b.
- the relative positions of the electron beam optical unit 18A and the optical unit 18B in the three degrees of freedom direction (X, Y, ⁇ z) of the electron beam optical unit 18A and the optical unit 18B are obtained.
- a relative position measurement system 29 capable of measuring relative position information of the electron beam optical unit 18A and the optical unit 18B in the XY plane is configured by the pair of two-dimensional encoders 29a and 29b.
- the encoder system may not be a two-dimensional encoder system.
- the scale member of the encoder system may be disposed on the frame 17 and the head may be disposed on the housing 19.
- the relative position measurement system 29 is not limited to the encoder system, and another measurement system such as an interferometer system may be used. Note that as the relative position measurement system 29, any one of the position of the frame 17 and the housing 19 may be measured. Further, the relative position measurement system 29 may not be provided.
- a positioning device 21 (not shown in FIGS. 1 and 2; see FIG. 12) is provided to maintain the relative positions of the electron beam optical unit 18A and the optical unit 18B in the XY plane in a predetermined state.
- Main controller 110 determines positioning device 21 based on the relative position (for example, the output of relative position measurement system 29) of electron beam optical unit 18A and optical unit 18B in the three degrees of freedom direction (X, Y, ⁇ z). Control.
- the relative positions of the electron beam optical unit 18A and the optical unit 18B in the X-axis direction and the Y-axis direction, and the relative rotation angle around the Z-axis are maintained in a constant state (predetermined state).
- At least one drive device for moving at least one of the frame 17 and the housing 18 may be provided.
- the support method of optical unit 18B is not limited to the above-mentioned method.
- the optical unit 18 B may be mounted on the housing 19.
- the length S mm in the X-axis direction on the light receiving surface of the pattern generator 84 during exposure A beam is irradiated inside a rectangular area of length T mm in the Z-axis direction, and the light from the pattern generator 84 is irradiated to the photoelectric element 54 by the projection system 86 having a reduction ratio of 1/4 by this irradiation, and this irradiation is further performed.
- the electron beam generated by the laser beam is irradiated to a rectangular area (exposure field) on the image plane (the wafer surface aligned with the image plane) through the electron beam optical system 70 having a reduction ratio of 1/50.
- the reduction is configured to include the light irradiation device 80 (projection system 86), the corresponding photoelectric device 54, and the corresponding electron beam optical system 70.
- a straight cylindrical multi-beam optical system 200 (see FIG. 12) having a magnification of 1/200 is configured, and the multi-beam optical system 200 is arranged in the above-described matrix arrangement 45 in the XY plane. Therefore, the optical system of the exposure apparatus 100 of the present embodiment is a multi-column electron beam optical system having 45 reduction optical systems with a reduction ratio of 1/200.
- the exposure apparatus 100 a wafer with a diameter of 300 mm is to be exposed, and the 45 electron beam optical systems 70 are disposed to face the wafer, so the arrangement interval of the optical axes AXe of the electron beam optical system 70 is an example. It is 43 mm.
- the exposure area handled by one electron beam optical system 70 is a rectangular area of 43 mm ⁇ 43 mm at maximum, so as described above, the movement stroke of wafer stage WST in the X-axis direction and Y-axis direction is 50 mm is enough.
- the number of electron optical systems 70 is not limited to 45, and can be determined based on the diameter of the wafer, the stroke of the wafer stage WST, and the like.
- FIG. 12 is a block diagram showing the input / output relationship of the main controller 110 that mainly constitutes the control system of the exposure apparatus 100.
- Main controller 110 includes a microcomputer and the like, and centrally controls the components of exposure apparatus 100 including the components shown in FIG.
- the light irradiation device 80 connected to the control unit 11 controls a light source (laser diode) 82a controlled by the control unit 11 based on an instruction from the main control unit 110, a diffractive optical element, and optical characteristic adjustment. Including devices.
- the electron beam optical system 70 connected to the control unit 11 is a pair of electromagnetic lenses 70 a and 70 b and electrostatic multipoles 70 c controlled by the control unit 11 based on an instruction from the main control device 110 (first The electrostatic lens 70 c 1 and the second electrostatic lens 70 c 2 ) are included.
- reference numeral 500 denotes an exposure unit configured to include the above-described multi-beam optical system 200, the control unit 11, and the signal processing device. In the exposure apparatus 100, an exposure unit 500 is provided.
- the exposure apparatus 100 adopts a rectangular (rectangular) exposure field instead of a square for the following reason.
- a square exposure field hereinafter also referred to as a square field as appropriate
- a rectangular exposure field hereinafter referred to as appropriate
- a circle indicating the effective area (aberration effective area) of diameter D of the electron beam optical system.
- rectangular fields also referred to as rectangular fields
- the square field SF is preferable to maximize the effective area of the electron beam optical system.
- the field width is lost by about 30% (1 / ⁇ 2) as shown in FIG.
- the effective area is approximately the field width. This is a great advantage for multi-columns.
- the rectangular field has a higher current density than the square field, since the total amount of electrons irradiated in the field is the same, so even if the mark is placed in a smaller area on the wafer It can detect with sufficient detection sensitivity. Also, rectangular fields are easier to manage as compared to square fields.
- both the square field SF and rectangular field RF exposure fields are set to include the optical axis AXe of the electron beam optical system.
- the exposure field may be set within the aberration effective area so as not to include the optical axis AXe.
- the exposure field may be set to a shape other than a rectangle (including a square), for example, an arc.
- the illuminance unevenness in the exposure field is controlled by controlling the applied voltage to the CMOS driver of the pattern generator 84 at the time of exposure to be described later by the main control unit 110, thereby making the intensities of diffracted light generated in the plurality of ribbons 84b into individual ones.
- the illuminance distribution in the plane on the electron emission surface of the photoelectric layer 60 and the corresponding The illuminance distribution in the exposure field RF on the wafer surface is adjusted. That is, the intensities of the plurality of electron beams irradiated to the exposure field RF are properly adjusted.
- main control device 110 can generate halftones using the pattern generator 84 itself. Therefore, main controller 110 corresponds to the in-plane illuminance distribution on the electron emission surface of photoelectric layer 60 by adjusting the intensity of each light beam irradiated to photoelectric layer 60 at the time of exposure described later. Adjustment of the illuminance distribution in the exposure field on the wafer surface, that is, dose control can be performed.
- crystals having a non-linear optical effect in which the refractive index changes according to the applied voltage such as lithium tantalate (lithium tantalate (abbreviation: LT) single crystal), lithium niobate (lithium niobate (abbreviation: LN) alone
- Optical intensity modulation crystal electro-optical element
- main controller 110 adjusts the in-plane illuminance distribution on the electron emission surface of photoelectric layer 60 using one or both of the illuminance distribution adjusting element and pattern generator 84. good.
- the intensities of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion is performed so that the amount of current
- the adjustment of the beam intensity may be performed in the illumination system 82, may be performed by the pattern generator 84, or may be performed in the projection system 86.
- the beam intensity (the illuminance of the electron beam, the beam current amount) of at least a part of the plurality of electron beams generated from the electron emission surface of the photoelectric layer 60 by photoelectric conversion may be different from the other electron beam intensities.
- the intensity of a plurality of light beams irradiated to the photoelectric layer 60 may be adjusted.
- the resist layer formed on the wafer is not affected only by the in-plane illuminance distribution on the electron emission surface of the photoelectric layer 60, and other factors such as forward scattering, back scattering, or fogging of electrons And so on.
- forward scattering refers to a phenomenon in which electrons incident on the inside of the resist layer on the wafer surface are scattered in the resist layer before reaching the wafer surface
- back scattering refers to the wafer via the resist layer. It means that the electrons reaching the surface are scattered at or inside the wafer surface, re-incident in the resist layer, and scattered around.
- “fogging” refers to a phenomenon in which reflected electrons from the surface of the resist layer are re-reflected on the bottom surface of the cooling plate 74, for example, and a dose is applied to the periphery.
- exposure apparatus 100 adopts different correction methods for forward scattering and backscattering and fogging. ing.
- the main controller 110 allows the pattern generator 84 (and / or the illuminance distribution adjusting element via the control unit 11 in anticipation of the influence of the forward scattered component). Adjust the illuminance distribution in the plane using).
- the main control device 110 controls the pattern generator 84 (and / or Alternatively, the illuminance distribution adjustment element adjusts the illuminance distribution in the plane at a certain spatial frequency.
- the exposure apparatus 100 is used, for example, in complementary lithography.
- a wafer on which a line and space pattern (L / S pattern) is formed is subjected to exposure by using double patterning or the like in immersion exposure using an ArF light source, and the line pattern is cut. It is used to form a cut pattern.
- the exposure apparatus 100 it is possible to form a cut pattern corresponding to each of 72000 apertures 58a formed in the light shielding film 58 of the photoelectric element 54.
- the flow of processing on a wafer in the present embodiment is as follows.
- the wafer W before exposure to which the electron beam resist has been applied is placed on the wafer stage WST in the stage chamber 10 and is attracted by the electrostatic chuck.
- each electron beam optical system 70 For at least one alignment mark formed on a scribe line (street line) corresponding to each of, for example, 45 shot areas formed on wafer W on wafer stage WST, each electron beam optical system 70 The electron beam is irradiated, and the backscattered electrons from at least one alignment mark are detected by at least one of backscattered electron detectors 106 x 1 , 106 x 2 , 106 y 1 , 106 y 2 , and all points alignment measurement of wafer W 1 is performed.
- the plurality of shot areas on the wafer W 1 exposure using a 45 exposure unit 500 (multi-beam optical system 200) is started.
- the irradiation timing (on / off) of each beam is controlled while scanning the wafer W (wafer stage WST) in the Y-axis direction.
- alignment marks formed corresponding to a part of the shot areas of the wafer W may be detected without performing the all-point alignment measurement, and 45 shot areas may be exposed based on the detection result.
- the number of exposure units 500 and the number of shot areas are the same, but may be different. For example, the number of exposure units 500 may be smaller than the number of shot areas.
- the alignment mark may be detected outside the stage chamber 10. In this case, it is not necessary to detect the alignment mark in the stage chamber 10.
- the exposure using the ribbon row A is started on a continuous 6000-pixel region of a certain row (referred to as a K-th row) aligned in the X-axis direction on the wafer.
- a K-th row a continuous 6000-pixel region of a certain row aligned in the X-axis direction on the wafer.
- the beam reflected by the ribbon row A is at the home position.
- the exposure to the same 6000 pixel region is continued while deflecting the beam in the + Y direction (or -Y direction) by making the scan of the wafer W in the + Y direction (or -Y direction) from the start of exposure follow.
- wafer stage WST advances at a velocity V [nm / s], for example Ta x V [nm].
- V [nm / s] for example Ta x V [nm].
- Ta ⁇ V 96 [nm].
- the beam is returned to the home position while the wafer stage WST scans at 24 nm in the + Y direction at a velocity V. At this time, the beam is turned off so that the resist on the wafer is not actually exposed.
- the continuous 6000 pixel area on the (K + 12) th row has the same position as the 6000 pixel area on the Kth row at the start of exposure. It is in.
- the continuous (6000 K) pixel region on the (K + 12) th row is exposed while deflecting the beam to the wafer stage WST.
- the exposure apparatus 100 is used for complementary lithography and is used for forming a cut pattern for an L / S pattern formed on the wafer W, for example, with the X-axis direction as the periodic direction.
- a beam reflected by an arbitrary ribbon 84b can be turned on to form a cut pattern.
- 72000 beams may or may not be simultaneously turned on.
- main scanning drive 110 controls stage drive system 26 based on the measurement values of position measurement system 28 during scanning exposure to wafer W based on the above-described exposure sequence.
- the light irradiation device 80 and the electron beam optical system 70 are controlled via the control unit 11 of each exposure unit 500. At this time, based on an instruction from the main control unit 110, the control unit 11 performs the above-described dose control as necessary.
- the dose control described above is dose control performed by controlling the pattern generator 84 or the illuminance distribution adjusting element (not shown), or the pattern generator 84 and the illuminance distribution adjusting element, dynamic dose control It can be said.
- the exposure apparatus 100 is not limited to this, and the following dose control can also be adopted.
- a cut pattern (resist pattern) CP which should be essentially square (or rectangular) on the wafer, is, for example, 4 as shown in FIG. A corner may be rounded to look like a cut pattern CP '.
- a light beam is photoelectrically formed through a non-rectangular aperture 58a 'in which auxiliary patterns 58c are provided at four corners of the aperture 58a formed in the light shielding film 58.
- an electron beam generated by photoelectric conversion is irradiated onto the wafer through the electron beam optical system 70 to form an irradiation area of the electron beam having a shape different from that of the non-rectangular aperture 58a 'on the wafer.
- the shape of the irradiation area of the electron beam and the shape of the cut pattern CP to be formed on the wafer may be the same or different.
- the shape of the aperture 58a ' is set so that the shape of the electron beam irradiation area is substantially the same as the shape of the desired cut pattern CP (for example, rectangular or square). You should decide. Use of the aperture 58a 'in this case may not be considered as dose control.
- the auxiliary pattern 58c need not be provided at all four corners of the rectangular aperture 58a, and the auxiliary pattern 58c may be provided at at least a part of the four corners of the aperture 58a. Further, the auxiliary pattern 58c may be provided at all four corners of the rectangular aperture 58a only in a part of the plurality of apertures 58a 'formed in the light shielding film 58. Further, some of the plurality of apertures formed in the light shielding film 58 may be the apertures 58a ', and the remaining may be the apertures 58a. That is, it is not necessary to make all the shapes of the plurality of apertures 58a 'formed in the light shielding film 58 the same.
- the shape, size, etc. of the aperture is optimized based on, for example, the characteristics of the electron beam optical system 70 based on the actual exposure result. Is desirable.
- the shape of each aperture is determined so as to suppress rounding of the corner of the irradiation area on the wafer (target). The influence of the forward scattering component can also be reduced by the aperture shape.
- the shape of the aperture 58a ' may be the same as the shape of the irradiation region of the electron beam.
- the exposure apparatus 100 has a plurality of electron beam optical systems 70, for example 45, but the 45 electron beam optical systems 70 are manufactured through the same manufacturing process so as to satisfy the same specifications.
- inherent distortion disortion aberration
- the distortion common to the plurality of electron beam optical systems 70 cancels the distortion, as schematically shown in FIG. 15B, in the arrangement of the apertures 58a on the light shielding film 58 located on the photoelectric layer 60.
- the correction may be made in such an arrangement as to reduce or reduce.
- the circle in FIG. 15A indicates the aberration effective area of the electron beam optical system 70.
- each aperture 58a is shown not as a rectangle but as a parallelogram etc. for clarity in FIG. 15 (B), the aperture 58a on the light shielding film 58 is actually formed with a rectangle or a square. Be done.
- This example shows a case where barrel distortion inherent to the electron beam optical system 70 is canceled or reduced by arranging a plurality of apertures 58a on the photoelectric layer 60 along the pincushion distortion shape. .
- the distortion of the electron beam optical system 70 is not limited to the barrel distortion, and, for example, when the distortion of the electron beam optical system 70 is a pincushion distortion, the plurality of apertures 58 a may cancel or reduce the influence. May be arranged in a barrel distortion shape. Further, the positions of the plurality of light beams from the projection optical system 86 may or may not be adjusted according to the arrangement of the respective apertures 58a.
- the exposure apparatus 100 includes the exposure unit 500 configured to include the multi-beam optical system 200, the control unit 11, and the signal processing device 108 (see FIG. 12).
- the multi-beam optical system 200 includes a light irradiation device 80 and an electron beam optical system 70.
- the light irradiation device 80 includes an illumination system 82, a reflective optical element 98, a pattern generator 84, and a projection system 86.
- the illumination light from the illumination system 82 is deflected by the first reflection surface 98a of the reflection optical element 98, and the irradiation of the deflected illumination light causes the pattern generator 84 to generate a plurality of light beams.
- the plurality of light beams from the generator 84 are deflected by the second reflecting surface 98 b of the reflective optical element 98, and the deflected plurality of light beams are irradiated by the projection system 86 onto the photoelectric element 54 through the vacuum barrier 81. Therefore, in the light irradiation device 80, the optical axis AXi of the shaping optical system 82b of the illumination system 82 and the optical axis AXp of the projection system 86 can be made parallel to each other. In particular, in the present embodiment, the optical axis AXi and the optical axis AXp can be disposed substantially coaxially in the vertical direction.
- the illumination system 82 and the projection system 86 are disposed substantially on a straight line, and a GLV having a large number of reflective movable reflection elements is used as the pattern generator 84,
- the light paths can be separated, ie light from the pattern generator can be directed to the projection system 86.
- the optical axis AXi and the optical axis AXp can be disposed substantially coaxially in the vertical direction, the reflecting surfaces of the plurality of movable reflecting elements (ribbons 84b) of the pattern generator 84 made of GLV can be either on or off Also, the optical axis AXi is substantially parallel to all of the optical axis AXp and the vertical axis. Therefore, unlike the case where either the optical axis AXi or the optical axis AXp is not parallel to the reflecting surface of the movable reflecting element (ribbon 84b) when the optical axis AXi and the optical axis AXp are not coaxial or not parallel to each other.
- the illumination light from the illumination system 82 is deflected by the first reflection surface 98 a and irradiated to the pattern generator 84, and the light beam generated by the pattern generator can be reliably guided to the projection system 86 by the irradiation.
- the optical axis AXi of the shaping optical system 82b and the optical axis AXp of the projection system 86 are made parallel to each other, and thus the optical axis AXi and the optical axis AXp are arranged substantially coaxially in the vertical direction.
- the illumination system 82, the pattern generator 84, the projection system 86, the photoelectric element 54 and the electron beam optical system 70 are arranged side by side, and the electron beam from each electron beam optical system 70 is irradiated onto one wafer. It will be possible to
- the electron beam optical system 70 of the exposure apparatus 100 irradiates the wafer W with electrons emitted from the photoelectric element 54 as the plurality of electron beams by irradiating the photoelectric element 54 with a plurality of light beams. Therefore, according to the exposure apparatus 100, since there is no blanking aperture, the source of generation of complex distortion due to charge-up and magnetization is fundamentally eliminated and waste electrons (reflected electrons) not contributing to the exposure of the target are reduced. It will be possible to eliminate long-term instability factors.
- main controller 110 performs scanning (movement) of wafer stage WST holding wafer W in the Y-axis direction via stage drive system 26. Control.
- the main control unit 110 passes n (for example, 72000) apertures 58 a of the photoelectric element 54 for each of the m (for example, 45) multi-beam optical systems 200 of the exposure unit 500.
- the irradiation state (on state and off state) of the n beams is changed for each aperture 58a, and the intensity of the light beam is adjusted for each beam using the pattern generator 84.
- the first electrostatic lens 70c 1 of the electrostatic multipole 70c caused by changes in the total current amount, reduction in the X-axis direction and the Y-axis direction due to the Coulomb effect magnification (changes in) Correct, fast, and individually.
- the second electrostatic lens 70c 2 correction (light pixels of the optical pattern, i.e. the projection position deviation of the cut pattern to be described later) irradiation position shift of the beam caused by various vibrations or the like in a batch Do.
- a desired line of a fine line-and-space pattern in which the X-axis direction formed in advance in each of, for example, 45 shot areas on the wafer by double patterning using an ArF immersion exposure apparatus, for example. It becomes possible to form a cut pattern at a desired position on the top, and high precision and high throughput exposure is possible.
- any of the plurality of apertures 58 a in each multi-beam optical system 200 Even when the beam passing through the aperture 58a is in the on state, in other words, regardless of the combination of the beams in the on state, X formed in advance on each of, for example, 45 shot areas on the wafer It is possible to form a cut pattern at a desired X position on a desired line of a fine line and space pattern in which the axial direction is a periodic direction.
- a pattern generator 184 having 13 ribbon rows 85 shown in FIG. 16 is used instead of the pattern generator 84 having 12 ribbon rows 85 shown in FIG. Also good.
- the ribbon row located at the top in FIG. 16 (indicated as 85a for identification in FIG. 16) is any of 12 ribbon rows (main ribbon rows) 85 which are usually used.
- the ribbon row for backup is used in place of the ribbon row 85 in which the defect has occurred.
- a plurality of ribbon rows 85a for backup may be provided.
- the ribbons 84b of the pattern generator correspond to the apertures 58a of the photoelectric element 54 at 1: 1, that is, the ribbons 84b and the electron beam irradiated on the wafer are at 1: 1. It corresponded.
- the present invention is not limited to this, and the light beam from one ribbon 84b of the main ribbon row 85, for example, one ribbon 84b included in the ribbon row adjacent to the backup ribbon row 85a is irradiated to the photoelectric element 54.
- the electron beam generated thereby is irradiated to a target area (referred to as a first target area) on the wafer which is a target, and one of the ribbons 84b contained in the ribbon array 85a or the main ribbon array 85 is
- An electron beam generated by irradiating the photoelectric device 54 with a light beam from one ribbon 84b included in another ribbon row may be configured to be able to irradiate the first target area on the wafer. That is, the electron beams generated by the photoelectric element 54 due to the irradiation of the light beams from the two ribbons 84b respectively contained in different ribbon rows may be overlapped and irradiated onto the same target area on the wafer. By this, for example, the dose amount of the target region may be in a desired state.
- the main ribbon row 85 is less than one time the width of the ribbon 84b (the array pitch of the ribbon 84b). It is also possible to use a pattern generator to which a ribbon array 85b for correction, which is arranged shifted by a distance of.
- the ribbon row 85b for correction shown in FIG. 17A is a half of the width of the ribbon 84b as shown in FIG. 17B, which is an enlarged view of the vicinity in the circle B of FIG.
- the ribbons 84b are arranged at a half pitch (1 ⁇ m) of the arrangement pitch of the ribbons 84b.
- Subtle dose adjustment such as PEC (Proximity Effect Correction) may be performed using the ribbon array 85b for correction.
- PEC Proximity Effect Correction
- the pattern generator may have, in addition to the main ribbon row 85, a ribbon row 85a for backup and a ribbon row 85b for correction.
- the pattern generator 84 is exemplified by GLV.
- the pattern generator 84 may be a reflective liquid crystal display element or a digital micromirror device. It may be configured using a reflective spatial light modulator having a plurality of movable reflective elements such as PLV (Planer Light Valve). Alternatively, depending on the configuration of the optical system inside the light irradiation device 80, the pattern generator may be configured by various transmissive spatial light modulators.
- the pattern generator 84 is a pattern generator capable of providing a plurality of light beams that can be individually controlled, it is not limited to the spatial light modulator, and it is possible to adjust the intensity and change the size as well as turning the beam on and off A pattern generator can be used. Also, the pattern generator 84 does not have to be capable of beam control (on / off, intensity adjustment, resizing, etc.) for individual light beams, but only for some beams or multiple beams. It may be possible for each beam.
- the aperture may not be used.
- a light beam of a desired cross-sectional shape including the size
- the photoelectric element 54 even if the aperture is not arranged. good.
- the aperture and the photoelectric layer may be integrally formed as in the above-described embodiment, or may be disposed to face each other via a predetermined clearance (a gap, a gap).
- the configuration of the deflection unit including the first deflection unit and the second deflection unit is not limited to the above-described embodiment.
- the configuration of various deflection units may be adopted.
- the illumination system 82, the projection system 86, the photoelectric element 54 and the electron beam optical system 70 are all arranged in a matrix, but the illumination system 82, the projection system 86, the photoelectric element 54
- the arrangement of the electron beam optical system 70 is not limited to this.
- the illumination system 82, the projection system 86, the photoelectric element 54, the electron beam optical system 70, etc. are arranged, for example, in a direction intersecting in the XY plane with the Y axis direction in which the wafer is moved during exposure, It may be done.
- the deflection unit 198 of the light irradiation device 180 according to the first modification is shown together with the final lens 96 of the illumination system 82, the first lens 94 of the projection system 86, and the pattern generator 84.
- the light irradiation device 180 according to the present modification is different from the light irradiation device 80 described above in that a deflection unit 198 is provided instead of the reflection optical element 98 described above.
- the deflection unit 198 of the light irradiation device 180 according to the present modification includes a first reflection surface 198 a that deflects the light beam from the final lens 96 (illumination system 82) toward the pattern generator 84, and a plurality of light beams from the pattern generator 84.
- a reflective optical element such as a prism having a second reflective surface 198b for deflecting the light beam toward the first lens 94 (projection system 86).
- the deflecting unit 198 has a pentagonal shape in a side view and a predetermined length in the X-axis direction
- the top composed of the first reflecting surface and the second reflecting surface is in the XZ plane. It has a shape (hexagonal shape in side view) cut off in parallel.
- the first reflection surface 198a and the second reflection surface 198b do not intersect with each other, but the extension surface 198a ′ of the first reflection surface 198a and the extension surface 198b ′ of the second reflection surface 198b intersect with each other,
- the intersection line is a line parallel to the X axis.
- the first reflection surface 198a forms an angle (+ ⁇ 1 ) with respect to the XZ plane
- the second reflection surface 198b forms an angle ( ⁇ 2 ) with respect to the XZ plane.
- the first reflection surface 198 a constitutes at least a part of a first deflection unit for deflecting light from the illumination system 82 toward the pattern generator 84 by a predetermined angle 2 ⁇ 1
- the second reflection surface 198 b from the pattern generator 84 The light source of the second embodiment forms at least a part of a second deflecting unit that deflects the light of the light beam to the projection system 86 by a predetermined angle 2 ⁇ 2 .
- the polarization unit 198 may be movable.
- the first reflection surface 198a and the second reflection surface 198b may be configured by separate reflection optical elements such as mirrors. Also in this case, the first reflection surface 198a and the second reflection surface 198b may be moved separately.
- a deflecting unit 298 constituting a light irradiation apparatus 280 according to the second modification is shown together with the final lens 96, the first lens 94 and the pattern generator 84.
- the light irradiation device 280 according to the second modification is different from the light irradiation device 80 according to the embodiment described above in that a deflection unit 298 is provided instead of the reflection optical element 98 described above.
- the deflecting unit 298 includes a cube-type polarization beam splitter 190 disposed below the final lens 96 (light emission side), and a quarter wavelength fixed on the + Y side and the ⁇ Y side of the polarization beam splitter 190. It includes plates ( ⁇ / 4 plates) 191 and 192, and a reflecting mirror 194 having a flat reflecting surface disposed opposite to the ⁇ / 4 plate 192.
- the polarization beam splitter 190 is a type in which two right-angle prisms are bonded together, one of the prisms is coated with a dielectric multilayer film, and a split surface (polarization separation surface) 190a is formed.
- the polarization beam splitter 190 is predetermined at the -Y side of the pattern generator 84 with the split surface 190a forming 45 degrees and -45 degrees with respect to the XY plane and XZ plane, respectively. They are arranged opposite to each other at intervals.
- the configuration of the other parts of the light irradiation device 280 according to the present modification is the same as that of the light irradiation device 80 described above.
- the reflecting surface of the reflecting mirror 194 is not limited to a flat shape, and may be a curved surface.
- the s-polarized light beam from the illumination system 82 enters the polarization beam splitter 190 with respect to the split surface 190a.
- the light beam is reflected by the split surface 190 a and irradiated to the reflecting mirror 194 through the ⁇ / 4 plate 192.
- the light beam reflected by the reflection surface of the reflection mirror 194 passes through the ⁇ / 4 plate 192 again, and becomes linearly polarized light (p-polarized light with respect to the split surface 190a) having a 90 ° polarization direction different from that at the incident time.
- the pattern generator 84 After passing through the 190 a and the ⁇ / 4 plate 191, the pattern generator 84 is irradiated. Here, after the plurality of light beams incident on the split surface 190 a are consequently deflected toward the pattern generator 84. The light is incident on a pattern generator 84.
- the ribbon 84 b of at least a portion of the pattern generator 84 reflects the light beam, and the pattern generator 84 generates one or more rectangular (or square) beams of cross section . Then, the beam generated by this pattern generator 84 is transmitted again through the ⁇ / 4 plate 191, becomes s-polarized light with respect to the split surface 190a, is reflected by the split surface 190a of the polarization beam splitter 190, and travels The direction is deflected to be incident on the projection system 86 (first lens 94).
- the four plates 192 and the reflection mirror 194 constitute at least a part of a first deflection unit for deflecting the light from the illumination system 82 toward the pattern generator 84, and the optical paths of the plurality of light beams from the pattern generator 84
- a split surface 190a of a polarization beam splitter 190 that reflects a plurality of light beams through the ⁇ / 4 plate 191, and projects a plurality of light beams from the pattern generator 84. It constitutes at least a part of the second deflection unit that deflects toward the system 86.
- the optical axis AXi of the shaping optical system 82b of the illumination system 82 and the optical axis AXp of the projection system are substantially parallel in the vertical direction and substantially coaxial, and the pattern generator
- the reflective surfaces of the plurality of movable reflective elements (ribbons 84b) 84 are substantially parallel to all of the optical axis AXi, the optical axis AXp, and the vertical axis in both on and off states. For this reason, in the light irradiation device 280, although the illumination system 82 and the projection system 86 are disposed substantially on a straight line, and the pattern generator 84 uses a GLV having many reflective movable reflection elements.
- the light paths before and after the pattern generator 84 can be separated, that is, light from the pattern generator can be guided to the projection system 86, and when the optical axis AXi and the optical axis AXp are not coaxial, when they are not parallel to each other, etc.
- the illumination light from the illumination system 82 is deflected by the first deflection unit and irradiated to the pattern generator 84
- the light beam generated by the pattern generator can be deflected by the second deflection unit and surely guided to the projection system 86.
- the light beam can be perpendicularly incident on the pattern generator 84.
- a deflection unit 398 constituting a light irradiation device 380 according to the third modification is shown together with the final lens 96, the first lens 94, and the pattern generator 84.
- the light irradiation device 380 according to the third modification is different from the light irradiation device 80 described above in that a deflection unit 398 is provided instead of the reflection optical element 98 described above.
- the deflecting unit 398 is an optical block including the polarization beam splitter 190, the ⁇ / 4 plate 191 and the ⁇ / 4 plate 192, but the deflection unit 298 is horizontally reversed from the deflection unit 298 described above.
- the optical block and the reflecting mirror 194 are similarly configured.
- the direction of the split surface 190a is horizontally reversed.
- the deflection unit 398 when one or more light beams of s-polarized light from the illumination system 82 (final lens 96) enter the polarization beam splitter 190 with respect to the split surface 190a, the light beam is split at the split surface 190a. After being reflected and transmitted through the ⁇ / 4 plate 192, the light is irradiated to the pattern generator 84. In this case, the light beam from the illumination system 82 is deflected at the split surface 190 a and irradiated to the pattern generator 84.
- the ribbon 84 b of at least a portion of the pattern generator 84 reflects the light beam, and the pattern generator 84 generates one or more rectangular (or square) beams of cross section . Then, the beam generated by the pattern generator 84 is transmitted again through the ⁇ / 4 plate 192 to be p-polarized light with respect to the split surface 190 a and transmitted through the split surface 190 a of the polarization beam splitter 190.
- the light After passing through the fourth plate 191, the light is reflected by the reflection mirror 194, is again transmitted through the ⁇ / 4 plate 191, and becomes a light beam of S-polarized light and is irradiated on the split surface 190a of the polarization beam splitter 190. Then, the light beam irradiated to the split surface 190a is reflected by the split surface 190a, its traveling direction is deflected, and is incident on the projection system 86 (first lens 94).
- a ⁇ / 4 plate 191 constituting at least a part of a first deflection unit for deflecting the light beam from 82 toward the pattern generator 84 and disposed on the optical path of the plurality of light beams from the pattern generator 84;
- Mirror 194 which reflects a plurality of light beams through the 1 ⁇ 4 plate 191, and a split surface 190a of a polarization beam splitter 190 which reflects a plurality of light beams reflected by the reflection mirror 194;
- the light beam is configured at least a part of a second deflection unit that respectively deflects the light beam toward the projection system 86. Also in this modification, the light beam can be perpendicularly incident on the pattern generator 84.
- the photoelectric element 54 is provided separately from the vacuum dividing wall 81, it has the following additional functions. It is good.
- the field curvature component of the electron beam optical system becomes noticeable.
- the electron beam optical system has a curvature of field as schematically shown in FIG. 22 as its aberration, as schematically shown in FIG. 22, the photoelectric layer 60 (correctly, the entire photoelectric element 54) Is bent so that a curvature in the opposite phase to the curvature component of the image plane is generated in the photoelectric layer 60, that is, the electron emission surface of the photoelectric layer 60 is curved (non-planar).
- the amount of curvature of the electron emission surface of the photoelectric layer 60 may be variable.
- the amount of curvature of the electron emission surface may be changed according to a change in optical characteristics (aberration, for example, curvature of field) of the electron beam optical system 70. Therefore, the amount of curvature of the electron emission surface may be made different among the plurality of photoelectric elements 54 according to the optical characteristics of the corresponding electron beam optical system. Further, FIG.
- FIG. 22 shows an example in the case where a convex curvature is produced in the + Z direction (toward the projection optical system) in the photoelectric layer 60. Since it is assumed that the beam optical system has as its aberration, this is to give the photoelectric layer 60 a curvature that cancels out or reduces the influence of the field curvature. Therefore, when the electron beam optical system has a curvature of field convex in the + Z direction as its aberration, it is necessary to cause the photoelectric layer 60 to generate a convex curvature in the ⁇ Z direction.
- the photoelectric device 54 (photoelectric layer 60) is not limited to bending in one direction, but may of course be three-dimensionally deformed such as bending four corners downward. By changing the way of deformation of the photoelectric element 54, it is possible to effectively suppress positional deviation, deformation, etc. of the optical pattern image caused by the spherical aberration.
- the position of the portion (for example, the central portion) of the electron emitting surface and the other portion (for example, the peripheral portion) with respect to the direction of the optical axis AXe It will be different from each other.
- the thickness of the photoelectric layer 60 may have a distribution so that the positions of a part (for example, the central part) of the electron emission surface and the other part (for example, the peripheral part) in the direction of the optical axis AXe may be different.
- the surface on which the photoelectric layer 60 is to be formed (for example, the lower surface of the base 56 of FIG. 3) may be curved, or a step may be provided on the surface (for example, the lower surface of the base 56 of FIG. 3). Further, as described later, even when the photoelectric element also serves as a vacuum barrier, the electron emission surface of the photoelectric layer 60 may be curved (non-planar).
- an actuator capable of moving the aperture integrated photoelectric element in the XY plane is provided. Also good.
- an aperture integrated photoelectric element as shown in FIG. 23, a multi-pitch type in which the rows of the apertures 58a of the pitch a and the rows of the apertures 58b of the pitch b are formed every other row.
- the aperture integrated photoelectric device 54a may be used.
- a zoom function of changing the projection magnification (magnification) in the X-axis direction is used in combination with the above-described optical characteristic adjustment device.
- the beam has a pitch of a row of the apertures 58a and the pitch of It becomes possible to switch and irradiate with the row of the aperture 58b of b.
- a plurality of light beams may be irradiated onto the area on the photoelectric element 54a including the corresponding apertures 58a or 58b. That is, the size of each of the plurality of apertures 58a or 58b on the photoelectric element 54a may be smaller than the size of the light cross section of the corresponding beam.
- a row of three or more types of apertures having different pitches is formed on the light shielding film 58 of the photoelectric conversion element in the photoelectric element 54a, and exposure is performed in the same procedure as described above, thereby cutting patterns of three or more pitches. It may be possible to cope with the formation of
- the intensity of the beam per unit area in the surface to be irradiated of the beam (laser beam) is changed.
- the relationship with the change may be determined, and the beam intensity may be changed (adjusted) based on the relationship.
- the intensity of a part of the beam when the magnification is changed may be detected by a sensor, and the intensity of the beam may be changed (adjusted) based on the information of the detected intensity. In the latter case, for example, as shown in FIG.
- the sensor 135 is provided at one end of the upper surface of the base of the photoelectric element 54, and the sensor 135 is moved in the XY plane by moving the photoelectric element 54 by the above-described actuator. It may be configured to be movable to the position of.
- the photoelectric element 54 is movable not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable around the Z axis parallel to the optical axis AXe You may configure it.
- a condensing member for example, a microlens array
- a plurality of light beams of a part of the plurality of light beams generated by the pattern generator 84 are condensed by the condensing member, and the condensed light beams are photoelectrically
- the light may be irradiated to a partial area of the element 54, for example, one aperture 58a. That is, the number of beams from the second reflection surface 98 b (second deflection unit) may be different from the number of beams irradiated to the photoelectric element.
- the photoelectric layer 60 has a certain area, there is no guarantee that the in-plane photoelectric conversion efficiency is uniform, and the photoelectric layer 60 has an in-plane photoelectric conversion efficiency. It is practical to think of having a distribution. Therefore, in accordance with the in-plane distribution of the photoelectric conversion efficiency of the photoelectric layer 60, the intensity of the light beam irradiated to the photoelectric element may be adjusted. That is, assuming that the photoelectric layer 60 has the first portion of the first photoelectric conversion efficiency and the second portion of the second photoelectric conversion efficiency, based on the first photoelectric conversion efficiency and the second photoelectric conversion efficiency, respectively.
- the intensity of the beam irradiated to the first portion and the intensity of the beam irradiated to the second portion may be adjusted.
- the intensity of the light beam irradiated to the first portion and the intensity of the light beam irradiated to the second portion are adjusted to compensate for the difference between the first photoelectric conversion efficiency and the second photoelectric conversion efficiency. Also good.
- each of the plurality of photoelectric elements 54 may have different photoelectric conversion efficiencies. Also in this case, the intensity of at least one light beam emitted to each photoelectric element can be adjusted to set the intensity of the electron beam generated from each photoelectric element in a desired state.
- the holder 52 disposed in the through hole 36a of the first plate 36 holds the vacuum dividing wall 81, and the photoelectric element 54 is disposed therein, as shown in FIG.
- the holder 52 may not be used.
- the vacuum dividing wall 181 is disposed in the through hole 36a of the first plate 36, and the photoelectric element 54 and the extraction electrode 112 are disposed below the same.
- the vacuum barrier and the photoelectric element can be variously configured and arranged.
- the case where the photoelectric element 54 is provided below the vacuum barrier 81 and the photoelectric element 54 has the light shielding film 58 and the photoelectric layer 60 in which the base 56 and the aperture 58a are formed.
- the light transmissive member which is a base material of a photoelectric element may double as a vacuum partition.
- the vacuum barrier, the light shielding film (aperture film), and the photoelectric layer can be arranged in various ways.
- the aperture integrated photoelectric device 54 may be replaced by a so-called separate aperture type photoelectric device in which the aperture plate (aperture member) is separate from the photoelectric device.
- the separate aperture type photoelectric device 138 shown in FIG. 25A includes the photoelectric device 140 having the photoelectric layer 60 formed on the lower surface (light emitting surface) of the substrate 134 and the upper portion of the substrate 134 of the photoelectric device 140.
- an aperture plate (also referred to as an aperture member) 142 formed of a light shielding member in which a large number of apertures 58a arranged at predetermined clearances (gaps, gaps) of 1 ⁇ m or less are formed on the light incident surface side). .
- the shape of the beam irradiated to the photoelectric layer 60 is somewhat deteriorated (lack of sharpness) as compared with the aperture integrated type photoelectric elements, but the aperture plate is moved relative to the photoelectric elements. Can. Therefore, when using a separate aperture type photoelectric device, a drive mechanism capable of moving the aperture plate 142 in the XY plane may be provided.
- a multi-pitch type aperture similar to the aperture integrated photoelectric device 54a described above is formed in the aperture plate 142, the magnification magnification function of the projection optical system 86, the photoelectric device 140 and the aperture plate 142
- a drive mechanism capable of moving the photoelectric element 140 in the XY plane may be provided. In this case.
- the photoelectric device 140 and the aperture plate 142 may be moved in a state in which the positional relationship between the two is maintained.
- the relative position between the aperture plate 142 and the photoelectric element 140 in the XY plane can be shifted. Life can be improved.
- the aperture plate 142 and the like may be configured to be freely movable in the XY plane.
- the projection system 86 may be configured to be movable in the XY plane with respect to the aperture plate 142.
- the aperture plate 142 is movable not only in the XY plane but also in the Z-axis direction parallel to the optical axis AXe, tiltable with respect to the XY plane, and rotatable about the Z axis parallel to the optical axis AXe
- the gap between the photoelectric device 140 and the aperture plate 142 may be adjustable.
- a drive mechanism for moving the photoelectric device 140 may be provided. Also in this case, the lifetime of the photoelectric layer 60 can be increased by moving the photoelectric element 140 in the XY plane.
- the aperture of the aperture plate described above may be used in combination with the aperture of the photoelectric element. That is, an aperture plate may be disposed on the light beam incident side of the aperture integrated photoelectric device described above, and a beam passing through the aperture of the aperture plate may be incident on the photoelectric layer through the aperture of the aperture integrated photoelectric device. .
- the aperture plate When forming a cut pattern for cutting line patterns having different pitches, the aperture plate may be replaced when the above-described separate aperture type photoelectric device is used.
- a plurality of apertures may be formed using a spatial light modulator such as a transmissive liquid crystal element instead of the aperture plate.
- the aperture integrated photoelectric element is not limited to the type shown in FIG. 26A, and for example, as shown in FIG. 26B, in the photoelectric element 54 of FIG. It is also possible to use a photoelectric device 54 b of a type in which the space is filled with the light transmission film 144. In the photoelectric element 54b, instead of the light transmitting film 144, a part of the base 56 may be filled in the space in the aperture 58a.
- a light shielding film 58 having an aperture 58a is formed on the upper surface (light incident surface) of the substrate 56 by vapor deposition of chromium, and the lower surface (light emission surface) of the substrate 56 26C, the space in the aperture 58a is filled with the light transmission film 144 in the photoelectric device 54b of FIG. 26C, as shown in FIG. 26D. It is also possible to use a type of photoelectric device 54d.
- FIG. 26E there is a photoelectric device 54e of the type in which the photoelectric layer 60 is formed on the lower surface of the base material 56 and the chromium film 58 having the apertures 58a is formed on the lower surface of the photoelectric layer 60.
- the chromium film 58 in FIG. 26E has a role of shielding electrons, not light.
- any of the aperture-integrated photoelectric elements 54, 54a, 54b, 54c, 54d and 54e described above not only the light transmitting member (such as quartz glass) but also the light transmitting member and the light transmitting film ( It may be constituted by a laminate of a single layer or a multilayer.
- an aperture plate (aperture member) which can be used together with the photoelectric device 140 for forming the separate aperture type photoelectric device with, for example, the photoelectric device 140 shown in FIG. It is also possible to use an aperture plate in which the base material and the light shielding film are integrated, not limited to the type consisting only of the light shielding member having the above.
- an aperture plate of this type for example, as shown in FIG. 25B, a light shielding film 58 having an aperture 58a is formed by vapor deposition of chromium on the lower surface (light emitting surface) of a substrate 145 which is a light transmitting member.
- Aperture plate 142a as shown in FIG.
- a substrate 150 comprising a light transmitting member 146 and a light transmitting film 148, and chromium deposited on the lower surface (light emitting surface) of the substrate 150.
- the aperture plate 142b on which the light shielding film 58 having the apertures 58a is formed as shown in FIG. 25D, in the aperture plate 142a, the aperture plate 142c in which the space in the aperture 58a is filled with the light transmitting film 148, As shown in FIG. 25 (E), in the aperture plate 142a, the space in the aperture 58a is filled with a portion of the substrate 145. And has an aperture plate 142d can be used.
- the aperture plates 142, 142a, 142b, 142c, 142d can be used upside down.
- the base materials 134, 145, and 146 can also be formed of a material having transparency to the wavelength of light used in the optical unit 18B, such as quartz glass.
- the photoelectric elements 54, 54a to 54e and the plurality of apertures 58a of the aperture plates 142, 142a to 142d may all be the same size or the same shape, all sizes of the plurality of apertures 58a May not be the same, and the shape may not be the same for all the apertures 58a.
- the aperture 58a may be smaller than the size of the corresponding beam so that the corresponding beam is irradiated on the entire area.
- the magnification of the electron beam optical system 70 and low-order distortion may be dynamically corrected.
- the pattern generator it is possible to use a mirror array element having a plurality of mirror elements (movable reflection elements) such as a digital micro mirror device (DMD (trade name)) instead of GLV.
- the reflection surface of the mirror element can not be made almost parallel to all of the optical axis AXi, the optical axis AXp and the vertical axis, but even in such a case, the arrangement surface of the mirror element can be the optical axis AXi and the vertical It is preferred to make an acute angle with the axis, in particular an angle of less than 45 degrees (including approximately 0 degrees).
- the arrangement surface of the mirror element means a surface including the reflection surfaces of the plurality of mirror elements in the initial state.
- This arrangement surface is a surface constituted by a virtual surface on which the reflective surfaces of the plurality of movable reflective elements are to be located, a surface on which the reflective surfaces of the plurality of movable reflective elements are disposed, and a reflective surface of the plurality of movable reflective elements It may be any of (reflective surface).
- the drive unit for driving the mirror element is not energized, for example, when the drive unit is constituted by an actuator such as a piezoelectric element, no voltage is applied to the actuator. It may be.
- the arrangement surface of the mirror element when the arrangement surface of the mirror element is set, the illumination light emitted from the illumination system 82 and traveling along the optical axis AXi or the vertical axis is patterned by the first reflection surface 98 a of the reflection optical element 98 described above. It is possible to deflect the light toward the generator, and to irradiate the light beam generated by the pattern generator to the second reflecting surface 98b almost certainly by the irradiation of the illumination light.
- the arrangement surface of the mirror element form an acute angle, particularly an angle of less than 45 degrees (including approximately 0 degrees) with the optical axis AXp.
- the optical system included in the exposure apparatus 100 is a multi-column type including a plurality of multi-beam optical systems 200.
- the optical system may be a single-column type multi It may be a beam optical system.
- the photoelectric element or the aperture plate is used to perform the dose control, magnification control, correction of pattern imaging position deviation, correction of various aberrations such as distortion, etc. described above.
- the correction of various elements used, the extension of the life of the photoelectric layer, and the like are applicable.
- the present invention is applicable to a single column type apparatus for irradiating a single beam to a target.
- the projection system 86 may not be used if it is possible to irradiate the photoelectric element with a light beam having a desired cross-sectional shape (including the size).
- the aperture may or may not be used.
- the wafer W is independently carried on the wafer stage WST, and the exposure is performed by irradiating the wafer W with the beam from the multi-beam optical system 200 while moving the wafer stage WST in the scanning direction.
- the apparatus 100 has been described, the present invention is not limited to this, and the embodiments described above are also applicable to an exposure apparatus of a type in which the wafer W is integrated with a table (holder) integrally transferable with a wafer called shuttle. Wafer stage WST can be applied).
- wafer stage WST is movable in the direction of six degrees of freedom with respect to X stage.
- the present invention is not limited thereto.
- Wafer stage WST is movable only within the XY plane Also good.
- position measurement system 28 for measuring the position information of wafer stage WST may also be capable of measuring the position information in the direction of three degrees of freedom in the XY plane.
- a stage chamber installed (mounted) on the floor surface F It may be supported above the floor surface F via the upper wall 10b of 10 or a support member (not shown).
- the exposure technology constituting the complementary lithography is not limited to the combination of the liquid immersion exposure technology using an ArF light source and the charged particle beam exposure technology, and, for example, the line and space pattern can be other ArF light source, KrF, etc. It may be formed by a dry exposure technique using a light source.
- the exposure apparatus 100 forms a fine pattern on a glass substrate to manufacture a mask. It can apply suitably also in the case.
- electronic devices such as semiconductor devices are subjected to functional function / performance design of the device, a step of producing a wafer from silicon material, an actual circuit etc. on the wafer by lithography technology etc. Are manufactured through a wafer processing step of forming a semiconductor device, a device assembly step (including a dicing step, a bonding step, and a package step), an inspection step, and the like.
- the wafer processing step is a lithography step (a step of applying a resist (sensitive material) on the wafer, an electron beam exposure apparatus according to the embodiment described above, and exposure of the wafer by the exposure method thereof (a pattern according to designed pattern data)
- a step of drawing), a step of developing the exposed wafer), an etching step of etching away the exposed member of the portion other than the portion where the resist remains, a resist for removing the unnecessary resist after the etching is completed Include removal steps and the like.
- the wafer processing step may further include pre-process processing (oxidation step, CVD step, electrode formation step, ion implantation step, etc.) prior to the lithography step, in which case the lithography step corresponds to that of each of the above embodiments.
- the above-described exposure method By performing the above-described exposure method using the electron beam exposure apparatus 100, a device pattern is formed on the wafer, so that microdevices with a high degree of integration can be manufactured with high productivity (high yield).
- the lithography step step of performing exposure
- the above-described complementary lithography is performed, and at that time, the above-described exposure method is performed using the electron beam exposure apparatus 100 of each of the above-described embodiments, thereby achieving higher integration. It becomes possible to manufacture high micro devices.
- an exposure apparatus using an electron beam has been described.
- the present invention is not limited to the exposure apparatus, but an apparatus that performs at least one of predetermined processing and predetermined processing on a target using an electron beam such as welding
- the electron beam apparatus of the above embodiment can be applied to an inspection apparatus using a beam.
- the photoelectric layer 60 is formed of the alkaline photoelectric conversion film
- the photoelectric layer is not limited to the alkaline photoelectric conversion film.
- the photoelectric conversion film may be used to form a photoelectric device.
- shapes such as a member, an opening, and a hole, may be demonstrated using circular, a rectangle, etc., it is needless to say that it is not restricted to these shapes.
- Photoelectric element Light transmitting member (base material) 58 Light shielding film 58a Aperture 60 Photoelectric layer 70 Electron beam optical system 80 Light irradiation device 82 Illumination system 82a Laser Diode 82b Molded optical system 84 Pattern generator 84b Ribbon 86 Projection system 98a first reflective surface 98 Reflective optical element 98b Second reflective surface 100 Exposure apparatus 190 Polarized light Beam splitter, 190a: split surface, 191: ⁇ / 4 plate, 192: ⁇ / 4 plate, 194: reflection mirror, Axe: optical axis of electron beam optical system, AXi: optical axis of illumination system, AXp: of projection system Optical axis, EB: electron beam, LB: light beam, W: wafer.
- Polarized light Beam splitter 190a: split surface, 191: ⁇ / 4 plate, 192: ⁇ / 4 plate, 194: reflection mirror, Axe: optical axis of electron beam optical system, A
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
電子ビーム装置は、光電素子(54)に光を照射する光照射装置(80)と、光照射装置(80)による光の照射によって光電素子から発生する電子ビームをウエハWに照射する電子ビーム光学系(70)と、を備え、光照射装置(80)は、照明系と、照明系からの光で複数の光ビームを発生させる光学デバイスと、照明系からの光を偏向する第1偏向部と、パターンジェネレータからの複数の光ビームを偏向する第2偏向部と、第2偏向部からの少なくとも1つの光ビームを光電素子に照射する投影系と、を有する。
Description
本発明は、電子ビーム装置及びデバイス製造方法に係り、特に、光電素子に光を照射するとともに、前記光電素子から発生する電子を電子ビームとしてターゲットに照射する電子ビーム装置、及び電子ビーム装置を用いるデバイス製造方法に関する。
近年、例えばArF光源を用いた液浸露光技術と、荷電粒子ビーム露光技術(例えば電子ビーム露光技術)とを相補的に利用するコンプリメンタリ・リソグラフィが、提案されている。コンプリメンタリ・リソグラフィでは、例えばArF光源を用いた液浸露光においてダブルパターニングなどを利用することで、単純なラインアンドスペースパターン(以下、適宜、L/Sパターンと略記する)を形成する。次いで、電子ビームを用いた露光を通じて、ラインパターンの切断、あるいはビアの形成を行う。
コンプリメンタリ・リソグラフィでは、例えば複数のブランキング・アパーチャを用いてビームのオン・オフを行うマルチビーム光学系を備えた電子ビーム露光装置を用いることができる(例えば、特許文献1参照)。しかしながら、ブランキング・アパーチャ方式に限らず、電子ビーム露光装置の場合、改善すべき点が存在する。また、露光装置に限らず、電子ビームを用いてターゲットに対する加工若しくは処理、又は加工及び処理を行う装置、あるいは検査装置などでも、改善すべき点が存在する。
本発明の第1の態様によれば、光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、照明系と、前記照明系からの照明光を偏向する第1偏向部と、前記第1偏向部からの前記照明光の照射により複数の光ビームを発生させる光学デバイスと、前記光学デバイスからの複数の光ビームを偏向する第2偏向部と、を備え、前記第2偏向部で偏向された複数の光ビームから生成される少なくとも1つの光ビームを前記光電素子に照射する電子ビーム装置が、提供される。
本発明の第2の態様によれば、光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、照明系と、前記照明系からの照明光の照射により複数の光ビームを発生させる光学デバイスと、前記光学デバイスと前記光電素子との間に位置する第1光学系と、を備え、前記照明系と前記第1光学系の光軸は、ほぼ同軸に配置され、前記光電素子から発生する電子ビームは、第2光学系としての前記電子光学系により前記ターゲットに照射される電子ビーム装置が、提供される。
本発明の第3の態様によれば、光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、照明系と、前記照明系からの照明光の照射により複数の光ビームを発生する光学デバイスと、前記光学デバイスと前記光電素子との間に位置する第1光学系と、を備え、前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、前記複数の可動反射素子の配置面は、前記第1光学系の光軸に対して45度未満の角度を成し、前記光電素子から発生する電子ビームは、第2光学系としての前記電子光学系により前記ターゲットに照射される電子ビーム装置が、提供される。
本発明の第4の態様によれば、光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、照明系と、前記照明系からの照明光の照射により複数の光ビームを発生する光学デバイスと、を備え、前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、前記複数の可動反射素子の配置面は、前記照明系と鉛直軸の少なくとも一方に対して45度未満の角度を成す電子ビーム装置が、提供される。
本発明の第5の態様によれば、光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、照明系と、前記照明系からの照明光の照射により複数の光ビームを発生する光学デバイスと、を備え、前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、前記光学デバイスは、前記複数の可動反射素子の配置面を含む面が、前記照明光の光路と交差しないように配置される電子ビーム装置が、提供される。
本発明の第6の態様によれば、光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、照明系と、前記照明系からの照明光の照射により複数の光ビームを発生する光学デバイスと、を備え、前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、前記光学デバイスは、前記複数の可動反射素子の配置面を含む面が、前記光学デバイスで発生し、前記光電素子に照射される前記複数の光ビームの光路と交差しないように配置される電子ビーム装置が、提供される。
本発明の第7の態様によれば、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、第1から第6の態様のいずれかに係る電子ビーム装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法が、提供される。
以下、一実施形態について、図1~図18に基づいて説明する。図1には、一実施形態に係る露光装置100の構成が概略的に示されている。露光装置100は、後述するように複数の電子ビーム光学系を備えているので、以下、電子ビーム光学系の光軸に平行にZ軸を取り、Z軸に垂直な平面内で後述する露光時にウエハWが移動される走査方向をY軸方向とし、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸及びZ軸回りの回転(傾斜)方向を、それぞれθx、θy及びθz方向として、説明を行う。
露光装置100は、クリーンルームの床面F上に設置されたステージチャンバ10と、ステージチャンバ10の内部の露光室12内に配置されたステージシステム14と、ステージシステム14の上方に配置された光学システム18と、を備えている。光学システム18は、それぞれ不図示の吊り下げ支持機構によりクリーンルームの天井から吊り下げ支持された電子ビーム光学ユニット18A及び光学ユニット18Bを備えている。
ステージチャンバ10は、図1では、Y軸方向の両端部の図示が省略されているが、その内部を真空引き可能な真空チャンバである。ステージチャンバ10は、床面F上に配置されたXY平面に平行な底壁10aと、上壁(天井壁)10bと、底壁10aの周囲を取り囲むとともに、上壁10bを下方から水平に支持する周壁10c(図1ではそのうちの-X側部分の一部のみ図示)とを備えている。上壁10bには開口10dが形成されている。開口10d内に電子ビーム光学ユニット18Aが備える複数の電子ビーム光学系70が、配置されている。電子ビーム光学系70は、本実施形態では、一例として7行7列のマトリクスの4隅を除く配置で45(=7×7-4)設けられているものとする。45の電子ビーム光学系70は、筐体19の下面(-Z側の面)にそれぞれ固定されている。筐体19の下面とステージチャンバ10の上壁10bとの間は、開口10dの周囲を取り囲む金属製のベローズ16によってシールされている。筐体19は、上面及び下面がXY平面と実質的に平行になる状態で、不図示のフレームに支持されている。なお、電子ビーム光学ユニット18Aの支持方法は、この方法に限定されない。
ステージシステム14は、底壁10a上に複数の防振部材20を介して支持された定盤22と、定盤22上で重量キャンセル装置24に支持され、X軸方向及びY軸方向にそれぞれ所定のストローク、例えば50mmで移動可能であるとともに、残りの4自由度方向(Z軸、θx、θy及びθz方向)に微動可能なウエハステージWSTと、ウエハステージWSTを移動するステージ駆動系26(図1ではそのうちの一部のみ図示、図12参照)と、ウエハステージWSTの6自由度方向の位置情報を計測する位置計測系28(図1では不図示、図12参照)と、を備えている。ウエハステージWSTは、その上面に設けられた不図示の静電チャックを介してウエハWを吸着し、保持している。
ウエハステージWSTは、XZ断面枠状の部材を有し、その内部(中空部)にヨークと磁石(いずれも不図示)とを有するモータ30の可動子30aが一体的に固定されている。可動子30aの内部(中空部)にY軸方向に延びるコイルユニットから成るモータ30の固定子30bが挿入されている。固定子30bは、その長手方向(Y軸方向)の両端が、定盤22上でX軸方向に移動するXステージ31に接続されている。Xステージ31は、図1に示されるように、X軸方向を長手方向とし、Y軸方向に所定距離離れた一対の支持部を有し、この一対の支持部に固定子30bの長手方向の両端部が固定されている。Xステージ31は、磁束漏れが生じない一軸駆動機構、例えばボールねじを用いた送りねじ機構によって構成されるXステージ駆動系32(図1では不図示、図12参照)によって、ウエハステージWSTと一体でX軸方向に所定ストロークで移動される。なお、Xステージ駆動系32を、駆動源として超音波モータを備えた一軸駆動機構によって構成しても良い。いずれにしても、磁束漏れに起因する磁場変動が電子ビームの位置決めに与える影響は無視できるレベルである。
モータ30は、可動子30aを固定子30bに対して、Y軸方向に所定ストローク、例えば50mmで移動可能で、かつX軸方向、Z軸方向、θx方向、θy方向及びθz方向に微小移動可能な閉磁界型かつムービングマグネット型のモータである。本実施形態では、モータ30によってウエハステージWSTを6自由度方向に移動するウエハステージ駆動系が構成されている。以下、ウエハステージ駆動系をモータ30と同一の符号を用いて、ウエハステージ駆動系30と表記する。
Xステージ駆動系32とウエハステージ駆動系30とによって、ウエハステージWSTをX軸方向及びY軸方向にそれぞれ所定のストローク、例えば50mmで移動するとともに、残りの4自由度方向(Z軸、θx、θy及びθz方向)に微小移動する前述のステージ駆動系26が構成されている。Xステージ駆動系32及びウエハステージ駆動系30は、主制御装置110によって制御される(図12参照)。
重量キャンセル装置24は、ウエハステージWSTの下面に上端が接続された金属製のベローズ型空気ばね(以下、空気ばねと略記する)24aと、空気ばね24aの下端に接続されたベーススライダ24bと、を有している。ベーススライダ24bには、空気ばね24a内部の空気を、定盤22の上面に噴き出す軸受部(不図示)が設けられ、軸受部から噴出される加圧空気の軸受面と定盤22上面との間の静圧(隙間内圧力)により、重量キャンセル装置24、ウエハステージWST(可動子30aを含む)及びウエハWの自重が支持されている。なお、空気ばね24aには、ウエハステージWSTに接続された不図示の配管を介して圧縮空気が供給されている。ベーススライダ24bは、一種の差動排気型の空気静圧軸受を介して定盤22上に非接触で支持され、軸受部から定盤22に向かって噴出された空気が、周囲に(露光室12内に)漏れ出すことが防止されている。なお、実際には、ウエハステージWSTの底面には、空気ばね24aをY軸方向に挟んで一対のピラーが設けられ、ピラーの下端に設けられた板ばねが空気ばね24aに接続されている。
図2には、電子ビーム光学ユニット18Aの縦断面図が示されている。図2に示されるように、電子ビーム光学ユニット18Aは、内部に真空室34が形成される筐体19を備えている。真空室34は、上壁(天井壁)を構成する第1プレート36、底壁を構成する第2プレート(以下、ベースプレートと呼ぶ)38、並びに第1プレート36及びベースプレート38の周囲を取り囲む筒状の側壁部40等から区画されている。真空室34は、内部を高度な真空状態となるまで真空引きすることが可能である。
第1プレート36には、図2などに示されるように、Z軸方向に延びる貫通孔36aがXY2次元方向に所定間隔で複数、ここでは前述の45の電子ビーム光学系70の配置に対応する配置で、45個形成されている。これら45個の貫通孔36aのそれぞれには、図2に示されるように、上端にフランジ部52aを有する例えば筒状のホルダ52がほぼ隙間がない状態で配置されている。各ホルダ52は、その上端に真空隔壁として機能する石英ガラスなどの光透過部材から成る隔壁部材81を保持している。以下では、隔壁部材81を、適宜、真空隔壁81とも表記する。各ホルダ52の内部には、隔壁部材81の下方に所定のクリアランス(隙間、ギャップ)を介して光電素子54が配置されている。なお、隔壁部材81を構成する光透過部材の材料は石英ガラスには限定されず、光学ユニット18Bで用いられる光の波長に対して透過性を持つ材料であれば良い。
光電素子54は、光電素子54の一部を示す、図3(A)の縦断面図に示されるように、石英ガラスなどの光透過部材から成る基材56と、その基材56の下面に例えば蒸着されたクロムなどから成る遮光膜(アパーチャ膜)58と、基材56及び遮光膜58の下面側に成膜(例えば蒸着)されたアルカリ光電膜(光電変換膜)の層(アルカリ光電変換層(アルカリ光電層))60と、を含む。遮光膜58には、多数のアパーチャ58aが形成されている。図3(A)には、光電素子54の一部のみが示されているが、実際には、遮光膜58には、所定の位置関係で多数のアパーチャ58aが形成されている(図3(B)参照)。アパーチャ58aの数は、後述するマルチビームの数と同一であっても良いし、マルチビーム数より多くても良い。アルカリ光電層60は、アパーチャ58aの内部にも配置され、アパーチャ58aにおいて基材56とアルカリ光電層60が接触している。本実施形態では、基材56、遮光膜58及びアルカリ光電層60が一体的に形成され、光電素子54の少なくとも一部を形成している。なお、基材56の材料は、石英ガラスには限定されず、例えば、サファイア等の光学ユニット18Bで用いられる光の波長に対して透過性を持つ材料であれば良い。
アルカリ光電層60は、2種類以上のアルカリ金属を用いたマルチアルカリフォトカソードである。マルチアルカリフォトカソードは、耐久性が高く、波長が500nm帯の緑色光で電子発生が可能で、光電効果の量子効率QEが10%程度と高いとされるのが特長のフォトカソードである。本実施形態では、アルカリ光電層60は、レーザ光による光電効果によって電子ビームを生成する一種の電子銃として用いられるので、変換効率が10[mA/W]の高効率のものが用いられている。なお、光電素子54では、アルカリ光電層60の電子放出面は、図3(A)における下面、すなわち基材56の上面とは反対側の面である。
電子ビーム光学ユニット18Aの説明に戻る。ベースプレート38には、図2などに示されるように、複数(本実施形態では45本)の電子ビーム光学系70の光軸AXe上にその中心がほぼ位置する複数(本実施形態では45個)の凹部38aが形成されている。各凹部38aは、ベースプレート38の上面から所定深さを有し、その内部底面には、絞り部として機能する貫通孔38bが形成されている。以下では、貫通孔38bを絞り部38bとも呼ぶ。絞り部38bについてはさらに後述する。
ベースプレート38の下面には、45の電子ビーム光学系70が吊り下げ状態で固定されている。なお、電子ビーム光学系70の支持はこれに限定されず、例えば45の電子ビーム光学系70をベースプレート38とは異なる支持部材で支持し、その支持部材を、筐体19で支持しても良い。
図4(A)及び図4(B)には、電子ビーム光学系70の概略構成の一例が、対応する光電素子54などとともに示されている。このうち、図4(A)は、+X方向から見た電子ビーム光学系70の概略構成を示し、図4(B)は、-Y方向から見た電子ビーム光学系70の概略構成を示す。図4(A)及び図4(B)に示されるように、電子ビーム光学系70は、鏡筒104(ハウジング104と呼んでも良い)と鏡筒104に保持された一対の電磁レンズ70a、70bから成る対物レンズと、静電マルチポール70cとを有する。電子ビーム光学系70の対物レンズと、静電マルチポール70cは、複数のレーザビーム(以下、適宜、ビーム又は光ビームとも称する)LBを光電素子54に照射することによってアルカリ光電層(以下、光電層と略記する)60での光電変換によって放出される電子(電子ビームEB)のビーム経路(通路と呼ぶこともできる)上に配置されている。一対の電磁レンズ70a、70bは、それぞれ鏡筒104内の上端部近傍及び下端部近傍に配置され、上下方向に関して両者は離れている。この一対の電磁レンズ70a、70b相互間に静電マルチポール70cが鏡筒104内に配置されている。なお、電磁レンズ70a、70bを鏡筒104の外に配置しても良い。静電マルチポール70cは、対物レンズによって絞られる電子ビーム(以下、適宜、ビームとも称する)EBのビーム経路上のビームウェスト部分に配置されている。このため、静電マルチポール70cを通過する複数の電子ビームEBは、相互間に働くクーロン力によって互いに反発し、倍率が変化することがある。
そこで、本実施形態では、XY倍率補正用の第1静電レンズ70c1と、ビームEBの照射位置制御(及び照射位置ずれ補正)、すなわち光学パターンの投影位置調整(及び投影位置ずれ補正)用の第2静電レンズ70c2とを有する静電マルチポール70cが電子ビーム光学系70の内部に設けられている。第1静電レンズ70c1は、例えば図5に模式的に示されるように、X軸方向及びY軸方向に関する縮小倍率を、高速で、かつ個別に補正する。なお、第1静電レンズ70c1と第2静電レンズ70c2のそれぞれが、XY倍率補正と電子ビームの照射位置制御(及び照射位置ずれ補正)を行っても良い。また、静電レンズ70c1がX軸方向とY軸方向と異なる軸方向の倍率調整をできるようにしても良い。また、第1静電レンズ70c1と第2静電レンズ70c2のいずれか一方を設けなくても良いし、静電マルチポール70cが、追加の静電レンズを有していても良い。
また、第2静電レンズ70c2は、各種振動等に起因するビームEBの照射位置ずれ(後述するカットパターンの投影位置ずれ)を一括で補正する。第2静電レンズ70c2は、露光の際にビームEBのウエハWに対する追従制御を行う際のビームEBの偏向制御、すなわちビームEBの照射位置制御にも用いられる。なお、縮小倍率の補正を、電子ビーム光学系70以外の部分、例えば後述する投影系などを用いて行う場合などには、静電マルチポール70cに代えて、電子ビームの偏向制御が可能な静電レンズから成る静電偏向レンズを用いても良い。
電子ビーム光学系70の縮小倍率は、倍率補正を行わない状態で、設計上例えば1/50である。1/30、1/20など、その他の倍率でも良い。
図6は、ベースプレート38に吊り下げ状態で支持された45の電子ビーム光学系70の外観を斜視図にて示す。図6から明らかなように、鏡筒104のそれぞれは、開口部(電子ビームの出口)を有しており、鏡筒104の内部はステージチャンバ10の内部の露光室12と連通している。露光室12は、真空室34に比べて、真空度が低い(圧力が高い)真空室となっている。なお、露光室12の真空度は、真空室34の真空度とほぼ同じであっても良いし、真空室34の真空度より高くても良い。
鏡筒104の射出端には、図4(A)及び図4(B)に示されるように電子ビームの出口104aが形成されており、この出口104a部分の下方には、2対の反射電子検出装置106が配置されている。具体的には、電子ビーム光学系70の光軸AXe(後述する投影系の光軸AXp(図7及び図8参照)に一致)に関してX軸方向の両側に、一対の反射電子検出装置106x1、106x2が設けられている。また、光軸AXeに関してY軸方向の両側に、一対の反射電子検出装置106y1、106y2が設けられている。上記2対の反射電子検出装置106のそれぞれは、例えば半導体検出器によって構成され、ウエハ上のアライメントマーク、あるいは基準マーク等の検出対象マークから発生する反射成分、ここでは反射電子を検出し、検出した反射電子に対応する検出信号を信号処理装置108に送る(図12参照)。信号処理装置108は、複数の反射電子検出装置106の検出信号を不図示のアンプにより増幅した後に信号処理を行い、その処理結果を主制御装置110に送る(図12参照)。なお、反射電子検出装置106は、45個の電子ビーム光学系70の一部(少なくとも1つ)に設けるだけでも良いし、設けなくても良い。なお、電子ビーム光学系70の光軸AXeは、図2に示されるように、光電素子54とウエハWとの間に描画すべきであるが、図4(A)及び図4(B)では、図示の便宜上から真空隔壁81の上方まで延長して図示されている。なお、露光装置100が反射電子検出装置106を備えていなくても良い。
反射電子検出装置106x1、106x2、106y1、106y2は、例えば鏡筒104に取付けられている。なお、複数の鏡筒104の出口104a部分に個別に対向して開口が形成されたクーリングプレートを設け、該クーリングプレートの開口内に反射電子検出装置106x1、106x2、106y1、106y2を配置しても良い。この場合には、反射電子検出装置をクーリングプレートに取付けても良い。なお、露光装置100がクーリングプレートを有していなくても良い。
図4(A)及び図4(B)に示されるように、ベースプレート38には、光軸AXe上に、前述した絞り部38bが形成されている。また、光軸AXe上には、光電層60の上側に設けられた多数のアパーチャ58aの配置領域の中心(ここでは、ホルダ52の中心軸に一致)がほぼ一致している。
本実施形態においては、絞り部38bを設けて真空室34の真空度と露光室12の真空度を異ならせることができるが、絞り部38bなどを設けなくても良い。また、鏡筒104の内部を、真空室34を介して電子ビームが通過する中心部の第1空間と、第1空間の周囲を取り囲み、内部に電磁レンズ70a、70b、及び静電マルチポール70cを収納する第2空間とに分離し、第2空間をステージチャンバ10外部の空間に開放することとしても良い。第1空間は、電磁レンズ70a、70b、及び静電マルチポール70cの中心部を貫通する、例えばステンレス製のチューブによって区画しても良い。
光電素子54の保持位置の下方には、光電層60から射出される電子を加速するための引き出し電極112が配置されている。図4などに示すように、引き出し電極112は、電子ビーム光学系70と光電素子54との間に位置している。本実施形態においては、引き出し電極112は、ベースプレート38と光電素子54との間に位置している。なお、引き出し電極112は、ベースプレート38で支持しても良いし、第1プレート36で支持しても良い。
光学ユニット18Bは、図1に示されるように、電子ビーム光学ユニット18Aの上方に配置されたフレーム(鏡筒定盤とも呼ばれる)17と、フレーム17に支持された複数(本実施形態では45)の光照射装置(光光学系と呼ぶこともできる)80と、を備えている。フレーム17は、筐体19とは独立に、不図示の防振機能を備えた支持機構を介して支持されている。フレーム17には、第1プレート36の45の開口36aと対応する配置で、Z軸方向に延びる複数(本実施形態では45)の貫通孔17aが形成されている。45の貫通孔17aそれぞれの内部には、光照射装置80の一部を構成する後述する投影系の鏡筒86a(ハウジング86aと呼んでも良い)が挿入され、固定されている。45の光照射装置80は、45の光電素子54(ホルダ52)のそれぞれに対応する配置(したがって、電子ビーム光学系70に対応する配置)で、XY平面内で配置されている。光学ユニット18Bが配置される空間は、大気圧空間、もしくは大気圧よりわずかに陽圧の空間である。
45の光照射装置80のそれぞれは、光照射装置80からの少なくとも1つの光ビームが光電素子54のアパーチャ58aを介して光電層60に照射される。なお、光照射装置80の数と光電素子54の数とは等しくなくても良い。例えば光照射装置180の数が光電素子54の数よりも多くても良い。
図7には、図1の光照射装置80が、対応する光電素子54などとともに示されている。光照射装置80は、照明系82と、第1反射面98aを介して照明系82からの光(照明光)が入射し、入射した照明光から複数の光ビーム(パターニングされた光)を発生させるパターンジェネレータ84と、パターンジェネレータ84からの複数の光ビームが第2反射面98bを介して入射し、その複数の光ビームを真空隔壁81を介して光電素子54に照射する投影系(投影光学系とも呼ばれる)86と、を備えている。第1反射面98aと第2反射面98bとは、プリズムなどの同一の反射光学素子98に形成された(設けられた)異なる反射面である。
ここで、パターンジェネレータ84は、所定方向へ進行する光の振幅、位相及び偏光の少なくとも1つの状態を空間的に変調して射出する空間光変調器と称しても良い。また、パターンジェネレータ84を光学デバイスと称しても良い。なお、パターンジェネレータ84は、例えば明暗パターンからなる光学パターンを発生することができるといっても良い。
図7に示されるように、照明系82は、レーザビームLB(照明光)を発生する光源82aと、そのレーザビームLBを、1又は2以上のX軸方向に長い断面矩形状のビームに成形する成形光学系82bと、を有する。光源82a及び成形光学系82bは、鏡筒83(ハウジング83と呼んでも良い)に保持されている。すなわち、照明系82は、鏡筒83の内部に配置されている。
光源82aとしては、可視光又は可視光近傍の波長、例えば波長405nmのレーザ光を連続発振するレーザダイオードが用いられている。光源82aとして、レーザ光を間欠的に発光(発振)するレーザダイオードを用いても良い。あるいは、レーザダイオードと、AO偏向器又はAOM(音響光学変調素子)などのスイッチング素子との組合せを、光源82aに代えて用い、レーザ光を間欠的に発光させることとしても良い。なお、照明系82は、光源82aを備えてなくても良く、装置の外部に光源を設けても良い。この場合、装置外部の光源からの照明光を光ファイバ等の光伝送部材を用いて照明系82に導けば良い。
成形光学系82bは、光源82aからのレーザビームLBの光路上に順次配置された複数の光学素子を含む。複数の光学素子としては、例えば回折光学素子(DOEとも呼ばれる)、レンズ(例えば集光レンズ)、ミラー等を含むことができる。
成形光学系82bが、例えば入射端部に位置する回折光学素子を含む場合、その回折光学素子は、光源82aからのレーザビームLBが入射すると、そのビームLBが、回折光学素子の射出面側の所定面において、Y軸方向に所定間隔で並ぶX軸方向に長い複数の矩形状(本実施形態では細長いスリット状)の領域で光強度が大きい分布を持つように、レーザビームLBの面内強度分布を変換する。本実施形態では、回折光学素子は、光源82aからのビームLBの入射により、Y軸方向に所定間隔で並ぶX軸方向に長い複数の断面矩形状のビーム(スリット状のビーム)LBを生成する。本実施形態では、パターンジェネレータ84の構成に合わせた数のスリット状のビームLBを生成する。なお、レーザビームLBの面内強度分布を変換する素子としては、回折光学素子には限定されず、屈折光学素子や反射光学素子であっても良く、空間光変調器であっても良い。
本実施形態では、後述するように、パターンジェネレータ84として、反射型の空間光変調器が用いられているため、図7及び図8に示されるように、成形光学系82bの終端部に位置する最終レンズ96の下方(光射出側)には、光路折り曲げ用光学素子として前述の反射光学素子98が配置されている。反射光学素子98は、図7に示されるように、照明系82の鏡筒83と投影系86の鏡筒86aとの間の鏡筒99(ハウジング99と呼んでも良い)の内部に配置されている。反射光学素子98は、支持部材を介して鏡筒99に保持されている。鏡筒99は、フレーム17に保持された鏡筒86aの上に配置されている。鏡筒99は、鏡筒86aの上に載置されても良いし、鏡筒86a(投影系86)に対する鏡筒99及び鏡筒83の位置をアクチュエータなどを使って変更可能に配置しても良い。なお、反射光学素子98は、鏡筒99に対して可動(位置、傾き、姿勢などが変更可能)であっても良い。
照明系82の最終レンズ96は、回折光学素子で生成された複数の断面矩形状(スリット状)のビームLBをY軸方向に関して集光し、反射光学素子98の第1反射面98aに照射する。最終レンズ96としては、例えばX軸方向に長いシリンドリカルレンズなどの集光レンズを用いることができる。集光レンズの代わりに、集光ミラー等の反射光学部材、あるいは回折光学素子を用いても良い。本実施形態では、第1反射面98a及び第2反射面98bはともに平面であるものとする。ただし、第1反射面98aは、平面に限定されず、曲率を持った形状であっても良い。第1反面98aが曲率を有する(有限の焦点距離を有する)場合、集光レンズの機能も兼用できる。なお、反射光学素子98に入射する光ビームは、断面矩形状(スリット状)のビームでなくて良い。
反射光学素子98は、第1反射面98aと第2反射面98bとを有する側面視五角形状でX軸方向に所定長さを有する部材である。第1反射面98aと第2反射面98bとは互いに交わり、その交線は、X軸に平行な線となる。本実施形態では、図8に示されるように、第1反射面98aは、XZ平面に対して角度(+φ1)を成し、第2反射面98bは、XZ平面に対して角度(-φ2)を成す。ここで、φ1<45度、かつφ2<45度である。すなわち、第1反射面98aと第2反射面98bとは鈍角を成す。これにより、反射光学素子98に対して光軸方向に沿った一方側に位置する照明系82からの光を、パターンジェネレータ84を介して、反射光学素子98に対して光軸方向に沿った他方側に位置する投影系86に導くことができる。
本実施形態では、照明系82(最終レンズ96)から、例えば光軸AXiに沿って反射光学素子98に入射した照明光(便宜上、第1ビームと称する)は、第1反射面98aで反射され、パターンジェネレータ84に向けて所定角度2φ1偏向される(図8参照)。また、その他の複数の照明光(光ビーム)も、第1反射面98aによってパターンジェネレータ84に向けて偏向される。すなわち、本実施形態では、第1反射面98aは、照明系82(最終レンズ96)からの複数の光ビームを、パターンジェネレータ84に向けて偏向する第1偏向部の少なくとも一部を構成する。これにより、第1反射面98aからパターンジェネレータ84に向けられた第1ビームを含む複数の光ビームは、第1反射面98aから斜め下方(光軸AXiを横切る方向であって投影系86に近づく方向)に進行する。
また、本実施形態では、パターンジェネレータ84で発生する、上述の第1ビームの正反射光は、第2反射面98bによって反射され、投影系86に向けて所定角度2φ2偏向される(図8参照)。また、パターンジェネレータ84で発生する、その他の複数の光ビーム(回折光)も第2反射面98bによって投影系86に向けて偏向される。すなわち、本実施形態では、第2反射面98bは、パターンジェネレータ84からの複数の光ビームを、投影系86に向けて偏向する第2偏向部の少なくとも一部を構成し、第1反射面98aと第2反射面98bとを有する反射光学素子98は偏向部の少なくとも一部を構成する。第1反射面98aと第2反射面98bとが、XY平面に関して対称である場合、φ1=φ2となり、照明系82からZ軸に平行な光軸AXiに沿って入射した光ビームは第1反射面98aでパターンジェネレータ84に向けて偏向(反射)され、その光ビームのパターンジェネレータ84からの正反射光は、第2反射面98bで反射(偏向)され、Z軸に平行な光軸AXoに沿って投影系86に入射することとなる。パターンジェネレータ84からの正反射光は、第1反射面98aからパターンジェネレータ84に向けられた第1ビームが斜め下方に向けて進行しているため、パターンジェネレータ84から斜め下方(光軸AXiを横切る方向であって投影系86に近づく方向)に向けて進行し、第1反射面98aの下方に位置する第2反射面98bに到達する。
本実施形態では、同一の反射光学素子の異なる面に第1反射面と第2反射面とが形成されるものとしたが、第1反射面と第2反射面とを別々の、ミラーなどの反射光学素子で構成しても良い。この場合、第1反射面と第2反射面を、別々に動かせるようにしても良い。
パターンジェネレータ84は、図7に示されるように、第1反射面98aによって反射(偏向)された複数のスリット状のビームの光路上に配置されている。本実施形態において、パターンジェネレータ84は、XZ平面に平行に配置されている。本実施形態において、パターンジェネレータ84は、一部が鏡筒99の外部に露出した回路基板102の-Y側の面に配置されている。パターンジェネレータ84は、鏡筒99の内部に配置されている。回路基板102の+Y側には、図8に示されるように、放熱用のヒートシンク103が対向して配置され、ヒートシンク103は複数の接続部材105を介して回路基板102に接続されている。ヒートシンク103は、鏡筒99に接触状態で固定されている。ここで、接続部材105として、ペルチェ素子を用いても良い。いずれにしてもヒートシンク103を介した放熱によりパターンジェネレータ及び回路基板102の少なくとも一方を冷却することができる。なお、図7では、ヒートシンク103等の図示が省略されている。また、パターンジェネレータ84は、XZ平面に平行に配置される場合には限定されず、XZ平面と交差する面と平行に配置しても良い。また、パターンジェネレータ84の設置面は、回路基板102でなくても良い。また、パターンジェネレータ84および回路基板84の少なくとも一方を冷却する機構は、ヒートシンクでなくても良い。
本実施形態では、パターンジェネレータ84は、プログラマブルな空間光変調器の一種である光回折型ライトバルブ(GLV(登録商標))によって構成されている。光回折型ライトバルブGLVは、図9(A)及び図9(B)に示されるように、シリコン基板(チップ)84a上に「リボン」と呼ばれるシリコン窒化膜の微細な構造体(以下、リボンと称する)84bを数千個の規模で形成した空間光変調器である。
GLVの駆動原理は、次のとおりである。
リボン84bのたわみを電気的に制御することにより、GLVはプログラム可能な回折格子として機能し、高解像度、ハイスピード(応答性250kHz~1MHz)、高い正確さで、調光、変調、レーザ光のスイッチングを可能にする。GLVは微小電気機械システム(MEMS)に分類される。リボン84bは、硬度、耐久性、化学安定性において強固な特性を持つ高温セラミックの一種である、非晶質シリコン窒化膜(Si3N4)から作られている。各リボンの幅は2~4μmで、長さは100~300μmである。リボン84bはアルミ薄膜で覆われており、反射板と電極の両方の機能を合わせ持つ。リボンは、共通電極84cを跨いで張られており、ドライバ(図9(A)及び図9(B)では不図示)から制御電圧がリボン84bに供給されると、静電気により基板84a方向にたわむ。制御電圧が無くなると、リボン84bは、シリコン窒化膜固有の高い張力により元の状態に戻る。すなわち、リボン84bは、可動反射素子の一種である。
GLVには、電圧の印加により位置が変化するアクティブリボンと、グランドに落ちていて位置が不変のバイアスリボンとが交互に並んだタイプと、全てがアクティブリボンであるタイプとがあるが、本実施形態では後者のタイプが用いられている。
本実施形態では、リボン84bが-Y側に位置し、シリコン基板84aが+Y側に位置する状態で、図8等に示される回路基板102の-Y側の面にGLVから成るパターンジェネレータ84が取付けられている。回路基板102には、リボン84bに制御電圧を供給するためのCMOSドライバ(不図示)が設けられている。以下の説明では、便宜上、CMOSドライバを含んでパターンジェネレータ84と呼ぶ。
本実施形態で用いられるパターンジェネレータ84は、図10に示されるように、リボン84bを、例えば6000個有するリボン列85が、その長手方向(リボン84bの並ぶ方向)をX軸方向として、Y軸方向に所定の間隔で例えば12列、シリコン基板上に形成されている。各リボン列85のリボン84bは、共通電極の上に張られている。本実施形態では、一定レベルの電圧の印加と印加の解除とにより、主としてレーザ光のスイッチング(オン・オフ)のために、各リボン84bは、駆動される。ただし、GLVは、印加電圧に応じて回折光強度の調節が可能なので、パターンジェネレータ84からの複数のビームの少なくとも一部の強度の調整が必要な場合などには、印加電圧が微調整される。例えば、各リボンに同じ強度の光が入射した場合に、異なる強度を持つ複数の光ビームをパターンジェネレータ84から発生することができる。
本実施形態では、照明系82内の回折光学素子でスリット状のビームが12本生成され、この12本のビームが、成形光学系82bを構成する複数の光学素子(最終レンズ96を含む)、及び反射光学素子98の第1反射面98aを介して、各リボン列85の中央にX軸方向に長いスリット状のビームLBが照射される。本実施形態においては、各リボン84bに対するビームLBの照射領域は、正方形領域となる。なお、各リボン84bに対するビームLBの照射領域は、正方形領域でなくても良い。X軸方向に長い、あるいはZ軸方向に長い矩形領域であっても良い。本実施形態においては、12本のビームのパターンジェネレータ84の受光面上での照射領域(照明系82の照射領域)は、X軸方向の長さがSmm、Z軸方向の長さがTmmの矩形の領域とも言える。
各リボン84bは独立制御可能となっているので、パターンジェネレータ84で発生される断面正方形のビームの本数は、6000×12=72000本であり、72000本のビームのスイッチング(オン・オフ)が可能である。本実施形態では、パターンジェネレータ84で発生される72000本のビームを、個別に照射可能となるように、光電素子54の遮光膜58には、72000個のアパーチャ58aが形成されている。なお、アパーチャ58aの数は、例えばパターンジェネレータ84が照射可能なビーム(マルチビーム)の数と同じでなくても良く、72000本のビーム(レーザビーム)のそれぞれが対応するアパーチャ58aを含む光電素子54(遮光膜58)上の領域に照射されれば良い。パターンジェネレータ84が有する可動反射素子(リボン84b)の数と、アパーチャ58aの数とは異なっていても良い。光電素子54上の複数のアパーチャ58aそれぞれのサイズが、対応するビームの断面のサイズより小さければ良い。なお、パターンジェネレータ84が有する可動反射素子(リボン84b)の数と、パターンジェネレータ84で発生するビームの本数とは異なっていても良い。複数(例えば数個)の可動素子(リボン84b)からの光が、1つのアパーチャ58aに照射されるようにしても良い。例えば、電圧の印加により位置が変化するアクティブリボンと、グランドに落ちていて位置が不変のバイアスリボンとが交互に並んだタイプを用いて、複数(2つ)の可動反射素子(リボン)によって1本のビームのスイッチングを行っても良い。また、パターンジェネレータ84の数と光電素子54の数とは等しくなくても良い。
パターンジェネレータ84で発生される複数のビームは、図7に示されるように、光路折り曲げ用の反射光学素子98の第2反射面98bで反射され、下方に位置する投影系86、すなわち投影系86の入射端に位置する第1レンズ94(図8参照)に入射する。
投影系86は、図7に示されるように、第2反射面98bを介したパターンジェネレータ84からの光ビームの光路上に順次配置され、Z軸方向の共通の光軸AXpを有する複数のレンズを備えている。これらの複数のレンズは、鏡筒86aに保持されている。投影系86は、縮小光学系であり、その投影倍率は、例えば約1/4である。なお、投影系は、屈折型光学系には限定されず、反射型光学系や反射屈折型光学系であっても良い。また、投影系86の投影倍率は1/4の縮小倍率には限定されず、例えば1/5や1/10の縮小倍率、また等倍や拡大倍率であっても良い。
これまでの説明からわかるように、本実施形態では、第1反射面98a及び第2反射面98bを有する反射光学素子98は、照明系82の-Z側に配置され、投影系86は、第2反射面98bの-Z側に配置されている。また、照明系82は、鏡筒83内部の空間(第1空間)に配置され、投影系86は、鏡筒86a内部の空間(第2空間)に配置され、第1反射面89a及び第2反射面89bを有する反射光学素子89及びパターンジェネレータ84は、第1空間と第2空間との間の鏡筒99内部の空間(第3空間)に配置されている。また、本実施形態では、パターンジェネレータ84は、複数のリボン84b(可動反射素子)の配置面を含む面が、照明系82から第1反射面98aまでの照明光の光路と交差しないように配置されている。ここで、複数のリボン84b(可動反射素子)の配置面とは、イニシャル状態での複数のリボン84bの反射面を含む面を意味する。この配置面は、イニシャル状態で、複数のリボン84bの反射面が位置すべき仮想的な面、及び複数のリボン84bの反射面が配置される面のいずれであっても良い。また、リボン84bを駆動するCMOSドライバに対して通電がなされていない状態、すなわち電圧が印加されていない状態がイニシャル状態に該当する。これにより、光学ユニット18Bの小型化を達成することができる。特に、光学ユニット18Bの、Z軸に直交する断面のサイズを小さくすることができる。したがって、複数の光照射装置80を省スペースに配置することが可能になり、光学ユニット18Bの大きさ(配置)に左右されずに、複数の電子ビーム光学系70をXY方向に所望の状態で並置することができる。
また、パターンジェネレータ84は、複数のリボン84b(可動反射素子)の配置面を含む面が、パターンジェネレータ84で発生し、光電素子54に向かう複数の光ビームの光路、すなわち、第2反射面89bと光電素子54との間の複数の光ビームの光路と交差しないように配置されている。すなわち、パターンジェネレータ84は、複数のリボン84b(可動反射素子)の配置面を含む面が、第2反射面89bと投影系86との間の光路と交差しないように、投影系86と光電素子54との間の光路と交差しないように、第2反射面89bで偏向されたパターンジェネレータ84からの複数の光ビームの光路と交差しないように、あるいは光電素子54に照射される光ビームの光路と交差しないように配置されている。これにより、光学ユニット18Bの小型化を達成することができる。特に、光学ユニット18Bの、Z軸に直交する断面のサイズを小さくすることができるため、複数の光照射装置80を省スペースに配置することが可能になる。したがって、光学ユニット18Bの大きさ(配置)に左右されずに、複数の電子ビーム光学系70をXY方向に所望の状態で並置することができる。
本実施形態では、図8からわかるように、成形光学系82bの光軸AXiと投影系86の光軸AXpとは、鉛直方向(Z軸方向)のほぼ同軸であり、パターンジェネレータ84の複数の可動反射素子(リボン84b)の反射面は、オン・オフのいずれの状態においても、光軸AXi、光軸AXp及び鉛直軸のすべてにほぼ平行である。
本実施形態においては、投影系86は、第2反射面98bを介したパターンジェネレータ84からの光を、真空隔壁81を介して光電素子54に投射することで、複数、例えば72000個のアパーチャ58aの少なくとも1つを通過した光ビームが光電層60に照射される。すなわち、パターンジェネレータ84からのオンとされた可動反射素子からのビームは、対応するアパーチャ58aを介して光電層60に照射され、オフとされた可動反射素子からは、対応するアパーチャ58a及び光電層60へ光ビームが照射されない。なお、以下では、特に断らない限り、アパーチャ58aは、X軸方向に長い矩形であるものとするが、Y軸方向に長い矩形あるいは正方形であっても良いし、多角形、楕円など、他の形状であっても良い。
投影系86に、投影系86の光学特性を調整可能な光学特性調整装置87を設けても良い。光学特性調整装置としては、投影系86を構成する一部の光学素子、例えばレンズを、動かすことで、少なくともX軸方向の投影倍率(倍率)の変更が可能な装置、あるいは例えば投影系86を構成する複数のレンズ間に形成される気密空間の気圧を変更する装置を用いることができる。この他、光学特性調整装置として、投影系86を構成する光学部材を変形させる装置、あるいは投影系86を構成する光学部材に熱分布を与える装置を使っても良い。本実施形態では、45の光照射装置80の全てに光学特性調整装置が併設される。45の光学特性調整装置87は主制御装置110の指示に基づき、制御部11によって制御される(図12参照)。なお、複数の光照射装置80のうちの一部(1つ、又は2以上)にのみ光学特性調整装置を設けても良い。
なお、投影系86の内部にパターンジェネレータ84で発生され、光電層60に照射される複数のビームの少なくとも1つの強度を変更可能な強度変調素子を設けても良い。光電層60に照射される複数のビームの強度の変更は、複数のビームのうちの一部のビームの強度を零にすることを含む。また、投影系86が光電層60に照射される複数のビームの少なくとも1つの位相を変更可能な位相変調素子を設けてもよし、偏光状態を変更可能な偏光変調素子を備えていても良い。
図8から明らかなように、本実施形態では、照明系82が有する成形光学系82bの光軸(最終レンズ96の光軸と一致)AXiと投影系86の光軸AXpとは、いずれもZ軸に平行であるが、光軸AXiと光軸AXpとが非平行であっても良い。言い換えると、光軸AXiと光軸AXpとが所定の角度をなして交差しても良い。
本実施形態に係る露光装置100では、電子ビーム光学ユニット18Aと光学ユニット18BとのXY平面内の相対位置情報を計測可能な相対位置計測システム29が設けられている(図1及び図12参照)。相対位置計測システム29は、図2に示される一対の2次元エンコーダシステム29a、29bによって構成されている。
これをさらに詳述すると、図2に示されるように、筐体19の第1プレート36上面には、一対のスケール部材33a、33bがY軸方向の両端部近傍に固定され、スケール部材33a、33bのそれぞれに対向してフレーム17の下面には、ヘッド35a、35bが固定されている。スケール部材33a、33bには、X軸方向及びY軸方向を周期方向とする例えば1μmピッチの2次元回折格子がそれぞれ形成されている。ヘッド35aは、スケール33aを用いて筐体19のX軸方向及びY軸方向の位置情報を計測する2次元エンコーダ29aを構成する。同様に、ヘッド35bは、スケール部材33bを用いて筐体19のX軸方向及びY軸方向の位置情報を計測する2次元エンコーダ29bを構成する。一対の2次元エンコーダ29a、29bにより計測される位置情報は、主制御装置110に供給され、主制御装置110は、一対の2次元エンコーダ29a、29bにより計測される位置情報に基づいて、フレーム17と筐体19とのX軸方向、Y軸方向及びθz方向の相対位置、すなわち電子ビーム光学ユニット18Aと光学ユニット18Bとの3自由度方向(X、Y、θz)の相対位置を求める。すなわち、一対の2次元エンコーダ29a、29bによって、電子ビーム光学ユニット18Aと光学ユニット18BとのXY平面内の相対位置情報を計測可能な相対位置計測システム29が構成されている。なお、エンコーダシステムは、2次元エンコーダシステムでなくても良い。また、フレーム17にエンコーダシステムのスケール部材を配置、筐体19にヘッドを配置しても良い。相対位置計測システム29は、エンコーダシステムに限られず、干渉計システムなど他の計測システムを用いても良い。なお、相対位置計測システム29として、フレーム17と筐体19のいずれか一方の位置を計測しても良い。また、相対位置計測システム29を設けなくても良い。
電子ビーム光学ユニット18Aと光学ユニット18BとのXY平面内の相対位置を、所定の状態に維持するために、位置決め装置21(図1及び図2では不図示、図12参照)が設けられている。主制御装置110は、電子ビーム光学ユニット18Aと光学ユニット18Bとの3自由度方向(X、Y、θz)の相対位置(例えば、相対位置計測システム29の出力)に基づいて、位置決め装置21を制御する。これにより、電子ビーム光学ユニット18Aと光学ユニット18BとのX軸方向及びY軸方向の相対位置、及びZ軸の回りの相対回転角は、一定の状態(所定の状態)に維持される。なお、位置決め装置21の替わりに、あるいは位置決め装置21に加えて、フレーム17と筐体18の少なくとも一方を動かす少なくとも1つの駆動装置(アクチュエータなど)を設けても良い。
なお、光学ユニット18Bの支持方法は、上述の方法には限定されない。例えば、光学ユニット18Bが筐体19上に載置されていても良い。
なお、光学ユニット18Bの支持方法は、上述の方法には限定されない。例えば、光学ユニット18Bが筐体19上に載置されていても良い。
これまでの説明から明らかなように、本実施形態に係る露光装置100では、図11に模式的に示されるように、露光時に、パターンジェネレータ84の受光面上でX軸方向の長さSmm、Z軸方向の長さTmmの矩形の領域の内部にビームが照射され、この照射によりパターンジェネレータ84からの光が縮小倍率1/4を有する投影系86によって光電素子54に照射され、さらにこの照射によって生成される電子ビームが縮小倍率1/50を有する電子ビーム光学系70を介して、像面(像面に位置合わせされるウエハ面)上の矩形の領域(露光フィールド)に照射される。すなわち、本実施形態の露光装置100では、光照射装置80(投影系86)と、これに対応する光電素子54と、これらに対応する電子ビーム光学系70と、を含んで構成された、縮小倍率1/200の直筒型のマルチビーム光学システム200(図12参照)が構成され、このマルチビーム光学システム200を、XY平面内で前述したマトリクス状の配置で45有している。したがって、本実施形態の露光装置100の光学系は、縮小倍率1/200の縮小光学系を45有するマルチカラム電子ビーム光学系である。
また、露光装置100では、直径300ミリのウエハを露光対象とし、ウエハに対向して45本の電子ビーム光学系70を配置するため、電子ビーム光学系70の光軸AXeの配置間隔を一例として43mmとしている。このようにすれば、1つの電子ビーム光学系70が受け持つ露光エリアは、最大で43mm×43mmの矩形領域となるため、前述したようにウエハステージWSTのX軸方向及びY軸方向の移動ストロークが50mmもあれば十分である。なお、電子光学系70の数は、45本に限られず、ウエハの直径、ウエハステージWSTのストローク、などに基づいて決めることができる。
図12には、露光装置100の制御系を主として構成する主制御装置110の入出力関係がブロック図にて示されている。主制御装置110は、マイクロコンピュータ等を含み、図12に示される各部を含む露光装置100の構成各部を統括的に制御する。図12において、制御部11に接続されている光照射装置80は、主制御装置110からの指示に基づき、制御部11によって制御される光源(レーザダイオード)82a、回折光学素子、及び光学特性調整装置などを含む。また、制御部11に接続されている電子ビーム光学系70は、主制御装置110からの指示に基づき、制御部11によって制御される一対の電磁レンズ70a、70b及び静電マルチポール70c(第1静電レンズ70c1及び第2静電レンズ70c2)を含む。また、図12において、符号500は、前述したマルチビーム光学システム200と、制御部11と、信号処理装置108と、を含んで構成される露光ユニットを示す。露光装置100では、露光ユニット500が45設けられている。
ところで、露光装置100では、次のような理由により、正方形ではなく、矩形(長方形)の露光フィールドを採用している。
図13には、電子ビーム光学系の直径Dの有効領域(収差有効領域)を示す円内に、正方形の露光フィールド(以下、適宜、正方形フィールドとも称する)SFと矩形の露光フィールド(以下、適宜、矩形フィールドとも称する)RFとが図示されている。この図13から明らかなように、電子ビーム光学系の有効領域を最大限使おうとすると正方形フィールドSFが良い。ただし、正方形フィールドSFの場合、図13に示されるようにフィールド幅としては30%(1/√2)程度損をする。例えば、60:11のアスペクト比を持つ矩形フィールドRFだと有効領域がほぼフィールド幅となる。これは、マルチカラムでは大きなメリットになる。この他、アライメントマークを検出する際のマーク検出感度が向上するというメリットもある。フィールドの形状を問わず、フィールド内に照射される電子の総量は同じであるため、矩形フィールドは正方形フィールドに比べて電流密度が大きく、そのため、ウエハ上のより小さい面積にマークを配置しても十分な検出感度で検出できる。また、矩形フィールドは収差管理が正方形フィールドに比べて容易である。
図13では、正方形フィールドSF及び矩形フィールドRFのいずれの露光フィールドも電子ビーム光学系の光軸AXeを含むように設定されている。しかし、これに限らず、露光フィールドを光軸AXeを含まないように、収差有効領域内に設定しても良い。また、露光フィールドを、矩形(正方形を含む)以外の形状、例えば円弧状に設定しても良い。
次に、本実施形態に係る露光装置100で、ウエハWの露光中に行われるドーズ制御について説明する。
露光フィールド内の照度ムラは、主制御装置110が、後述する露光時に、パターンジェネレータ84のCMOSドライバに対する印加電圧の制御を行うことで、複数のリボン84bで発生する回折光の強度を、個々のリボン毎に、あるいは複数のグループにグループ分けされた各グループに属するリボン毎に、調整することで、結果的に光電層60の電子放出面上での面内の照度分布、及びこれに対応するウエハ面上での露光フィールドRF内の照度分布の調整を行う。すなわち、露光フィールドRFに照射される複数の電子ビームのそれぞれの強度を適正に調整する。本実施形態に係る露光装置100では、パターンジェネレータ84がGLVによって構成されているので、主制御装置110は、パターンジェネレータ84自体を用いて中間調を発生することができる。したがって、主制御装置110は、後述する露光時に、光電層60に照射されるそれぞれの光ビームの強度調整により、光電層60の電子放出面上での面内の照度分布、及びこれに対応するウエハ面上での露光フィールド内の照度分布の調整、すなわちドーズ制御を行うことができる。この他、印加電圧に応じて屈折率が変化する非線形光学効果を有する結晶、例えばリチウムタンタレート(タンタル酸リチウム(略称:LT)単結晶)、リチウムナイオベート(ニオブ酸リチウム(略称:LN)単結晶)などの光強度変調結晶(電気光学素子)を複数XY平面に平行な面内で並べ、その入射側と出射側に偏光子を配置して構成される照度分布調整素子を、成形光学系82b内に設けても良い。この場合、主制御装置110は、照度分布調整素子とパターンジェネレータ84との一方を用い、あるいは両者を併用して光電層60の電子放出面上での面内の照度分布の調整を行なっても良い。
なお、光電層60の電子放出面上での面内の照度分布の調整の前提として、光電変換によって光電層60の電子放出面から生成される複数の電子ビームの強度(電子ビームの照度、ビーム電流量)がほぼ同一となるように、パターンジェネレータ84で発生され光電層60に照射される複数の光ビームの強度の調整が行われる。このビームの強度の調整は、照明系82内で行なっても良いし、パターンジェネレータ84で行なっても良いし、投影系86内で行なっても良い。ただし、光電変換によって光電層60の電子放出面から生成される複数の電子ビームのうちの少なくとも一部のビーム強度(電子ビームの照度、ビーム電流量)を他の電子ビーム強度と異ならせるように、光電層60に照射される複数の光ビームの強度の調整を行なっても良い。
なお、ウエハに形成されたレジスト層は、光電層60の電子放出面上での面内の照度分布のみの影響を受けるものではなく、その他の要因、例えば電子の前方散乱、後方散乱、あるいはフォギングなどの影響を受ける。
ここで、前方散乱とは、ウエハ表面のレジスト層内に入射した電子がウエハ表面に到達するまでの間にレジスト層内で散乱する現象を意味し、後方散乱とは、レジスト層を介してウエハ表面に到達した電子がウエハ表面又はその内部で散乱してレジスト層内に再度入射し、周囲に散乱する現象を意味する。また、フォギングとは、レジスト層の表面からの反射電子が、例えばクーリングプレート74の底面で再反射し、周囲にドーズを加える現象を指す。
上記の説明から明らかなように、前方散乱の影響を受ける範囲は、後方散乱及びフォギングと比べて狭いので、露光装置100では、前方散乱と、後方散乱及びフォギングとで、異なる補正方法を採用している。
前方散乱成分の影響を軽減するためのPEC(Proximity Effect Correction)では、主制御装置110は、前方散乱成分の影響を見込んで、制御部11を介してパターンジェネレータ84(及び/又は照度分布調整素子)を用いた面内の照度分布の調整を行う。
一方、後方散乱成分の影響を軽減するためのPEC、及びフォギングの影響を軽減するためのFEC(Fogging Effect Correction)では、主制御装置110は、制御部11を介して、パターンジェネレータ84(及び/又は照度分布調整素子)を用いてある程度の空間周波数で面内の照度分布の調整を行う。
ところで、本実施形態に係る露光装置100は、例えばコンプリメンタリ・リソグラフィに用いられる。この場合、例えばArF光源を用いた液浸露光においてダブルパターニングなどを利用することでラインアンドスペースパターン(L/Sパターン)が形成されたウエハを露光対象とし、そのラインパターンの切断を行うためのカットパターンの形成に用いられる。露光装置100では、光電素子54の遮光膜58に形成された72000個のアパーチャ58aのそれぞれに対応するカットパターンを形成することが可能である。
本実施形態における、ウエハに対する処理の流れは、次の通りである。
まず、電子線レジストが塗布された露光前のウエハWが、ステージチャンバ10内で、ウエハステージWST上に載置され、静電チャックによって吸着される。
ウエハステージWST上のウエハWに形成された例えば45個のショット領域のそれぞれに対応してスクライブライン(ストリートライン)に形成された少なくとも各1つのアライメントマークに対して、各電子ビーム光学系70から電子ビームを照射し、少なくとも各1つのアライメントマークからの反射電子が反射電子検出装置106x1、106x2、106y1、106y2の少なくとも1つで検出され、ウエハW1の全点アライメント計測が行われ、この全点アライメント計測の結果に基づいて、ウエハW1上の複数のショット領域に対し、45の露光ユニット500(マルチビーム光学システム200)を用いた露光が開始される。例えばコンプリメンタリ・リソグラフィの場合、ウエハW上に形成されたX軸方向を周期方向とするL/Sパターンに対するカットパターンを各マルチビーム光学システム200から射出される多数のビーム(電子ビーム)を用いて形成する際に、ウエハW(ウエハステージWST)をY軸方向に走査しつつ、各ビームの照射タイミング(オン・オフ)を制御する。なお、全点アライメント計測を行わずに、ウエハWの一部のショット領域に対応して形成されたアライメントマークの検出を行い、その結果に基づいて45のショット領域の露光を実行しても良い。また、本実施形態においては、露光ユニット500の数とショット領域の数が同じであるが、異なっていても良い。例えば、露光ユニット500の数が、ショット領域の数よりも少なくても良い。なお、ステージチャンバ10の外でアライメントマークの検出を行っても良い。この場合、ステージチャンバ10内でのアライメントマークの検出をしなくても良い。
ここで、パターンジェネレータ84を用いた露光シーケンスについて、説明を行う。ここでは、ウエハ上のある領域内に互いに隣接してXY2次元配置された多数の10nm角(アパーチャ58aを介したビームの照射領域と一致)の画素領域を仮想的に設定し、その全ての画素を露光する場合について説明する。また、ここでは、リボン列として、A、B、C、……、K、Lの12のリボン列があるものとする。
リボン列Aに着目して説明すると、ウエハ上にX軸方向に並ぶある行(第K行とする)の連続した6000画素領域に対してリボン列Aを用いた露光が開始される。この露光開始の時点では、リボン列Aで反射されるビームは、ホームポジションにあるものとする。そして、露光開始からウエハWの+Y方向(又は-Y方向)のスキャンに追従させてビームを+Y方向(又は-Y方向)に偏向しながら同一の6000画素領域に対する露光を続行する。そして、例えば時間Ta[s]でその6000画素領域の露光が完了したとすると、その間にウエハステージWSTは、速度V[nm/s]で、例えばTa×V[nm]進む。ここで、便宜上、Ta×V=96[nm]とする。
続いて、ウエハステージWSTが速度Vで+Y方向に24nmスキャンしている間に、ビームをホームポジションに戻す。このとき、実際にウエハ上のレジストが感光されないようにビームをオフにする。
このとき、上記の露光開始時点からウエハステージWSTは+Y方向に120nm進んでいるので、第(K+12)行目の連続した6000画素領域が、露光開始時点における第K行の6000画素領域と同じ位置にある。
そこで、同様にして、第(K+12)行目の連続した6000画素領域を、ウエハステージWSTにビームを偏向追従させながら露光する。
実際には、第K行の6000画素領域の露光と並行して、第(K+1)行~第(K+11)行それぞれの6000画素は、リボン列B、C、……、K、Lによって露光される。
このようにして、ウエハ上のX軸方向の長さ60μmの幅の領域については、ウエハステージWSTをY軸方向にスキャンさせながらの露光(スキャン露光)が可能であり、ウエハステージWSTを60μmX軸方向にステッピングして同様のスキャン露光を行えば、そのX軸方向に隣接する長さ60μmの幅の領域の露光が可能である。したがって、上記のスキャン露光とウエハステージのX軸方向のステッピングとを交互に繰り返すことで、ウエハ上の1つのショット領域の露光を、1つの露光ユニット500により行うことができる。また、実際には、45の露光ユニット500を用いて並行してウエハ上の互いに異なるショット領域を露光することができるので、ウエハ全面の露光が可能である。
なお、露光装置100は、コンプリメンタリ・リソグラフィに用いられ、ウエハW上に形成された例えばX軸方向を周期方向とするL/Sパターンに対するカットパターンの形成に用いられるので、パターンジェネレータ84で72000のリボン84bのうち、任意のリボン84bで反射するビームをオンにしてカットパターンを形成することができる。この場合に、72000本のビームが同時にオン状態とされても良いし、されなくても良い。
本実施形態に係る露光装置100では、上述した露光シーケンスに基づく、ウエハWに対する走査露光中に、主制御装置110によって位置計測系28の計測値に基づいて、ステージ駆動系26が制御されるとともに、各露光ユニット500の制御部11を介して光照射装置80及び電子ビーム光学系70が制御される。この際、主制御装置110の指示に基づき、制御部11によって、前述したドーズ制御が必要に応じて行われる。
ところで、上で説明したドーズ制御は、パターンジェネレータ84若しくは照度分布調整素子(不図示)、又はパターンジェネレータ84及び照度分布調整素子を制御することで行われるドーズ制御であるから、動的なドーズ制御と言える。
しかしながら、露光装置100では、これに限られず、以下のようなドーズ制御をも採用することができる。
例えば光学系起因のブラー(ぼけ)及び/又はレジストブラーによって、図14(A)に示されるように、ウエハ上では本来正方形(又は矩形)であるべきカットパターン(レジストパターン)CPが、例えば4隅(コーナー)が丸まってカットパターンCP’のようになる場合がある。本実施形態では、図14(B)に示されるように、遮光膜58に形成されるアパーチャ58aの4隅に補助パターン58cを設けた非矩形のアパーチャ58a’を介して光ビームを光電層60に照射し、光電変換により発生した電子ビームを電子ビーム光学系70を介してウエハ上に照射することで、非矩形のアパーチャ58a’と形状の異なる形状の電子ビームの照射領域をウエハ上に形成しても良い。この場合、電子ビームの照射領域の形状と、ウエハに形成されるべきカットパターンCPの形状は、同じであっても良いし、異なっていても良い。例えば、レジストブラーの影響をほぼ無視できる場合には、電子ビームの照射領域の形状が、所望のカットパターンCPの形状(例えば、矩形あるいは正方形)とほぼ同じになるようにアパーチャ58a’の形状を決めれば良い。この場合のアパーチャ58a’の使用をドーズ制御と考えなくても良い。
ここで、アパーチャ58a’では、矩形のアパーチャ58aの4隅の全てに補助パターン58cを設ける必要はなく、アパーチャ58aの4隅のうち、少なくとも一部にのみ補助パターン58cを設けても良い。また、遮光膜58に形成される複数のアパーチャ58a’の一部でのみ矩形のアパーチャ58aの4隅の全てに補助パターン58cを設けても良い。また、遮光膜58に形成される複数のアパーチャの一部をアパーチャ58a’とし、残りのをアパーチャ58aとしても良い。すなわち、遮光膜58に形成される複数のアパーチャ58a’の全ての形状を同一にする必要はない。なお、アパーチャの形状、大きさ等は、シミュレーション結果に基づいて設計することも可能であると思われるが、実際の露光結果に基づいて、例えば電子ビーム光学系70の特性に基づいて最適化することが望ましい。いずれにしても、ウエハ(ターゲット)上での照射領域の角部の丸まりを抑えるようにアパーチャそれぞれの形状が決定される。なお、前方散乱成分の影響もアパーチャ形状で軽減可能である。
なお、例えば、光学系起因のブラーをほぼ無視できる場合には、アパーチャ58a’の形状と電子ビームの照射領域の形状が同じであっても良い。
露光装置100では、電子ビーム光学系70を複数、一例として45持っているが、その45の電子ビーム光学系70は同様の仕様を満足するように、同様の製造工程を経て製造されるため、例えば図15(A)に模式的に示されるように、露光フィールドが歪む固有のディストーション(歪曲収差)が、45の電子ビーム光学系70に共通して発生することがある。かかる複数の電子ビーム光学系70に共通のディストーションは、図15(B)に模式的に示されるように、光電層60上に位置する遮光膜58上のアパーチャ58aの配置を、上記ディストーションを打ち消すような、又は低減するような配置にして補正しても良い。なお、図15(A)の円は、電子ビーム光学系70の収差有効領域を示す。
図15(B)には、わかりやすくするため、各アパーチャ58aが、矩形ではなく、平行四辺形などとして示されているが、実際には、遮光膜58上のアパーチャ58aは矩形又は正方形で形成される。この例は、電子ビーム光学系70に固有の樽型ディストーションを、糸巻き型ディストーション形状に沿って複数のアパーチャ58aを光電層60上に配置することで、相殺する、又は低減する場合を示している。なお、電子ビーム光学系70のディストーションは、樽型ディストーションに限られず、例えば電子ビーム光学系70のディストーションが糸巻き型ディストーションの場合には、その影響を打ち消す、あるいは低減するように、複数のアパーチャ58aを樽型ディストーション形状に配置しても良い。また、各アパーチャ58aの配置に合わせて投影光学系86からの複数の光ビームの位置を調整しても良いし、調整しなくても良い。
以上説明したように、本実施形態に係る露光装置100は、マルチビーム光学システム200と、制御部11と、信号処理装置108と、を含んで構成される露光ユニット500を45備えている(図12参照)。マルチビーム光学システム200は、光照射装置80と、電子ビーム光学系70とを含む。光照射装置80は、照明系82と、反射光学素子98と、パターンジェネレータ84と、投影系86と、を備えている。光照射装置80では、照明系82からの照明光を反射光学素子98の第1反射面98aで偏向し、この偏向された照明光の照射によりパターンジェネレータ84が複数の光ビームを発生させ、パターンジェネレータ84からの複数の光ビームを反射光学素子98の第2反射面98bで偏向し、その偏向された複数の光ビームが投影系86によって真空隔壁81を介して光電素子54に照射される。このため、光照射装置80では、照明系82が有する成形光学系82bの光軸AXiと投影系86の光軸AXpとを互いに平行に近づけることが可能になる。特に、本実施形態では、光軸AXiと光軸AXpとを鉛直方向のほぼ同軸上に配置することができる。さらに、照明系82と投影系86とをほぼ一直線上に配置し、かつパターンジェネレータ84として、反射型の可動反射素子を多数有するGLVが用いられているにもかかわらず、パターンジェネレータ84の前後の光路を分離できる、すなわち、パターンジェネレータからの光を投影系86に導くことができる。
また、光軸AXiと光軸AXpとを鉛直方向のほぼ同軸上に配置できるので、GLVから成るパターンジェネレータ84の複数の可動反射素子(リボン84b)の反射面は、オン・オフのいずれの状態においても、光軸AXi、光軸AXp及び鉛直軸のすべてにほぼ平行である。このため、光軸AXiと光軸AXpとが同軸でない場合、互いに非平行な場合など、光軸AXi及び光軸AXpのいずれかと可動反射素子(リボン84b)の反射面が平行でない場合とは異なり、照明系82からの照明光を第1反射面98aで偏向してパターンジェネレータ84に照射し、その照射によってパターンジェネレータで発生した光ビームを確実に投影系86に導くことができる。
また、本実施形態では、成形光学系82bの光軸AXiと投影系86の光軸AXpとを互いに平行に近づけること、ひいては光軸AXiと光軸AXpとを鉛直方向のほぼ同軸上に配置することが可能になる結果、照明系82、パターンジェネレータ84、投影系86、光電素子54及び電子ビーム光学系70、を複数並べて1枚のウエハ上に各電子ビーム光学系70からの電子ビームを照射することが可能になる。
また、露光装置100の電子ビーム光学系70は、複数の光ビームを光電素子54に照射することによって光電素子54から放出される電子を複数の電子ビームとしてウエハWに照射する。したがって、露光装置100によると、ブランキング・アパーチャが無いため、チャージアップや磁化による複雑なディストーションの発生源が根本的になくなるとともに、ターゲットの露光に寄与しない無駄電子(反射電子)が少なくなるので、長期的な不安定要素を排除することが可能になる。
また、本実施形態に係る露光装置100によると、実際のウエハの露光時には、主制御装置110は、ウエハWを保持するウエハステージWSTのY軸方向の走査(移動)をステージ駆動系26を介して制御する。これと並行して、主制御装置110は、露光ユニット500のm個(例えば45個)のマルチビーム光学システム200のそれぞれについて、光電素子54のn個(例えば72000個)のアパーチャ58aをそれぞれ通過したn本のビームの照射状態(オン状態とオフ状態)をアパーチャ58aごとにそれぞれ変化させるとともに、パターンジェネレータ84を用いてビーム毎に光ビームの強度調整を行う。
また、露光装置100では、静電マルチポール70cの第1静電レンズ70c1により、総電流量の変化によって生じる、クーロン効果に起因するX軸方向及びY軸方向に関する縮小倍率(の変化)を、高速で、かつ個別に補正する。また、露光装置100では、第2静電レンズ70c2により、各種振動等に起因するビームの照射位置ずれ(光学パターンのうちの明画素、すなわち後述するカットパターンの投影位置ずれ)を一括で補正する。
これにより、例えばArF液浸露光装置を用いたダブルパターニングなどによりウエハ上の例えば45個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なラインアンドスペースパターンの所望のライン上の所望の位置にカットパターンを形成することが可能になり、高精度かつ高スループットな露光が可能になる。
したがって、本実施形態に係る露光装置100を用いて、前述したコンプリメンタリ・リソグラフィを行い、L/Sパターンの切断を行う場合に、各マルチビーム光学システム200で、複数のアパーチャ58aのうち、いずれのアパーチャ58aを通過するビームがオン状態となる場合であっても、換言すればオン状態となるビームの組み合わせの如何を問わず、ウエハ上の例えば45個のショット領域のそれぞれに予め形成されたX軸方向を周期方向とする微細なラインアンドスペースパターンのうちの所望のライン上の所望のX位置にカットパターンを形成することが可能になる。
なお、上記実施形態に係る露光装置100において、図10に示されるリボン列85を12列有するパターンジェネレータ84に代えて、図16に示される、リボン列85を13列有するパターンジェネレータ184を用いても良い。パターンジェネレータ184では、図16中の最上部に位置するリボン列(図16では識別のため85aと表記されている)は、通常用いられる12列のリボン列(メインのリボン列)85のいずれかに不良が生じた際に、その不良が生じたリボン列85に代えて用いられるバックアップ用のリボン列である。バックアップ用のリボン列85aを複数設けても良い。
なお、これまでの説明では、パターンジェネレータの各リボン84bと、光電素子54のアパーチャ58aとは1:1で対応する、すなわち各リボン84bとウエハ上に照射される電子ビームとは1:1で対応するものとした。しかし、これに限らず、メインのリボン列85のうちの1つのリボン列、例えばバックアップ用のリボン列85aに隣接するリボン列に含まれる1つのリボン84bからの光ビームを光電素子54に照射することによって生成された電子ビームを、ターゲットであるウエハ上のあるターゲット領域(第1ターゲット領域と称する)に照射し、例えばリボン列85aに含まれる1つのリボン84b又はメインのリボン列85のうちの他のリボン列に含まれる1つのリボン84bからの光ビームを光電素子54に照射することによって生成された電子ビームを、ウエハ上の第1ターゲット領域に照射可能に構成しても良い。すなわち、異なるリボン列にそれぞれ含まれる2つのリボン84bからの光ビームの照射に起因して光電素子54で生成された電子ビームをウエハ上の同一のターゲット領域に重畳して照射可能としても良い。これによって、例えばそのターゲット領域のドーズ量が所望状態になるようにしても良い。
この他、図10に示されるパターンジェネレータ84に代えて、図17(A)に示されるように、メインのリボン列85に対して、リボン84bの幅(リボン84bの配列ピッッチ)の1倍未満の距離だけずらして配置した補正用のリボン列85bを追加したパターンジェネレータを用いても良い。図17(A)に示される補正用のリボン列85bは、図17(A)の円B内の近傍を拡大して示す図17(B)に示されるように、リボン84bの幅の半分(リボン84bの配列ピッチの半分(1μm))だけずらして配置されている。この補正用のリボン列85bを用いて、PEC(Proximity Effect Correction)等の微妙なDose調整を実施しても良い。GLV自体で中間調を作ることも可能であるが、さらに画素ずらしで補正したい場合に有効である。パターンジェネレータは、メインのリボン列85に加えて、バックアップ用のリボン列85aと補正用のリボン列85bとを、持っていても良い。
なお、上記実施形態では、パターンジェネレータ84を、GLVで構成する場合について例示したが、これに限らず、パターンジェネレータ84を、反射型の液晶表示素子あるいはデジタル・マイクロミラー・デバイス(Digital Micromirror Device)、PLV(Planer Light Valve)などの複数の可動反射素子を有する反射型の空間光変調器を用いて構成しても良い。あるいは、光照射装置80内部の光学系の構成によっては、各種の透過型の空間光変調器によってパターンジェネレータを構成しても良い。パターンジェネレータ84は、個別に制御可能な複数の光ビームを提供可能なパターンジェネレータであれば、空間光変調器に限らず、ビームのオン・オフは勿論、強度の調整、サイズの変更が可能なパターンジェネレータを用いることができる。また、パターンジェネレータ84は、ビームの制御(オン・オフ、強度の調整、サイズの変更など)が、必ずしも個々の光ビームについて可能である必要はなく、一部のビームについてのみ可能、あるいは複数のビーム毎に可能であっても良い。
また、上記実施形態では、アパーチャ58aを介して光電層60に光を照射しているが、アパーチャを用いなくても良い。例えば図18(A)に示されるように、アパーチャが無くても、所望の断面形状(大きさ含む)の光ビームを光電素子54に照射することができるならば、アパーチャを配置しなくても良い。
上記実施形態では、図18(B)に示されるように、複数のアパーチャを介して光電素子(光電層)に光を照射している。このようにアパーチャを用いることで、パターンジェネレータと光電素子との間の投影光学系の収差などの影響をうけずに、所望の断面形状を有する光ビームを光電層に入射させることできる。なお、アパーチャと光電層とは、前述した実施形態のように一体的に形成されていても良いし、所定のクリアランス(隙間、ギャップ)を介して対向配置されていても良い。
なお、第1偏向部及び第2偏向部を含む偏向部の構成は、上述の実施形態に限られるものではない。例えば、次に説明する第1ないし第3の変形例に係る光照射装置のように種々の偏向部の構成を採用しても良い。
なお、上記実施形態では、照明系82、投影系86、光電素子54及び電子ビーム光学系70が、いずれもマトリックス状に配置されるものとしたが、照明系82、投影系86、光電素子54及び電子ビーム光学系70の配置はこれに限られるものではない。例えば、照明系82、投影系86、光電素子54及び電子ビーム光学系70などは、例えば露光時にウエハが移動されるY軸方向にXY平面内で交差する方向、例えばX軸方向に沿って配置されても良い。
《第1の変形例》
図19には、第1の変形例にかかる光照射装置180の偏向部198が、照明系82の最終レンズ96、投影系86の第1レンズ94及びパターンジェネレータ84とともに示されている。本変形例に係る光照射装置180は、前述した反射光学素子98の代わりに、偏向部198を有している点が、前述した光照射装置80と相違する。本変形例に係る光照射装置180の偏向部198は、最終レンズ96(照明系82)からの光ビームをパターンジェネレータ84に向けて偏向する第1反射面198aと、パターンジェネレータ84からの複数の光ビームを第1レンズ94(投影系86)に向けて偏向する第2反射面198bとを有するプリズムなどの反射光学素子を含む。偏向部198は、側面視五角形状でX軸方向に所定の長さを有する上記実施形態の反射光学素子98において、第1反射面と第2反射面とで構成される頂部が、XZ平面に平行に切り落とされた形状(側面視六角形状)を有している。偏向部198では、第1反射面198aと第2反射面198bとは互いに交わらないが、第1反射面198aの延長面198a’と第2反射面198bの延長面198b’とは、互いに交わり、その交線は、X軸に平行な線となる。偏向部198も、第1反射面198aは、XZ平面に対して角度(+φ1)を成し、第2反射面198bは、XZ平面に対して角度(-φ2)を成す。第1反射面198aは、照明系82からの光を、パターンジェネレータ84に向けて所定角度2φ1偏向する第1偏向部の少なくとも一部を構成し、第2反射面198bは、パターンジェネレータ84からの光を投影系86に向けて所定角度2φ2偏向する第2偏向部の少なくとも一部を構成する。第1反射面198aと第2反射面198bとが、XY平面に関して対称である場合、φ1=φ2となり、照明系82からZ軸に平行な光軸AXiに沿って入射した光ビームは第1反射面198aでパターンジェネレータ84に向けて偏向(反射)され、その光ビームのパターンジェネレータ84からの正反射光は、第2反射面198bで反射(偏向)され、Z軸に平行な光軸AXoに沿って投影系86に入射することとなる。
なお、偏光部198を可動にしても良い。また第1反射面198aと第2反射面198bとを別々の、ミラーなどの反射光学素子で構成しても良い。この場合も、第1反射面198aと第2反射面198bを、別々に動かせるようにしても良い。
図19には、第1の変形例にかかる光照射装置180の偏向部198が、照明系82の最終レンズ96、投影系86の第1レンズ94及びパターンジェネレータ84とともに示されている。本変形例に係る光照射装置180は、前述した反射光学素子98の代わりに、偏向部198を有している点が、前述した光照射装置80と相違する。本変形例に係る光照射装置180の偏向部198は、最終レンズ96(照明系82)からの光ビームをパターンジェネレータ84に向けて偏向する第1反射面198aと、パターンジェネレータ84からの複数の光ビームを第1レンズ94(投影系86)に向けて偏向する第2反射面198bとを有するプリズムなどの反射光学素子を含む。偏向部198は、側面視五角形状でX軸方向に所定の長さを有する上記実施形態の反射光学素子98において、第1反射面と第2反射面とで構成される頂部が、XZ平面に平行に切り落とされた形状(側面視六角形状)を有している。偏向部198では、第1反射面198aと第2反射面198bとは互いに交わらないが、第1反射面198aの延長面198a’と第2反射面198bの延長面198b’とは、互いに交わり、その交線は、X軸に平行な線となる。偏向部198も、第1反射面198aは、XZ平面に対して角度(+φ1)を成し、第2反射面198bは、XZ平面に対して角度(-φ2)を成す。第1反射面198aは、照明系82からの光を、パターンジェネレータ84に向けて所定角度2φ1偏向する第1偏向部の少なくとも一部を構成し、第2反射面198bは、パターンジェネレータ84からの光を投影系86に向けて所定角度2φ2偏向する第2偏向部の少なくとも一部を構成する。第1反射面198aと第2反射面198bとが、XY平面に関して対称である場合、φ1=φ2となり、照明系82からZ軸に平行な光軸AXiに沿って入射した光ビームは第1反射面198aでパターンジェネレータ84に向けて偏向(反射)され、その光ビームのパターンジェネレータ84からの正反射光は、第2反射面198bで反射(偏向)され、Z軸に平行な光軸AXoに沿って投影系86に入射することとなる。
なお、偏光部198を可動にしても良い。また第1反射面198aと第2反射面198bとを別々の、ミラーなどの反射光学素子で構成しても良い。この場合も、第1反射面198aと第2反射面198bを、別々に動かせるようにしても良い。
《第2の変形例》
図20には、第2の変形例に係る光照射装置280を構成する偏向部298が、最終レンズ96、第1レンズ94及びパターンジェネレータ84とともに示されている。本第2の変形例に係る光照射装置280は、前述した反射光学素子98に代えて、偏向部298が設けられている点が、前述した実施形態に係る光照射装置80と相違する。
図20には、第2の変形例に係る光照射装置280を構成する偏向部298が、最終レンズ96、第1レンズ94及びパターンジェネレータ84とともに示されている。本第2の変形例に係る光照射装置280は、前述した反射光学素子98に代えて、偏向部298が設けられている点が、前述した実施形態に係る光照射装置80と相違する。
偏向部298は、最終レンズ96の下方(光射出側)に配置されたキューブタイプの偏光ビームスプリッタ190と、偏光ビームスプリッタ190の+Y側、-Y側の面にそれぞれ固定された1/4波長板(λ/4板)191、192と、λ/4板192に対向してその平面状の反射面が配置された反射ミラー194と、を含む。偏光ビームスプリッタ190は、2つの直角プリズムを張り合わせたタイプで、片方のプリズムに誘電体多層膜コートが施され、スプリット面(偏光分離面)190aが形成されている。本変形例に係る光照射装置280では、偏光ビームスプリッタ190は、スプリット面190aがXY平面及びXZ平面に対してそれぞれ45度、-45度を成す状態でパターンジェネレータ84の-Y側に所定の間隔を隔てて対向配置されている。本変形例に係る光照射装置280のその他の部分の構成は、前述の光照射装置80と同様になっている。なお、反射ミラー194の反射面は平面状には限定されず、曲面であっても良い。
本変形例に係る光照射装置280によると、照明系82(最終レンズ96)からの1又は2以上の、スプリット面190aに対してs偏向の光ビームが偏光ビームスプリッタ190に入射する。その光ビームは、スプリット面190aで反射され、λ/4板192を介して反射ミラー194に照射される。反射ミラー194の反射面で反射された光ビームは、λ/4板192を再度通過し、入射時と90度偏光方向が異なる直線偏光(スプリット面190aに対してp偏光)となってスプリット面190a、λ/4板191を透過した後、パターンジェネレータ84に照射される。ここで、スプリット面190aに入射した複数の光ビームは、結果的にパターンジェネレータ84に向けて偏向された後。パターンジェネレータ84に入射する。
パターンジェネレータ84に光ビームが照射されると、パターンジェネレータ84の少なくとも一部のリボン84bによって光ビームが反射され、パターンジェネレータ84によって1又は複数本の断面矩形(又は正方形)のビームが発生される。そして、このパターンジェネレータ84で発生されたビームは、λ/4板191を再度透過することで、スプリット面190aに対してs偏光となって偏光ビームスプリッタ190のスプリット面190aで反射されてその進行方向が偏向されて、投影系86(第1レンズ94)に入射する。
本第2の変形例に係る光照射装置280では、照明系82からの光が入射する偏光ビームスプリッタ190のスプリット面190aと、該スプリット面190aで反射した光の光路上に配置されたλ/4板192及び反射ミラー194とが、照明系82からの光を、パターンジェネレータ84に向けて偏向する第1偏向部の少なくとも一部を構成し、パターンジェネレータ84からの複数の光ビームの光路上に配置されたλ/4板191と、該λ/4板191を介した複数の光ビームを反射する偏光ビームスプリッタ190のスプリット面190aとが、パターンジェネレータ84からの複数の光ビームを、投影系86に向けて偏向する第2偏向部の少なくとも一部を構成する。
本変形例に係る光照射装置280では、照明系82が有する成形光学系82bの光軸AXiと投影系の光軸AXpとは、実質的に鉛直方向に平行で、ほぼ同軸であり、パターンジェネレータ84の複数の可動反射素子(リボン84b)の反射面は、オン・オフのいずれの状態においても、光軸AXi、光軸AXp及び鉛直軸のすべてにほぼ平行である。このため、光照射装置280では、照明系82と投影系86とをほぼ一直線上に配置し、かつパターンジェネレータ84として、反射型の可動反射素子を多数有するGLVが用いられているにもかかわらず、パターンジェネレータ84の前後の光路を分離できる、すなわち、パターンジェネレータからの光を投影系86に導くことができるとともに、光軸AXiと光軸AXpとが同軸でない場合、互いに非平行な場合など、光軸AXi及び光軸AXpのいずれかと可動反射素子(リボン84b)の反射面が平行でない場合とは異なり、照明系82からの照明光を第1偏向部で偏向してパターンジェネレータ84に照射し、その照射によってパターンジェネレータで発生した光ビームを第2偏向部で偏向して確実に投影系86に導くことができる。また、本変形例では、パターンジェネレータ84に対して光ビームを垂直入射させることができる。
《第3の変形例》
図21には、第3の変形例に係る光照射装置380を構成する偏向部398が、最終レンズ96、第1レンズ94及びパターンジェネレータ84とともに示されている。本第3の変形例に係る光照射装置380は、前述した反射光学素子98に代えて、偏向部398が設けられている点が、前述した光照射装置80と相違する。
図21には、第3の変形例に係る光照射装置380を構成する偏向部398が、最終レンズ96、第1レンズ94及びパターンジェネレータ84とともに示されている。本第3の変形例に係る光照射装置380は、前述した反射光学素子98に代えて、偏向部398が設けられている点が、前述した光照射装置80と相違する。
偏向部398は、図20と図21とを比較すると明らかなように、偏光ビームスプリッタ190、λ/4板191及びλ/4板192を含む光学ブロックが、前述の偏向部298とは左右反転している点が相違するが、この光学ブロックと反射ミラー194とを含んで同様に構成されている。本第3の変形例では、第2の変形例とは、スプリット面190aの向きが左右反転している。
偏向部398では、照明系82(最終レンズ96)からの1又は2以上の、スプリット面190aに対してs偏光の光ビームが偏光ビームスプリッタ190に入射すると、その光ビームは、スプリット面190aで反射され、λ/4板192を透過した後、パターンジェネレータ84に照射される。この場合、照明系82からの光ビームは、スプリット面190aで偏向されてパターンジェネレータ84に照射される。
パターンジェネレータ84に光ビームが照射されると、パターンジェネレータ84の少なくとも一部のリボン84bによって光ビームが反射され、パターンジェネレータ84によって1又は複数本の断面矩形(又は正方形)のビームが発生される。そして、このパターンジェネレータ84で発生されたビームは、λ/4板192を再度透過することで、スプリット面190aに対してp偏光となって偏光ビームスプリッタ190のスプリット面190aを透過し、λ/4板191を透過した後、反射ミラー194で反射され、λ/4板191を再度透過してS偏光の光ビームとなって偏光ビームスプリッタ190のスプリット面190aに照射される。そして、スプリット面190aに照射された光ビームは、スプリット面190aで反射されてその進行方向が偏向されて、投影系86(第1レンズ94)に入射する。
偏向部398では、照明系82からの光ビームが入射する偏光ビームスプリッタ190のスプリット面190aと、該スプリット面190aで反射した光の光路上に配置されたλ/4板192とが、照明系82からの光ビームをパターンジェネレータ84に向けて偏向する第1偏向部の少なくとも一部を構成し、パターンジェネレータ84からの複数の光ビームの光路上に配置されたλ/4板191と、λ/4板191を介した複数の光ビームを反射する反射ミラー194と、反射ミラー194で反射された複数の光ビームを反射する偏光ビームスプリッタ190のスプリット面190aとが、パターンジェネレータ84からの複数の光ビームを、投影系86に向けてそれぞれ偏向する第2偏向部の少なくとも一部を構成する。
本変形例でも、パターンジェネレータ84に対して光ビームを垂直入射させることができる。
本変形例でも、パターンジェネレータ84に対して光ビームを垂直入射させることができる。
上記実施形態及び第1から第3の変形例(以下、上記実施形態等と総称する)では、真空隔壁81とは別に光電素子54が設けられているため、以下のような追加の機能を持っても良い。
電子ビーム光学系の数を増やすため、鏡筒の径を小さくしていくと、電子ビーム光学系の像面湾曲成分が顕著になる。例えば図22に模式的に示されるような像面湾曲を電子ビーム光学系がその収差として持つ場合、図22に模式的に示されるように、光電層60(正しくは、光電素子54の全体)を、像面の湾曲成分と逆位相の湾曲が光電層60に生じるように撓ませる、すなわち光電層60の電子放出面を湾曲させる(非平面にする)。これにより、電子ビーム光学系70の像面湾曲の少なくとも一部を補償し、像面湾曲に起因する電子ビーム像の位置ずれ、ぼけ(デフォーカス)等を抑制する。なお、光電層60の電子放出面の湾曲量を、可変にしても良い。例えば、電子ビーム光学系70の光学特性(収差、例えば像面湾曲)の変化に応じて、電子放出面の湾曲量を変えても良い。したがって、対応する電子ビーム光学系の光学特性にそれぞれ応じて、複数の光電素子54相互間で電子放出面の湾曲量を異ならせても良い。また、図22では、光電層60に+Z方向に(投影光学系に向かって)凸の湾曲を生じさせる場合の例が示されているが、これは-Z方向に凸の像面湾曲を電子ビーム光学系がその収差として持つ場合を仮定したため、この像面湾曲の影響を相殺する、又は低減する湾曲を光電層60に与えるためである。したがって、+Z方向に凸の像面湾曲を電子ビーム光学系がその収差として持つ場合、光電層60に-Z方向に凸の湾曲を生じさせる必要がある。
なお、露光装置100では、X軸方向に長い矩形の露光フィールドRFが採用されているので、図22中に短い両矢印で示されるように、1方向の曲げ(一軸回りの曲げ、すなわちX軸方向に関して湾曲する、XZ断面内での曲げ)でも効果が高い。なお、光電素子54(光電層60)を1方向の曲げに限らず、4隅を下方に撓ませるなど3次元的に変形させても勿論良い。光電素子54の変形のさせ方を変えることで、球面収差に起因する光学パターン像の位置ずれ、変形等を効果的に抑制することができる。光電層60の電子放出面を湾曲させると、その電子放出面の一部(例えば中央部)と、他部(例えば周辺部)とで、電子ビーム光学系70の光軸AXeの方向に関して位置が互いに異なることになる。
なお、光電層60の厚みに分布を持たせて、電子放出面の一部(例えば中央部)と、他部(例えば周辺部)の光軸AXeの方向の位置が異なるようにしても良い。光電層60を形成する面(例えば、図3の基材56の下面)を湾曲させたり、その面(例えば、図3の基材56の下面)に段差を設けも良い。また、後述するように、光電素子が真空隔壁を兼ねる場合にも、光電層60の電子放出面を湾曲(非平面)にしても良い。
また、光電素子54のようなアパーチャが光電層と一体的に設けられたいわばアパーチャ一体型の光電素子を用いる場合、そのアパーチャ一体型光電素子を、XY平面内で移動可能なアクチュエータを設けることとしても良い。この場合には、例えば、アパーチャ一体型光電素子として、図23に示されるように、ピッチaのアパーチャ58aの列と、ピッチbのアパーチャ58bの列とが1列置きに形成されたマルチピッチ型のアパーチャ一体型光電素子54aを用いても良い。ただし、この場合には、前述した光学特性調整装置を用いて、X軸方向の投影倍率(倍率)を変更するズーム機能を併用する。かかる場合には、図24(A)に示されるように、アパーチャ一体型光電素子54aのアパーチャ58aの列に光ビームを照射する状態から、光学特性調整装置を用いて、投影光学系86のX軸方向の倍率を拡大し、図24(B)中の両矢印で示されるように、複数の光ビームを全体的にX軸方向に拡大するとともに、図24(C)中の白抜き矢印で示されるように+Y方向に、アパーチャ一体型光電素子54aを駆動することで、光ビームをアパーチャ58bの列に照射することが可能になる。これにより、ピッチが異なるラインパターンの切断用のカットパターン形成が可能になる。ただし、光ビームのサイズ、形状によっては、必ずしも投影光学系86のズーム機能を用いなくても、アパーチャ一体型光電素子54aを駆動するのみでも、ビームをピッチがaのアパーチャ58aの列とピッチがbのアパーチャ58bの列とに切り換えて照射することが可能になる。要は、切り換えの前後のいずれの状態においても、複数の光ビーム(レーザビーム)のそれぞれが対応するアパーチャ58a又は58bを含む光電素子54a上の領域に照射されれば良い。すなわち、光電素子54a上の複数のアパーチャ58a又は58bそれぞれのサイズが、対応するビームの光断面のサイズより小さければ良い。
なお、光電素子54aにピッチが互いに異なる3種類以上のアパーチャの列を光電変換素子の遮光膜58上に形成し、上述と同様の手順で露光を行うことで、3つ以上のピッチのカットパターンの形成に対応可能にしても良い。
上述したように、投影光学系86の倍率を変更すると、ビーム(レーザビーム)の被照射面内の単位面積当たりのビームの強度が変わるので、予めシミュレーションなどで、倍率の変化とビームの強度の変化との関係を求めておき、その関係に基づいて、ビームの強度を変更(調整)することとしても良い。あるいは、倍率を変更したときの一部のビームの強度をセンサで検出し、その検出された強度の情報に基づいてビームの強度を変更(調整)することとしても良い。後者の場合、例えば図8に示されるように、光電素子54の基材の上面の一端部にセンサ135を設け、上述したアクチュエータによって光電素子54を移動することでセンサ135をXY平面内の所望の位置に移動可能に構成しても良い。なお、光電素子54は、XY平面内での移動のみでなく、光軸AXeに平行なZ軸方向に移動可能、XY平面に対して傾斜可能、光軸AXeに平行なZ軸回りに回転可能に構成しても良い。
また、上記実施形態等に係る露光装置において、パターンジェネレータ84と光電素子54との間、例えば第2偏向部から真空隔壁81に到る、パターンジェネレータ84で発生した複数の光ビームの光路上に、集光部材、例えばマイクロレンズアレイなどを配置し、この集光部材でパターンジェネレータ84で発生した複数の光ビームの一部の複数の光ビームを集光し、その集光した光ビームを光電素子54の一部の領域、例えば1つのアパーチャ58aに照射することとしても良い。すなわち、第2反射面98b(第2偏向部)からのビームの数と、光電素子に照射されるビームの数とが異なっていても良い。
ところで、これまでは、特に説明しなかったが、光電層60は、ある程度の面積を有するため、その面内の光電変換効率が均一である保証はなく、光電層60は光電変換効率の面内分布を有すると考えるのが実際的である。したがって、光電層60の光電変換効率の面内分布に応じて、光電素子に照射される光ビームの強度の調整を行なっても良い。すなわち、光電層60が第1の光電変換効率の第1部分と第2の光電変換効率の第2部分とを有するとすると、第1の光電変換効率及び第2の光電変換効率にそれぞれ基づいて、第1部分に照射されるビームの強度及び第2部分に照射されるビームの強度を調整することとしても良い。あるいは、第1の光電変換効率と第2の光電変換効率との違いを補償するように第1部分に照射される光ビームの強度と第2部分に照射される光ビームの強度を調整しても良い。また、複数の光電素子54のそれぞれが異なる光電変換効率を有する場合もある。この場合も、各光電素子に照射される少なくとも1つの光ビームの強度を調整して、それぞれの光電素子から生成される電子ビームの強度を所望の状態で設定することができる。
なお、上記実施形態等では、第1プレート36の貫通孔36aに配置されたホルダ52が、真空隔壁81を保持し、その内部に光電素子54が配置されているが、図27に示すように、ホルダ52を使わなくても良い。図27の変形例においては、真空隔壁181が第1プレート36の貫通孔36aに配置され、その下方に光電素子54と引き出し電極112が配置されている。このように、真空隔壁と光電素子は、種々の構成および配置が可能である。
また、上記実施形態等では、真空隔壁81の下方に光電素子54が設けられ、光電素子54が基材56とアパーチャ58aが形成された遮光膜58と光電層60とを有している場合について説明したが、光電素子の基材である光透過部材が真空隔壁を兼ねていても良い。真空隔壁と、遮光膜(アパーチャ膜)と、光電層とは、種々の配置が可能である。
また、上記実施形態等では、真空隔壁81の下方に光電素子54が設けられ、光電素子54が基材56とアパーチャ58aが形成された遮光膜58と光電層60とを有している場合について説明したが、光電素子の基材である光透過部材が真空隔壁を兼ねていても良い。真空隔壁と、遮光膜(アパーチャ膜)と、光電層とは、種々の配置が可能である。
また、上記実施形態に係る露光装置100において、アパーチャ一体型光電素子54に代えて、アパーチャ板(アパーチャ部材)が光電素子と別体であるいわばアパーチャ別体型光電素子を用いても良い。図25(A)に示されるアパーチャ別体型光電素子138は、基材134の下面(光射出面)に光電層60が形成されて成る光電素子140と、光電素子140の基材134の上方(光入射面側)に例えば1μ以下の所定のクリアランス(間隙、ギャップ)隔てて配置された多数のアパーチャ58aが形成された遮光部材から成るアパーチャ板(アパーチャ部材と呼ぶこともできる)142とを含む。
アパーチャ別体型光電素子の場合、光電層60に照射されるビームの形状は、アパーチャ一体型光電素子に比べると幾分劣化する(シャープさに欠ける)がアパーチャ板を光電素子に対して移動させることができる。したがって、アパーチャ別体型光電素子を用いる場合、アパーチャ板142をXY平面内で移動可能な駆動機構を設けても良い。かかる場合には、前述したアパーチャ一体型光電素子54aと同様のマルチピッチ型のアパーチャを、アパーチャ板142に形成し、投影光学系86の倍率の拡大機能と、光電素子140とアパーチャ板142とを、両者の位置関係を維持した状態で駆動する機能とを用いることで、前述と同様の手順で、ピッチが異なるラインパターンの切断用のカットパターンの形成が可能になる。これに加えて、光電素子140をXY平面内で移動可能な駆動機構を設けても良い。この場合には。アパーチャ板142を移動する代わりに、光電素子140とアパーチャ板142とを、両者の位置関係を維持した状態で移動することとしても良い。また、この場合には、例えば、光電素子140及びアパーチャ板142の一方のみを移動することで、アパーチャ板142と光電素子140とのXY平面内の相対位置をずらすことで、光電層60の長寿命化を図ることができる。なお、アパーチャ板142等は、XY平面内で自在に移動可能に構成しても良い。また、アパーチャ板142に対して投影系86をXY平面内で移動可能に構成しても良い。また、アパーチャ板142は、XY平面内での移動のみでなく、光軸AXeに平行なZ軸方向に移動可能、XY平面に対して傾斜可能、光軸AXeに平行なZ軸回りに回転可能に構成しても良く、光電素子140とアパーチャ板142とのギャップを調整可能としても良い。
なお、アパーチャ別体型光電素子を用いる場合、光電素子140を移動する駆動機構だけを設けるようにしても良い。この場合も、光電素子140をXY平面内で移動することによって、光電層60の長寿命化を図ることができる。
なお、上述したアパーチャ板のアパーチャと、光電素子のアパーチャとを併用しても良い。すなわち、前述したアパーチャ一体型光電素子の光ビームの入射側に、アパーチャ板を配置し、アパーチャ板のアパーチャを介したビームをアパーチャ一体型光電素子のアパーチャを介して光電層に入射させても良い。
なお、ピッチが異なるラインパターンの切断用のカットパターンの形成に際して、上述のアパーチャ別体型光電素子を用いる場合、アパーチャ板を交換しても良い。
また、上述のアパーチャ別体型光電素子を用いる場合、アパーチャ板の代わりに、透過型液晶素子などの空間光変調器を使って複数のアパーチャを形成しても良い。
なお、アパーチャ一体型光電素子としては、図26(A)に示されるタイプに限らず、例えば図26(B)に示されるように、図26(A)の光電素子54において、アパーチャ58a内の空間が光透過膜144で埋められたタイプの光電素子54bを用いることもできる。光電素子54bにおいて、光透過膜144の代わりに、基材56の一部がアパーチャ58a内の空間を埋めるようにすることもできる。
この他、図26(C)に示されるように、基材56の上面(光入射面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58を形成し、基材56の下面(光射出面)に光電層60を形成したタイプの光電素子54c、あるいは図26(D)に示されるように、図26(C)の光電素子54bにおいて、アパーチャ58a内の空間が光透過膜144で埋められたタイプの光電素子54dを用いることもできる。
この他、図26(E)に示されるように、基材56の下面に光電層60を形成し、光電層60の下面にアパーチャ58aを有するクロム膜58を形成したタイプの光電素子54eが存在する。なお、図26(E)のクロム膜58は、光ではなく、電子を遮蔽する役目を有している。
これまでに説明したアパーチャ一体型光電素子54、54a、54b、54c、54d、54eのいずれにおいても、基材56を光透過部材(石英ガラスなど)のみでなく、光透過部材と光透過膜(単層、又は多層)の積層体によって構成しても良い。
なお、アパーチャ別体型光電素子を、例えば図25(A)に示される光電素子140とともに構成するために光電素子140とともに用いることができる、アパーチャ板(アパーチャ部材)は、アパーチャ板142のようにアパーチャを有する遮光部材のみから成るタイプに限らず、基材と遮光膜とが一体のアパーチャ板を用いることもできる。このタイプのアパーチャ板としては、例えば図25(B)に示されるように、例えば光透過部材である基材145の下面(光射出面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58が形成されたアパーチャ板142a、図25(C)に示されるように、光透過部材146と光透過膜148とから成る基材150と、この基材150の下面(光射出面)にクロムの蒸着によりアパーチャ58aを有する遮光膜58が形成されたアパーチャ板142b、図25(D)に示されるように、アパーチャ板142aにおいて、アパーチャ58a内の空間が光透過膜148で埋められたアパーチャ板142c、図25(E)に示されるように、アパーチャ板142aにおいて、アパーチャ58a内の空間が、基材145の一部によって埋められているアパーチャ板142dを用いることができる。なお、アパーチャ板142、142a、142b、142c,142dは、いずれも上下反転して用いることもできる。
なお、基材134,145,146も、石英ガラスなど、光学ユニット18Bで用いられる光の波長に対して透過性を有する材料で形成することができる。
なお、基材134,145,146も、石英ガラスなど、光学ユニット18Bで用いられる光の波長に対して透過性を有する材料で形成することができる。
また、これまで説明した光電素子54、54a~54e及びアパーチャ板142、142a~142dの複数のアパーチャ58aは、全てが同一サイズ、同一形状であっても良いが、複数のアパーチャ58aの全てのサイズが同一でなくても良いし、形状も全てのアパーチャ58aで同一でなくても良い。要は、アパーチャ58aは、対応するビームがその全域に照射されるように、その対応するビームのサイズより小さければ良い。
なお、上記実施形態に係る露光装置では、アパーチャ別体型の光電素子138を用いる場合、アパーチャ板142に例えばXY平面内の所定方向の引張力を加えて、アパーチャ板142をXY平面内で伸縮変形させることで、電子ビーム光学系70の倍率、及び低次のディストーションを動的に補正することとしても良い。
なお、上記実施形態では、パターンジェネレータとして、GLVに代えて、デジタル・マイクロミラー・デバイス(DMD(商品名))などの複数のミラー素子(可動反射素子)を有するミラーアレイ素子を用いることができる。この場合、そのミラー素子の反射面を、光軸AXi、光軸AXp及び鉛直軸のすべてにほぼ平行にできるとは限らないが、その場合でも、ミラー素子の配置面を、光軸AXi及び鉛直軸に対して鋭角、特に45度未満の角度(ほぼ0度を含む)を成すようにすることが好ましい。ここで、ミラー素子(可動反射素子)の配置面とは、イニシャル状態での複数のミラー素子の反射面を含む面を意味する。この配置面は、複数の可動反射素子の反射面が位置すべき仮想的な面、複数の可動反射素子の反射面が配置される面、及び複数の可動反射素子の反射面によって構成される面(反射面)のいずれであっても良い。また、イニシャル状態とは、ミラー素子を駆動する駆動部に対して通電がなされていない状態、例えば駆動部が圧電素子などのアクチュエータで構成される場合、そのアクチュエータに電圧が印加されていない状態であっても良い。
上述のように、ミラー素子の配置面を設定すると、照明系82から射出され、光軸AXi又は鉛直軸に沿って進行する照明光を、前述の反射光学素子98の第1反射面98aでパターンジェネレータに向けて偏向し、その照明光の照射によりパターンジェネレータで発生した光ビームを第2反射面98bにほぼ確実に照射することが可能になる。また、ミラー素子の配置面を、光軸AXpに対して鋭角、特に45度未満の角度(ほぼ0度を含む)を成すようにすることが好ましい。このようにすれば、パターンジェネレータで発生した複数のビームを、第1反射面98aに対して鈍角を成す第2反射面98bで光軸AXp又は鉛直軸に平行な方向に偏向して投影系86に確実に導くことが可能になる。
また、上記実施形態では、露光装置100が備える光学系が、複数のマルチビーム光学システム200を備えるマルチカラムタイプである場合について説明したが、これに限らず、光学系は、シングルカラムタイプのマルチビーム光学系であっても良い。かかるシングルカラムタイプのマルチビーム光学系であっても、上で説明したドーズ制御、倍率制御、パターンの結像位置ずれの補正、ディストーション等の各種の収差の補正などは、光電素子又はアパーチャ板を用いた各種要素の補正、光電層の長寿命化などは適用可能である。シングルビームをターゲットに照射するシングルカラムタイプの装置に適用可能である。
また、所望の断面形状(大きさ含む)を有する光ビームを光電素子に照射することができるならば、投影系86を使わなくても良い。この場合も、アパーチャを使って良いし、使わなくても良い。
また、所望の断面形状(大きさ含む)を有する光ビームを光電素子に照射することができるならば、投影系86を使わなくても良い。この場合も、アパーチャを使って良いし、使わなくても良い。
また、上記実施形態では、ウエハWが単独でウエハステージWST上に搬送され、そのウエハステージWSTを走査方向に移動しつつ、マルチビーム光学システム200からウエハWにビームを照射して露光を行う露光装置100について説明したが、これに限らず、ウエハWがシャトルと呼ばれるウエハと一体で搬送可能なテーブル(ホルダ)と一体でステージ上で交換されるタイプの露光装置にも、上記各実施形態(ウエハステージWSTを除く)は適用が可能である。
また、上記実施形態では、ウエハステージWSTが、Xステージに対して6自由度方向に移動可能な場合について説明したが、これに限らず、ウエハステージWSTはXY平面内でのみ移動可能であっても良い。この場合、ウエハステージWSTの位置情報を計測する位置計測系28も、XY平面内の3自由度方向に関する位置情報を計測可能であっても良い。
上記実施形態では、光学システム18が、クリーンルームの天井面から吊り下げ支持機構によって吊り下げ支持される場合について説明したが、これに限らず、床面F上に設置(載置)されたステージチャンバ10の上壁10b又は不図示の支持部材を介して床面Fの上方に支持されても良い。
また、コンプリメンタリ・リソグラフィを構成する露光技術は、ArF光源を用いた液浸露光技術と、荷電粒子ビーム露光技術との組み合わせに限られず、例えば、ラインアンドスペースパターンをArF光源やKrF等のその他の光源を用いたドライ露光技術で形成しても良い。
なお、上記各実施形態では、ターゲットが半導体素子製造用のウエハである場合について説明したが、上記各実施形態に係る露光装置100は、ガラス基板上に微細なパターンを形成してマスクを製造する際にも好適に適用できる。
半導体素子などの電子デバイス(マイクロデバイス)は、図28に示されるように、デバイスの機能・性能設計を行うステップ、シリコン材料からウエハを製作するステップ、リソグラフィ技術等によってウエハ上に実際の回路等を形成するウエハ処理ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。ウエハ処理ステップは、リソグラフィステップ(ウエハ上にレジスト(感応材)を塗布する工程、前述した実施形態に係る電子ビーム露光装置及びその露光方法によりウエハに対する露光(設計されたパターンデータに従ったパターンの描画)を行う工程、露光されたウエハを現像する工程を含む)、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップなどを含む。ウエハ処理ステップは、リソグラフィステップに先立って、前工程の処理(酸化ステップ、CVDステップ、電極形成ステップ、イオン打ち込みステップなどをさらに含んでいても良い。この場合、リソグラフィステップで、上記各実施形態の電子ビーム露光装置100を用いて前述の露光方法を実行することで、ウエハ上にデバイスパターンが形成されるので、高集積度のマイクロデバイスを生産性良く(歩留まり良く)製造することができる。特に、リソグラフィステップ(露光を行う工程)で、前述したコンプリメンタリ・リソグラフィを行い、その際に上記各実施形態の電子ビーム露光装置100を用いて前述の露光方法を実行することで、より高集積度の高いマイクロデバイスを製造することが可能になる。
なお、上記実施形態では、電子ビームを使用する露光装置について説明したが、露光装置に限らず、溶接など電子ビームを用いてターゲットに対する所定の加工及び所定の処理の少なくとも一方を行う装置、あるいは電子ビームを用いる検査装置などにも上記実施形態の電子ビーム装置は適用することができる。
なお、上記実施形態では、光電層60がアルカリ光電変換膜によって形成される場合について説明したが、電子ビーム装置の種類、用途によっては、光電層として、アルカリ光電変換膜に限らず、その他の種類の光電変換膜を用いて光電素子を構成しても良い。
また、上述の各実施形態では、部材、開口、穴などの形状を、円形、矩形などを用いて説明している場合があるが、これらの形状に限られないことは言うまでもない。
なお、上記各実施形態の複数の構成要件は適宜組み合わせることができる。したがって、上述の複数の構成要件のうちの一部が用いられなくても良い。
なお、上記実施形態で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書などの開示を援用して本明細書の記載の一部とする。
54…光電素子、56…光透過部材(基材)、58…遮光膜、58a…アパーチャ、60…光電層、70…電子ビーム光学系、80…光照射装置、82…照明系、82a…レーザダイオード、82b…成形光学系、84…パターンジェネレータ、84b…リボン、86…投影系、98a…第1反射面、98…反射光学素子、98b…第2反射面、100…露光装置、190…偏光ビームスプリッタ、190a…スプリット面、191…λ/4板、192…λ/4板、194…反射ミラー、Axe…電子ビーム光学系の光軸、AXi…照明系の光軸、AXp…投影系の光軸、EB…電子ビーム、LB…光ビーム、W…ウエハ。
Claims (64)
- 光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、
照明系と、
前記照明系からの照明光を偏向する第1偏向部と、
前記第1偏向部からの前記照明光の照射により複数の光ビームを発生させる光学デバイスと、
前記光学デバイスからの複数の光ビームを偏向する第2偏向部と、を備え、
前記第2偏向部で偏向された複数の光ビームから生成される少なくとも1つの光ビームを前記光電素子に照射する電子ビーム装置。 - 前記第1偏向部は第1反射面を含み、
前記第2偏向部は、第2反射面を含む請求項1に記載の電子ビーム装置。 - 前記第1反射面及び前記第2反射面は、同一の光学素子に設けられている請求項2に記載の電子ビーム装置。
- 前記第1反射面と前記第2反射面は、互いに鈍角を成すように配置されている請求項2又は3に記載の電子ビーム装置。
- 前記第1反射面及び前記第2反射面は、前記光学デバイスに対して凸状に配置される請求項2~4のいずれか一項に記載の電子ビーム装置。
- 前記第1反射面を含む面と、前記第2反射面を含む面との交線は、第1軸と平行である請求項2~5のいずれか一項に記載の電子ビーム装置。
- 前記光電素子に照射される前記複数の光ビームのそれぞれの、前記電子光学系の光軸に直交する断面形状は、長手方向を有し、
前記第1軸は、前記長手方向と平行である請求項6に記載の電子ビーム装置。 - 前記ターゲットは、前記電子光学系の光軸に直交する第1方向に移動しながら前記電子ビームが照射され、
前記第1軸は、前記電子光学系の光軸、及び前記第1方向に直交する第2方向と平行である請求項6に記載の電子ビーム装置。 - 前記光電素子に照射される前記複数の光ビームの光路は、前記第2光学系の光軸に直交する面内において前記第1軸と平行な方向に沿って配置される請求項6に記載の電子ビーム装置。
- 前記第1偏向部は、前記照明系からの光が入射する偏光分離素子の偏光分離面と、該偏光分離面で反射した光の光路上に配置された第1の1/4波長板と反射面とを含み、
前記第2偏向部は、前記光学デバイスからの複数の光ビームの光路上に配置された第2の1/4波長板と、該第2の1/4波長板を介した前記複数の光ビームを反射する前記偏光分離面とを含む請求項1に記載の電子ビーム装置。 - 前記第1偏向部は、前記照明系からの照明光が入射する偏光分離素子の偏光分離面と、該偏光分離面で反射した光の光路上に配置された第1の1/4波長板とを含み、
前記第2偏向部は、前記光学デバイスからの複数の光ビームの光路上に配置された第2の1/4波長板と、該第2の1/4波長板を介した前記複数の光ビームを反射する反射面と、該反射面で反射された前記複数の光ビームを前記光電素子に向けて反射する前記偏光分離面とを含む請求項1に記載の電子ビーム装置。 - 前記第2偏向部と前記光電素子の間に位置する第1光学系をさらに備え、
前記光電素子から発生する電子ビームは、第2光学系としての前記電子光学系により前記ターゲットに照射される請求項1~11のいずれか一項に記載の電子ビーム装置。 - 前記第2光学系から前記電子ビームが射出方向に射出され、
前記第1偏向部及び前記第2偏向部は、前記照明系の前記射出方向側に配置され、
前記第1光学系は、前記第2偏向部の前記射出方向側に配置されている請求項12に記載の電子ビーム装置。 - 前記照明系は、第1空間に配置され、
前記第1光学系は、第2空間に配置され、
前記第1偏光部、前記第2偏光部、及び前記光学デバイスは、前記第1空間と前記第2空間との間の第3空間に配置されている請求項12又は13に記載の電子ビーム装置。 - 前記照明系の光軸と前記第1光学系の光軸は、ほぼ同軸に配置される請求項12~14のいずれか一項に記載の電子ビーム装置。
- 光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、
照明系と、
前記照明系からの照明光の照射により複数の光ビームを発生させる光学デバイスと、
前記光学デバイスと前記光電素子との間に位置する第1光学系と、を備え、
前記照明系と前記第1光学系の光軸は、ほぼ同軸に配置され、
前記光電素子から発生する電子ビームは、第2光学系としての前記電子光学系により前記ターゲットに照射される電子ビーム装置。 - 前記第1光学系の光軸と前記第2光学系の光軸は、ほぼ同軸に配置される請求項15又は16に記載の電子ビーム装置。
- 前記第1光学系は、縮小投影光学系である請求項12~17のいずれか一項に記載の電子ビーム装置。
- 前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、
前記複数の可動反射素子の配置面は、前記第1光学系の光軸に対して45度未満の角度を成す請求項12~18のいずれか一項に記載の電子ビーム装置。 - 光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、
照明系と、
前記照明系からの照明光の照射により複数の光ビームを発生する光学デバイスと、
前記光学デバイスと前記光電素子との間に位置する第1光学系と、を備え、
前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、
前記複数の可動反射素子の配置面は、前記第1光学系の光軸に対して45度未満の角度を成し、
前記光電素子から発生する電子ビームは、第2光学系としての前記電子光学系により前記ターゲットに照射される電子ビーム装置。 - 前記第1光学系は、縮小投影光学系である請求項20に記載の電子ビーム装置。
- 前記複数の可動反射素子の配置面は、前記第1光学系の光軸とほぼ平行である請求項19~21のいずれか一項に記載の電子ビーム装置。
- 前記配置面は、前記照明系の光軸及び鉛直軸の少なくとも一方に対して45度未満の角度を成す請求項19~21のいずれか一項に記載の電子ビーム装置。
- 前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、
前記複数の可動反射素子の配置面は、前記照明系の光軸と鉛直軸の少なくとも一方に対して45度未満の角度を成す請求項1~11のいずれか一項に記載の電子ビーム装置。 - 光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、
照明系と、
前記照明系からの照明光の照射により複数の光ビームを発生する光学デバイスと、を備え、
前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、
前記複数の可動反射素子の配置面は、前記照明系と鉛直軸の少なくとも一方に対して45度未満の角度を成す電子ビーム装置。 - 前記複数の可動反射素子の配置面は、前記照明系と鉛直軸の少なくとも一方とほぼ平行である請求項24又は25に記載の電子ビーム装置。
- 前記光学デバイスは、前記複数の可動反射素子の配置面を含む面が、前記照明光の光路と交差しないように配置される請求項19~26のいずれか一項に記載の電子ビーム装置。
- 光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、
照明系と、
前記照明系からの照明光の照射により複数の光ビームを発生する光学デバイスと、を備え、
前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、
前記光学デバイスは、前記複数の可動反射素子の配置面を含む面が、前記照明光の光路と交差しないように配置される電子ビーム装置。 - 前記光学デバイスは、前記複数の可動反射素子の配置面を含む面が、前記光学デバイスで発生し、前記光電素子に照射される前記複数の光ビームの光路と交差しないように配置される請求項27又は28に記載の電子ビーム装置。
- 光電素子から発生する電子を電子ビームとしてターゲットに照射する電子光学系を備える電子ビーム装置であって、
照明系と、
前記照明系からの照明光の照射により複数の光ビームを発生する光学デバイスと、を備え、
前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させ、
前記光学デバイスは、前記複数の可動反射素子の配置面を含む面が、前記光学デバイスで発生し、前記光電素子に照射される前記複数の光ビームの光路と交差しないように配置される電子ビーム装置。 - 前記光学デバイスは、個別に制御可能な複数の可動反射素子を有し、
前記複数の可動反射素子を使って前記照明光を反射することにより前記複数の光ビームを発生させる請求項1~23のいずれか一項に記載の電子ビーム装置。 - 前記光電素子は、前記電子光学系の光軸に直交する方向に移動可能である請求項1~31のいずれか一項に記載の電子ビーム装置。
- 前記光電素子は、光電変換層を有する請求項1~32のいずれか一項に記載の電子ビーム装置。
- 前記光電素子は、前記光ビームを透過可能な光透過部材と、
前記光透過部材の光射出面に配置された前記光電変換層と、
前記光透過部材の一側に配置された遮光層と、を有し、
複数のアパーチャとして、前記遮光層には複数の開口が形成され、
前記複数の開口を通過した複数の光ビームが前記光電変換層に入射する請求項33に記載の電子ビーム装置。 - 前記遮光層は、前記光透過部材の光射出面側に配置されている請求項34に記載の電子ビーム装置。
- 前記遮光層に形成された複数の開口に光電変換層が配置されている請求項35に記載の電子ビーム装置。
- 前記遮光層は、前記光透過部材の光入射面側に配置されている請求項34~36のいずれか一項に記載の電子ビーム装置。
- 前記第1光学系と前記光電素子との間に位置するアパーチャ部材の複数のアパーチャを通過した複数の光ビームが前記光電素子に照射される請求項33に記載の電子ビーム装置。
- 前記アパーチャ部材を備える請求項38に記載の電子ビーム装置。
- 前記アパーチャ部材は、前記電子光学系の光軸に直交する方向に移動可能である請求項38又は39に記載の電子ビーム装置。
- 前記光電素子は、前記光ビームを透過可能な光透過部材を有し、
前記光電変換層は、前記光透過部材の光射出面側に配置され、
前記アパーチャ部材は、前記光透過部材の光入射面側に配置されている請求項38~40のいずれか一項に記載の電子ビーム装置。 - 前記複数のアパーチャのそれぞれのサイズは、対応する光ビームの断面のサイズよりも小さい請求項34~41のいずれか一項に記載の電子ビーム装置。
- 前記複数のアパーチャのそれぞれは、対応する光ビームを制限し、
前記複数のアパーチャのそれぞれを通過した複数の光ビームが、前記光電変換層に入射する請求項34~42のいずれか一項に記載の電子ビーム装置。 - 前記複数のアパーチャの少なくとも1つの形状は、前記複数のアパーチャのそれぞれを通過した複数の光ビームが前記光電変換層に入射することによって生成される前記複数の電子ビームの、前記ターゲット上での照射領域の形状と異なる請求項34~43のいずれか一項に記載の電子ビーム装置。
- 前記複数の電子ビームのそれぞれの、前記ターゲット上での照射領域が矩形となるように、前記少なくとも1つのアパーチャの形状が決定される請求項44に記載の電子ビーム装置。
- 前記複数のアパーチャの配置は、前記電子光学系の光学特性に基づいて決定される請求項34~45のいずれか一項に記載の電子ビーム装置。
- 前記ターゲットは、前記電子光学系の光軸に直交する第1方向に移動しながら前記電子ビームが照射され、
前記複数のアパーチャは、前記電子光学系の光軸に直交するとともに、前記第1方向に直交する第2方向に対応する方向に沿って配置された複数のアパーチャを含む請求項34~46のいずれか一項に記載の電子ビーム装置。 - 前記複数のアパーチャは、前記電子光学系の光軸に直交するとともに、前記第1方向に直交する第2方向に対応する方向に第1ピッチで配置された第1グループと、前記第2方向に対応する方向に第2ピッチで配置された複数のアパーチャを含む第2グループと、を含み、
前記第1グループと前記第2グループは、前記第1方向に対応する方向に離れている請求項34~47のいずれか一項に記載の電子ビーム装置。 - 前記複数の光ビームの光路上に、前記第1グループに含まれる前記複数のアパーチャが配置される第1状態と、前記複数の光ビームの光路上に、前記第2グループに含まれる前記複数のアパーチャが配置される第2状態との一方から他方へ切り換え可能である請求項48に記載の電子ビーム装置。
- 前記光電変換層の電子放出面は、第1部分と第2部分を有し、
前記電子光学系の光軸方向において、前記第1部分の位置と前記第2部分の位置が異なる請求項33~49のいずれか一項に記載の電子ビーム装置。 - 前記照明系は、光源からの光から、所定の断面形状を有する前記照明光を生成する成形光学系を有する請求項1~50のいずれか一項に記載の電子ビーム装置。
- 前記ターゲットは、前記第2光学系の光軸に直交する第1方向に移動しながら前記複数の電子ビームが照射され、
前記光電素子に照射される前記複数の光ビームは、前記第2光学系の光軸に直交するとともに前記第1方向に直交する第2方向に対応する方向に長い断面形状を有する1~51のいずれか一項に記載の電子ビーム装置。 - 前記光電素子に照射される前記複数の光ビームのうちの少なくとも1つの強度を変更可能である請求項1~52のいずれか一項に記載の電子ビーム装置。
- 前記光学デバイスを使って前記強度を変更可能である請求項53に記載の電子ビーム装置。
- 前記強度の変更は、前記光学デバイスに照射される前記照明光の強度と強度分布の少なくとも一方の変更を含む請求項53又は54に記載の電子ビーム装置。
- 前記複数の光ビームを前記光電素子に照射することによって生成される複数の電子ビームの強度がほぼ同一となるように、前記光電素子に照射される前記複数の光ビームのうちの少なくとも1つの強度調整が行われる請求項53~55のいずれか一項に記載の電子ビーム装置。
- 前記ターゲットは、前記電子光学系の光軸に直交する第1方向に移動しながら前記電子ビームで照射され、
前記電子光学系は、前記第1方向の長さがa、前記電子光学系の光軸にほぼ直交し、前記第1方向に直交する第2方向の長さがbの矩形の露光フィールド有し、
前記電子光学系からの複数の電子ビームは、前記露光フィールド内に照射される請求項1~56のいずれか一項に記載の電子ビーム装置。 - 前記露光フィールドは、前記電子光学系の光軸を含むように設定される請求項57に記載の電子ビーム装置。
- 前記露光フィールドは、前記電子光学系の収差有効領域内に設定される請求項57又は58に記載の電子ビーム装置。
- 前記光学デバイスと前記電子光学系のそれぞれを複数備え、
前記複数の電子光学系からの電子ビームが前記ターゲットに照射される請求項1~59のいずれか一項に記載の電子ビーム装置。 - 前記ターゲットは、前記電子光学系の光軸に直交する第1方向に移動しながら前記電子ビームで照射され、
前記複数の電子光学系は、前記電子光学系の光軸と前記第1方向に直交する第2方向に沿って配置されている請求項60に記載の電子ビーム装置。 - 前記複数の光電素子は、前記第2方向に沿って配置されている請求項61に記載の電子ビーム装置。
- 前記照明系を複数備え、
前記複数の照明系は、前記第2方向に沿って配置されている請求項61又は62に記載の電子ビーム装置。 - リソグラフィ工程を含むデバイス製造方法であって、
前記リソグラフィ工程は、ターゲット上にラインアンドスペースパターンを形成することと、請求項1~63のいずれか一項に記載の電子ビーム装置を用いて、前記ラインアンドスペースパターンを構成するラインパターンの切断を行うことと、を含むデバイス製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/035556 WO2019064511A1 (ja) | 2017-09-29 | 2017-09-29 | 電子ビーム装置及びデバイス製造方法 |
TW107134442A TW201921405A (zh) | 2017-09-29 | 2018-09-28 | 電子束裝置及元件製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/035556 WO2019064511A1 (ja) | 2017-09-29 | 2017-09-29 | 電子ビーム装置及びデバイス製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019064511A1 true WO2019064511A1 (ja) | 2019-04-04 |
Family
ID=65901552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/035556 WO2019064511A1 (ja) | 2017-09-29 | 2017-09-29 | 電子ビーム装置及びデバイス製造方法 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW201921405A (ja) |
WO (1) | WO2019064511A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11798783B2 (en) | 2020-01-06 | 2023-10-24 | Asml Netherlands B.V. | Charged particle assessment tool, inspection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06291025A (ja) * | 1993-03-31 | 1994-10-18 | Toshiba Corp | 電子ビーム露光装置 |
JP2005183692A (ja) * | 2003-12-19 | 2005-07-07 | Tadahiro Omi | マスク作成装置 |
-
2017
- 2017-09-29 WO PCT/JP2017/035556 patent/WO2019064511A1/ja active Application Filing
-
2018
- 2018-09-28 TW TW107134442A patent/TW201921405A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06291025A (ja) * | 1993-03-31 | 1994-10-18 | Toshiba Corp | 電子ビーム露光装置 |
JP2005183692A (ja) * | 2003-12-19 | 2005-07-07 | Tadahiro Omi | マスク作成装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11798783B2 (en) | 2020-01-06 | 2023-10-24 | Asml Netherlands B.V. | Charged particle assessment tool, inspection method |
US11984295B2 (en) | 2020-01-06 | 2024-05-14 | Asml Netherlands B.V. | Charged particle assessment tool, inspection method |
Also Published As
Publication number | Publication date |
---|---|
TW201921405A (zh) | 2019-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101662330B1 (ko) | 조명광학계, 조명 광학 장치, 노광 장치, 및 디바이스 제조 방법 | |
US7301263B2 (en) | Multiple electron beam system with electron transmission gates | |
JP6466333B2 (ja) | 作動機構、光学装置、リソグラフィ装置及びデバイス製造方法 | |
JP5286744B2 (ja) | 空間光変調ユニット、照明光学系、露光装置及びデバイスの製造方法 | |
US6448568B1 (en) | Electron beam column using high numerical aperture photocathode source illumination | |
JP4246692B2 (ja) | リソグラフィ投影装置およびデバイス製造方法 | |
JP4463244B2 (ja) | リソグラフィ装置、デバイス製造方法、および、この方法により製造されて焦点深さの増したデバイス | |
WO2009087805A1 (ja) | 空間光変調器、照明光学系、露光装置、およびデバイス製造方法 | |
JP2006295167A (ja) | 複数のパターン形成デバイスを利用するリソグラフィ装置及びデバイス製造方法 | |
WO2018155537A1 (ja) | 電子ビーム装置及び露光方法、並びにデバイス製造方法 | |
WO2019064511A1 (ja) | 電子ビーム装置及びデバイス製造方法 | |
WO2019064516A1 (ja) | 電子ビーム装置及びデバイス製造方法 | |
WO2019064503A1 (ja) | 電子ビーム装置、照明光学系、及びデバイス製造方法 | |
WO2018155545A1 (ja) | 電子ビーム装置及び露光方法、並びにデバイス製造方法 | |
WO2018155539A1 (ja) | 電子ビーム装置及びデバイス製造方法、並びに光電素子保持容器 | |
WO2019064521A1 (ja) | 電子ビーム装置及びデバイス製造方法 | |
WO2019064519A1 (ja) | 電子ビーム装置及びデバイス製造方法 | |
WO2018155543A1 (ja) | 電子ビーム装置及びデバイス製造方法 | |
WO2018155542A1 (ja) | 電子ビーム装置及び露光方法、並びにデバイス製造方法 | |
WO2018155538A1 (ja) | 電子ビーム装置及び露光方法、並びにデバイス製造方法 | |
WO2018155540A1 (ja) | 電子ビーム装置及び露光方法、並びにデバイス製造方法 | |
WO2019064502A1 (ja) | 電子ビーム装置及びデバイス製造方法 | |
WO2019146027A1 (ja) | 電子ビーム装置及びデバイス製造方法、並びに光電素子ユニット | |
WO2019064508A1 (ja) | 電子ビーム装置及び露光方法、並びにデバイス製造方法 | |
WO2019064507A1 (ja) | 電子ビーム装置及び露光方法、並びにデバイス製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17927542 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17927542 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |