WO2019062911A1 - 真空吸附手、基底交接装置及光刻机 - Google Patents

真空吸附手、基底交接装置及光刻机 Download PDF

Info

Publication number
WO2019062911A1
WO2019062911A1 PCT/CN2018/108631 CN2018108631W WO2019062911A1 WO 2019062911 A1 WO2019062911 A1 WO 2019062911A1 CN 2018108631 W CN2018108631 W CN 2018108631W WO 2019062911 A1 WO2019062911 A1 WO 2019062911A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorption
vacuum suction
main body
rotation structure
rotation
Prior art date
Application number
PCT/CN2018/108631
Other languages
English (en)
French (fr)
Inventor
郑清泉
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2019062911A1 publication Critical patent/WO2019062911A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the invention relates to the field of semiconductor manufacturing, and in particular to a vacuum adsorption hand, a substrate transfer device and a lithography machine.
  • a lithographic apparatus is a process technology device that exposes a mask pattern to a substrate.
  • lithographic apparatus include step repeat and step scan.
  • a corresponding device is required to serve as a carrier for the reticle and the substrate, and a transfer mechanism between the reticle and the substrate, and the carrier loaded with the reticle and the carrier having the substrate generate relative motion to satisfy the lithography needs.
  • the carrier of the above reticle is referred to as a platen
  • the carrier of the substrate is referred to as a carrier
  • the interface of the substrate is referred to as a substrate transfer device.
  • the platen table and the film carrier are respectively located in the mask table sub-system and the workpiece table sub-system of the lithography apparatus, and the plate-receiving table and the film-receiving table are the core modules of the sub-system.
  • the platen and the carrier are relatively moved, it is ensured that the reticle and the substrate are always reliably positioned, that is, six degrees of freedom defining the mask and the substrate.
  • the substrate is moved from the transfer robot to the stage by the substrate transfer device, and after the exposure is completed, the substrate is transferred from the stage to the transfer robot through the substrate transfer device.
  • the existing substrate transfer device mainly adopts a mechanical guide rail or an air floating guide rail to realize the adsorption of the silicon wafer, and the motion can be driven by the motor or the compressed air respectively. Whether it is a mechanical rail or an air-floating rail, an additional anti-rotation structure is required to limit the rotation of the substrate transfer device, which results in a large space size of the entire substrate transfer device, which limits the spatial layout of the entire device.
  • the anti-rotation structure of the substrate transfer device using the air-floating guide has a plurality of guide surfaces, and the existing manufacturing technology is difficult to make the manufacturing precision of the plurality of guide surfaces meet the requirements at the same time, so that the substrate transfer device of this form It is difficult to manufacture.
  • An object of the present invention is to provide a vacuum adsorption hand, a substrate transfer device, and a lithography machine, which solves the problems of the prior art substrate transfer device having a large space size and difficulty in manufacturing, and failing to meet the manufacturing precision requirements of the guide rail.
  • the present invention provides a vacuum suction hand comprising an adsorption shaft, a suction head, a main body bracket, a driving assembly and an anti-rotation structure, the adsorption shaft connecting the anti-rotation structure, the driving assembly, the driving assembly And driving the adsorption shaft and the anti-rotation structure to slide axially in the main body bracket, wherein the anti-rotation structure is configured to prevent the adsorption shaft from rotating axially relative to the main body bracket, the adsorption shaft
  • the top end is connected to the suction head, and the adsorption shaft is provided with a vacuum passage, and the suction head is in communication with the vacuum passage.
  • the anti-rotation structure has a plurality of first anti-rotation surfaces disposed at an angle opposite to the main body bracket, and the main body bracket has the same matching with the plurality of first anti-rotation surfaces. a plurality of second anti-rotation surfaces disposed at an angle, the plurality of first anti-rotation surfaces and the plurality of second anti-rotation surfaces are used together to prevent the anti-rotation structure from rotating axially within the main body bracket .
  • the main body bracket is provided with a first guiding hole for axially sliding the adsorption shaft and a second guiding hole for axially sliding the anti-rotation structure, the adsorption axis and the anti-rotation
  • the structures are connected off-axis, and the first guiding holes are disposed off-axis corresponding to the second guiding holes.
  • an off-axis distance between the adsorption axis and the anti-rotation structure is 1 mm to 2 mm.
  • the driving component comprises an air floating block, a motor stator and a motor mover, the motor stator is arranged concentrically with the motor mover, the motor stator is fixed in the main body bracket, the motor mover Installed on the air floating block and arranged concentrically with the adsorption axis.
  • a measurement target surface is mounted on the air floating block, and a displacement sensor is disposed on the main body bracket, and the displacement sensor is configured to collect position information of the measurement target surface, thereby implementing movement on the motor Sub-displacement measurement.
  • compressed air is introduced between the main body bracket and the adsorption shaft to form an air floating guiding film.
  • compressed air is introduced between the main body bracket and the anti-rotation structure to form an air floating guiding film.
  • a plurality of first throttle holes and a compressed air passage communicating with the first throttle hole are disposed in the adsorption shaft, and the compressed air sequentially passes through the compressed air passage and the first throttle hole Entering between the adsorption shaft and the main body bracket.
  • the anti-rotation structure is provided with a plurality of second throttle holes, and the compressed air enters between the anti-rotation structure and the main body bracket through the second throttle hole.
  • the anti-rotation structure is provided with a compressed air communication groove communicating with the compressed air passage, and the compressed air communication groove is configured to communicate with an external compressed air source.
  • the anti-rotation structure is further provided with a vacuum inlet communicating with the vacuum passage in the adsorption shaft for communicating with an external vacuum source.
  • a bottom end portion of the adsorption shaft is inserted and fixed in the anti-rotation structure, and a plurality of sealing rings are disposed between the anti-rotation structure and the adsorption shaft for preventing the rotation
  • An isolation seal is formed between the structure and the adsorption shaft.
  • the vacuum adsorption hand further includes a preloading mechanism, the preloading mechanism includes a metal object and a magnet, and the metal object is disposed on at least one of the plurality of first anti-rotation surfaces, the magnet Correspondingly disposed on at least one of the plurality of second anti-rotation surfaces, or the metal object is disposed on at least one of the plurality of second anti-rotation surfaces, wherein the magnets are correspondingly disposed on the plurality of At least one of the first anti-rotation surfaces.
  • the preloading mechanism includes a metal object and a magnet
  • the metal object is disposed on at least one of the plurality of first anti-rotation surfaces
  • the magnet Correspondingly disposed on at least one of the plurality of second anti-rotation surfaces
  • the metal object is disposed on at least one of the plurality of second anti-rotation surfaces, wherein the magnets are correspondingly disposed on the plurality of At least one of the first anti-rotation surfaces.
  • the adsorption axis is a cylinder
  • the anti-rotation structure is a trapezoidal table.
  • the adsorption axis and the anti-rotation structure are both cylinders.
  • the adsorption axis is movably disposed in the body bracket and includes two cylindrical structures that are eccentrically disposed and connected at the ends.
  • the present invention also provides a substrate transfer device comprising a base and a plurality of vacuum suction hands as described above symmetrically distributed on the base.
  • the present invention further provides a lithography machine comprising a substrate table, the substrate table is provided with a substrate interface, the substrate interface is mounted with the substrate interface device, and the substrate interface device is located at the substrate Below the interface, the surface of the substrate interface corresponds to a position of the vacuum suction hand of the substrate transfer device with a through hole; when the substrate is transferred, the vacuum suction hand can extend upward through the through hole.
  • the substrate delivery device comprises a base and a plurality of vacuum adsorption hands symmetrically distributed on the base, the vacuum adsorption hand comprising an adsorption shaft, a suction head, a main body bracket, a driving assembly and an anti-rotation structure, An adsorption shaft connecting the anti-rotation structure, the driving assembly driving the adsorption shaft and the anti-rotation structure to slide axially within the main body bracket, the anti-rotation structure restricting the adsorption shaft relative to the main body bracket Rotating in the axial direction, the top end of the adsorption shaft is connected to the suction head, and the adsorption shaft is provided with a vacuum passage, and the suction head is in communication with the vacuum passage.
  • the anti-rotation structure has a plurality of first air floating surfaces disposed at an angle
  • the main body bracket has a plurality of second air floating surfaces that are also disposed at an angle and matched with the first air floating surface to pass through the plurality of
  • the first air floating surface and the plurality of the second air floating surfaces are used together to limit the rotation of the mover portion in the circumferential direction of the adsorption axis, so that an additional anti-rotation structure is added in the prior art.
  • the present invention improves the internal space utilization of the substrate transfer device while reducing the spatial size of the substrate transfer device.
  • the anti-rotation structure preferably includes an air floating block mounted on the adsorption shaft, the adsorption shaft is a cylindrical structure, and the main body bracket has a guide surface matching the outer peripheral surface of the adsorption shaft.
  • the air floating block has two planes parallel to the axial direction of the adsorption axis, and the two planes are used for matching with the other two planes of the main body bracket for limiting the movement of the mover portion around the adsorption axis Or upward rotation; or, the adsorption axis is a cylindrical structure and includes a first portion and a second portion that are eccentrically disposed, the outer peripheral surface of the first portion and the outer peripheral surface of the second portion are used for the other two with the main body bracket The outer peripheral faces are matched to collectively limit the rotation of the mover portion in the circumferential direction of the adsorption axis. In this way, the cylindrical surface provided by the plane or the eccentricity as the guide surface for the linear movement of the mover portion not
  • FIG. 1 is a schematic structural view of a vacuum suction hand according to an embodiment of the present invention.
  • Figure 2 is a plan view of the vacuum suction hand of Figure 1;
  • FIG. 3 is a schematic structural view of an eccentric adsorption shaft and a main body bracket according to a preferred embodiment of the present invention
  • 01/11-main body bracket 021-air floating block; 031-adsorption shaft; 04-motor mover; 05-motor stator; 07-tip; 08-guide film; 034-first orifice; 033-compression Air passage
  • 024-vacuum inlet 025-compressed air inlet; 022-compressed air communication tank; 023-seal ring; 032-vacuum passage; 101-first air-floating space; 102-second air-floating space; 026-second throttle Hole; 061-preloaded steel strip; 062-preloaded magnet; 091-displacement sensor; 092-measured target surface;
  • FIG. 1 is a schematic structural view of a vacuum suction hand according to an embodiment of the present invention
  • FIG. 2 is a top view of the vacuum suction hand illustrated in FIG. 1.
  • the vacuum adsorption hand of the present embodiment includes an adsorption shaft 031, a suction head 07, a main body bracket 01, a driving assembly and an anti-rotation structure, and the adsorption shaft 031 is connected to the anti-rotation structure.
  • the driving assembly drives the adsorption shaft 031 and the anti-rotation structure to slide axially within the main body bracket 01, and the anti-rotation structure restricts the axial rotation of the adsorption shaft 031 relative to the main body support 01,
  • the top end of the adsorption shaft 031 is connected to the suction head 07.
  • the adsorption shaft 031 is provided with a vacuum passage, and the suction head 07 is in communication with the vacuum passage.
  • the adsorption shaft 031 is movably disposed through the main body bracket 01 so that the adsorption shaft 031 can move in the axial direction along the main body bracket 01.
  • the anti-rotation structure has a plurality of first air floating surfaces disposed at an angle (refer to 101 and 102 of FIG. 2), and the main body bracket 01 has a plurality of second air floating surfaces disposed at the same angle. (Refer to 101 and 102 of FIG. 2), the first air floating surface is matched with the second air floating surface, and a plurality of the first air floating surface and the plurality of second air floating surfaces are used together to limit the The rotation of the adsorption axis 031 in the circumferential direction is described.
  • the vacuum suction hand provided in this embodiment has an anti-rotation structure which is separated or integrated with the adsorption axis 031, and the anti-rotation structure has a plurality of first air floating surfaces at an angle formed by the plurality of first angles
  • the air floating surface can well limit the rotation of the adsorption shaft 031, so that it is not necessary to add an additional anti-rotation structure as in the prior art, which improves the internal space utilization of the vacuum suction hand and reduces the space size of the vacuum adsorption hand.
  • the anti-rotation structure further includes an air floating block 021
  • the driving assembly includes a motor stator 05 and a motor mover 04
  • the motor mover 04 is mounted on the air floating block 021. And arranged concentrically with the adsorption axis 031.
  • the adsorption axis 031 is preferably a cylindrical shaft, and the adsorption axis 031 preferably has a cross-sectional diameter of 7 mm to 8 mm.
  • the present invention also provides a substrate transfer apparatus comprising a base and a plurality of vacuum suction hands as described above symmetrically distributed to the base.
  • a substrate transfer apparatus comprising a base and a plurality of vacuum suction hands as described above symmetrically distributed to the base.
  • the motor stator 05 is connected to the main body bracket 01 and constitutes a stator portion of the base transfer device.
  • the air floating block 021, the adsorption shaft 031, the motor mover 04, and the suction head 07 together constitute a mover portion of the substrate transfer device.
  • the suction head 07 is disposed at one end of the adsorption shaft 031, and a vacuum passage 032 is disposed in the adsorption shaft 031, and the suction nozzle 07 is provided with another vacuum passage that can communicate with the vacuum passage 032, so that The substrate is adsorbed by vacuum adsorption through the suction head 07.
  • a guide film 08 is preferably disposed between the main body bracket 01 and the adsorption shaft 031.
  • the guide film 08 corresponds to the main guide rail of the entire mover portion, and realizes high-precision and low-friction guidance of the mover portion.
  • the adsorption axis 031 is linearly movable along the guide film 08 under the driving of the motor mover 04.
  • the adsorption shaft 031 is provided with a first throttle hole 034 and a compressed air passage 033, and the compressed air passage 033 is connected to the first throttle hole 034, so that the compressed air passes through the compressed air in sequence.
  • the channel 033 and the first orifice 034 enter the main body holder 01 and the adsorption axis 031 to form the guide film 08.
  • the compressed air passage 033 is also connected to the compressed air communication groove 022 and the compressed air inlet 025 on the air floating block 021.
  • the vacuum channel 032 is disposed at the center of the adsorption axis 031, and the inlet of the vacuum channel 032 can be connected to the vacuum inlet 024 on the air floating block 021, and the outlet of the vacuum channel 032 and the suction head 07
  • the inlet of the other vacuum passage is turned on to provide vacuum adsorption force to the suction head 07 for adsorption of the silicon wafer.
  • the cross-sectional shape of the vacuum channel 032 may be circular, and the diameter is preferably between 1.6 mm and 2 mm. If the diameter of the vacuum channel is too small, a large pressure drop may affect the adsorption of the silicon wafer, if the diameter of the vacuum channel Too large will increase the size of the adsorption shaft 031 and increase the manufacturing cost.
  • the cross-sectional shape of the compressed air passage 033 may also be circular, and the diameter is preferably between 0.8 mm and 1 mm. If the size of the compressed air passage 033 is too small, the flow rate of the compressed air is reduced, affecting the performance of the air-floating guide.
  • the main body bracket 01 has a guiding surface matching the outer circumferential surface of the adsorption shaft 031, and the air floating block 021 has a plurality of first anti-defense portions disposed at an angle parallel to the axial direction of the adsorption shaft 031.
  • the main body bracket 01 further has a plurality of second anti-rotation surfaces matched with the plurality of first anti-rotation surfaces, and between the plurality of first anti-rotation surfaces and the plurality of second anti-rotation surfaces Leave a gap.
  • the air floating block 021 is a trapezoidal table, and has three first anti-rotation surfaces, wherein the first anti-rotation surface on both sides serves as two first air floating surfaces, and the corresponding main body bracket 01 has two a second air bearing surface, the compressed air is introduced between the two first air floating surfaces and the two second air floating surfaces matching the first air floating surface to constitute the first air floating space 101 and the second air floating space 102
  • An air-floating guide film is provided for the axial movement of the anti-rotation structure in the main body bracket 01.
  • An angle formed between the first air floating space 101 and the second air floating space 102 is preferably 90°.
  • the first air floating space 101 and the second air floating space 102 may be supplied with compressed air by a second throttle hole 026 connected to the compressed air inlet 025 to sequentially pass the compressed air through the compressed air inlet 025 and the second throttle hole 026.
  • the first air floating space 101 and the second air floating space 102 are entered.
  • the main body bracket 01 is further provided with a preloaded steel strip 061, and the preloaded magnet 062 is mounted on the air floating block 021, and the preloaded steel strip 061 and the preloaded magnet 062 generate a certain amount. Attraction, the attractive force provides a suitable preload adsorption axis for the first air flotation space 101 and the second air flotation space 102.
  • the present invention includes, but is not limited to, steel bars as long as they are metal objects.
  • the preload steel strip 061 may also be disposed on the air floating block 021, and the preload magnet 062 is disposed on the main body bracket 01.
  • the preload steel strip 061 is disposed on at least one of the plurality of first anti-rotation surfaces, and the preload magnet 062 is correspondingly disposed on at least one of the plurality of second anti-rotation surfaces,
  • the preload steel strip 061 is disposed on at least one of the plurality of second anti-rotation surfaces, and the preload magnet 062 is correspondingly disposed on at least one of the plurality of first anti-rotation surfaces.
  • the first air floating space 101 and the second air floating space 102 are also parallel to the axial direction of the guiding film 08, and the first air floating space 101 and the second air floating space 102 adsorption axis together with the guiding film 08 constitute the entire device. Guide surface. Further, since the first air floating space 101 and the second air floating space 102 are at a certain angle, the axial rotation of the mover portion around the guide film 08 can be restricted.
  • a plurality of sealing rings 023 are disposed between the adsorption shaft 031 and the air floating block 021 to isolate and seal the compressed air from the adsorption shaft vacuum.
  • the moving part of the vacuum suction hand is driven by the motor mover 04 mounted on the air floating block 021, wherein the air floating block 021 is mounted with a measuring target surface 092, and the main body bracket 01 is correspondingly equipped with a displacement sensor. 091, the displacement sensor 091 collects position information of the measurement target surface 092, thereby realizing displacement measurement of the mover portion.
  • FIG. 3 it is a schematic structural view of an eccentric adsorption axis and a guiding film provided by a preferred embodiment of the present invention.
  • the difference between this embodiment and Embodiment 1 is that the eccentric adsorption axis 12 and the supporting body bracket 11 are adopted in this embodiment.
  • the eccentric adsorption shaft 12 is movably disposed in the main body bracket 11 with a guiding film therebetween to facilitate flexible movement of the eccentric adsorption shaft 12 along the main body bracket 11.
  • the eccentric adsorption axis 12 includes two cylindrical structures which are eccentrically disposed and connected at one end, and the outer circumferential surfaces of the two cylindrical structures can constitute two first air floating surfaces.
  • the two cylindrical structures are preferably identical in shape.
  • the main body bracket 11 has two outer peripheral surfaces matching the two outer peripheral surfaces, and the other two outer peripheral surfaces constitute two second air floating surfaces, and the main body bracket 11 also has a partial offset
  • Two circular holes are provided in the shaft, the hole walls of the two circular holes are matched with the cylindrical air floating surface 13 and the cylindrical air floating surface 14 formed by the eccentric adsorption axis 12, the cylindrical air floating surface 13 and the cylindrical air floating surface 14 provides guidance for the substrate transfer device and limits rotation of the eccentric adsorption axis.
  • the off-axis distance between the eccentric adsorption axis and the anti-rotation structure is preferably between 1 mm and 2 mm.
  • a plurality of the vacuum adsorption hands are distributed on the base to form a substrate delivery device.
  • the substrate i.e., the silicon wafer to be adsorbed
  • one of the substrate transfer devices is disadvantageous for the transfer of a large-sized substrate, and a plurality of substrate transfer devices are required to be combined.
  • a plurality of substrate transfer devices are used in combination, and a substrate transfer system is formed by rational arrangement, and the plurality of substrate transfer devices are synchronously controlled to realize the transfer of the large-sized substrate.
  • the combination of the substrate transfer devices provided by the present embodiment achieves support for large-sized silicon wafers by combining a plurality of the substrate transfer devices and performing synchronous control on a plurality of the substrate transfer devices. Because it is a separate device, the space size requirements are also small. At the same time, such a solution requires less installation accuracy for three or more substrate transfer devices, and the support points are coplanar with high precision through each individual device. Positioning implementation.
  • an embodiment of the present invention further provides a lithography machine including a substrate table, the substrate table is provided with a substrate interface, the substrate interface is mounted with the substrate interface device, and the substrate interface device is located at the substrate Below the interface, the surface of the substrate interface corresponds to a position of the vacuum suction hand with a through hole; when the substrate is transferred, the vacuum suction hand can extend upward through the through hole.
  • the substrate transfer device and the lithography machine provided by the present invention, the substrate transfer device adsorbs or releases the substrate through the suction head, and realizes the transfer to the substrate through the movement of the adsorption axis.
  • the substrate transfer device provided by the invention improves the air floating structure, does not need an additional anti-rotation structure, improves the space utilization ratio of the substrate transfer device, and reduces the space size of the substrate transfer device; in addition, the substrate transfer device adopts a circle
  • the air-floating guide rail ie, the eccentric suction shaft to define the rotation of the adsorption shaft

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

一种真空吸附手,包括吸附轴(031)、吸头(07)、主体支架(01)、驱动组件及防转结构,吸附轴(031)连接防转结构,驱动组件用于驱动吸附轴(031)和防转结构在主体支架(01)内沿轴向滑动,防转结构用于防止吸附轴(031)相对主体支架(01)绕轴向转动,吸附轴(031)顶端连接吸头(07),吸附轴(031)内设有真空通道,吸头(07)与真空通道连通。还提供了一种包括真空吸附手的基底交接装置以及光刻机。这种基底交接装置提高了自身空间利用率,降低了空间尺寸;采用圆形的气浮导轨,易于制造,容易满足导轨制造精度的要求。

Description

真空吸附手、基底交接装置及光刻机 技术领域
本发明涉半导体制造领域,具体涉及一种真空吸附手、基底交接装置及光刻机。
背景技术
光刻设备是一种将掩模图案曝光成像到基底上的工艺技术设备。已知的光刻设备包括步进重复式和步进扫描式。在上述的光刻设备中,需配置相应的装置作为掩模版和基底的载体以及掩模板和基底的交接机构,装载有掩模版的载体和装有基底的载体产生相对运动来满足光刻需要。
上述掩模版的载体被称之为承版台,上述基底的载体被称之为承片台,基底的交接机构被称之为基底交接装置。承版台和承片台分别位于光刻设备的掩模台分系统和工件台分系统中,承版台和承片台为所在分系统的核心模块。其中,承版台和承片台相对运动时,须保证掩模版和基底始终被可靠地定位,即限定掩膜版和基底的六个自由度。此外,在光刻设备进行曝光作业前,通过基底交接装置将基底从传输机械手上移动至承片台,曝光完成后另通过基底交接装置将基底从承片台上转移至传输机械手。
现有的基底交接装置主要采用机械导轨或者气浮导轨实现硅片吸附,分别可通过电机或压缩空气驱动其运动。无论是机械导轨还是气浮导轨,均需要额外配置防转结构来限制基底交接装置的转动,这样会造成整个基底交接装置空间尺寸大,限制了整个装置的空间布局。现有技术中,采用气浮导轨的基底交接装置的防转结构具有多个导向面,现有的制造技术很难使多个导向面的制造精度同时满足要求,从而这种形式的基底交接装置的制造难度大。
发明内容
本发明的目的在于提供一种真空吸附手、基底交接装置及光刻机,以解决现有技术中的基底交接装置空间尺寸大以及制造难度大、无法满足对导轨的制造精度要求的问题。
为实现上述目的,本发明提供一种真空吸附手,包括吸附轴、吸头、主体支架、驱动组件及防转结构,所述吸附轴连接所述防转结构,所述驱动组件所述驱动组件用于驱动所述吸附轴和所述防转结构在所述主体支架内沿轴向滑动,所述防转结构用于防止所述吸附轴相对所述主体支架绕轴向转动,所述吸附轴顶端连接所述吸头,所述吸附轴内设有真空通道,所述吸头与所述真空通道连通。
可选的,所述防转结构面向所述主体支架的方向具有呈夹角设置的多个第一防转面,所述主体支架内具有与所述多个第一防转面相匹配的呈同样夹角设置的多个第二防转面,所述多个第一防转面与所述多个第二防转面共同用于防止所述防转结构在所述主体支架内绕轴向转动。
可选的,所述主体支架内设有可供所述吸附轴轴向滑动的第一导向孔及供所述防转结构轴向滑动的第二导向孔,所述吸附轴与所述防转结构之间偏轴连接,所述第一导向孔与所述第二导向孔对应地偏轴设置。
可选的,所述吸附轴与所述防转结构之间的偏轴距为1mm至2mm。
可选的,所述驱动组件包括气浮块、电机定子和电机动子,所述电机定子与所述电机动子同心布置,所述电机定子固定在所述主体支架内,所述电机动子安装在所述气浮块上并与所述吸附轴同心布置。
可选的,所述气浮块上安装有测量靶面,所述主体支架上对应安装有位移传感器,所述位移传感器用于采集所述测量靶面的位置信息,从而实现对所述电机动子的位移测量。
可选的,在所述主体支架与所述吸附轴之间通入有压缩空气以形成气浮导向膜。
可选的,在所述主体支架与所述防转结构之间通入有压缩空气以形成气浮导向膜。
可选的,所述吸附轴内设置有多个第一节流孔以及与所述第一节流孔连通的压缩空气通道,所述压缩空气依次通过所述压缩空气通道、第一节流孔进入所述吸附轴与所述主体支架之间。
可选的,所述防转结构上设置有多个第二节流孔,所述压缩空气通过所述第二节流孔进入所述防转结构与所述主体支架之间。
可选的,所述防转结构上设置有与所述压缩空气通道连通的压缩空气连通槽,所述压缩空气连通槽用于与外部压缩空气源连通。
可选的,所述防转结构上还设置有与所述吸附轴内的所述真空通道连通的真空入口,用于与外部真空源连通。
可选的,所述吸附轴的底端部分插入并固定在所述防转结构内,所述防转结构与所述吸附轴之间还设置有多个密封圈,用于在所述防转结构与所述吸附轴之间形成隔离密封。
可选的,所述真空吸附手还包括预载机构,所述预载机构包括金属物和磁铁,所述金属物设置在所述多个第一防转面中的至少一个上,所述磁铁对应设置在所述多个第二防转面中的至少一个上,或所述金属物设置在所述多个第二防转面中的至少一个上,所述磁铁对应设置在所述多个第一防转面中的至少一个上。
可选的,所述吸附轴为圆柱体,所述防转结构为梯形台。
可选的,所述吸附轴和所述防转结构均为圆柱体。
可选的,所述吸附轴活动穿设于所述主体支架内且包括偏心设置且端部 相连接的两个圆柱结构。
进一步的,本发明还提供一种基底交接装置,包括底座和对称分布于底座的多个如上所述的真空吸附手。
更进一步的,本发明还提供一种光刻机,包括基底台,所述基底台设有基底交接区,所述基底台内安装有所述基底交接装置,所述基底交接装置位于所述基底交接区的下方,所述基底交接区表面对应于所述基底交接装置的所述真空吸附手的位置开有通孔;交接基底时,所述真空吸附手可经由所述通孔向上延伸。
综上,本发明提供的基底交接装置包括底座和对称分布于所述底座的多个真空吸附手,所述真空吸附手包括吸附轴、吸头、主体支架、驱动组件及防转结构,所述吸附轴连接所述防转结构,所述驱动组件驱动所述吸附轴和所述防转结构在所述主体支架内沿轴向滑动,所述防转结构限制所述吸附轴相对所述主体支架绕轴向转动,所述吸附轴顶端连接所述吸头,所述吸附轴内设有真空通道,所述吸头与所述真空通道连通。特别的,所述防转结构具有呈夹角设置的多个第一气浮面,所述主体支架具有同样呈夹角设置并与第一气浮面匹配的多个第二气浮面,以通过多个所述第一气浮面与多个所述第二气浮面共同用于限制所述动子部分在所述吸附轴周向上的转动,这样一来,与现有技术中增加额外的防转结构相比,本发明提高了基底交接装置的内部空间利用率,同时,降低了基底交接装置的空间尺寸。
此外,所述防转结构优选包括安装在吸附轴上的气浮块,所述吸附轴为圆柱形结构,所述主体支架具有与吸附轴的外周面相匹配的导向面。同时所述气浮块具有与吸附轴的轴向平行的二个平面,该二个平面用于与主体支架的另二个平面相匹配共同用于限制所述动子部分在所述吸附轴周向上的转动;或者是,所述吸附轴为圆柱形结构并包括轴线偏心设置的第一部分和第 二部分,所述第一部分的外周面和第二部分的外周面用于与主体支架的另二个外周面相匹配共同用于限制所述动子部分在所述吸附轴周向上的转动。如此,通过平面或偏心设置的圆柱面作为动子部分做直线运动的导向面,不仅使基底交接装置易于在产业上制造,而且容易满足导轨的制造精度要求。
附图说明
图1为本发明一实施例提供的真空吸附手的结构示意图;
图2为图1所述的真空吸附手的俯视图;
图3为本发明优选实施例提供的偏心吸附轴与主体支架的结构示意图;
附图标记说明如下:
01/11-主体支架;021-气浮块;031-吸附轴;04-电机动子;05-电机定子;07-吸头;08-导向膜;034-第一节流孔;033-压缩空气通道;
024-真空入口;025-压缩空气入口;022-压缩空气连通槽;023-密封圈;032-真空通道;101-第一气浮空间;102-第二气浮空间;026-第二节流孔;061-预载钢条;062-预载磁铁;091-位移传感器;092-测量靶面;
12-偏心吸附轴;13/14-圆柱气浮面。
具体实施方式
下面将结合示意图对本发明的具体实施方式进行更详细的描述。根据下列描述,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例1
图1为本发明一实施例提供的真空吸附手的结构示意图,图2为图1所述的真空吸附手的俯视图。如图1和图2所示,本实施例的真空吸附手包括吸附轴031、吸头07、主体支架01、驱动组件及防转结构,所述吸附轴031连接所述防转结构,所述驱动组件驱动所述吸附轴031和所述防转结构在所述主体支架01内沿轴向滑动,所述防转结构限制所述吸附轴031相对所述主体支架01绕轴向转动,所述吸附轴031顶端连接所述吸头07,所述吸附轴031内设有真空通道,所述吸头07与所述真空通道连通。
其中,所述吸附轴031活动穿设于所述主体支架01,以便于吸附轴031能够沿着主体支架01在轴向上移动。特别的,所述防转结构具有呈夹角设置的多个第一气浮面(可参阅图2的101与102),同时所述主体支架01具有呈同样夹角设置的多个第二气浮面(可参阅图2的101与102),所述第一气浮面与所述第二气浮面相匹配,且多个所述第一气浮面和多个所述第二气浮面共同用于限制所述吸附轴031周向上的转动。
本实施例提供的真空吸附手具有一个与吸附轴031分体或一体的防转结构,该防转结构具有呈夹角的多个第一气浮面,通过所述呈夹角的多个第一气浮面能够很好的限制吸附轴031的旋转,从而不必像现有技术中增加额外的防转结构,这样提高了真空吸附手的内部空间利用率,降低了真空吸附手的空间尺寸。
进一步的,继续参见图1和图2,所述防转结构还包括气浮块021,所述驱动组件包括电机定子05和电机动子04,所述电机动子04安装在气浮块021上并与吸附轴031同心布置。
所述吸附轴031优选为一根圆柱形轴,所述吸附轴031的横截面直径优选为7mm至8mm。
本发明还提供一种基底交接装置,其包括底座和对称分布于底座的多个 如上所述真空吸附手。通过本申请提供的真空吸附手,在提升所述基底交接装置空间利用率的同时,使所述吸附轴031的内部真空通道以及压缩空气通道得到更合理的布局。
其中,所述电机定子05与所述主体支架01连接,且构成基底交接装置的定子部分。所述气浮块021、吸附轴031、电机动子04以及吸头07一起构成所述基底交接装置的动子部分。所述吸头07设置于所述吸附轴031的一端,且所述吸附轴031内设置有真空通道032,同时所述吸头07设置有可以与真空通道032连通的另一真空通道,这样可通过吸头07以真空吸附的方式吸附基底。
所述主体支架01与吸附轴031之间优选设置有导向膜08,所述导向膜08相当于整个动子部分的主导轨,实现动子部分的高精度低摩擦的导向。那么,所述吸附轴031在所述电机动子04的驱动下能够沿着所述导向膜08做直线运动。本实施例中,所述吸附轴031上设有第一节流孔034和压缩空气通道033,所述压缩空气通道033与第一节流孔034相接通,以使压缩空气依次通过压缩空气通道033、第一节流孔034进入主体支架01与吸附轴031之间形成所述导向膜08。优选的,所述压缩空气通道033还与气浮块021上的压缩空气连通槽022以及压缩空气入口025接通。
优选,所述吸附轴031的中心设置有所述真空通道032,所述真空通道032的入口可与气浮块021上的真空入口024接通,所述真空通道032的出口与吸头07的所述另一真空通道的入口接通,为吸头07提供真空吸附力,以进行硅片的吸附。
所述真空通道032的横截面形状可以为圆形,且直径优选在1.6mm至2mm之间,若真空通道的直径太小会造成较大压降影响对硅片的吸附,若真空通道的直径太大会使吸附轴031的尺寸相应增大,提升制造成本。压缩空 气通道033的横截面形状亦可为圆形,且直径优选在0.8mm至1mm之间,若压缩空气通道033的尺寸太小会使压缩空气流量减小,影响气浮导轨的性能。
在一个实施例中,所述主体支架01具有与吸附轴031的外周面相匹配的导向面,所述气浮块021具有与吸附轴031的轴向平行的呈夹角设置的多个第一防转面,同时所述主体支架01还具有与所述多个第一防转面相匹配的多个第二防转面,所述多个第一防转面与多个第二防转面之间留有空隙。本实施例中,所述气浮块021为梯形台,具有三个第一防转面,其中位于两侧的第一防转面作为两个第一气浮面,对应的主体支架01上具有两个第二气浮面,在两个第一气浮面以及与该第一气浮面相匹配的两个第二气浮面之间通入压缩空气以构成第一气浮空间101和第二气浮空间102,为防转结构在主体支架01中的轴向运动提供气浮导向膜。所述第一气浮空间101与所述第二气浮空间102之间形成有一夹角优选为90°。
所述第一气浮空间101和第二气浮空间102可由与压缩空气入口025相连的第二节流孔026提供压缩空气,以使压缩空气依次通过压缩空气入口025、第二节流孔026进入第一气浮空间101和第二气浮空间102。
优选的,所述主体支架01上还安装有预载钢条061,且所述气浮块021上对应安装有预载磁铁062,所述预载钢条061与预载磁铁062会产生一定的吸引力,所述吸引力为所述第一气浮空间101和第二气浮空间102提供适当的预载吸附轴。然而,本发明包括但不限于钢条,只要是金属材质的物体即可。另外,所述预载钢条061亦可设置在气浮块021上,且所述预载磁铁062设置在主体支架01上。或者,所述预载钢条061设置在所述多个第一防转面中的至少一个上,所述预载磁铁062对应设置在所述多个第二防转面中的至少一个上,或所述预载钢条061设置在所述多个第二防转面中的至少一个上, 所述预载磁铁062对应设置在所述多个第一防转面中的至少一个上。
所述第一气浮空间101和第二气浮空间102亦与导向膜08的轴向平行,所述第一气浮空间101、第二气浮空间102吸附轴与导向膜08一起构成整个装置的导向面。此外,由于第一气浮空间101和第二气浮空间102呈一定的夹角,因此,能限制所述动子部分绕导向膜08的轴向旋转。另外,在吸附轴031与气浮块021之间设置有多个密封圈023,以将压缩空气与吸附轴真空进行隔离密封。
所述真空吸附手的动子部分依靠安装于气浮块021上电机动子04驱动,其中,所述气浮块021上安装有测量靶面092,所述主体支架01上对应安装有位移传感器091,所述位移传感器091采集测量靶面092的位置信息,从而实现对所述动子部分的位移测量。
实施例2
如图3所示,其为本发明优选实施例提供的偏心吸附轴与导向膜的结构示意图,该实施例与实施例1的区别在于,本实施例通过偏心吸附轴12和配套的主体支架11来限位。所述偏心吸附轴12活动穿设于主体支架11内,两者之间存在导向膜,以便于偏心吸附轴12沿着主体支架11灵活运动。所述偏心吸附轴12包括偏心设置并一端相连接的二个圆柱结构,该二个圆柱结构的外周面便可构成二个第一气浮面。该两个圆柱结构优选形状相同。
相应的,所述主体支架11具有与二个所述外周面相匹配的另二个外周面,所述另二个外周面构成二个所述第二气浮面,所述主体支架11上亦具有偏轴设置的两个圆孔,所述两个圆孔的孔壁与所述偏心吸附轴12形成的圆柱气浮面13和圆柱气浮面14相匹配,所述圆柱气浮面13和所述圆柱气浮面14为所述基底交接装置提供导向,以及限制所述偏心吸附轴旋转。所述偏心吸附轴与所述防转结构之间的偏轴距优选在1mm至2mm之间。
需要说明的是,将图1中真空吸附手的吸附轴031和主体支架01替换为本实施例中的偏心吸附轴12和主体支架11,便可构成另一真空吸附手;其中吸附轴031所具有的真空通道和压缩空气通道,偏心吸附轴12也同样具有,主体支架01具有的真空入口和压缩空气连通槽,主体支架11也同样具有;其余结构不做改变。
再进一步的,将多个所述真空吸附手分布于底座上,可构成基底交接装置。当基底(即待吸附的硅片)尺寸较大时,一个所述基底交接装置不利于较大尺寸基底的交接时,需要将多个基底交接装置组合起来用。将多个基底交接装置进行组合使用,并通过合理排布,形成基底交接系统,对所述多个基底交接装置进行同步控制,从而实现对大尺寸基底的交接。
本实施提供的基底交接装置的组合,通过对多个所述基底交接装置进行组合使用,并对多个所述基底交接装置进行同步控制,实现了对大尺寸硅片的支撑。由于是分离的单独装置,因而对空间尺寸要求同样很小,同时,这样的方案对3个或多个基底交接装置的安装精度要求不高,支撑点共面可通过每个单独装置的高精度定位实现。此外,本发明实施例还提供一种光刻机,包括基底台,所述基底台设有基底交接区,所述基底台内安装有所述基底交接装置,所述基底交接装置位于所述基底交接区的下方,所述基底交接区表面对应于所述真空吸附手的位置开有通孔;交接基底时,所述真空吸附手可经由所述通孔向上延伸。
综上所述,本发明提供的真空吸附手、基底交接装置及光刻机中,所述基底交接装置通过吸头吸附或释放基底,并通过吸附轴的运动,实现了对所述基底的交接。同时,本发明提供的基底交接装置对气浮结构进行改进,无需额外的防转结构,提高了基底交接装置的空间利用率,降低了基底交接装置的空间尺寸;另外,该基底交接装置采用圆形的气浮导轨(即偏心吸附轴 来限定吸附轴的旋转),使装置易于制造,容易满足导轨制造精度的要求。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (19)

  1. 一种真空吸附手,其特征在于,包括吸附轴、吸头、主体支架、驱动组件及防转结构,所述吸附轴连接所述防转结构,所述驱动组件用于驱动所述吸附轴和所述防转结构在所述主体支架内沿轴向滑动,所述防转结构用于防止所述吸附轴相对所述主体支架绕轴向转动,所述吸附轴顶端连接所述吸头,所述吸附轴内设有真空通道,所述吸头与所述真空通道连通。
  2. 如权利要求1所述的真空吸附手,其特征在于,所述防转结构面向所述主体支架的方向具有呈夹角设置的多个第一防转面,所述主体支架内具有与所述多个第一防转面相匹配的呈同样夹角设置的多个第二防转面,所述多个第一防转面与所述多个第二防转面共同用于防止所述防转结构在所述主体支架内绕轴向转动。
  3. 如权利要求1所述的真空吸附手,其特征在于,所述主体支架内设有可供所述吸附轴轴向滑动的第一导向孔及供所述防转结构轴向滑动的第二导向孔,所述吸附轴与所述防转结构之间偏轴连接,所述第一导向孔与所述第二导向孔对应地偏轴设置。
  4. 如权利要求3所述的真空吸附手,其特征在于,所述吸附轴与所述防转结构之间的偏轴距为1mm至2mm。
  5. 如权利要求1所述的真空吸附手,其特征在于,所述驱动组件包括气浮块、电机定子和电机动子,所述电机定子与所述电机动子同心布置,所述电机定子固定在所述主体支架内,所述电机动子安装在所述气浮块上并与所述吸附轴同心布置。
  6. 如权利要求5所述的真空吸附手,其特征在于,所述气浮块上安装有测量靶面,所述主体支架上对应安装有位移传感器,所述位移传感器用于采集所述测量靶面的位置信息,从而实现对所述电机动子的位移测量。
  7. 如权利要求1所述的真空吸附手,其特征在于,在所述主体支架与所述吸附轴之间通入有压缩空气以形成气浮导向膜。
  8. 如权利要求1所述的真空吸附手,其特征在于,在所述主体支架与所述防转结构之间通入有压缩空气以形成气浮导向膜。
  9. 如权利要求7所述的真空吸附手,其特征在于,所述吸附轴内设置有多个第一节流孔以及与所述第一节流孔连通的压缩空气通道,所述压缩空气依次通过所述压缩空气通道、所述第一节流孔进入所述吸附轴与所述主体支架之间。
  10. 如权利要求8所述的真空吸附手,其特征在于,所述防转结构上设置有多个第二节流孔,所述压缩空气通过所述第二节流孔进入所述防转结构与所述主体支架之间。
  11. 如权利要求9或10所述的真空吸附手,其特征在于,所述防转结构上设置有与所述压缩空气通道连通的压缩空气连通槽,所述压缩空气连通槽用于与外部压缩空气源连通。
  12. 如权利要求1所述的真空吸附手,其特征在于,所述防转结构上还设置有与所述吸附轴内的所述真空通道连通的真空入口,用于与外部真空源连通。
  13. 如权利要求1所述的真空吸附手,其特征在于,所述吸附轴的底端部分插入并固定在所述防转结构内,所述防转结构与所述吸附轴之间还设置有多个密封圈,用于在所述防转结构与所述吸附轴之间形成隔离密封。
  14. 如权利要求2所述的真空吸附手,其特征在于,所述真空吸附手还包括预载机构,所述预载机构包括金属物和磁铁,所述金属物设置在所述多个第一防转面中的至少一个上,所述磁铁对应设置在所述多个第二防转面中的至少一个上,或所述金属物设置在所述多个第二防转面中的至少一个上,所述磁铁对应设置在所述多个第一防转面中的至少一个上。
  15. 如权利要求2所述的真空吸附手,其特征在于,所述吸附轴为圆柱体,所述防转结构为梯形台。
  16. 如权利要求3所述的真空吸附手,其特征在于,所述吸附轴和所述防转结构均为圆柱体。
  17. 如权利要求1所述的真空吸附手,其特征在于,所述吸附轴活动穿设于所述主体支架内且包括偏心设置且端部相连接的两个圆柱结构。
  18. 一种基底交接装置,其特征在于,包括底座和对称分布于所述底座上的多个如权利要求1至17中任一项所述的真空吸附手。
  19. 一种光刻机,包括基底台,所述基底台设有基底交接区,其特征在于,所述基底台内安装有如权利要求18所述的基底交接装置,所述基底交接装置位于所述基底交接区的下方,所述基底交接区表面对应于所述基底交接装置的所述真空吸附手的位置开有通孔;交接基底时,所述真空吸附手可经由所述通孔向上延伸。
PCT/CN2018/108631 2017-09-30 2018-09-29 真空吸附手、基底交接装置及光刻机 WO2019062911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710944128.7A CN109597279B (zh) 2017-09-30 2017-09-30 真空吸附手、基底交接装置及光刻机
CN201710944128.7 2017-09-30

Publications (1)

Publication Number Publication Date
WO2019062911A1 true WO2019062911A1 (zh) 2019-04-04

Family

ID=65900857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108631 WO2019062911A1 (zh) 2017-09-30 2018-09-29 真空吸附手、基底交接装置及光刻机

Country Status (3)

Country Link
CN (1) CN109597279B (zh)
TW (1) TWI673223B (zh)
WO (1) WO2019062911A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067811A (zh) * 2019-05-30 2019-07-30 中国工程物理研究院机械制造工艺研究所 一种气浮转台
CN115692299A (zh) * 2022-12-27 2023-02-03 苏州猎奇智能设备有限公司 一种气浮旋转吸附结构及其使用方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230104588A (ko) * 2020-09-16 2023-07-10 베이징 유-프리시션 테크 컴퍼니., 리미티드. 실리콘 웨이퍼 흡착 유닛 및 실리콘 웨이퍼 이송 장치
CN112051715A (zh) * 2020-09-28 2020-12-08 清华大学 带精密测量的可控升降装置以及包含其的光刻设备
CN112965342B (zh) * 2021-02-05 2022-07-12 三河建华高科有限责任公司 一种接近接触光刻机的底部吹氮真空复印曝光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074458A (zh) * 2010-11-19 2011-05-25 华中科技大学 一种芯片剥离装置
CN102569151A (zh) * 2010-12-30 2012-07-11 上海微电子装备有限公司 硅片机械手
US20160064266A1 (en) * 2014-08-29 2016-03-03 Canon Kabushiki Kaisha Processing apparatus, processing method, and device manufacturing method
CN205507354U (zh) * 2015-12-30 2016-08-24 上海微电子装备有限公司 一种基底交接装置
CN106338890A (zh) * 2015-07-15 2017-01-18 上海微电子装备有限公司 一种无源基底交接机构及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025174A (ja) * 2001-07-11 2003-01-29 Nec Yamagata Ltd 基板吸着方法および基板吸着機構
US8578953B2 (en) * 2006-12-20 2013-11-12 Tokyo Electron Limited Substrate cleaning apparatus, substrate cleaning method, and computer-readable storage medium
CN202421721U (zh) * 2011-12-30 2012-09-05 上海微电子装备有限公司 长行程运动气浮模组及应用其的曝光台
JP5868228B2 (ja) * 2012-03-12 2016-02-24 住友重機械工業株式会社 基板保持装置及び基板保持方法
CN103901735B (zh) * 2012-12-28 2016-02-03 上海微电子装备有限公司 硅片推顶机构
CN103901732B (zh) * 2012-12-28 2016-08-24 上海微电子装备有限公司 硅片交接装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074458A (zh) * 2010-11-19 2011-05-25 华中科技大学 一种芯片剥离装置
CN102569151A (zh) * 2010-12-30 2012-07-11 上海微电子装备有限公司 硅片机械手
US20160064266A1 (en) * 2014-08-29 2016-03-03 Canon Kabushiki Kaisha Processing apparatus, processing method, and device manufacturing method
CN106338890A (zh) * 2015-07-15 2017-01-18 上海微电子装备有限公司 一种无源基底交接机构及方法
CN205507354U (zh) * 2015-12-30 2016-08-24 上海微电子装备有限公司 一种基底交接装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067811A (zh) * 2019-05-30 2019-07-30 中国工程物理研究院机械制造工艺研究所 一种气浮转台
CN110067811B (zh) * 2019-05-30 2024-03-26 中国工程物理研究院机械制造工艺研究所 一种气浮转台
CN115692299A (zh) * 2022-12-27 2023-02-03 苏州猎奇智能设备有限公司 一种气浮旋转吸附结构及其使用方法

Also Published As

Publication number Publication date
CN109597279A (zh) 2019-04-09
TW201914939A (zh) 2019-04-16
TWI673223B (zh) 2019-10-01
CN109597279B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
WO2019062911A1 (zh) 真空吸附手、基底交接装置及光刻机
US10744648B2 (en) Carrier system, exposure apparatus, carrier method, exposure method, device manufacturing method, and suction device
JP6638774B2 (ja) 露光方法及び露光装置、並びにデバイス製造方法及びフラットパネルディスプレイの製造方法
US7280185B2 (en) Stage system including fine-motion cable unit, exposure apparatus, and method of manufacturing device
US20130148094A1 (en) Stage unit, exposure apparatus, and exposure method
US20110053092A1 (en) Object processing apparatus, exposure apparatus and exposure method, and device manufacturing method
US9030057B2 (en) Method and apparatus to allow a plurality of stages to operate in close proximity
TW201927666A (zh) 物體更換裝置、物體更換方法、曝光裝置、曝光方法以及元件製造方法
TWI668519B (zh) 曝光裝置、元件製造方法、及平板顯示器之製造方法
JP4692131B2 (ja) ステージ装置及び露光装置
CN106371292B (zh) 一种双面光刻工件台
JP2005017180A (ja) 支持ユニット並びにその支持ユニットを用いた移動テーブル装置及び直動案内装置
CN109791369B (zh) 物体保持装置、曝光装置、平板显示器之制造方法、元件制造方法、以及物体保持方法
KR20120026107A (ko) 반송 장치 및 노광 장치
JP4883810B2 (ja) ステージ装置、露光装置及びデバイスの製造方法
JP4241295B2 (ja) ステージ装置
JP2000332081A (ja) 複数軸動力伝達装置およびウエハ搬送用アームリンク
CN103375652B (zh) 气浮管接头组件及应用其的六自由度气浮管接头和掩模台
CN114114845B (zh) 基片交接单元及基片交接装置
JPH10281110A (ja) 非接触ロッドレスシリンダおよびそれを用いたステージ装置
WO2000049303A1 (en) Static pressure air bearing
JP2017156759A (ja) 露光装置、フラットパネルディスプレイの製造方法、デバイス製造方法、及び露光方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861718

Country of ref document: EP

Kind code of ref document: A1