WO2019062701A1 - 扁管及其成型方法和换热器 - Google Patents

扁管及其成型方法和换热器 Download PDF

Info

Publication number
WO2019062701A1
WO2019062701A1 PCT/CN2018/107285 CN2018107285W WO2019062701A1 WO 2019062701 A1 WO2019062701 A1 WO 2019062701A1 CN 2018107285 W CN2018107285 W CN 2018107285W WO 2019062701 A1 WO2019062701 A1 WO 2019062701A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
plate
ribs
wall
adjacent
Prior art date
Application number
PCT/CN2018/107285
Other languages
English (en)
French (fr)
Inventor
童仲尧
高强
张超超
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710923397.5A external-priority patent/CN109595963A/zh
Priority claimed from CN201721287686.2U external-priority patent/CN207797842U/zh
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Publication of WO2019062701A1 publication Critical patent/WO2019062701A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular

Definitions

  • the invention relates to the technical field of heat exchangers, in particular to a flat tube, a heat exchanger having the flat tube and a forming method of the flat tube.
  • Flat tubes are key components of multi-channel heat exchangers, and previous products generally used extruded flat tubes.
  • the extrusion flat tube production technology and equipment threshold are higher, and the procurement cost is larger.
  • the wall thickness of the extruded tube is limited by the extrusion process, and it is difficult to further reduce the weight.
  • An object of the present invention is to provide a flat tube having a high compressive strength.
  • Another object of the invention is to propose a heat exchanger having the flat tube.
  • a further object of the present invention is to provide a method of forming a flat tube.
  • the flat tube is formed by bending a plate, and the plate is bent to form a flat tube having a plurality of flow passages therein, wherein a wall of the outer circumference of the flat tube
  • Each layer has a multilayer structure having the same number of layers and two or more layers.
  • the uniformity and compressive strength of the tube wall can be improved.
  • flat tube according to the above embodiment of the present invention may further have the following additional technical features:
  • the panel comprises: an inner wall panel and an outer wall panel.
  • the inner wall panel is bent to form a plurality of flow channels; the outer wall panel is laminated on an outer side of the inner wall panel to form the tube wall having the multilayer structure.
  • the inner wall panel includes a plurality of ribs and a connecting plate, and the plurality of ribs are sequentially arranged in the first direction, and one ends of the adjacent two ribs are closed and the other end is opened. And connected by the connecting plate, the ribs and the connecting plates are staggered and sequentially connected, and the connecting plates are stacked on the inner side of the outer wall plate.
  • the flow path is formed between two adjacent ribs having a cross-sectional shape that is triangular, rectangular or funnel shaped.
  • the ends of the adjacent two ribs that are closed to each other overlap a certain length in the thickness direction.
  • the cross section of the rib is a linear, curved or polygonal line type disposed along the width direction of the flat tube.
  • the inner wall panel further includes a first side panel portion and a second side panel portion, and the plurality of the ribs are disposed on the first side panel portion and the second side panel portion And the first side plate portion and the second side plate portion are respectively connected to adjacent ribs to form a flow path, and the side plate portion is laminated and adhered to the outer wall plate.
  • the outer wall panel comprises: a first edging panel and a second edging panel.
  • the first edging plate is adjacent to the first side plate portion and covers one side of the inner wall plate in the second direction and the second side plate portion; and the second edging plate and The second side plate portion abuts and covers the other side of the inner wall plate in the second direction and the first side plate portion, wherein the second direction is perpendicular to the first direction.
  • the first edge plate is connected to the first side plate portion at a position having a first step portion
  • the second edge plate is connected to the second side plate portion.
  • the position has a second step portion, the end of the first edging plate is engaged with the second step portion, the end of the second edging plate is engaged with the first step portion, and the outer wall plate The outer surface is flush.
  • the thickness of the tube wall at the periphery of the flat tube is the same.
  • the present invention also provides a heat exchanger according to an embodiment of the present invention, comprising: a first header, a second header, and a flat tube, wherein two ends of the flat tube are respectively connected and connected a first header and a second header, the flat tube comprising at least two spaced apart, and a fin is disposed between two adjacent flat tubes, the flat tube being a flat tube according to the foregoing .
  • the present invention also provides a method for forming a flat tube according to an embodiment of the present invention.
  • the flat tube is a flat tube according to the foregoing, and the forming method comprises: forming a middle portion of the bent plate body Having a plurality of grooves in sequence and adjacent two grooves are oriented in opposite waves, and the openings of each groove are closed to form a flow path, which is bent in the same direction around the intermediate portion An outer portion of the plate body on both sides of the intermediate portion and holding the intermediate portion.
  • the outer portion includes a first side portion, a second side portion, and a third side portion that are sequentially away from the intermediate portion, each of the bending methods of the outer portion includes: a second side portion Offset with respect to the first side portion in a direction opposite to a bending direction of the outer portion to form a step at a junction of the second side portion and the first side portion;
  • the bending direction of the outer portion is bent into an arc shape; the outer portion is bent such that the step abuts an end portion of the intermediate portion to form a flow path outside the intermediate portion, the second The side portion abuts the intermediate portion, the edge of the third side portion abuts against the step of the other outer side portion and holds the first side portion of the other outer side portion.
  • Figure 1 is a perspective view of a flat tube in accordance with one embodiment of the present invention.
  • FIGS. 2a-2d are schematic views of a flat tube of various embodiments of the present invention.
  • 3a-3g are schematic views showing the manufacturing process of a flat tube according to an embodiment of the present invention.
  • Figure 4 is a partial schematic view of Figure 2a.
  • FIG. 5 is a schematic illustration of a heat exchanger in accordance with one embodiment of the present invention.
  • heat exchanger 100 first header 21, second header 22, fins 3, flat tube 1, tube wall 101, flow path 102, inner wall panel 11, outer wall panel 12, ribs 111
  • the connecting plate 112 the first direction A, the second direction B, the groove portion 103, the first side plate portion 113, the second side plate portion 114, the first edging plate 121, and the second edging plate 122.
  • the present invention proposes a novel folding flat tube 1 structure, which can ensure the uniform thickness of the folded flat tube wall.
  • a flat tube 1 is formed by bending a single sheet, and the sheet is bent to form a flat tube 1 having a plurality of flow paths 102 therein, wherein the flat tube
  • Each of the outer peripheral wall 101 has a multilayer structure having the same number of layers, wherein the number of layers of the multilayer structure is two or more.
  • the tube wall 101 has a multi-layer structure everywhere, and the number of layers of the multi-layer structure throughout the tube wall 101 is the same, so that the short plate effect can be avoided, and the flat tube 1 can be avoided.
  • the pressure resistance strength of the pipe wall 101 is uniform, so that the structure of the pipe wall 101 can be fully applied, and the pressure resistance of the flat pipe 1 is improved while the waste of materials is avoided.
  • the structure formed by the plate bending includes a pipe wall 101 and a rib 111 located inside the pipe wall, and the flow passage 102 in the pipe wall 101 may be formed by the rib 111 and the pipe wall 101.
  • the panel comprises: an inner wall panel 11 and an outer wall panel 12.
  • the inner wall panel 11 is bent to form a plurality of flow passages 102.
  • the outer wall panel 12 is laminated on the outer side of the inner wall panel, and the laminated structure formed by the outer wall panel 12 and a portion of the inner wall panel 11 can form the tube wall 101 having a multi-layered structure.
  • the flow path 102 is formed in the inner wall panel 11, and then the above-mentioned multilayer structure is formed by the laminated structure of a part of the inner wall panel 11 and the outer wall panel 12, which can facilitate the formation of the flat tube 1, improve the molding efficiency of the flat tube 1, and, in addition, the inner wall
  • the plate 11 forms a plurality of flow paths 102 and is wrapped by the outer wall panel 12 to improve the sealing performance of the flow path 102.
  • the two-layer board stacking means that the surface of the two-layer board is bonded.
  • the outer wall panel 12 is laminated on the inner side of the inner wall panel 11 to mean that the outer wall panel 12 is disposed around the inner wall panel 11, and the inner surface of the outer wall panel 12 is in contact with the outer surface of the inner wall panel 11, wherein a part of the inner wall panel 11
  • the flow path 102 is formed, and another portion of the inner wall panel 11 and the outer wall panel 12 are configured in the aforementioned laminated structure.
  • the structure of the inner wall panel 11, the outer wall panel 12, and the like in the present invention is formed by continuous bending of the panel.
  • the inner wall panel 11 includes a plurality of ribs 111 and a connecting plate 112, and a plurality of ribs 111 are sequentially arranged in the first direction A, and one ends of the adjacent two ribs 111 are closed and the other One end is opened and connected by the connecting plate 112, the rib 111 and the connecting plate 112 are alternately arranged and sequentially connected, and the connecting plate 112 is laminated on the inner side of the outer wall 12.
  • the plates are sequentially bent in the first direction A to form a form in which the ribs 111 and the connecting plates 112 are staggered, and the two ends of the connecting plate 112 (located in the first direction A of the connecting plate 112) The other ends of the adjacent ribs 111 are closed to each other to form a flow path 102.
  • a plurality of ribs 111 are sequentially arranged in the first direction A, wherein the ribs 111 may extend in the second direction B, wherein the ribs 111 are in the second direction B, One end of one of the two ribs 111 adjacent to the other rib 111 is closed with one end of the other rib 111, and the other end of one of the two adjacent ribs 111 and the other rib 111 One end is open to each other, and the flared ends of the adjacent two ribs 111 are connected by a connecting plate 112, wherein two adjacent ribs 111 and a connecting plate 112 connecting the two ribs 111 are combined A flow path 102 is formed.
  • the plate In the molding process of the flat tube 1, the plate is bent to form a plurality of groove portions 103, and the two side walls of the groove portion 103 are formed as ribs 111, and the bottom wall of the groove portion 103 is formed as a connecting plate 112, and the groove portion 103 is formed.
  • the opening of the opening is closed to form a flow path 102.
  • the first rib 111a, the second rib 111b, and the third rib 111c are included, and the first rib 111a, the second rib 111b, and the third rib 111c are in the left and right direction.
  • the first rib 111a and the second rib 111b are adjacent, the upper end of the first rib 111a is closed with the upper end of the second rib 111b, and the lower end of the first rib 111a and the lower end of the second rib 111b The opening is opened, and the lower end of the first rib 111a and the lower end of the second rib 111b are connected by the first connecting plate 112a, thereby forming one flow path 102.
  • the second rib 111b is adjacent to the third rib 111c, the lower end of the second rib 111b is closed with the lower end of the third rib 111c, and the upper end of the second rib 111b and the upper end of the third rib 111c are opened. And the upper end of the second rib 111b and the upper end of the third rib 111c are connected by the second connecting plate 112b, thereby forming one flow path 102.
  • the plate in the process of forming the flat tube 1, the plate is bent into a wave shape, and a plurality of groove portions 103 are formed, and the opening directions of the adjacent two groove portions 103 are opposite, so that each groove portion
  • the two side walls of the 103 are respectively formed as ribs 111, and the bottom of each groove portion 103 is formed as a connecting plate 112.
  • a triangular flow path 102 is formed between the adjacent two ribs 111.
  • a flow path 102 is formed between the adjacent two ribs 111, and the flow path has a triangular cross section. That is to say, the two adjacent ribs 111 are inclined at a predetermined angle to each other, and the adjacent two ribs 111 are inclined at a predetermined angle to each other, the adjacent two ribs 111 and the two ribs are connected
  • a triangular flow path 102 is defined between the webs 112 of the strips 111.
  • the triangle has a stable structure, and the triangular shape arranged in the entire flat tube 1 can support the tube wall 101, so that the pressure resistance of the flat tube 1 can be improved.
  • the rib 111 may have other shapes to increase the compressive strength of the flat tube 1.
  • the flow path 102 formed between the adjacent two ribs 111 may also have a shape of a rectangular cross section, a funnel shape or the like.
  • the ends of the adjacent two ribs 111 that are closed to each other overlap a certain length in the thickness direction.
  • the portion where the two ribs 111 overlap is relatively high in compressive strength, and the closing of the flat tube 1 can be better supported, so that the compressive strength of the flat tube 1 can be further improved.
  • the cross-section of the rib 111 of the present invention may be in the form of a straight line disposed along the width direction of the flat tube.
  • the rib 111 of the present invention may be disposed along the width direction of the flat tube.
  • Curved, as shown in Fig. 2d, the rib 111 of the present invention may be in the form of a fold line disposed along the width direction of the flat tube.
  • the cross-section of the rib 111 of the present invention may be a linear, curved or polygonal line type disposed along the width direction of the flat tube.
  • the rib 111 may have other shapes.
  • the rib 111 has various structural forms to meet different heat exchange requirements and strength requirements.
  • the adjacent two ribs 111 are formed in a triangular structure.
  • the adjacent two ribs 111 have a substantially triangular configuration, and the closed ends of the adjacent two ribs 111 overlap a predetermined length in the thickness direction.
  • the rib includes a first plate portion, a second plate portion, and a connecting portion, and the first plate portion and the second plate portion extend in the up and down direction (or the thickness direction of the flat tube), and the connecting portion Extending in the left-right direction (or the width direction of the flat tube), the left and right edges of the connecting plate portion are respectively connected to the first plate portion and the second plate portion, and two of the two adjacent ribs 111 are along the first plate portion
  • the left and right directions overlap, and two of the two adjacent ribs 111 are spaced apart in the left-right direction and connected by the connecting plate 112, and the connecting plate 112, the two second plate portions, and the two connecting portions are combined to form a rectangular shape.
  • the cross section of the rib is in the shape of an arc extending in the up and down direction, and one end of the adjacent two ribs is closed and the other end is separated and connected by the connecting plate 112, and the connecting plate 112 and the phase are connected.
  • Two adjacent ribs form a funnel-shaped flow passage 102, and the cross-section of the flow passage 102 is in a width direction from one side to the other side in the up-and-down direction (or the thickness direction of the flat tube) (along the width of the flat tube)
  • the size or the size in the left and right direction in Fig. 2d is gradually increased.
  • the inner wall panel 11 further includes a first side panel portion 113 and a second side panel portion 114.
  • the plurality of ribs 111 are disposed between the first side panel portion 113 and the second side panel portion 114, and the first side panel
  • the portion 113 and the second side plate portion 114 are respectively connected to the adjacent ribs 111 to form the flow path 102, and the side plate portions are laminated and bonded to the outer wall plate 12. Thereby, the number of the flow paths 102 can be increased, thereby improving the heat exchange efficiency of the flat tubes 1.
  • the first side plate portion 113 is connected to one end of the adjacent rib 111 and the other end is closed to form a flow channel 102.
  • the second side plate portion 114 is connected to one end of the adjacent rib 111 and the other end is closed to form a flow path 102.
  • Flow path 102
  • the first side plate portion 113 is disposed on the left side of the plurality of ribs 111
  • the second side plate portion 114 is disposed on the right side of the plurality of ribs 111
  • One end of the 113 is connected to the upper end of the leftmost one of the ribs 111 (the ribs 111 adjacent to the first side plate portion 113), and the other end of the first side plate portion 113 and the leftmost one of the ribs 111
  • the lower end is closed to form a flow path 102
  • one end of the second side plate portion 114 is connected to the lower end of one of the rightmost ribs 111 (the ribs 111 adjacent to the second side plate portion 114), and the second side plate portion is connected
  • the other end of 114 is closed with the upper end of one of the rightmost ribs 111 to form a flow path 102.
  • the outer wall panel 12 includes a first edging board 121 and a second edging board 122.
  • the first edging plate 121 is adjacent to the first side plate portion 113 and covers one side of the inner wall plate 11 in the second direction B and the second side plate portion 114.
  • the second edging plate 122 is adjacent to the second side plate portion 114 and covers the other side of the inner wall plate 11 along the second direction B and the first side plate portion 113, wherein the second direction B is perpendicular to the first direction A.
  • the first edging board 121 is laminated with the connecting plate 112 and the second side plate portion 114 on one side of the inner wall plate 11 in the second direction B to form a multi-layer structure.
  • the second edging plate 122 is laminated with the connecting plate 112 and the second side plate portion 114 on the other side in the second direction B on the inner wall panel 11 to form a multilayer structure, and these combinations are formed as the entire pipe wall 101.
  • the outer side of the inner wall panel 11 is covered by the first edging board 121 and the second edging board 122, so that the first edging board 121 and the second edging board 122 cooperate with the inner wall panel 11 to form the wall 101 of the multi-layer structure.
  • the inner wall panel 11 is covered by the first edging board 121 and the second edging board 122, respectively, so that the structure of the entire flat tube 1 is uniform, and the flat tube 1 is formed by bending a whole board to improve the flatness.
  • the first edging board 121 and the second siding board 122 inner wall panel 11 meet end to end.
  • one end of the first edging board 121 is in contact with one end of the second edging board 122 (or one end of the first edging board 121 is bent to one end of the second edging board 122)
  • second The other end of the rim 122 is in contact with the other end of the first rim 121 (or the other end of the second edging plate 122 is bent to the other end of the first edging plate 121).
  • the outer surface of the outer wall panel 12 is flush.
  • the flat tube 1 is made beautiful in appearance, and a convex structure is not formed on the outer surface of the flat tube 1, and the outer surface of the multi-channel has no protrusion, which can be easily transported and handled.
  • the first edge plate 121 is connected to the first side plate portion 113 at a position having a first step portion
  • the second edge plate 122 is connected to the second side plate portion 114 at a position having a second step portion.
  • the end of the first edging plate 121 is engaged with the second step portion
  • the end of the second edging plate 122 is engaged with the first step portion.
  • any one of the tube walls 101 has a two-layer structure, and the plate is an alloy aluminum plate.
  • the present invention also provides a method for forming a flat tube, which can be applied to the manufacturing process of the aforementioned flat tube, and the flat tube can be fabricated by a process such as bending by using a single plate.
  • the method of forming the flat tube includes:
  • the part of the plate body is bent into a wave shape, and specifically includes: a middle portion of the bent plate body is formed with a plurality of grooves that are sequentially connected, and two adjacent ones of the plurality of grooves are opposite in direction, thereby forming a
  • the wave shape that is, referring to FIG. 3a, in the direction from left to right, a plurality of grooves are formed in the plate body, wherein one of the adjacent two grooves faces upward and the other opening Down.
  • the openings of each groove are closed to form a flow path, and the openings of the grooves are closed to form a flow path.
  • the intermediate portion of the plate body may be formed as a plurality of flow passages, and the portions on both sides of the plate body will enclose the intermediate portion of the plate body, such that the portions on both sides of the plate body and the bottom wall of the groove body A double or more layer structure is formed between the two.
  • the forming method of the flat tube in the present invention preferably adopts a sequence of forming a flow passage first and then bending to form an intermediate portion, but the forming order of the flat tube in the present invention is not only in the With this.
  • the flat tube having the multi-layer structure of the tube wall can be quickly and effectively formed, the production efficiency is high, and the wall of the tube is multi-layered, and the wall is more than The number of layers of the layer structure is the same, therefore, the short plate effect can be avoided, and the pressure resistance strength of the pipe wall of the flat pipe is uniform, so that the structure of the pipe wall can be fully applied, and the pressure resistance of the flat pipe is improved. At the same time, it avoids the waste of materials.
  • FIG. 2a the two side walls of the groove are directly inclined toward the middle, so that the two side walls of the groove are closed;
  • the middle portion of the two side portions of the groove is tilted in the middle, and the ends of the groove are not inclined;
  • Fig. 2c the two side walls of the open end of the groove are merged together, and the groove The two side walls of the closed end are still spaced apart, and a flow path can also be formed;
  • Fig. 2d the two side walls of the groove are arranged in an arc shape, and the two side walls of the open end of the groove are closed.
  • a step structure is provided in the present invention to accommodate the end of the plate body.
  • the outer portion includes a first side, a second side, and a third side that are sequentially remote from the intermediate portion, wherein the first side portion may form a flow path with the intermediate portion of the plate body
  • first side portion may form a flow path with the intermediate portion of the plate body
  • FIG. 2 after the intermediate portion of the plate body is formed, a plurality of partition plates are arranged at a time in the left-right direction.
  • the outer side portion includes two at the intermediate portion, and therefore, the first side portion also includes two on both sides of the intermediate portion, wherein the first side portion on the left side and the leftmost one of the plurality of partition plates A flow path is formed, and a flow path is formed between the first side portion on the right side and the rightmost one of the plurality of partition plates.
  • the second side portion is coupled to the first side portion and is bent in a direction around the intermediate portion, wherein the second side portion forms a multi-layered wall structure with the aforementioned groove bottom wall.
  • the third side portion encloses the aforementioned first side portion, specifically, the third side portion of the outer side portion located at the left side of the intermediate portion encloses the first side portion of the outer side portion located on the right side of the intermediate portion, located at the middle portion right
  • the third side portion of the side outer portion encloses the first side portion of the outer side portion located on the left side of the intermediate portion.
  • each of the outer portions includes:
  • the third side portion is bent into an arc shape in a bending direction of the outer portion, and the curved structure defines a flow path;
  • the step has two opposite step surfaces, for example, The two step faces are defined as an inner step surface (toward the inside of the flat tube after installation) and an outer step surface (toward the outside of the flat tube after installation), wherein the inner step surface will abut against the intermediate portion and the outer portion will accommodate the plate The end of the body.
  • the molding steps of an embodiment of the present invention include:
  • the intermediate portion of the panel is bent into a wave shape, that is to say with the shape of the grooves arranged in sequence, preferably the shape of the groove is a rectangular groove.
  • the openings of the grooves are sequentially pressed inwardly until they are pressed into the shape of a plurality of flow channels 102, such as the triangular flow channels 102 in Figure d.
  • the inner bending and the holding structure at both ends are processed, for example, the first side plate portion 113, the first side wrapping plate 121, the second side plate portion 114, and the second side wrapping plate 122.
  • the thickness of the entire tube wall 101 is uniform, the pressure resistance strength can be effectively improved, and the material is saved, and the ribs 111 in the flat tube 1 are cross-connected with each other to improve the overall flat tube 1 strength.
  • the flow path 102 in the flat tube 1 of the present invention may have a triangular shape, or a rectangular bending transition structure may be formed at the bottom of the triangle, thereby effectively increasing the strength of the rib 111, and further,
  • the rib 111 inside the flat tube 1 can be double-layered to increase the overall strength of the flat tube 1.
  • the inner rib 111 of the flat tube 1 can also be bent into a curved shape, which is easier to process than the rectangular bent structure.
  • the thickness of each of the outer peripheral wall of the flat tube 1 is the same, thereby further avoiding the short plate effect, so that the pressure resistance strength of the tube wall at the outer circumference of the flat tube is uniform, thereby effectively improving the flatness.
  • the pressure resistance of the tube 1 and avoid material waste.
  • the present invention also provides a heat exchanger 100.
  • a heat exchanger 100 includes a first header 21, a second header 22, and a flat tube 1.
  • the two ends of the flat tube 1 are respectively connected to and communicate with the first header 21 and the second header 22.
  • the flat tube 1 includes at least two spaced apart, and two adjacent flat tubes 1 are disposed between The fin 3, the flat tube 1 is the flat tube shown in the foregoing embodiment.
  • the flat tube 1 described above can be used to improve the compressive strength of the flat tube while avoiding the short plate effect, so that the pressure resistance strength of the tube wall 101 of the flat tube 1 is uniform.
  • the structure of the pipe wall 101 can be fully applied, and the pressure resistance of the flat pipe 1 is improved while the waste of materials is also avoided.
  • the first header 21 extends in the up and down direction
  • the second header 22 extends in the up and down direction
  • the first header 21 and the second header 22 are parallel to each other
  • the flat tube 1 It is disposed between the first header 21 and the second header 22, and the left end of the flat tube 1 is in communication with the first header 21, and the right end of the flat tube 2 is connected to the second header 22, and a plurality of flat tubes are connected.
  • the tubes are arranged at upper and lower intervals, and fins are disposed between the adjacent two flat tubes 1.
  • the flat tubes, the headers, and the fins are mounted together and then furnace welded together.

Abstract

一种扁管(1)及其成型方法和换热器(100),扁管(1)由一张板折弯加工而成,板折弯形成内部具有多个流道(102)的扁管(1),其中,扁管(1)外周的管壁(101)的各处均为具有相同层数且层数为两层以上的多层结构。

Description

扁管及其成型方法和换热器 技术领域
本发明涉及换热器技术领域,特别涉及一种扁管、具有该扁管的换热器以及前述扁管的成型方法。
背景技术
扁管是多通道换热器的关键零件,以前的产品一般都采用挤压扁管。但是,挤压扁管生产技术和设备门槛都较高,采购成本较大。并且,挤压管壁厚受限于挤压工艺,很难进一步轻量化。
目前,一些企业开始采用折叠扁管,并在汽车空调行业广泛使用。相对于挤压扁管,成形速度和成品率都大幅提升,适合大批量现场生产,物流和采购周期均可大大缩短。并且扁管材料的合金搭配方案更灵活,如应用多层合金,防腐性能可以大幅提升。
但是,相关技术中的折叠扁管设计中,有一个无法避免的缺陷,就是存在厚度不均匀的问题(例如申请号为200920074076.3的专利)。折叠重合部分的扁管厚度,是非重叠区域的两倍。但是根据短板效应,扁管的强度取决于薄壁部分,所以重叠部分其实是浪费了材料。
发明内容
本发明的一个目的在于提出一种耐压强度高的扁管。
本发明的另一目的在于提出一种具有该扁管的换热器。
本发明再一方面的目的在于提出一种扁管的成型方法。
根据本发明实施例的扁管,所述扁管由一张板折弯加工而成,所述板折弯形成内部具有多个流道的扁管,其中,所述扁管外周的管壁的各处均为具有相同层数且层数为两层以上的的多层结构。
根据本发明实施例的扁管,可以提高管壁的均一性和耐压强度。
另外,根据本发明上述实施例的扁管,还可以具有如下附加的技术特征:
在本发明的一个实施例中,所述板包括:内壁板和外壁板。所述内壁板折弯形成多个流道;所述外壁板层叠于所述内壁板的外侧以形成具有所述多层结构的所述管壁。
在本发明的一个实施例中,所述内壁板包括多个筋条和连接板,多个所述筋条沿第一方向依次布置,相邻的两个筋条的一端合拢且另一端张开并由所述连接板连接,所述筋条和所述连接板交错布置且依次相接,且所述连接板层叠布置于所述外壁板的内侧。
在本发明的一个实施例中,相邻的两个筋条之间形成所述流道,所述流道的横截面形状为三角形,矩形或漏斗形。
在本发明的一个实施例中,相邻的两个所述筋条相互合拢的端部在厚度方向重叠一定长度。
在本发明的一个实施例中,所述筋条的横截面呈沿扁管的宽度方向设置的直线型、曲线型或折线型。
在本发明的一个实施例中,所述内壁板还包括第一边板部和第二边板部,多个所述筋条设在所述第一边板部和所述第二边板部之间,且所述第一边板部和所述第二边板部分别与相邻的筋条相连并形成流道,且所述边板部与所述外壁板层叠并贴合。
在本发明的一个实施例中,所述外壁板包括:第一包边板和第二包边板。所述第一包边板与所述第一边板部相邻接并包覆所述内壁板沿第二方向的一侧以及所述第二边板部;和所述第二包边板与所述第二边板部相邻接并包覆所述内壁板沿第二方向的另一侧以及所述第一边板部,其中,所述第二方向垂直于所述第一方向。
在本发明的一个实施例中,所述第一包边板与所述第一边板部相连的位置具有第一台阶部,所述第二包边板与所述第二边板部相连的位置具有第二台阶部,所述第一包边板的端部与所述第二台阶部配合,所述第二包边板的端部与所述第一台阶部配合,且所述外壁板的外表面齐平。
在本发明的一个实施例中,所述扁管外周的管壁的各处的厚度相同。
本发明还提供了一种换热器,根据本发明实施例的换热器,包括:第一集流管、第二集流管和扁管,所述扁管的两端分别连接并连通所述第一集流管和第二集流管,所述扁管包括间隔布置的至少两个,且相邻的两个扁管之间设有翅片,所述扁管为根据前述的扁管。
本发明还提供了一种扁管的成型方法,根据本发明实施例的扁管的成型方法,所述扁管为根据前述的扁管,所述成型方法包括:折弯板体的中间部分形成具有依次相接的多个凹槽且相邻的两个凹槽朝向相反的波浪形,并将每个凹槽的开口合拢形成流道,沿环绕所述中间部分的方向同向折弯所述板体上位于中间部分两侧的外侧部分并抱紧所述中间部分。
一些实施例中,所述外侧部分包括依次远离所述中间部分的第一侧部、第二侧部和第三侧部,每个所述外侧部分的折弯方法均包括:将第二侧部相对于所述第一侧部朝与所述外侧部分的折弯方向相反的方向偏移以在所述第二侧部与所述第一侧部的连接处形成台阶;将第三侧部朝所述外侧部分的折弯方向折弯成弧形;折弯所述外侧部分以使所述台阶抵接所述中间部分的端部以在所述中间部分的外侧形成流道,所述第二侧部贴靠所述中间部分,所述第三侧部的边沿抵在另一个外侧部分的台阶处并抱紧另一个外侧部分的第一侧 部。
附图说明
图1是本发明一个实施例的扁管的立体示意图。
图2a-图2d是本发明不同实施例的扁管的示意图。
图3a-图3g是本发明一个实施例的扁管的制作流程示意图。
图4是图2a的局部示意图。
图5是本发明一个实施例的换热器的示意图。
附图标记:换热器100,第一集流管21,第二集流管22,翅片3,扁管1,管壁101,流道102,内壁板11,外壁板12,筋条111,连接板112,第一方向A,第二方向B,槽部103,第一边板部113,第二边板部114,第一包边板121,第二包边板122。
具体实施方式
为解决常规折叠扁管管壁厚度不均匀、材料浪费的问题,本发明提出一种新型折叠扁管1结构,该设计可以保证折叠扁管的管壁厚度一致。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
如图1和图2,根据本发明实施例的扁管1,扁管1由一张板折弯加工而成,板折弯形成内部具有多个流道102的扁管1,其中,扁管1外周的管壁101的各处均为具有相同层数的多层结构,其中所述多层结构的层数为两层以上。
根据本发明实施例的扁管1,管壁101的各处均为多层结构,且管壁101各处的多层结构的层数相同,因此,可以避免出现短板效应,使扁管1的管壁101各处的耐压强度一致,使得管壁101各处的结构都可以被充分应用,在提高扁管1耐压强度的同时也避免了材料的浪费。
另外,板折弯形成的结构包括管壁101和位于管壁内部的筋条111,管壁101内的流道102可以由筋条111和管壁101配合形成。
如图2a到图2d,在本发明的一个实施例中,板包括:内壁板11和外壁板12。内壁板11折弯形成多个流道102。外壁板12层叠于内壁板的外侧,外壁板12与内壁板11的一部分形成的层叠结构可以以形成具有多层结构的管壁101。通过内壁板11内形成流道102,然后通过内壁板11的一部分与外壁板12的层叠结构形成前述的多层结构,可以方便扁管 1的成型,提高扁管1的成型效率,另外,内壁板11形成多个流道102,并且由外壁板12包裹,可以提高流道102的密封性能。
其中,两层板层叠是指:两层板的表面贴合。具体而言,外壁板12层叠于内壁板11的内侧是指,外壁板12环绕内壁板11设置,且外壁板12的内表面与内壁板11的外表面贴合,其中,内壁板11的一部分形成为流道102,且内壁板11的另一部分与外壁板12构造成前述的层叠结构。
其中,需要说明的是,本发明中的内壁板11、外壁板12等结构是通过板连续折弯形成的。
进一步地,如图2a到图2d,内壁板11包括多个筋条111和连接板112,多个筋条111沿第一方向A依次布置,相邻的两个筋条111的一端合拢且另一端张开并由连接板112连接,筋条111和连接板112交错布置且依次相接,连接板112层叠布置于外壁板12的内侧。
也就是说,在板折弯过程中,板沿第一方向A依次折弯形成筋条111和连接板112交错的形式,与连接板112的两端(位于连接板112在第一方向A上的两端)相接的筋条111的另一端相互合拢形成流道102。
具体而言,如图2a到图2d,多个筋条111沿第一方向A依次布置,其中,筋条111可以沿第二方向B延伸,其中,筋条111在第二方向B上,相邻的两个筋条111中一个筋条111的一端与另一个筋条111的一端相互合拢,且相邻的两个筋条111中一个筋条111的另一端与另一个筋条111的另一端相互张开,而且相邻的两个筋条111的张开的端部由连接板112连接,其中相邻的两个筋条111、连接这两个筋条111的连接板112之间组合形成流道102。
在扁管1的成型过程中,将板折弯形成多个槽部103,槽部103的两个侧壁形成为筋条111,槽部103的底壁形成为连接板112,将槽部103的开口合拢,则可以形成一个流道102。
举例而言,如图4所示,包括了第一筋条111a、第二筋条111b和第三筋条111c,第一筋条111a、第二筋条111b和第三筋条111c沿左右方向依次布置,第一筋条111a和第二筋条111b相邻,第一筋条111a的上端与第二筋条111b的上端合拢,而且第一筋条111a的下端和第二筋条111b的下端张开,且第一筋条111a的下端与第二筋条111b的下端由第一连接板112a连接,从而形成一个流道102。第二筋条111b和第三筋条111c相邻,第二筋条111b的下端与第三筋条111c的下端合拢,而且第二筋条111b的上端和第三筋条111c的上端张开,且第二筋条111b的上端与第三筋条111c的上端由第二连接板112b连接,从而形成一个流道102。
又如图3,在成型扁管1的过程中,将板折弯呈波浪形,并形成有多个槽部103,且相邻的两个槽部103的开口方向相反,这样每个槽部103的两个侧壁分别形成为筋条111, 且每个槽部103的底则形成为一个连接板112。
进一步地,相邻的两个筋条111之间形成三角形的流道102,换句话说,相邻的两个筋条111之间形成流道102,且流道的横截面为三角形。也就是说,相邻的两个筋条111为相互倾斜呈预定角度的形式,相邻的两个筋条111相互倾斜呈预定角度之后,相邻的两个筋条111和连接这两个筋条111的连接板112之间则限定出一个三角形的流道102。三角形具有稳定的结构,在整个扁管1中,布置出来的三角形可以支撑管壁101,从而可以提高扁管1的耐压强度。
当然,筋条111采用其它的形状也可以提高扁管1的耐压强度。
例如,相邻的两个筋条111之间形成的流道102还可以是横截面为矩形、漏斗形等形状。
如图2b到2d,在本发明的一些实施例中,相邻的两个筋条111相互合拢的端部在厚度方向上重叠一定长度。两个筋条111重叠的部分耐压强度比较高,可以更好地支撑扁管1的关闭,从而可以进一步地提高扁管1地耐压强度。
另外,如图2a,本发明的筋条111的横截面可以呈沿扁管的宽度方向设置的直线型,如图2b和2c,本发明的筋条111可以呈沿扁管的宽度方向设置的曲线型,如图2d,本发明的筋条111可以呈沿扁管的宽度方向设置的折线型。
具体而言,本发明的筋条111的横截面可为呈沿扁管的宽度方向设置的直线型、曲线型或折线型,当然,筋条111也可以为其它的形状。筋条111具有多种结构形式,满足不同的换热要求和强度要求。
另外,如图2a,相邻的两个筋条111之间形成为三角形结构。
如图2b,相邻的两个筋条111大体呈三角形的结构,而相邻的两个筋条111的合拢端沿扁厚度方向重叠预定长度。
如图2c,相邻的两个筋条111相互合拢的端部沿厚度方向重叠预定长度,而且相邻的两个筋条111之间限定出矩形的流道102。具体而言,参照图3,筋条包括第一板部、第二板部和连接部,第一板部和第二板部沿上下方向(或者说扁管的厚度方向)延伸,连接部部沿左右方向(或者说扁管的宽度方向)延伸,连接板部的左右边沿分别与第一板部和第二板部相连,相邻的两个筋条111中的两个第一板部沿左右方向重叠,相邻两个筋条111中的两个第二板部沿左右方向间隔开并由连接板112连接,连接板112、两个第二板部和两个连接部组合形成矩形的流道102。
如图2d,相邻的两个筋条111相互合拢的端部重叠预定长度,而且相邻的两个筋条111之前限定出漏斗形状的流道102。具体而言,参照图2d,筋条的横截面呈沿上下方向延伸的弧线形状,相邻的两个筋条的一端合拢且另一端分开并由连接板112连接,由连接板112 与相邻的两个筋条组成漏斗形的流道102,流道102的横截面在上下方向(或者说扁管的厚度方向)上从一侧到另一侧的宽度尺寸(沿扁管宽度方向的尺寸或沿图2d中左右方向的尺寸)逐渐增大。
进一步地,内壁板11还包括第一边板部113和第二边板部114,多个筋条111设在第一边板部113和第二边板部114之间,且第一边板部113和第二边板部114分别与相邻的筋条111相连并形成流道102,且边板部与外壁板12层叠并贴合。从而可以提高流道102的数量,进而提高该扁管1的换热效率。
其中,第一边板部113与相邻的筋条111的一端连接且另一端合拢形成一个流道102,第二边板部114与相邻的筋条111的一端连接且另一端合拢形成一个流道102,
具体而言,如图2a到图2d,第一边板部113设在多个筋条111的左侧,第二边板部114设在多个筋条111的右侧,第一边板部113的一端与最左侧的一个筋条111(与第一边板部113相邻的筋条111)的上端相连,且第一边板部113的另一端与最左侧的一个筋条111的下端合拢形成流道102;第二边板部114的一端与最右侧的一个筋条111(与第二边板部114相邻的筋条111)的下端相连,且第二边板部114的另一端与最右侧的一个筋条111的上端合拢形成流道102。
在本发明的一个实施例中,如图2a到图2d,外壁板12包括:第一包边板121和第二包边板122。第一包边板121与第一边板部113相邻接并包覆内壁板11沿第二方向B的一侧以及第二边板部114。第二包边板122与第二边板部114相邻接并包覆内壁板11沿第二方向B的另一侧以及第一边板部113,其中,第二方向B垂直于第一方向A。
进一步地,结合前述的扁管1的结构,第一包边板121与位于内壁板11上沿第二方向B上的一侧的连接板112以及第二边板部114层叠形成多层结构,第二包边板122与位于内壁板11上沿第二方向B上的另一侧的连接板112以及第二边板部114层叠形成多层结构,这些组合形成为整个管壁101。
通过第一包边板121和第二包边板122包覆内壁板11的外侧,从而使得第一包边板121和第二包边板122与内壁板11配合形成多层结构的管壁101,而且,分别通过第一包边板121和第二包边板122包覆住内壁板11,使得整个扁管1的结构均匀,而且方便通过一整块板折弯形成扁管1,提高扁管1的成型效率和密封性能。
优选地,第一包边板121和第二包边板122内壁板11首尾相接。换句话说,第一包边板121的一端与第二包边板122的一端相接(或者说将第一包边板121的一端折弯到第二包边板122的一端),第二包边122的另一端与第一包边121的另一端相接(或者说将第二包边板122的另一端折弯到第一包边板121的另一端)。优选地,外壁板12的外表面齐平。使得扁管1的外形美观,而且在扁管1的外表面上不会形成凸起的结构,多通道的外表面 不存在凸起,可以方便运输和搬运。
进一步地,参照图2,第一包边板121与第一边板部113相连的位置具有第一台阶部,第二包边板122与第二边板部114相连的位置具有第二台阶部,第一包边板121的端部与第二台阶部配合,第二包边板122的端部与第一台阶部配合。
另外,在本发明中,管壁101的任一处均为双层结构,且板为合金铝板。
另外,本发明还提供了一种扁管的成型方法,该成型方法可以应用于前述的扁管的制作过程中,该扁管可以利用一张板体通过折弯等工艺制作而成。具体而言,扁管的成型方法包括:
将板体的一部分折弯成波浪形状,具体包括,折弯板体的中间部分形成具有依次相接的多个凹槽,多个凹槽中相邻的两个的朝向相反,从而形成了一个波浪形状,也就是说,参照图3a,在从左往右的方向上,板体上形成了多个凹槽,其中,相邻的两个凹槽中的一个开口朝上,而另一个开口朝下。将每个凹槽的开口合拢形成流道,凹槽的开口合拢后形成流道。
沿环绕所述中间部分的方向同向折弯所述板体上位于中间部分两侧的外侧部分并抱紧所述中间部分。换言之,前述中,板体的中间部分可以形成为多个流道,而板体的两侧的部分将包住板体的中间部分,这样,板体两侧的部分与凹槽的底壁之间就会形成双层或更多层的结构。
另外,还需要指出的是,本发明中扁管的成型方式,优选采用先折弯形成流道、后折弯形成包住中间部分的顺序,但是,本发明中扁管的成型顺序并非仅在与此。
根据本发明实施例的扁管的成型方法,可以快速有效地形成管壁为多层结构的扁管,生产效率高,而且管壁的各处均为多层结构,且管壁各处的多层结构的层数相同,因此,可以避免出现短板效应,使扁管的管壁各处的耐压强度一致,使得管壁各处的结构都可以被充分应用,在提高扁管耐压强度的同时也避免了材料的浪费。
需要说明的是,凹槽的开口存在多种多样的合拢方式,例如,在图2a中,直接将凹槽的两个侧壁朝中间倾斜,从而将凹槽的两个侧壁合拢;在图2b中,将凹槽的两个侧部的中间部分超中间倾斜,而凹槽的两端不倾斜;在图2c中,将凹槽的开口端的两个侧壁合并在一起,而凹槽的封闭端的两个侧壁依然间隔开,同样可以形成流道;在图2d中,将凹槽的两个侧壁设置成弧形形状,并将凹槽的开口端的两侧壁合拢。本发明上述对合拢的方式的描述,仅仅是本发明的一些具体实施方式,并非是对本发明保护范围的限制,本发明无法一一列举所有的合拢方式,其他依照本申请的设计思路将凹槽合拢形成流道的方案均应该在本发明的保护范围内。
另外,为了方便板体端部的定位,本发明中设置了台阶结构来容纳板体的端部。
在本发明的一些实施例中,外侧部分包括依次远离所述中间部分的第一侧部、第二侧部和第三侧部,其中,第一侧部可以与板体的中间部分形成流道,例如,如图2所示,板体的中间部分成型之后,在左右方向上一次排布有多个隔板。外侧部包括位于中间部分的两个,因此,第一侧部也包括位于中间部分两侧的两个,其中,位于左侧的第一侧部与多个隔板中最左侧的一个之间形成一个流道,位于右侧的第一侧部与多个隔板中最右侧的一个之间形成一个流道。
另外,第二侧部与第一侧部相连,并沿着环绕中间部分的方向弯折,其中,第二侧部与前述的凹槽底壁形成多层壁结构。
第三侧部包住前述的第一侧部,具体地,位于中间部分左侧的外侧部分中的第三侧部包住位于中间部分右侧的外侧部分的第一侧部,位于中间部分右侧的外侧部分中的第三侧部包住位于中间部分左侧的外侧部分的第一侧部。
具体而言,每个所述外侧部分的折弯方法均包括:
将第二侧部相对于所述第一侧部朝与所述外侧部分的折弯方向相反的方向偏移以在所述第二侧部与所述第一侧部的连接处形成台阶;
将第三侧部朝所述外侧部分的折弯方向折弯成弧形,弧形的结构将会限定出一个流道;
折弯所述外侧部分以使所述台阶抵接所述中间部分的端部以在所述中间部分的外侧形成流道,所述第二侧部贴靠所述中间部分,所述第三侧部的边沿抵在另一个外侧部分的台阶处并抱紧另一个外侧部分的第一侧部。
其中,在第一侧部和第二侧部的连接处形成的台阶中,由于是通过第一侧部与第二侧部相对偏移形成,因此台阶具有相对的两个台阶面,例如将这两个台阶面定义为内侧台阶面(安装完成之后朝向扁管内侧)和外侧台阶面(安装完成之后朝向扁管外侧),其中,内侧台阶面将抵靠于中间部分上,外侧部分将容纳板体的端部。
具体而言,参照图3a-图3g,本发明中一种实施例的成型步骤包括:
1、如图3a,将板的中间部分折弯呈波浪形状,也就是说具有依次布置的凹槽的形状,优选凹槽的形状为矩形凹槽。
2、如图3b-图3d,将凹槽的开口部依次向内挤压,直至压成多个流道102的形状,例如,图d中的三角形流道102。
3、如图3e,加工内部折弯以及两端的抱紧结构,例如前述的第一边板部113、第一包边板121、第二边板部114和第二包边板122。
4、如图3f,将两侧板材向内折弯。
5、如图3g,利用两端圆弧折弯抱紧固定,形成一个完成的折叠扁管1。
本发明中通过新型折法涉及的折叠扁管1,整个管壁101的厚度均匀,可以有效提升耐 压强度,并节省材料,扁管1内的筋条111相互交叉连接,改善扁管1整体强度。
另外,如前所述,本发明的扁管1内的流道102可以为三角形的形状,也可以在三角形的底部形成一个矩形折弯过渡结构,从而有效增加筋条111的强度,另外,还可以将扁管1内部的筋条111实现双层复合,增加扁管1的整体强度。同样地,还可以将扁管1的内部筋条111折弯成曲线型,相对于矩形折弯结构,加工更加容易。
优选地,本发明中,扁管1外周的管壁的各处的厚度相同,从而进一步地避免短板效应,使扁管外周的管壁的各处耐压强度一致,从而可以有效地提高扁管1的耐压强度并避免材料浪费。
另外,本发明还提供了一种换热器100。
如图5,根据本发明实施例的换热器100,包括:第一集流管21、第二集流管22和扁管1。其中,扁管1的两端分别连接并连通第一集流管21和第二集流管22,扁管1包括间隔布置的至少两个,且相邻的两个扁管1之间设有翅片3,扁管1为前述实施例示出的扁管。
根据本发明实施例的换热器100,采用了前述的扁管1,可以在提高扁管耐压强度的同时避免短板效应,使扁管1的管壁101各处的耐压强度一致,使得管壁101各处的结构都可以被充分应用,在提高扁管1耐压强度的同时也避免了材料的浪费。
具体而言,参照图5,第一集流管21沿上下方向延伸,第二集流管22沿上下方向延伸,且第一集流管21、第二集流管22相互平行,扁管1设在第一集流管21、第二集流管22之间,且扁管1的左端与第一集流管21连通,扁管2的右端与第二集流管22连通,多个扁管沿上下间隔布置,且相邻的两个扁管1之间设置翅片。
另外,本发明的换热器100在制作过程中,将扁管、集流管、翅片安装到一起后一起进行炉焊。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种扁管,所述扁管由一张板折弯加工而成,其特征在于,所述板折弯形成内部具有多个流道的扁管,其中,所述扁管外周的管壁的各处均为具有相同层数且层数为两层以上的多层结构。
  2. 根据权利要求1所述的扁管,其特征在于,所述板包括:
    内壁板,所述内壁板折弯形成多个流道;
    外壁板,所述外壁板层叠于所述内壁板的外侧以形成具有所述多层结构的所述管壁。
  3. 根据权利要求2所述的扁管,其特征在于,所述内壁板包括多个筋条和连接板,多个所述筋条沿第一方向依次布置,相邻的两个筋条的一端合拢且另一端张开,张开的一端的两个筋条由所述连接板连接,所述筋条和所述连接板间隔布置且依次相接,且所述连接板布置于所述外壁板的内侧并与外壁板的内侧贴合。
  4. 根据权利要求3所述的扁管,其特征在于,相邻的两个筋条之间形成所述流道,所述流道的横截面形状为三角形,矩形或漏斗形。
  5. 根据权利要求3所述的扁管,其特征在于,相邻的两个所述筋条相互合拢的端部在厚度方向上重叠一定长度。
  6. 根据权利要求3-5中任一项所述的扁管,其特征在于,所述筋条的横截面呈沿扁管的宽度方向设置的直线型、曲线型或折线型。
  7. 根据权利要求3-5中任一项所述的扁管,其特征在于,所述内壁板还包括第一边板部和第二边板部,多个所述筋条设在所述第一边板部和所述第二边板部之间,且所述第一边板部和所述第二边板部分别与相邻的筋条相连并形成流道,且所述边板部与所述外壁板层叠并贴合。
  8. 根据权利要求7所述的扁管,其特征在于,所述外壁板包括:
    第一包边板,所述第一包边板与所述第一边板部相邻接并包覆所述内壁板沿第二方向的一侧以及所述第二边板部;和
    第二包边板,所述第二包边板与所述第二边板部相邻接并包覆所述内壁板沿第二方向的另一侧以及所述第一边板部,
    其中,所述第二方向垂直于所述第一方向。
  9. 根据权利要求8所述的扁管,其特征在于,所述第一包边板与所述第一边板部相连的位置具有第一台阶部,所述第二包边板与所述第二边板部相连的位置具有第二台阶部,所述第一包边板的端部与所述第二台阶部配合,所述第二包边板的端部与所述第一台阶部配合,且所述外壁板的外表面齐平。
  10. 根据权利要求1所述的扁管,其特征在于,所述扁管外周的管壁的各处的厚度相同。
  11. 一种换热器,其特征在于,包括;
    第一集流管、第二集流管;
    扁管,所述扁管的两端分别连接并连通所述第一集流管和第二集流管,所述扁管包括间隔布置的至少两个,且相邻的两个扁管之间设有翅片,所述扁管为根据权利要求1-10中任一项所述的扁管。
  12. 一种扁管的成型方法,所述扁管为根据权利要求1-10中任一项所述的扁管,其特征在于,所述成型方法包括:
    折弯板体的中间部分形成具有依次相接的多个凹槽且相邻的两个凹槽朝向相反的波浪形,并将每个凹槽的开口合拢形成流道,
    沿环绕所述中间部分的方向同向折弯所述板体上位于中间部分两侧的外侧部分并抱紧所述中间部分。
  13. 根据权利要求12所述的成型方法,其特征在于,所述外侧部分包括依次远离所述中间部分的第一侧部、第二侧部和第三侧部,每个所述外侧部分的折弯方法均包括:
    将第二侧部相对于所述第一侧部朝与所述外侧部分的折弯方向相反的方向偏移以在所述第二侧部与所述第一侧部的连接处形成台阶;
    将第三侧部朝所述外侧部分的折弯方向折弯成弧形;
    折弯所述外侧部分以使所述台阶抵接所述中间部分的端部以在所述中间部分的外侧形成流道,所述第二侧部贴靠所述中间部分,所述第三侧部的边沿抵在另一个外侧部分的台阶处并抱紧另一个外侧部分的第一侧部。
PCT/CN2018/107285 2017-09-30 2018-09-25 扁管及其成型方法和换热器 WO2019062701A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710923397.5A CN109595963A (zh) 2017-09-30 2017-09-30 扁管及换热器
CN201721287686.2 2017-09-30
CN201710923397.5 2017-09-30
CN201721287686.2U CN207797842U (zh) 2017-09-30 2017-09-30 扁管及换热器

Publications (1)

Publication Number Publication Date
WO2019062701A1 true WO2019062701A1 (zh) 2019-04-04

Family

ID=65900722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107285 WO2019062701A1 (zh) 2017-09-30 2018-09-25 扁管及其成型方法和换热器

Country Status (1)

Country Link
WO (1) WO2019062701A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022532A2 (en) * 1999-01-19 2000-07-26 Calsonic Corporation Flat tubes for use with heat exchanger and manufacturing method thereof
CN202041112U (zh) * 2010-12-30 2011-11-16 上海德尔福汽车空调系统有限公司 一种加强管端强度的折叠式8通道扁管
CN102353294A (zh) * 2011-08-30 2012-02-15 阳江市宝马利汽车空调设备有限公司 折叠式微通道多孔扁管及其成型方法
CN202393279U (zh) * 2011-11-10 2012-08-22 上海德尔福汽车空调系统有限公司 一种加强管端强度的折叠式12通道扁管
DE102013204739A1 (de) * 2013-03-18 2014-09-18 Behr Gmbh & Co. Kg Flachrohr und ein Wärmeübertrager mit einem solchen Flachrohr
CN205718614U (zh) * 2016-07-01 2016-11-23 安徽金三环金属科技有限公司 一种用于汽车冷凝器的折叠式多通道扁管
CN207797842U (zh) * 2017-09-30 2018-08-31 杭州三花微通道换热器有限公司 扁管及换热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022532A2 (en) * 1999-01-19 2000-07-26 Calsonic Corporation Flat tubes for use with heat exchanger and manufacturing method thereof
CN202041112U (zh) * 2010-12-30 2011-11-16 上海德尔福汽车空调系统有限公司 一种加强管端强度的折叠式8通道扁管
CN102353294A (zh) * 2011-08-30 2012-02-15 阳江市宝马利汽车空调设备有限公司 折叠式微通道多孔扁管及其成型方法
CN202393279U (zh) * 2011-11-10 2012-08-22 上海德尔福汽车空调系统有限公司 一种加强管端强度的折叠式12通道扁管
DE102013204739A1 (de) * 2013-03-18 2014-09-18 Behr Gmbh & Co. Kg Flachrohr und ein Wärmeübertrager mit einem solchen Flachrohr
CN205718614U (zh) * 2016-07-01 2016-11-23 安徽金三环金属科技有限公司 一种用于汽车冷凝器的折叠式多通道扁管
CN207797842U (zh) * 2017-09-30 2018-08-31 杭州三花微通道换热器有限公司 扁管及换热器

Similar Documents

Publication Publication Date Title
JP4732609B2 (ja) 熱交換器コア
US20100243225A1 (en) Flat tube, flat tube heat exchanger, and method of manufacturing same
US20090019695A1 (en) Flat tube, flat tube heat exchanger, and method of manufacturing same
CN207797842U (zh) 扁管及换热器
WO2007101376A1 (fr) Échangeur de chaleur du type à plaques à nervures
WO2008011115A2 (en) Flat tube for heat exchanger
US10060687B2 (en) Connecting member and micro-channel heat exchanger
US20070187081A1 (en) Heat exchanger
MX2014006544A (es) Aleta interna.
JP2009532660A (ja) 最外伝熱板の外側に設けられた補強板を含むプレート熱交換器
EP3355020A1 (en) Heat exchange tube for heat exchanger, heat exchanger and assembly method thereof
WO2020073744A1 (zh) 管组件以及换热器
CN105121988A (zh) 折叠管多组热交换单元
MX2014006546A (es) Enfriador egr.
JP2005515391A (ja) 溶接多室管
TWI421460B (zh) Heat exchange element
JP2002350083A (ja) 熱交換器用インナーフィン
WO2019062701A1 (zh) 扁管及其成型方法和换热器
US20130263451A1 (en) Method of fabricating a double-nosed tube for a heat exchanger
CN101600931B (zh) 热交换器管道及其形成方法
US3145456A (en) Method of manufacturing finned structure
CN109595963A (zh) 扁管及换热器
CN106767090A (zh) 一种加强型散热管及加工工艺
TWI437201B (zh) 熱交換器
US20200240715A1 (en) Heat exchanger tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861816

Country of ref document: EP

Kind code of ref document: A1