WO2019062131A1 - 发光器件 - Google Patents

发光器件 Download PDF

Info

Publication number
WO2019062131A1
WO2019062131A1 PCT/CN2018/086298 CN2018086298W WO2019062131A1 WO 2019062131 A1 WO2019062131 A1 WO 2019062131A1 CN 2018086298 W CN2018086298 W CN 2018086298W WO 2019062131 A1 WO2019062131 A1 WO 2019062131A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
light
emitting layer
transport layer
Prior art date
Application number
PCT/CN2018/086298
Other languages
English (en)
French (fr)
Inventor
马中生
刘宏俊
郝力强
Original Assignee
昆山维信诺科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山维信诺科技有限公司 filed Critical 昆山维信诺科技有限公司
Publication of WO2019062131A1 publication Critical patent/WO2019062131A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a light emitting device.
  • OLED Organic Light-Emitting Display
  • OLED devices are characterized by high brightness, wide material selection range, low driving voltage, full-curing active illumination, high-definition, wide viewing angle, and fast response. They are a promising display technology and light source.
  • the development trend of mobile communication and information display in the information age, as well as the requirements of green lighting technology, is the focus of many researchers at home and abroad.
  • OLED devices still have the problem of low current efficiency, which results in large power consumption and poor lifetime, and it is difficult to meet the demand for high brightness and low power consumption of wearable products.
  • the present invention provides a light emitting device including: a hole transport layer, an electron transport layer, a light emitting layer between the hole transport layer and the electron transport layer, and a reflection
  • the light emitting layer includes a first light emitting layer and a second light emitting layer, wherein a current efficiency of the first light emitting layer is higher than a current efficiency of the second light emitting layer; wherein: the electron transport layer is located at the Between the first luminescent layer and the reflective electrode, and the host material of the first luminescent layer is selected from the material of the hole transport layer; or the hole transport layer is located in the first luminescent layer and the Between the reflective electrodes, and the host material of the first luminescent layer is selected from the material of the electron transport layer.
  • the first light emitting layer is closer to the hole transport layer than the second light emitting layer.
  • the first light emitting layer is closer to the electron transport layer than the second light emitting layer.
  • the light emitting device is a white light emitting device.
  • the first light emitting layer is a yellow light emitting layer
  • the second light emitting layer is a blue light emitting layer.
  • the host material of the first light-emitting layer is selected from the material of the hole transport layer
  • the material of the host material of the first light-emitting layer and the material of the hole transport layer both include NPB.
  • the host material of the first luminescent layer when the host material of the first luminescent layer is selected from the material of the electron transport layer, the host material of the first luminescent layer and the material of the electron transport layer both include Alq 3 .
  • the dye of the first light emitting layer has an emission peak of 540 nm to 580 nm.
  • the host material of the second light emitting layer comprises a MAND
  • the dye of the second light emitting layer has an emission peak of 440 nm to 480 nm.
  • the thickness of the film layer of the second light emitting layer is thicker than the film thickness of the first light emitting layer.
  • the thickness of the film layer of the second luminescent layer is 2 to 5 times the thickness of the film layer of the first luminescent layer.
  • the thickness of the second luminescent layer is 20 nm to 100 nm, and the thickness of the first luminescent layer is 1 nm to 20 nm.
  • the light emitting device further includes a transparent electrode, wherein the hole transport layer is located on the transparent electrode when the electron transport layer is located between the first light emitting layer and the reflective electrode; When the hole transport layer is located between the first light emitting layer and the reflective electrode, the transparent electrode is located on the electron transport layer.
  • the transparent electrode is made of ITO, IZO or ZnO.
  • the light emitting device further includes an electron injection layer and a hole injection layer, wherein the electron injection layer is located at the electron when the electron transport layer is located between the first light emitting layer and the reflective electrode Between the transmission layer and the reflective electrode, the hole injection layer is located between the hole transport layer and the transparent electrode; and when the hole transport layer is located at the first luminescent layer and the reflective electrode In between, the electron injecting layer is located between the electron transporting layer and the transparent electrode, and the hole injecting layer is located between the hole transporting layer and the reflective electrode.
  • the light emitting device includes: a hole transport layer, an electron transport layer, a light emitting layer between the hole transport layer and the electron transport layer, and a reflective electrode;
  • the layer includes a first luminescent layer and a second luminescent layer, wherein a current efficiency of the first luminescent layer is higher than a current efficiency of the second luminescent layer; a relationship between the first luminescent layer and the reflective electrode.
  • the electron transport layer, the host material of the first light-emitting layer is selected from the material of the hole transport layer, or the hole transport layer is between the first light-emitting layer and the reflective electrode,
  • the host material of the first light-emitting layer is selected from the material of the electron transport layer, that is, the first light-emitting layer having high current efficiency is disposed close to the light-emitting surface of the light-emitting device, thereby enabling the first light-emitting layer to be fully utilized.
  • the host material of the first luminescent layer is selected from a material of a hole transport layer connected thereto or a material selected from an electron transport layer connected thereto, whereby the first luminescent layer can also be connected thereto
  • the function of the film layer that is, the first light-emitting layer can also realize the function of hole transport or electron transport, reducing the energy level barrier between the first light-emitting layer and the hole transport layer or the electron transport layer
  • the hole or electron transition can be accelerated, the mobility of holes or electrons can be increased, and the exciton recombination region can be brought closer to the second luminescent layer to balance the ratio of the action of the luminescent layer to obtain the chromaticity of the white light, thereby preparing Light-emitting devices can significantly increase the current efficiency of the device, thereby reducing device power consumption and increasing device lifetime.
  • FIG. 1 is a schematic structural view of a light emitting device
  • FIG. 2 is a schematic structural view of another light emitting device
  • FIG. 3 is a schematic structural view of a light emitting device according to Embodiment 1 of the present invention.
  • FIG. 4a is a schematic diagram of the principle of an exciton recombination region of the light emitting device shown in FIG. 3;
  • 4b is a schematic diagram showing the principle of an exciton recombination region of the light emitting device shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of a light emitting device according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram showing the principle of an exciton recombination region of the light emitting device shown in FIG. 5;
  • 100-light emitting device 110-light emitting layer; 111-blue light emitting layer; 112-yellow light emitting layer; 120-light emitting surface; 130-hole transport layer;
  • 200-light emitting device 210-light emitting layer; 211-first light emitting layer; 212-second light emitting layer; 213-third light emitting layer; 220-light emitting surface;
  • 300-light-emitting device 301-glass substrate; 310-light-emitting layer; 311-first light-emitting layer; 312-second light-emitting layer; 320-hole transport layer; 330-electron transport layer; 340-reflective electrode; Surface; 360-transparent electrode; 370-hole injection layer; 380-electron injection layer;
  • 500-light-emitting device 501-glass substrate; 510-light-emitting layer; 511-first light-emitting layer; 512-second light-emitting layer; 520-hole transport layer; 530-electron transport layer; 540-reflective electrode; Surface; 560-transparent electrode; 570-hole injection layer; 580-electron injection layer;
  • FIG. 1 is a schematic structural diagram of a light emitting device.
  • the light emitting layer 110 is composed of a blue light emitting layer 111 and a yellow light emitting layer 112, and the light emitting device 100 is generally widely used in OLED devices and lighting products.
  • the OLED device is bottom-emitting, and the blue light-emitting layer 111 in the light-emitting device 100 is closer to the light-emitting surface 120 than the yellow light-emitting layer 112.
  • the blue light emitting layer 111 is composed of a blue light body and a blue light dye
  • the yellow light emitting layer 112 is composed of a yellow light body and a yellow light dye.
  • the current efficiency is low, so that the power consumption is large and the life is poor, and it is difficult to meet the demand for high brightness and low power consumption of the wearable product.
  • the light-emitting layer 210 includes a three-layer structure, which is a first light-emitting layer 211, a second light-emitting layer 212, and a third light-emitting layer.
  • the third luminescent layer 213 includes a blue body and a blue light dye.
  • the three-layer luminescent layer 210 can improve the current efficiency of the device to some extent, but the device structure is complicated and the process is cumbersome.
  • the present application proposes a light emitting device, the core idea of which is that the light emitting device comprises: a hole transport layer, an electron transport layer, located between the hole transport layer and the electron transport layer. a light emitting layer, and a reflective electrode; the light emitting layer includes a first light emitting layer and a second light emitting layer, wherein a current efficiency of the first light emitting layer is higher than a current efficiency of the second light emitting layer; the electron transport layer Between the first luminescent layer and the reflective electrode, the host material of the first luminescent layer is selected from the material of the hole transport layer, or the hole transport layer is located in the first luminescent layer Between the reflective electrode and the reflective electrode, the material of the first light-emitting layer is selected from the material of the electron transport layer, that is, the first light-emitting layer with high current efficiency is disposed near the light-emitting surface of the light-emitting device, thereby being capable of The high performance characteristics of the first luminescent layer are fully utilized.
  • the host material of the first luminescent layer is selected from a material of a hole transport layer connected thereto or a material selected from an electron transport layer connected thereto, whereby the first luminescent layer can also be connected thereto
  • the function of the film layer that is, the first light-emitting layer can also realize the function of hole transport or electron transport, thereby accelerating the transition of holes or electrons, increasing the mobility of holes or electrons, and making the exciton recombination region
  • the second luminescent layer is close to balance the ratio of the luminescent layer to obtain the chromaticity of the white light.
  • the illuminating device thus prepared can significantly improve the current efficiency of the device, thereby reducing device power consumption and improving device lifetime.
  • FIG. 3 is a schematic structural diagram of a light emitting device according to Embodiment 1 of the present invention.
  • the light emitting device 300 is a bottom light emitting device, that is, the light emitting surface 350 is located at the bottom of the light emitting device 300.
  • the light emitting device 300 includes a hole transport layer 320, an electron transport layer 330, a light emitting layer 310 between the hole transport layer 320 and the electron transport layer 330, and a reflective electrode 340; the light emitting layer 310
  • the first light emitting layer 311 and the second light emitting layer 312 are included, wherein the current efficiency of the first light emitting layer 311 is higher than that of the second light emitting layer 312; the hole transport layer 320 is located at the first Between the light-emitting layer 311 and the light-emitting surface 350, the electron-transport layer 330 is located between the second light-emitting layer 312 and the reflective electrode 340, and the host material of the first light-emitting layer 311 is selected from the space.
  • the material of the hole transport layer 320 is selected from the space.
  • the positional relationship of the hole transport layer 320, the electron transport layer 330, the first light-emitting layer 311, the second light-emitting layer 312, and the reflective electrode 340 in the light-emitting direction The hole-emitting layer 320 is closest to the light-emitting surface 350, the first light-emitting layer 311 is located on the hole-transport layer 320, and the second light-emitting layer 312 is located on the first light-emitting layer 311.
  • the electron transport layer 330 is located on the second light emitting layer 312, and the reflective electrode 340 is located on the electron transport layer 330.
  • the hole transport layer 320, the electron transport layer 330, the first light emitting layer 311, the second light emitting layer 312, and the reflective electrode 340 are all disposed on the glass substrate 301.
  • the hole transport layer 320, the first light emitting layer 311, the second light emitting layer 312, the electron transport layer 330, and the reflective electrode 340 are sequentially disposed on the glass substrate 301.
  • the light emitting surface 350 of the light emitting device 300 is closer to the hole transport layer 320, thereby placing the first light emitting layer 311 with high current efficiency close to the light emitting layer.
  • the light emitting surface 350 of the device 300 can fully utilize the high performance characteristics of the first light emitting layer 311.
  • the host material of the first luminescent layer 311 is selected from the material of the hole transport layer 320, that is, the first luminescent layer 311 can also realize the function of hole transport, thereby accelerating the transition of holes.
  • the hole mobility is increased, and the exciton recombination region is brought closer to the second luminescent layer 312 to balance the ratio of the luminescent layer action to obtain the chromaticity of the white light, and the light-emitting device 300 thus prepared can significantly improve the current efficiency of the device. This reduces device power consumption and increases device lifetime.
  • the light emitting device 300 is a white light emitting device. Further, the light emitting device 300 is an OLED (Organic Light Emitting Display).
  • the first luminescent layer 311 is a yellow luminescent layer
  • the second luminescent layer 312 is a blue luminescent layer.
  • FIG. 4a is a schematic diagram of the principle of the exciton recombination region of the light emitting device shown in FIG.
  • the host material of the first light-emitting layer 311 is selected from the material of the hole transport layer 320, the first light-emitting layer 311 and the hole are The barrier between the transport layers 320 is almost zero, so that the transport of holes from the hole transport layer 320 to the first light-emitting layer 311 is smoother, and a higher hole transport velocity can be obtained.
  • the hole mobility of the material for the hole transport layer is higher than that of the conventional, conventionally used light-emitting layer host material (for example, CBP (4,4'-N, N'-dicarbazole biphenyl)).
  • the rate is high. Therefore, in the light-emitting device 300 provided in the first embodiment of the present invention, the holes maintain a very high migration rate before being recombined with the electrons, and even maintain the highest mobility. Further, the exciton recombination region 400 can be biased toward the second luminescent layer 312 by utilizing the high mobility of the holes, so that the adjustment of the white chromaticity can be well achieved.
  • FIG. 4b is a schematic diagram of the principle of the exciton recombination region of the light-emitting device shown in FIG. 1.
  • the light emitting device 100 includes a hole transport layer 130, a blue light emitting layer 111 on the hole transport layer 130, and a yellow light emitting layer 112 on the blue light emitting layer 111.
  • the exciton recombination region 410 of 100 is also biased toward the blue light-emitting layer 111 in the blue light-emitting layer 111, so that the adjustment of white light chromaticity can be well realized.
  • the blue light-emitting layer 111 At the end of the light-emitting surface 120 (ie, the blue light-emitting layer 111 is closer to the light-emitting surface 120 than the yellow light-emitting layer 112), the current efficiency of the blue light-emitting layer 111 will restrict the performance of the light-emitting device 100, so that the current efficiency of the light-emitting device 100 is relatively high. low.
  • the light-emitting device 300 provided by the embodiment of the present application, not only the high-performance performance characteristics of the first light-emitting layer 311 (ie, the yellow light-emitting layer) can be fully utilized, so that the light-emitting device 300 has high current efficiency;
  • the host material of the first light-emitting layer 311 from the material for forming the hole transport layer 320, the exciton recombination region 400 can be biased toward the second light-emitting layer 312 (ie, the blue light-emitting layer), thereby being good.
  • Table 1 is a parameter comparison of the light emitting device 300 and the light emitting device 100 applied to the OLED display screen according to an embodiment of the present invention:
  • the brightness of the light-emitting device 300 provided by the embodiment of the present invention is about 50% higher than that of the light-emitting device 100 of the prior art.
  • the light-emitting device 300 provided by the embodiment of the present invention Under the same voltage condition, the light-emitting device 300 provided by the embodiment of the present invention.
  • the efficiency of the illuminating device 300 is approximately 30% higher than that of the illuminating device 100 of the prior art.
  • the color coordinates of the illuminating device 300 provided by the embodiment of the present invention are substantially controllable. At (0.30, 0.33), the adjustment of white light chromaticity can be achieved very well. It can be seen that the light-emitting device 300 provided by the embodiment of the invention has high current efficiency and can well adjust the white light chromaticity.
  • the material of the first light-emitting layer 311 and the material of the hole transport layer 320 are the same, that is, the material of the host material of the first light-emitting layer 311 and the material of the hole transport layer 320 are not only selected. It is the same material that can make a hole transport layer, and is the same material that can make a hole transport layer. Thereby, a better matching between the first light-emitting layer 311 and the hole transport layer 320 can be achieved, so that the barrier between the first light-emitting layer 311 and the hole transport layer 320 is closer. At zero.
  • the host material of the first light-emitting layer 311 and the material of the hole transport layer 320 both include NPB (N,N'-diphenyl-N,N'-bis(1-naphthyl)-1, 1'-biphenyl-4,4'-diamine).
  • the NPB has a very high hole transporting property.
  • the material of the host material of the first light-emitting layer 311 and the material of the hole transport layer 320 may both be NPB.
  • the host material of the first light-emitting layer 311 and the material of the hole transport layer 320 may also be selected from m-MTDATA (4, 4', 4"-three (N-3).
  • TPD N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl- 4,4'-diamine
  • the dye of the first light-emitting layer 311 has an emission peak of 540 nm to 580 nm.
  • the peak of the dye of the first light-emitting layer 311 may be 540 nm, 545 nm, 548 nm, 550 nm, 555 nm, 560 nm, 565 nm, 570 nm, 575 nm, or 580 nm, or the like. That is, in the embodiment of the present application, the dye of the first luminescent layer 311 selected is a yellow-green color. The inventors have found that when the luminescent peak of the dye of the first luminescent layer 311 is selected from 540 nm to 580 nm, the adjustment of white chromaticity can be better achieved.
  • the main material of the second luminescent layer 312 includes MAND (3-tert-butyl-9,10-bis(2-naphthalene) anthracene), and the dye of the second luminescent layer 312 is luminescent.
  • the peak value is 440 nm to 480 nm.
  • the luminescence peak of the dye of the second luminescent layer 312 may be 440 nm, 445 nm, 450 nm, 455 nm, 460 nm, 465 nm, 470 nm, 475 nm, or 480 nm, or the like.
  • the body material of the second light-emitting layer 312 may also be selected from other materials.
  • the thickness of the film layer of the second light emitting layer 312 is thicker than the film thickness of the first light emitting layer 311.
  • the film thickness of the second light-emitting layer 312 is 2 to 5 times the film thickness of the first light-emitting layer 311.
  • the thickness of the second luminescent layer 312 may be 20 nm to 100 nm, and the thickness of the first luminescent layer 311 may be 1 nm to 20 nm.
  • the light emitting device 300 further includes a transparent electrode 360 , and the hole transport layer 320 is located on the transparent electrode 360 .
  • the material of the transparent electrode 360 is a transparent conductive layer, which may specifically be ITO (indium tin oxide), IZO (indium zinc oxide) or ZnO (zinc oxide).
  • the material of the reflective electrode 340 may be a conductive metal, which may specifically be silver (Ag), magnesium (Mg) or aluminum (Al).
  • the light emitting device 300 further includes a hole injection layer 370 between the transparent electrode 360 and the hole transport layer 320 and between the electron transport layer 330 and the reflective electrode 340. Electron injection layer 380.
  • the material of the hole injection layer 370 may be TCNQ (7,7,8,8-tetracyanoquinodimethane)
  • the material of the electron transport layer 330 may be Alq. 3 (8-hydroxyquinoline aluminum)
  • the material of the electron injecting layer 380 may be Balq (bis(2-methyl-8-hydroxyquinoline-N1,O8)-(1,1'-biphenyl-4) -Hydroxy)aluminum).
  • the light emitting surface 350 of the light emitting device 300 is closer to the hole transport layer 320, thereby setting the first light emitting layer 311 with high current efficiency.
  • the light emitting surface 350 of the light emitting device 300 is adjacent to the light emitting surface 350 of the light emitting device 300, so that the high performance characteristic of the first light emitting layer 311 can be fully utilized.
  • the host material of the first luminescent layer 311 is selected from the material of the hole transport layer 320, that is, the first luminescent layer 311 can also realize the function of hole transport, thereby accelerating the transition of holes.
  • the hole mobility is increased, and the exciton recombination region is brought closer to the second luminescent layer 312 to balance the ratio of the luminescent layer action to obtain the chromaticity of the white light, and the light-emitting device 300 thus prepared can significantly improve the current efficiency of the device. This reduces device power consumption and increases device lifetime.
  • FIG. 5 is a schematic structural diagram of a light emitting device according to Embodiment 2 of the present invention.
  • the light emitting device 500 is a top light emitting device, that is, the light emitting surface 550 is located at the top of the light emitting device 500.
  • the light emitting device 500 includes a hole transport layer 520, an electron transport layer 530, a light emitting layer 510 between the hole transport layer 520 and the electron transport layer 530, and a reflective electrode 540; the light emitting layer 510 The first light emitting layer 511 and the second light emitting layer 512 are included, wherein the current efficiency of the first light emitting layer 511 is higher than that of the second light emitting layer 512; the electron transport layer 530 is located at the first light emitting layer Between the layer 511 and the light-emitting surface 550; the hole transport layer 520 is located between the second light-emitting layer 512 and the reflective electrode 540, and the host material of the first light-emitting layer 511 is selected from the electron The material of the transport layer 530.
  • the positional relationship of the hole transport layer 520, the electron transport layer 530, the first light-emitting layer 511, the second light-emitting layer 512, and the reflective electrode 540 in the light-emitting direction The reflective electrode 540 is farthest from the light emitting surface 550, the hole transport layer 520 is located on the reflective electrode 540, and the second light emitting layer 512 is located on the hole transport layer 520, the first light emitting The layer 511 is located on the second luminescent layer 512, and the electron transport layer 530 is located on the first luminescent layer 511, that is, the electron transport layer 530 is closest to the illuminating surface 550.
  • the hole transport layer 520, the electron transport layer 530, the first light emitting layer 511, the second light emitting layer 512, and the reflective electrode 540 are all disposed on the glass substrate 501. That is, the reflective electrode 540, the hole transport layer 520, the second light-emitting layer 512, the first light-emitting layer 511, and the electron transport layer 530 are sequentially disposed on the glass substrate 501.
  • the light emitting surface 550 of the light emitting device 500 is closer to the electron transport layer 530, thereby placing the first light emitting layer 511 with high current efficiency close to the light emitting device.
  • the light-emitting surface 550 of 500 can fully utilize the high-performance characteristics of the first light-emitting layer 511.
  • the main material of the first luminescent layer 511 is selected from the material of the electron transport layer 530, that is, the first luminescent layer 511 can also realize the function of electron transport, thereby accelerating the transition of electrons and improving electron migration.
  • the light-emitting device 500 thus prepared can significantly improve the current efficiency of the device, thereby reducing Device power consumption increases device lifetime.
  • the light emitting device 500 is a white light emitting device. Further, the light emitting device 500 is a top emitting white light OLED device.
  • the first luminescent layer 511 is a yellow luminescent layer
  • the second luminescent layer 512 is a blue luminescent layer.
  • FIG. 6 is a schematic diagram of the principle of the exciton recombination region of the light emitting device shown in FIG. 5 .
  • the main material of the first luminescent layer 511 is selected from the material of the electron transport layer 530 , the first luminescent layer 511 and the electron transport layer The barrier between 530 is almost zero, so that the transmission of electrons from the electron transport layer 530 to the first light-emitting layer 511 is smoother, and a higher electron transport speed can be obtained.
  • the electron mobility of the material for fabricating the electron transport layer is higher than that of the conventional, conventionally used light-emitting layer host material (for example, CBP (4,4'-N, N'-dicarbazole biphenyl)). Therefore, in the light-emitting device 500 provided in the second embodiment of the present invention, electrons maintain a very high migration rate before being recombined with holes, and even maintain the highest mobility. Further, the exciton recombination region 600 can be biased toward the second luminescent layer 512 by utilizing the high mobility of electrons, so that the adjustment of white chromaticity can be well achieved.
  • the conventional, conventionally used light-emitting layer host material for example, CBP (4,4'-N, N'-dicarbazole biphenyl)
  • the main body material of the first luminescent layer 511 and the material of the electron transport layer 530 are the same, that is, the main material of the first luminescent layer 511 and the material of the electron transport layer 530 are not only selected from The material that can make the electron transport layer is the same material that can make the electron transport layer. Thereby, a better matching between the first light-emitting layer 511 and the electron transport layer 530 can be achieved, so that the barrier between the first light-emitting layer 511 and the electron transport layer 530 is closer to zero. .
  • the host material of the first light-emitting layer 511 and the material of the electron transport layer 530 each include Alq 3 (8-hydroxyquinoline aluminum). Alq 3 has a very high electron transporting property.
  • the material of the host material of the first light-emitting layer 511 and the material of the electron transport layer 530 may each be Alq 3 .
  • the host material of the first light-emitting layer 511 and the material of the electron transport layer 530 may also be selected from other materials having better electron transport functions.
  • the dye of the first light-emitting layer 511 has an emission peak of 540 nm to 580 nm.
  • the peak of the dye of the first light-emitting layer 511 may be 540 nm, 545 nm, 548 nm, 550 nm, 555 nm, 560 nm, 565 nm, 570 nm, 575 nm, or 580 nm. That is, in the embodiment of the present application, the dye of the first luminescent layer 511 selected is a yellow-green color. The inventors have found that when the luminescent peak of the dye of the first luminescent layer 511 is selected from 540 nm to 580 nm, the adjustment of white chromaticity can be better achieved.
  • the main material of the second luminescent layer 512 includes MAND (3-tert-butyl-9,10-bis(2-naphthalene) anthracene), and the dye of the second luminescent layer 512 emits light.
  • the peak value is 440 nm to 480 nm.
  • the luminescent peak of the dye of the second luminescent layer 512 may be 440 nm, 445 nm, 450 nm, 455 nm, 460 nm, 465 nm, 470 nm, 475 nm, or 480 nm, or the like.
  • the main material of the second luminescent layer 512 may also be selected from other materials.
  • the thickness of the film layer of the second light emitting layer 512 is thicker than the film thickness of the first light emitting layer 511.
  • the film thickness of the second light-emitting layer 512 is 2 to 5 times the film thickness of the first light-emitting layer 511.
  • the thickness of the second luminescent layer 512 may be 20 nm to 100 nm, and the thickness of the first luminescent layer 511 may be 1 nm to 20 nm.
  • the light emitting device 500 further includes a transparent electrode 560 , and the transparent electrode 560 is located on the electron transport layer 530 , that is, the transparent electrode 560 is closest to the light emitting surface 550 . .
  • the transparent electrode 560 is a transparent conductive layer.
  • the transparent electrode 560 can be made of very thin silver (Ag) and/or magnesium (Mg); in other embodiments of the present application,
  • the material of the transparent electrode 560 may be ITO (indium tin oxide), IZO (indium zinc oxide) or ZnO (zinc oxide).
  • the reflective electrode 540 is made of a conductive layer having a light reflecting function.
  • the reflective electrode 540 is made of a composite conductive layer, and specifically includes two layers of indium tin oxide and two layers of indium oxide. a metal layer between the tin (for example, a silver metal layer and/or a magnesium metal layer), thereby improving the work function of the reflective electrode 540; in other embodiments of the present application, the material of the reflective electrode 540 may also include only A conductive metal, which may specifically be silver (Ag), magnesium (Mg) or aluminum (Al).
  • the light emitting device 500 further includes a hole injection layer 570 between the reflective electrode 540 and the hole transport layer 520 and between the electron transport layer 530 and the transparent electrode 560. Electron injection layer 580.
  • the material of the hole injection layer 570 may be TCNQ (7,7,8,8-tetracyanoquinodimethane)
  • the material of the hole transport layer 520 may be NPB (N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine)
  • the material of the electron injecting layer 580 can be It is Balq (bis(2-methyl-8-hydroxyquinoline-N1,O8)-(1,1'-biphenyl-4-hydroxy)aluminum) and the like.
  • the light emitting surface 550 of the light emitting device 500 is closer to the electron transport layer 530, thereby placing the first light emitting layer 511 with high current efficiency on the light emitting device 510.
  • the light-emitting surface 550 of the light-emitting device 500 is close to the high-performance performance of the first light-emitting layer 511.
  • the main material of the first luminescent layer 511 is selected from the material of the electron transport layer 530, that is, the first luminescent layer 511 can also realize the function of electron transport, thereby accelerating the transition of electrons and improving electron migration.
  • the light-emitting device 500 thus prepared can significantly improve the current efficiency of the device, thereby reducing Device power consumption increases device lifetime.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明提供了一种发光器件,包括空穴传输层、电子传输层、位于空穴传输层和电子传输层之间的发光层、及反射电极;发光层包括第一发光层和第二发光层,第一发光层的电流效率较第二发光层的电流效率高;第一发光层与反射电极之间为电子传输层,第一发光层的主体材料选自空穴传输层的材料,或者,第一发光层与反射电极之间为空穴传输层,第一发光层的主体材料选自电子传输层的材料,将电流效率高的第一发光层设置于靠近发光器件的出光面,由此能够充分发挥第一发光层的高效性能特点;第一发光层的主体材料选择空穴传输层材料或电子传输层材料,降低第一发光层与空穴传输层或者电子传输层间的能级势垒,提升空穴或电子的迁移率,提升器件电流效率。

Description

发光器件 技术领域
本发明涉及显示技术领域,特别涉及一种发光器件。
背景技术
OLED(Organic Light-Emitting Display)是一种新型的显示、照明技术,近几年内针对OLED器件的投资逐渐增加,OLED器件已经成为行业热点。OLED器件具有亮度高、材料选择范围宽、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角、以及响应速度快等优势,是一种极具潜力的显示技术和光源,符合信息时代移动通信和信息显示的发展趋势,以及绿色照明技术的要求,是目前国内外众多研究者的关注重点。
目前,OLED器件作为一种典型的发光器件,仍存在电流效率较低的问题,从而使得功耗较大,寿命较差,难以满足穿戴类产品对高亮度,低功耗的需求。
发明内容
本发明的目的在于提供一种发光器件,以解决现有技术中的发光器件电流效率较低,从而功耗较大、寿命较差的问题。
为解决上述技术问题,本发明提供一种发光器件,所述发光器件包括:空穴传输层、电子传输层、位于所述空穴传输层和所述电子传输层之间的发光层、及反射电极;所述发光层包括第一发光层和第二发光层,其中,所述第一发光层的电流效率较所述第二发光层的电流效率高;其中:所述电子传输层位于所述第一发光层与所述反射电极之间,且所述第一发光层的主体材料选自所述空穴传输层的材料;或者所述空穴传输层位于所述第一发光层与所述反射电极之间,且所述第一发光层的主体材料选自所述电子传输层的材料。
可选的,当所述电子传输层位于所述第一发光层与所述反射电极之间时,所述第一发光层相对于所述第二发光层更靠近所述空穴传输层。
可选的,当所述空穴传输层位于所述第一发光层与所述反射电极之间时,所述第一发光层相对于所述第二发光层更靠近所述电子传输层。
可选的,所述发光器件为白光发光器件。
可选的,在所述的发光器件中,所述第一发光层为黄光发光层,所述第二发光层为蓝光发光层。
可选的,当所述第一发光层的主体材料选自所述空穴传输层的材料时,所述第一发光层的主体材料和所述空穴传输层的材料均包括NPB。
可选的,当所述第一发光层的主体材料选自所述电子传输层的材料时,所述第一发光层的主体材料和所述电子传输层的材料均包括Alq 3
可选的,在所述的发光器件中,所述第一发光层的染料的发光峰值为540nm~580nm。
可选的,在所述的发光器件中,所述第二发光层的主体材料包括MAND,所述第二发光层的染料的发光峰值为440nm~480nm。
可选的,在所述的发光器件中,所述第二发光层的膜层厚度较所述第一发光层的膜层厚度厚。
可选的,所述第二发光层的膜层厚度是所述第一发光层的膜层厚度的2倍~5倍。
可选的,所述第二发光层的膜层厚度为20nm~100nm,所述第一发光层的膜层厚度为1nm~20nm。
可选的,所述发光器件还包括透明电极,当所述电子传输层位于所述第一发光层与所述反射电极之间时,所述空穴传输层位于所述透明电极上;当所述空穴传输层位于所述第一发光层与所述反射电极之间时,所述透明电极位于所述电子传输层上。
可选的,所述透明电极的材料为ITO、IZO或者ZnO。
可选的,所述发光器件还包括电子注入层和空穴注入层,当所述电子传输层位于所述第一发光层与所述反射电极之间时,所述电子注入层位于所述电子传输层与所述反射电极之间,所述空穴注入层位于所述空穴传输层与所述透明电极之间;当所述空穴传输层位于所述第一发光层与所述反射电极之间时,所述电子注入层位于所述电子传输层与所述透明电极之间,所述空穴注入层位于所述空穴传输层与所述反射电极之间。
在本发明提供的发光器件中,所述发光器件包括:空穴传输层、电子传输层、位于所述空穴传输层和所述电子传输层之间的发光层、及反射电极;所述发光层包括第一发光层和第二发光层,其中,所述第一发光层的电流效率较所述第二发光层的电流效率高;所述第一发光层与所述反射电极之间为所述电子传输层,所述第一发光层的主体材料选自所述空穴传输层的材料,或者,所述第一发光层与所述反射电极之间为所述空穴传输层,所述第一发光层的主体材料选自所述电子传输层的材料,即将电流效率高的第一发光层设置于靠近所述发光器件的出光面,由此能够充分发挥所述第一发光层的高效性能特点。进一步的,所述第一发光层的主体材料选自与其连接的空穴传输层的材料或者选自与其连接的电子传输层的材料,由此,所述第一发光层还能够实现与其连接的膜层的功能,即所述第一发光层还能够实现空穴传输或者电子传输的功能,降低所述第一发光层与所述空穴传输层或者所述电子传输层间的能级势垒,从而可以加速空穴或者电子的跃迁,提升空穴或者电子的迁移率,并使得激子复合区域向第二发光层靠近,以平衡发光层作用的比例,得到白光的色度,由此制备的发光器件可显著提升器件的电流效率,从而可降低器件功耗,提高器件寿命。
附图说明
图1是一种发光器件的结构示意图;
图2是另一种发光器件的结构示意图;
图3是本发明实施例一的发光器件的结构示意图;
图4a是图3所示的发光器件的激子复合区域的原理示意图;
图4b是图1所示的发光器件的激子复合区域的原理示意图;
图5是本发明实施例二的发光器件的结构示意图;
图6是图5所示的发光器件的激子复合区域的原理示意图;
其中,
100-发光器件;110-发光层;111-蓝光发光层;112-黄光发光层;120-出光面;130-空穴传输层;
200-发光器件;210-发光层;211-第一发光层;212-第二发光层;213-第三发光层;220-出光面;
300-发光器件;301-玻璃基板;310-发光层;311-第一发光层;312-第二发光层;320-空穴传输层;330-电子传输层;340-反射电极;350-出光面;360-透明电极;370-空穴注入层;380-电子注入层;
400-激子复合区域;410-激子复合区域;
500-发光器件;501-玻璃基板;510-发光层;511-第一发光层;512-第二发光层;520-空穴传输层;530-电子传输层;540-反射电极;550-出光面;560-透明电极;570-空穴注入层;580-电子注入层;
600-激子复合区域。
具体实施方式
以下结合附图和具体实施例对本发明提出的发光器件作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
请参考图1,其为一种发光器件的结构示意图。如图1所示,在一种发光器件100中,发光层110由蓝光发光层111和黄光发光层112复合构成,所述发光器件100一般在OLED器件及照明产品中广泛应用。OLED器件为底发光,发光器件100中的蓝光发光层111较黄光发光层112靠近出光面120。其中,蓝光发光层111由蓝光主体和蓝光染料组成,黄光发光层112则由黄光主体和黄光染料组成。在所述发光器件100中,电流效率较低,从而功耗较大,寿命较差,难以满足穿戴类产品对高亮度,低功耗的需求。
为此,又提出了一种发光器件,具体请参考图2,在所述发光器件200中,发光层210包括三层结构,分别为第一发光层211、第二发光层212及第三发光层213,其中,靠近出光面220的第一发光层211包括黄光主体和黄光染料,位于第一发光层211上的第二发光层212包括蓝光主体和蓝光染料,位于第二发光层212上的第三发光层213包括蓝光主体和蓝光染料,三层结构的发光层210 能够在一定程度上提升器件的电流效率,但是器件结构较复杂,工艺繁琐。
因此,如何制造出既能够提升器件电流效率,又具有简单的器件结构的发光器件成了一直以来困扰本领域技术人员的一个难题。
在此基础上,本申请提出了一种发光器件,其核心思想在于:所述发光器件包括:空穴传输层、电子传输层、位于所述空穴传输层和所述电子传输层之间的发光层、及反射电极;所述发光层包括第一发光层和第二发光层,其中,所述第一发光层的电流效率较所述第二发光层的电流效率高;所述电子传输层位于所述第一发光层与所述反射电极之间,所述第一发光层的主体材料选自所述空穴传输层的材料,或者,所述空穴传输层位于所述第一发光层与所述反射电极之间,所述第一发光层的主体材料选自所述电子传输层的材料,即将电流效率高的第一发光层设置于靠近所述发光器件的出光面,由此能够充分发挥所述第一发光层的高效性能特点。进一步的,所述第一发光层的主体材料选自与其连接的空穴传输层的材料或者选自与其连接的电子传输层的材料,由此,所述第一发光层还能够实现与其连接的膜层的功能,即所述第一发光层还能够实现空穴传输或者电子传输的功能,从而可以加速空穴或者电子的跃迁,提升空穴或者电子的迁移率,并使得激子复合区域向第二发光层靠近,以平衡发光层作用的比例,得到白光的色度,由此制备的发光器件可显著提升器件的电流效率,从而可降低器件功耗,提高器件寿命。
【实施例一】
请参考图3,其为本发明实施例一的发光器件的结构示意图。如图3所示,在本申请实施例中,所述发光器件300为底发光器件,即出光面350位于发光器件300的底部。所述发光器件300包括:空穴传输层320、电子传输层330、位于所述空穴传输层320和所述电子传输层330之间的发光层310、及反射电极340;所述发光层310包括第一发光层311和第二发光层312,其中,所述第一发光层311的电流效率较所述第二发光层312的电流效率高;所述空穴传输层320位于所述第一发光层311与所述出光面350之间,所述电子传输层330位于所述第二发光层312与所述反射电极340之间,所述第一发光层311的主体材料选自所述空穴传输层320的材料。
即在本申请实施例中,所述空穴传输层320、所述电子传输层330、所述第一发光层311、所述第二发光层312和所述反射电极340在出光方向的位置关系是:所述空穴传输层320最靠近出光面350,所述第一发光层311位于所述空穴传输层320上,所述第二发光层312位于所述第一发光层311上,所述电子传输层330位于所述第二发光层312上,所述反射电极340位于所述电子传输层330上。
在本申请实施例中,所述空穴传输层320、所述电子传输层330、所述第一发光层311、所述第二发光层312和所述反射电极340均设置于玻璃基板301上,即所述空穴传输层320、所述第一发光层311、所述第二发光层312、所述电子传输层330和所述反射电极340依次设置于所述玻璃基板301上。
在本实施例一提供的发光器件300中,所述发光器件300的出光面350更靠近所述空穴传输层320,由此,即将电流效率高的第一发光层311设置于靠近所述发光器件300的出光面350,从而能够充分发挥所述第一发光层311的高效性能特点。进一步的,所述第一发光层311的主体材料选自所述空穴传输层320的材料,即所述第一发光层311也能够实现空穴传输的功能,从而可以加速空穴的跃迁,提升空穴迁移率,并使得激子复合区域向所述第二发光层312靠近,以平衡发光层作用的比例,得到白光的色度,由此制备的发光器件300可显著提升器件的电流效率,从而可降低器件功耗,提高器件寿命。
在本申请实施例中,所述发光器件300为白光发光器件。进一步的,所述发光器件300为底发光的OLED(Organic Light Emitting Display)。在本申请实施例中,所述第一发光层311为黄光发光层,所述第二发光层312为蓝光发光层。
具体的,可参考图4a,其为图3所示的发光器件的激子复合区域的原理示意图。如图4a所示,在本申请实施例中,由于所述第一发光层311的主体材料选自所述空穴传输层320的材料,由此所述第一发光层311与所述空穴传输层320之间的势垒几乎为零,从而使得空穴从所述空穴传输层320到所述第一发光层311的传输更加顺利,可以获得更高的空穴迁移速度。而制作空穴传输层的材料的空穴迁移率要比通常的、传统使用的发光层主体材料(例如CBP (4,4’-N,N’-二咔唑联苯))的空穴迁移率高,因此在本发明实施例一提供的发光器件300中,空穴在与电子复合之前一直保持着非常高的迁移速率,甚至一直保持着最高的迁移率。进一步的,通过利用空穴的高迁移速率能够实现激子复合区域400偏向第二发光层312,从而可以很好的实现白光色度的调节。
作为对比,可相应的参考图4b,其为图1所示的发光器件的激子复合区域的原理示意图。如图4b所示,发光器件100包括空穴传输层130、位于所述空穴传输层130上的蓝光发光层111及位于所述蓝光发光层111上的黄光发光层112,所述发光器件100的激子复合区域410在所述蓝光发光层111中,即也偏向所述蓝光发光层111,从而能够很好的实现白光色度的调节,但是,在发光器件100中,蓝光发光层111在靠近出光面120一端(即蓝光发光层111比黄光发光层112更靠近出光面120),由此蓝光发光层111的电流效率将制约发光器件100的性能,使得发光器件100电流效率相对较低。
而在本申请实施例提供的发光器件300中,不仅能够充分的发挥所述第一发光层311(即黄光发光层)的高效性能特点,使得发光器件300具有较高的电流效率;同时,通过将所述第一发光层311的主体材料选自于制作空穴传输层320的材料,能够实现激子复合区域400偏向所述第二发光层312(即蓝光发光层),从而可以很好的实现白光色度的调节。
进一步的,请参考下表1,其为本发明实施例的发光器件300和发光器件100应用于OLED显示屏中的参数比对:
Figure PCTCN2018086298-appb-000001
表1
由上表1可见,在亮度方面,本发明实施例提供的发光器件300的亮度要 比现有技术的发光器件100高50%左右,在同样电压条件下,本发明实施例提供的发光器件300展现出高亮性能;在效率方面,本发明实施例提供的发光器件300的效率要比现有技术的发光器件100高30%左右,本发明实施例提供的发光器件300的色坐标大致可控在(0.30,0.33),即能够很好的实现白光色度的调节。可见,本发明实施例提供的发光器件300既具有较高的电流效率,又可以很好的实现白光色度的调节。
优选的,所述第一发光层311的主体材料和所述空穴传输层320的材料相同,即所述第一发光层311的主体材料和所述空穴传输层320的材料不仅都是选自于能够制作空穴传输层的材料,而且还是同一种能够制作空穴传输层的材料。由此,可以使得所述第一发光层311与所述空穴传输层320之间更好的匹配,使得所述第一发光层311与所述空穴传输层320之间的势垒更接近于零。
例如,所述第一发光层311的主体材料和所述空穴传输层320的材料均包括NPB(N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺)。NPB具有非常高的空穴传输性能,作为一个优选方案,所述第一发光层311的主体材料和所述空穴传输层320的材料可以均选用NPB。在本申请的其他实施例中,所述第一发光层311的主体材料和所述空穴传输层320的材料也可以选自m-MTDATA(4,4’,4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺)或TPD(N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1’-联苯-4,4’-二胺)等。
优选的,所述第一发光层311的染料的发光峰值为540nm~580nm。例如,所述第一发光层311的染料的峰值可以为540nm、545nm、548nm、550nm、555nm、560nm、565nm、570nm、575nm或者580nm等。即在本申请实施例中,所选用的所述第一发光层311的染料呈一种黄绿色。发明人发现,当选用的所述第一发光层311的染料的发光峰值为540nm~580nm时,能够更好的实现白光色度的调节。
在本申请实施例中,所述第二发光层312的主体材料包括MAND(3-叔丁基-9,10-二(2-萘)蒽),所述第二发光层312的染料的发光峰值为440nm~480nm。例如,所述第二发光层312的染料的发光峰值可以为440nm、445nm、450nm、455nm、460nm、465nm、470nm、475nm或者480nm等。在本申请的其他实施 例中,所述第二发光层312的主体材料也可以选择其他材质的发光层主体材料。
在本申请实施例中,所述第二发光层312的膜层厚度较所述第一发光层311的膜层厚度厚。优选的,所述第二发光层312的膜层厚度是所述第一发光层311的膜层厚度的2倍~5倍。例如,所述第二发光层312的膜层厚度可以为20nm~100nm,所述第一发光层311的膜层厚度可以为1nm~20nm。通过将所述第二发光层312的膜层厚度设置的较所述第一发光层311的膜层厚度厚,能够进一步实现白光色度的调节。
请继续参考图3,在本申请实施例中,所述发光器件300还包括:透明电极360,所述空穴传输层320位于所述透明电极360上。进一步的,所述透明电极360的材料为透明导电层,其具体可以为ITO(氧化铟锡)、IZO(氧化铟锌)或者ZnO(氧化锌)等。在本申请实施例中,所述反射电极340的材料可以为导电金属,其具体可以为银(Ag)、镁(Mg)或者铝(Al)。
进一步的,所述发光器件300还包括:位于所述透明电极360和所述空穴传输层320之间的空穴注入层370以及位于所述电子传输层330和所述反射电极340之间的电子注入层380。在本申请实施例中,所述空穴注入层370的材料可以为TCNQ(7,7,8,8-四氰基对苯二醌二甲烷),所述电子传输层330的材料可以为Alq 3(8-羟基喹啉铝),所述电子注入层380的材料可以为Balq(双(2-甲基-8-羟基喹啉-N1,O8)-(1,1'-联苯-4-羟基)铝)等。
综上可见,在本发明实施例一提供的发光器件300中,所述发光器件300的出光面350更靠近所述空穴传输层320,由此,即将电流效率高的第一发光层311设置于靠近所述发光器件300的出光面350,从而能够充分发挥所述第一发光层311的高效性能特点。进一步的,所述第一发光层311的主体材料选自所述空穴传输层320的材料,即所述第一发光层311也能够实现空穴传输的功能,从而可以加速空穴的跃迁,提升空穴迁移率,并使得激子复合区域向所述第二发光层312靠近,以平衡发光层作用的比例,得到白光的色度,由此制备的发光器件300可显著提升器件的电流效率,从而可降低器件功耗,提高器件寿命。
【实施例二】
请参考图5,其为本发明实施例二的发光器件的结构示意图。如图5所示, 在本申请实施例中,所述发光器件500为顶发光器件,即出光面550位于发光器件500的顶部。所述发光器件500包括:空穴传输层520、电子传输层530、位于所述空穴传输层520和所述电子传输层530之间的发光层510、及反射电极540;所述发光层510包括第一发光层511和第二发光层512,其中,所述第一发光层511的电流效率较所述第二发光层512的电流效率高;所述电子传输层530位于所述第一发光层511与所述出光面550之间;所述空穴传输层520位于所述第二发光层512与所述反射电极540之间,所述第一发光层511的主体材料选自所述电子传输层530的材料。
即在本申请实施例中,所述空穴传输层520、所述电子传输层530、所述第一发光层511、所述第二发光层512和所述反射电极540在出光方向的位置关系是:所述反射电极540最远离出光面550,所述空穴传输层520位于所述反射电极540上,所述第二发光层512位于所述空穴传输层520上,所述第一发光层511位于所述第二发光层512上,所述电子传输层530位于所述第一发光层511上,即,所述电子传输层530最靠近所述出光面550。
在本申请实施例中,所述空穴传输层520、所述电子传输层530、所述第一发光层511、所述第二发光层512和所述反射电极540均设置于玻璃基板501上,即所述反射电极540、所述空穴传输层520、所述第二发光层512、所述第一发光层511和所述电子传输层530依次设置于所述玻璃基板501上。
在本实施例二提供的发光器件500中,所述发光器件500的出光面550更靠近所述电子传输层530,由此,即将电流效率高的第一发光层511设置于靠近所述发光器件500的出光面550,从而能够充分发挥所述第一发光层511的高效性能特点。进一步的,所述第一发光层511的主体材料选自所述电子传输层530的材料,即所述第一发光层511也能够实现电子传输的功能,从而可以加速电子的跃迁,提升电子迁移率,并使得激子复合区域向所述第二发光层512靠近,以平衡发光层作用的比例,得到白光的色度,由此制备的发光器件500可显著提升器件的电流效率,从而可降低器件功耗,提高器件寿命。
在本申请实施例中,所述发光器件500为白光发光器件。进一步的,所述发光器件500为顶发光的白光OLED器件。在本申请实施例中,所述第一发光 层511为黄光发光层,所述第二发光层512为蓝光发光层。
具体的,可参考图6,其为图5所示的发光器件的激子复合区域的原理示意图。如图6所示,在本申请实施例中,由于所述第一发光层511的主体材料选自所述电子传输层530的材料,由此所述第一发光层511与所述电子传输层530之间的势垒几乎为零,从而使得电子从所述电子传输层530到所述第一发光层511的传输更加顺利,可以获得更高的电子迁移速度。而制作电子传输层的材料的电子迁移率要比通常的、传统使用的发光层主体材料(例如CBP(4,4’-N,N’-二咔唑联苯))的电子迁移率高,因此在本发明实施例二提供的发光器件500中,电子在与空穴复合之前一直保持着非常高的迁移速率,甚至一直保持着最高的迁移率。进一步的,通过利用电子的高迁移速率能够实现激子复合区域600偏向第二发光层512,从而可以很好的实现白光色度的调节。
优选的,所述第一发光层511的主体材料和所述电子传输层530的材料相同,即所述第一发光层511的主体材料和所述电子传输层530的材料不仅都是选自于能够制作电子传输层的材料,而且还是同一种能够制作电子传输层的材料。由此,可以使得所述第一发光层511与所述电子传输层530之间更好的匹配,使得所述第一发光层511与所述电子传输层530之间的势垒更接近于零。
例如,所述第一发光层511的主体材料和所述电子传输层530的材料均包括Alq 3(8-羟基喹啉铝)。Alq 3具有非常高的电子传输性能,作为一个优选方案,所述第一发光层511的主体材料和所述电子传输层530的材料可以均选用Alq 3。在本申请的其他实施例中,所述第一发光层511的主体材料和所述电子传输层530的材料也可以选自其他具有较佳电子传输功能的材料。
优选的,所述第一发光层511的染料的发光峰值为540nm~580nm。例如,所述第一发光层511的染料的峰值可以为540nm、545nm、548nm、550nm、555nm、560nm、565nm、570nm、575nm或者580nm等。即在本申请实施例中,所选用的所述第一发光层511的染料呈一种黄绿色。发明人发现,当选用的所述第一发光层511的染料的发光峰值为540nm~580nm时,能够更好的实现白光色度的调节。
在本申请实施例中,所述第二发光层512的主体材料包括MAND(3-叔丁 基-9,10-二(2-萘)蒽),所述第二发光层512的染料的发光峰值为440nm~480nm。例如,所述第二发光层512的染料的发光峰值可以为440nm、445nm、450nm、455nm、460nm、465nm、470nm、475nm或者480nm等。在本申请的其他实施例中,所述第二发光层512的主体材料也可以选择其他材质的发光层主体材料。
在本申请实施例中,所述第二发光层512的膜层厚度较所述第一发光层511的膜层厚度厚。优选的,所述第二发光层512的膜层厚度是所述第一发光层511的膜层厚度的2倍~5倍。例如,所述第二发光层512的膜层厚度可以为20nm~100nm,所述第一发光层511的膜层厚度可以为1nm~20nm。通过将所述第二发光层512的膜层厚度设置的较所述第一发光层511的膜层厚度厚,能够进一步实现白光色度的调节。
请继续参考图5,在本申请实施例中,所述发光器件500还包括:透明电极560,所述透明电极560位于所述电子传输层530上,即所述透明电极560最靠近出光面550。所述透明电极560为透明导电层,在本申请实施例中,所述透明电极560可以由非常薄的银(Ag)和/或镁(Mg)制成;在本申请的其他实施例中,所述透明电极560的材料也可以为ITO(氧化铟锡)、IZO(氧化铟锌)或者ZnO(氧化锌)等。所述反射电极540由具有光线反射功能的导电层制成,在本申请实施例中,所述反射电极540由复合导电层制成,具体可包括两层氧化铟锡层及位于两层氧化铟锡之间的金属层(例如银金属层和/或镁金属层),从而提高所述反射电极540的功函数;在本申请的其他实施例中,所述反射电极540的材料也可仅包括导电金属,其具体可以为银(Ag)、镁(Mg)或者铝(Al)。
进一步的,所述发光器件500还包括:位于所述反射电极540和所述空穴传输层520之间的空穴注入层570以及位于所述电子传输层530和所述透明电极560之间的电子注入层580。在本申请实施例中,所述空穴注入层570的材料可以为TCNQ(7,7,8,8-四氰基对苯二醌二甲烷),所述空穴传输层520的材料可以为NPB(N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺),所述电子注入层580的材料可以为Balq(双(2-甲基-8-羟基喹啉-N1,O8)-(1,1'-联苯-4-羟基)铝)等。
综上可见,在本发明实施例二提供的发光器件500中,所述发光器件500 的出光面550更靠近所述电子传输层530,由此,即将电流效率高的第一发光层511设置于靠近所述发光器件500的出光面550,从而能够充分发挥所述第一发光层511的高效性能特点。进一步的,所述第一发光层511的主体材料选自所述电子传输层530的材料,即所述第一发光层511也能够实现电子传输的功能,从而可以加速电子的跃迁,提升电子迁移率,并使得激子复合区域向所述第二发光层512靠近,以平衡发光层作用的比例,得到白光的色度,由此制备的发光器件500可显著提升器件的电流效率,从而可降低器件功耗,提高器件寿命。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (15)

  1. 一种发光器件,其特征在于,所述发光器件包括:空穴传输层、电子传输层、位于所述空穴传输层和所述电子传输层之间的发光层、及反射电极;所述发光层包括第一发光层和第二发光层,其中,所述第一发光层的电流效率较所述第二发光层的电流效率高;其中:
    所述电子传输层位于所述第一发光层与所述反射电极之间,且所述第一发光层的主体材料选自所述空穴传输层的材料;或者
    所述空穴传输层位于所述第一发光层与所述反射电极之间,且所述第一发光层的主体材料选自所述电子传输层的材料。
  2. 如权利要求1所述的发光器件,其特征在于,当所述电子传输层位于所述第一发光层与所述反射电极之间时,所述第一发光层相对于所述第二发光层更靠近所述空穴传输层。
  3. 如权利要求1所述的发光器件,其特征在于,当所述空穴传输层位于所述第一发光层与所述反射电极之间时,所述第一发光层相对于所述第二发光层更靠近所述电子传输层。
  4. 如权利要求1所述的发光器件,其特征在于,所述发光器件为白光发光器件。
  5. 如权利要求1-4中任一项所述的发光器件,其特征在于,所述第一发光层为黄光发光层,所述第二发光层为蓝光发光层。
  6. 如权利要求5所述的发光器件,其特征在于,当所述第一发光层的主体材料选自所述空穴传输层的材料时,所述第一发光层的主体材料和所述空穴传输层的材料均包括NPB。
  7. 如权利要求5所述的发光器件,其特征在于,当所述第一发光层的主体材料选自所述电子传输层的材料时,所述第一发光层的主体材料和所述电子传 输层的材料均包括Alq 3
  8. 如权利要求5所述的发光器件,其特征在于,所述第一发光层的染料的发光峰值为540nm~580nm。
  9. 如权利要求5所述的发光器件,其特征在于,所述第二发光层的主体材料包括MAND,所述第二发光层的染料的发光峰值为440nm~480nm。
  10. 如权利要求1-4中任一项所述的发光器件,其特征在于,所述第二发光层的膜层厚度较所述第一发光层的膜层厚度厚。
  11. 如权利要求10所述的发光器件,其特征在于,所述第二发光层的膜层厚度是所述第一发光层的膜层厚度的2倍~5倍。
  12. 如权利要求10所述的发光器件,其特征在于,所述第二发光层的膜层厚度为20nm~100nm,所述第一发光层的膜层厚度为1nm~20nm。
  13. 如权利要求1-4中任一项所述的发光器件,其特征在于,所述发光器件还包括透明电极,当所述电子传输层位于所述第一发光层与所述反射电极之间时,所述空穴传输层位于所述透明电极上;当所述空穴传输层位于所述第一发光层与所述反射电极之间时,所述透明电极位于所述电子传输层上。
  14. 如权利要求12所述的发光器件,其特征在于,所述透明电极的材料为ITO、IZO或者ZnO。
  15. 如权利要求12所述的发光器件,其特征在于,所述发光器件还包括电子注入层和空穴注入层,当所述电子传输层位于所述第一发光层与所述反射电极之间时,所述电子注入层位于所述电子传输层与所述反射电极之间,所述空穴注入层位于所述空穴传输层与所述透明电极之间;当所述空穴传输层位于所述第一发光层与所述反射电极之间时,所述电子注入层位于所述电子传输层与所述透明电极之间,所述空穴注入层位于所述空穴传输层与所述反射电极之间。
PCT/CN2018/086298 2017-09-30 2018-05-10 发光器件 WO2019062131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710917795.6 2017-09-30
CN201710917795.6A CN109599492A (zh) 2017-09-30 2017-09-30 发光器件

Publications (1)

Publication Number Publication Date
WO2019062131A1 true WO2019062131A1 (zh) 2019-04-04

Family

ID=64796994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086298 WO2019062131A1 (zh) 2017-09-30 2018-05-10 发光器件

Country Status (3)

Country Link
CN (1) CN109599492A (zh)
TW (1) TWI670358B (zh)
WO (1) WO2019062131A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051497A1 (en) * 2004-03-31 2006-03-09 Yuji Hamada Process for preparing organic electroluminescent device
CN1832226A (zh) * 2006-03-21 2006-09-13 悠景科技股份有限公司 白光有机电激发光装置
CN102024909A (zh) * 2010-09-27 2011-04-20 电子科技大学 一种发光稳定的有机电致发光器件及其制备方法
CN104347808A (zh) * 2014-09-16 2015-02-11 太原理工大学 一种高色稳定性白光有机电致发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931054B (zh) * 2009-06-25 2012-05-30 财团法人工业技术研究院 白光有机发光元件
CN102983284A (zh) * 2012-12-06 2013-03-20 吉林大学 一种具有弱视角效应的顶发射白光有机电致发光器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060051497A1 (en) * 2004-03-31 2006-03-09 Yuji Hamada Process for preparing organic electroluminescent device
CN1832226A (zh) * 2006-03-21 2006-09-13 悠景科技股份有限公司 白光有机电激发光装置
CN102024909A (zh) * 2010-09-27 2011-04-20 电子科技大学 一种发光稳定的有机电致发光器件及其制备方法
CN104347808A (zh) * 2014-09-16 2015-02-11 太原理工大学 一种高色稳定性白光有机电致发光器件

Also Published As

Publication number Publication date
CN109599492A (zh) 2019-04-09
TW201835301A (zh) 2018-10-01
TWI670358B (zh) 2019-09-01

Similar Documents

Publication Publication Date Title
KR102130648B1 (ko) 백색 유기 발광 소자
JP2009094076A (ja) 白色有機発光素子
KR20150078570A (ko) 유기 전계 발광 소자
KR20150124010A (ko) 백색 유기 발광 소자
CN103636289A (zh) 有机电致发光元件
CN105552239A (zh) 白色有机发光装置及使用其的有机发光显示设备
JP2010033780A (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の発光色調整方法
KR102365022B1 (ko) 유기 발광 소자 및 이를 포함하는 유기 발광 표시 장치
KR102065366B1 (ko) 유기 발광 소자
WO2021238448A1 (zh) 有机电致发光器件及阵列基板
TW201418408A (zh) 堆疊型有機發光裝置
CN104979491A (zh) 有机电致发光器件及其制备方法
CN104638115A (zh) 一种有机电致发光器件及其制备方法
US9391291B2 (en) Organic light emitting diode display device and display panel thereof
JP2014225415A (ja) 有機エレクトロルミネッセンス素子
TWI670358B (zh) 發光器件
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
CN104576936A (zh) 一种白光有机电致发光装置及其制备方法
CN104183770A (zh) 一种白光有机电致发光器件及其制备方法
KR100760901B1 (ko) 백색 유기 전계 발광 소자
CN104638125A (zh) 一种有机电致发光器件及其制备方法
CN104638164A (zh) 一种有机电致发光器件及其制备方法
KR102230940B1 (ko) 백색 유기 발광 소자
KR102279513B1 (ko) 백색 유기 발광 소자
TW201515295A (zh) 頂發光藍光有機發光二極管及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863179

Country of ref document: EP

Kind code of ref document: A1