WO2019062091A1 - 一种透明胶体、led光源器件及其制造方法 - Google Patents

一种透明胶体、led光源器件及其制造方法 Download PDF

Info

Publication number
WO2019062091A1
WO2019062091A1 PCT/CN2018/084029 CN2018084029W WO2019062091A1 WO 2019062091 A1 WO2019062091 A1 WO 2019062091A1 CN 2018084029 W CN2018084029 W CN 2018084029W WO 2019062091 A1 WO2019062091 A1 WO 2019062091A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica gel
light source
source device
transparent colloid
led light
Prior art date
Application number
PCT/CN2018/084029
Other languages
English (en)
French (fr)
Inventor
姜研
Original Assignee
厦门市启明辉科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门市启明辉科技有限公司 filed Critical 厦门市启明辉科技有限公司
Priority to US16/349,563 priority Critical patent/US20200185577A1/en
Publication of WO2019062091A1 publication Critical patent/WO2019062091A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/90Methods of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape

Definitions

  • the present invention relates to the field of lighting devices, and more particularly to a transparent colloid, an LED light source device, and a method of fabricating the same.
  • the blue chip emits a blue light-emitting phosphor with a wavelength of 450-460 nm and emits white light.
  • the LED device has three main forming methods. The first one is: SMD form, that is, the blue chip is fixed (solid crystal) on a specific bracket, and then passed through a gold wire. The electrode is connected, and the phosphor glue is directly coated on the blue chip to be solidified. After the colloid is solidified, the LED light source device unit in the SMD package form is formed. Second: COB form. The blue chip is directly fixed on a heat conductive metal plate or a heat conductive ceramic substrate (also referred to as a heat sink), and then the phosphor glue is directly applied to the blue chip, the metal or the ceramic substrate.
  • SMD form that is, the blue chip is fixed (solid crystal) on a specific bracket, and then passed through a gold wire. The electrode is connected, and the phosphor glue is directly coated on the blue chip to be solidified. After the colloid is solidified, the LED
  • the third type remote phosphor excitation method. Fixing the blue chip on the first SMD specific support or the heat sink substrate described in the second COB method, and then applying a transparent colloid (such as methyl silica gel, phenyl silica gel, epoxy resin, etc.).
  • the LED light source device is cured, and a component (such as a lamp cover, hereinafter referred to as a remote phosphor lamp cover) to which a phosphor is added is mounted on the LED light source device, and a driving circuit is mounted to form an LED lamp.
  • the blue light (wavelength 450-460 nm) emitted by the blue chip directly illuminates the phosphor-added device (such as a dome) to emit white light. In this way, the phosphor is not directly coated on the blue LED chip, and there is a certain distance between the phosphor and the LED chip, so it is called a remote excitation mode.
  • the superposition of the two heat generation during the working process causes the operating temperature of the light source device to be higher, and the temperature of the phosphor surface layer can reach 150 degrees or more.
  • Phosphor is not a long-cycle high temperature resistant material, especially the phosphor has a photon heat quenching effect. The higher the operating temperature, the lower the efficiency of converting blue light into white light, and the long-term working fluorescent light attenuation at high temperature. serious.
  • the remote excitation method has the advantages of small phosphor photon quenching effect, low temperature, weak light attenuation and long life, it is not widely used in practical applications.
  • the reason is that the overall luminous efficiency of the lamp is not high. , resulting in high costs. Why is the luminous efficiency of the luminaires in the remote mode lower? The reason is due to the low light-emitting efficiency of the light source device used in such a system.
  • the low efficiency of blue light emission is due to the total reflection of some blue light after the application of methyl silica gel or phenyl silica gel.
  • the object of the present invention is to provide a transparent colloid instead of the original transparent colloid applied to a blue chip fixed in the form of SMD or COB to form a novel LED light source device, which can reduce the total reflection of light without increasing the temperature of the chip. Produced to increase the light output of blue light.
  • a transparent colloid comprising methyl silicate silica gel or phenyl silica gel as a base material, wherein a astigmatism agent having a weight ratio of 2-8% is incorporated into methyl silica gel or phenyl silica gel.
  • a transparent colloid based on methyl silica gel or phenyl silica gel characterized in that a astigmatism agent and an LED phosphor having a weight ratio of 2-8% are incorporated in methyl silica gel or phenyl silica gel. Mix the powder.
  • the diffusing agent has a particle diameter D50 of less than 10 ⁇ m and a refractive index of 1.5-1.7.
  • An LED light source device characterized in that a coating structure using the transparent colloid of any one of claims 1 or 2 as a raw material is cured on a blue chip fixed by SMD or COB.
  • a remote phosphor lampshade is further disposed on the COB-fixed blue chip and the cured coating structure.
  • a method for manufacturing an LED light source device characterized in that a blue light chip is fixed in the form of SMD or COB, coated with any one of the transparent colloids of claim 1 or 2, and solidified to form an LED light source device.
  • the invention provides a coating colloid of an LED light source device, which is coated on a blue light chip to form a light source device, and the light extraction rate reaches 92% or more of the light source device without applying any colloid (blue chip bare), and the specific coating is methyl
  • the light source of a light source device of silica gel or phenyl silica gel is improved by 20% or more.
  • FIG. 1 is a schematic view of a light path of a remote excitation mode light source device coated with a methyl silicone layer in the background art.
  • FIG. 2 is a schematic view of a light circuit of a light source device of the present invention.
  • FIG. 3 is a schematic structural view of a light source device of the present invention.
  • n1 represents air
  • refractive index is 1
  • n2 represents methyl silica gel (refractive index 1.42) or Phenyl silica gel (refractive index 1.58).
  • the reason for the decrease in light yield after application of methyl silica gel or phenyl silica gel is that partial light blue is totally reflected.
  • a new type of transparent colloid is formed by incorporating a 2-8% by weight astigmatizer into methyl silica gel or phenyl silica gel.
  • the astigmatism has a particle diameter D50 of less than 10 ⁇ m and a refractive index of 1.5 to 1.7.
  • This transparent colloid is applied to the above-mentioned blue-chip chip fixed in the form of SMD or COB instead of the above-mentioned methyl silica gel or phenyl silica gel to form a novel LED light source device.
  • the purpose of this is to scatter the blue light to reduce the total reflection.
  • the experimental results show that the light source of the light source device after applying the transparent colloid described in this embodiment reaches the light source device without applying any colloid (blue chip bare). 92% or more, the light extraction rate of the light source device coated with methyl silica gel or phenyl silica gel is increased by 20% or more.
  • a mixed powder of a astigmatizer (particle diameter D50 of the astigmatizer, less than 10 ⁇ m, refractive index of 1.5-1.7) and an LED phosphor is incorporated in the methyl silica gel or the phenyl silica gel.
  • the ratio of the astigmatizer and the LED phosphor in the mixed powder can be matched according to the color temperature (cold or warm) requirements of the desired luminaire.
  • the mixed powder has a weight ratio of 2-8% in methyl silica gel or phenyl silica gel to form a novel transparent colloid.
  • the transparent colloid is applied to the blue chip fixed in the form of SMD or COB instead of the above-mentioned methyl silica gel or phenyl silica gel to form a novel LED light source device.
  • Such a purpose can not only scatter blue light, but also reduce total reflection, while blue light can excite the phosphor to emit light of different wavelengths.
  • This design not only contributes to the improvement of the luminous efficacy of the overall LED lamp used in the patented LED light source device. It also helps to flexibly match the color temperature required by the luminaire and contributes to the cost reduction of the overall LED lamp. Due to the low proportion of phosphor incorporated, there is no significant effect on the temperature of the LED light source device.
  • a luminaire as shown in Fig. 3, that is, a remote phosphor lampshade is added to the LED light source device of the present invention (the blue chip is fixed in the form of COB).
  • the lamp comprises a base 1, a driving circuit 2, a heat conducting plate 3, a blue chip 4, a transparent colloid 5, a heat sink member 6 and a remote phosphor lamp cover 7, which are installed in the same manner as ordinary lamps.
  • the base 1, the heat sink member 6 and the remote phosphor lamp cover 7 are sequentially combined into a casing of the lamp from bottom to top, and have a cavity therein, and the driving circuit 2, the heat conducting plate 3, and the blue chip 4 are installed in the cavity from bottom to top.
  • the blue chip 4 is fixed on the heat conducting plate 3, and the blue chip 4 and the heat conducting plate 3 are coated with a transparent colloid 5.
  • the driving power source 2 is fixed on the base 1 , and the base 1 has a circuit therein, and the incoming end is connected to the power outlet end of the base 1 , and is connected to the external power source through the base 1 , and the outgoing end of the driving power source 2 and the lower end surface of the heat conducting board 3 . Connected.
  • the heat conducting plate 3 is a heat conducting metal plate or a heat conductive ceramic substrate.
  • the size of the heat conducting plate 3 is the same as the cross section of the cavity. After installation, a sealing member is formed.
  • the height of the heat sink member 6 is determined according to the size of the driving circuit 2, and the heat conducting plate 3 is ensured after installation. It can be connected to the heat sink member 6.
  • the blue chip 4 is directly placed on the upper end surface of the heat conducting plate 3, heat-treated until the blue chip 4 is firmly fixed on the heat conducting plate 3, and then the electrical connection is directly established between the blue chip 4 and the heat conducting plate 3 by wire bonding. .
  • the heat of the blue chip 4 can be dissipated through the heat conducting plate 3 and the heat sink member 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

本发明公开了一种透明胶体、LED光源器件及其制造方法,在甲基系硅胶或苯基系硅胶中掺入重量占比2-8%的散光剂或者散光剂和荧光粉的混合粉体,制成新型透明胶体,涂覆在以SMD或COB形式固定的蓝光芯片上,制成的LED光源器件,出光率达到了不涂任何胶体(即蓝光芯片裸露)的光源器件92%以上,比涂甲基系硅胶或苯基系硅胶的光源器件的出光率提高20%以上。

Description

一种透明胶体、LED光源器件及其制造方法 技术领域
本发明涉及照明装置领域,尤其涉及一种透明胶体、LED光源器件及其制造方法。
背景技术
目前蓝光芯片发射波长450-460nm的蓝光激发荧光粉产生白光的LED器件,主要有三种成型方式,第一种:SMD形式,即将蓝光芯片固定(固晶)在特定的支架上,再通过金线进行电极连接,再将荧光粉胶直接涂覆于蓝光芯片上固化,胶体固化完成后,即形成了SMD封装形式的LED光源器件单元。第二种:COB形式。将蓝光芯片直接固定在导热金属板或者导热陶瓷基板上(也称为热沉),然后将荧光粉胶直接涂敷于蓝光芯片、金属或陶瓷基板上。第三种:远程荧光粉激发方式。将蓝光芯片固定在上述第一种SMD特定支架上或第二种COB方式所述的热沉基板上,再涂覆透明胶体(如甲基系硅胶,苯基系硅胶,环氧树脂等),固化,制成LED光源器件,在该LED光源器件上罩上添加了荧光粉的部件(如灯罩,以下简称远程荧光粉灯罩),安装上驱动电路等制成LED灯具。由蓝光芯片发出蓝光(波长450-460nm)直接照射添加荧光粉的器件(如球罩)发出白光。这种方式荧光粉没有直接涂敷在蓝光LED芯片上,荧光粉与LED芯片之间有一定的距离,所以叫远程激发方式。
上述SMD和COB封装方式的光源器件,由于荧光粉直接涂覆在蓝光芯片上,在工作过程中两次发热量的叠加造成光源器件的工作温度更高,荧光粉表层的温度可以达到150度以上,荧光粉并不是一个长周期耐高温的材料,特别是荧光粉有光子热淬灭效应,工作温度越高,其将蓝光转化为白光的效率就越低,同时高温下长期工作荧光粉光衰减严重。远程激发方式虽然有荧光粉光子热淬灭效应小,温度低,光衰减弱以及寿命长等优点,但是目前在实际应用中并没有得到大规模使用,究其原因为灯具的整体发光效率不高,造成成本高。为什么远程方式下灯具的发光效率反而更低?原因是由于由于这种系统所采用的光源器件的蓝光出光效率低所致。而蓝光出光效率低是因为涂覆甲基系硅胶或苯基系硅胶后部分蓝光发生了全反射现象。
发明内容
本发明的目的在于提供一种透明胶体,替代原有透明胶体涂敷于SMD或COB形式固定的蓝光芯片上,形成新型LED光源器件,在不升高芯片温度的情况下减少光线全反射问题的产生,来提高蓝光的出光率。
本发明所解决的技术问题可以采用以下技术方案来实现:
一种透明胶体,以甲基系硅胶或苯基系硅胶为基底,其特征在于:在甲基系硅胶或苯基系硅胶中掺入重量占比2-8%的散光剂。
一种透明胶体,以甲基系硅胶或苯基系硅胶为基底,其特征在于:在甲基系硅胶或苯基系硅胶中掺入重量占比2-8%的散光剂和LED荧光粉的混合粉体。
优选的,所述散光剂的粒径D50,小于10μm,折射率为1.5-1.7。
一种LED光源器件,其特征在于:在以SMD或COB方式进行固定的蓝光芯片上,固化有以权利要求1或2中的任意一种透明胶体为原材料的涂覆结构。
优选的,以COB方式固定的蓝光芯片及固化的涂覆结构上还设置一远程荧光粉灯罩。
一种LED光源器件的制造方法,其特征在于:将蓝光芯片以SMD或COB的方式进行固定,涂覆上权利要求1或2中的任意一种透明胶体,固化,形成LED光源器件。
本发明提供一种LED光源器件的涂覆胶体,将其涂覆在蓝光芯片上制成光源器件,出光率达到了不涂任何胶体(蓝光芯片裸露)的光源器件的92%以上,比涂甲基系硅胶或苯基系硅胶的光源器件的出光率提高20%以上。
附图说明
图1是背景技术中远程激发方式的光源器件涂覆上甲基系硅胶层的光线线路示意图。
图2为本发明光源器件的光线线路示意图。
图3为本发明光源器件结构示意图。
图中,1-底座、2-驱动电路、3-导热板、4-蓝光芯片、5-透明胶体、6-散热器件、7-远程荧光粉灯罩。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
众所周知,当光从一种物质射入到另一种物质中会发生折射或反射现象,只要满足一定条件就会发生全反射,而不发生折射。
据临界角计算公式:sinα=n1/n2(α为临界角,n1、n2分别为不同物质的折射率),n1代表空气,折射率为1,n2代表甲基系硅胶(折射率1.42)或苯基系硅胶(折射率1.58)。
先分析甲基硅胶的临界角:sinα=n1/n2=1/1.42=0.704,α≈45°见图1。从图1可以分析出,入射角超出45°就会发生全反射,导致部分光不会折射出甲基系硅胶层,而被反射回芯片表面或基板表面。计算可知,在不发生全发射的情况下LED芯片的出光角度约120°,但涂覆上甲基系硅胶层后正常出光的角度只有约90°,有30°左右的光被全反射。所以芯片蓝光的出光效率下降约:30/120*100%=25%左右。同理,如果用苯基系硅胶其临界角为:sinα=n1/n2=1/1.58=0.632,α≈40°。所以涂覆上苯基系硅胶层后正常出光的角度只有80°,有40°左右的光被全反射。芯片蓝光的出光效率下降约:40/120*100%=33.3%左右。实际试验测试的结果同上述的理论值一致。
综上所述,涂覆甲基系硅胶或苯基系硅胶后导致出光率下降的原因是因为部分蓝光发生了全反射现象。
如图2、3为本发明的优选方案。
实施例1:
在甲基系硅胶或苯基系硅胶中掺入重量占比2-8%的散光剂,形成一种新型的透明胶体。散光剂的粒径D50,小于10μm,折射率为1.5-1.7。
将这种透明胶体替代前述所说的甲基系硅胶或苯基系硅胶涂敷于前述所说的SMD或COB形式固定的蓝光芯片上,形成新型LED光源器件。
这样的目的就是将蓝光散射开来,减少发生全反射,实验结果表明,应用本实施例所述的透明胶体后的光源器件的出光率,达到了不涂任何胶体(蓝光芯片裸露)的光源器件92%以上,比涂甲基系硅胶或苯基系硅胶的光源器件的出光率提高20%以上。
实施例2:
在甲基系硅胶或苯基系硅胶中掺入散光剂(散光剂的粒径D50,小于10μm,折射率为1.5-1.7)和LED荧光粉的混合粉体。混合粉体中散光剂和LED荧光粉两者的比例,可根据所需灯具的色温(冷色或暖色)要求进行配比。混合粉体在甲基系硅胶或苯基系硅胶中的重量占比为2-8%,形成一种新型的透明胶体。
将这种透明胶体替代前述所说的甲基系硅胶或苯基系硅胶涂敷于SMD或COB形式固定的蓝光芯片上,形成新型LED光源器件。
这样的目的不但可以将蓝光散射开来,减少发生全反射,同时蓝光可以激发荧光粉发出不同波长的光,这种设计不但有助于此专利LED光源器件应用的整体LED灯的光效提高,也有利于灵活配比灯具所需的色温,而且有助于整体LED灯的成本下降。由于掺入的荧光粉比例很低,对LED光源器件的温度并没有很大影响。
从图2可以看出被全反射回来的光线照射到散光剂或荧光粉上会被再次散射出透明胶体,进入空气层。同时,原本可能产生全反射的光线在到达界面前被散光剂散射或折射而改变了入射角,从而减少全反射的比例,极大减少蓝光或光线在胶体与空气的界面产生全反射,提高了光源器件的出光效率。
将实施例1和实施例2的透明胶体涂覆在COB形式固定的蓝光芯片上,再固化做成的LED光源器件,一般情况下并不能直接应用到普通的照明产品中,这样的器件设计必须依托添加中远程荧光粉的部件(如灯罩)才能直接的应用到普通照明中去。
图3所示的一种灯具,即是在本发明的LED光源器件(蓝光芯片以COB形式固定)上增加了远程荧光粉灯罩。该灯具包括底座1、驱动电路2、导热板3、蓝光芯片4、透明胶体5、散热器件6和远程荧光粉灯罩7,安装方式与普通灯具相同。
所述底座1、散热器件6与远程荧光粉灯罩7从下到上依次组合为灯具的外壳,内有空腔,驱动电路2、导热板3、蓝光芯片4从下到上安装于空腔中,蓝光芯片4固定在导热板3上,蓝光芯片4和导热板3上涂覆有透明胶体5。驱动电源2固定在底座1上,底座1内有电路,其进线端与底座1的电源出线端相连,通过底座1与外接电源联通,所述驱动电源2的出线端与导热板3下端面相连。
导热板3是导热金属板或者导热陶瓷基板,导热板3的大小与空腔横截面大小相同,安装后形成密封件,散热器件6的高度根据驱动电路2的大小确定,确保安装后导热板3能与散热器件6相连接。将蓝光芯片4直接安放在导热板3上端面上,热处理至蓝光芯片4牢固地固定在导热板3上为止,随后再用丝焊的方法在蓝光芯片4和导热板3之间直接建立电气连接。蓝光芯片4的热量可通过导热板3与散热器件6发散。
以上所述,仅是本发明较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,仍属于本发明的保护范围。

Claims (6)

  1. 一种透明胶体,以甲基系硅胶或苯基系硅胶为基底,其特征在于:在甲基系硅胶或苯基系硅胶中掺入重量占比2-8%的散光剂。
  2. 一种透明胶体,以甲基系硅胶或苯基系硅胶为基底,其特征在于:在甲基系硅胶或苯基系硅胶中掺入重量占比2-8%的散光剂和LED荧光粉的混合粉体。
  3. 根据权利要求1或2所述的一种透明胶体,其特征在于:所述散光剂的粒径D50,小于10μm,折射率为1.5-1.7。
  4. 一种LED光源器件,其特征在于:在以SMD或COB方式进行固定的蓝光芯片上,固化有以权利要求1或2中的任意一种透明胶体为原材料的涂覆结构。
  5. 根据权利要求4所述的一种LED光源器件,其特征在于:以COB方式固定的蓝光芯片及固化的涂覆结构上还设置一远程荧光粉灯罩。
  6. 一种LED光源器件的制造方法,其特征在于:将蓝光芯片以SMD或COB的方式进行固定,涂覆上权利要求1或2中的任意一种透明胶体,固化,形成LED光源器件。
PCT/CN2018/084029 2017-09-29 2018-04-23 一种透明胶体、led光源器件及其制造方法 WO2019062091A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/349,563 US20200185577A1 (en) 2017-09-29 2018-04-23 Led light source device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710907508.3A CN107622997B (zh) 2017-09-29 2017-09-29 一种led光源器件
CN201710907508.3 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019062091A1 true WO2019062091A1 (zh) 2019-04-04

Family

ID=61091569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084029 WO2019062091A1 (zh) 2017-09-29 2018-04-23 一种透明胶体、led光源器件及其制造方法

Country Status (3)

Country Link
US (1) US20200185577A1 (zh)
CN (1) CN107622997B (zh)
WO (1) WO2019062091A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107622997B (zh) * 2017-09-29 2019-11-12 厦门市启明辉科技有限公司 一种led光源器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571901A (zh) * 2001-12-18 2005-01-26 罗姆两合公司 照明设备
US20160086927A1 (en) * 2014-09-19 2016-03-24 Nichia Corporation Light emitting device
CN107622997A (zh) * 2017-09-29 2018-01-23 姜研 一种透明胶体及led光源器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100561547C (zh) * 2006-09-07 2009-11-18 上海三思电子工程有限公司 一种由led芯片直接封装具有霓虹灯效果的发光标志装置
CN103066189A (zh) * 2011-10-24 2013-04-24 比亚迪股份有限公司 一种led组件及其制备方法
CN203617295U (zh) * 2013-10-31 2014-05-28 深圳市斯迈得光电子有限公司 一种led光源器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571901A (zh) * 2001-12-18 2005-01-26 罗姆两合公司 照明设备
US20160086927A1 (en) * 2014-09-19 2016-03-24 Nichia Corporation Light emitting device
CN107622997A (zh) * 2017-09-29 2018-01-23 姜研 一种透明胶体及led光源器件

Also Published As

Publication number Publication date
CN107622997B (zh) 2019-11-12
CN107622997A (zh) 2018-01-23
US20200185577A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
US7304326B2 (en) Light emitting device and sealing material
TWI261937B (en) Light-emitting apparatus and illuminating apparatus
TWI255566B (en) Led
KR101639353B1 (ko) 반도체 발광장치 및 그 제조방법
CN101711435B (zh) 具有由带开口的支撑结构保持的波长转换元件的照明装置
JP4473284B2 (ja) 発光装置およびその製造方法
JP2009538536A (ja) 固体発光デバイス、および、それを製造する方法
KR20140022019A (ko) 발광장치 및 그 제조방법
WO2007088909A1 (ja) 発光装置および発光モジュール
KR100659900B1 (ko) 백색 발광 소자 및 그 제조방법
TW200840080A (en) Surface mount type light emitting diode package device and light emitting element package device
JP6065408B2 (ja) 発光装置およびその製造方法
JP2013012536A (ja) 平面発光モジュール
US9960323B2 (en) LED module and its manufacturing process
KR20060082440A (ko) 파장변환물질, 및 이를 포함하는 발광 장치와 캡슐화 물질
JPWO2007123239A1 (ja) 発光装置
CN108666407A (zh) 具面光源的发光二极管封装结构及其制造方法
CN107990267B (zh) 一种太阳能led草坪灯
CN105822909A (zh) 紫外灯丝灯
TWI566437B (zh) 發光裝置及其製造方法
JP2019057655A (ja) 光源及び照明装置
KR101300138B1 (ko) 발광칩 패키지
WO2019062091A1 (zh) 一种透明胶体、led光源器件及其制造方法
KR100445666B1 (ko) 오목렌즈 발광면을 갖는 발광 소자 및 그 제조 방법
CN205383560U (zh) Led路灯模组及路灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860130

Country of ref document: EP

Kind code of ref document: A1