WO2019061919A1 - 一种喷墨打印用陶瓷墨水及其制备方法 - Google Patents

一种喷墨打印用陶瓷墨水及其制备方法 Download PDF

Info

Publication number
WO2019061919A1
WO2019061919A1 PCT/CN2017/119669 CN2017119669W WO2019061919A1 WO 2019061919 A1 WO2019061919 A1 WO 2019061919A1 CN 2017119669 W CN2017119669 W CN 2017119669W WO 2019061919 A1 WO2019061919 A1 WO 2019061919A1
Authority
WO
WIPO (PCT)
Prior art keywords
inkjet printing
ceramic ink
ceramic
ink
printing according
Prior art date
Application number
PCT/CN2017/119669
Other languages
English (en)
French (fr)
Inventor
陈张伟
劳长石
欧阳竟
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2019061919A1 publication Critical patent/WO2019061919A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks

Definitions

  • the invention relates to the technical field of ceramic inks for inkjet printing, and in particular to a ceramic ink for inkjet printing and a preparation method thereof.
  • Ceramic ink is an ink containing one or more ceramic fine powder components.
  • the composition and performance of ceramic inks are related to the working principle of the printer and the use of the ink.
  • Ceramic inks are usually composed of inorganic non-metallic fine powders, solvents, dispersants, binders, surfactants, and other excipients.
  • the inorganic non-metallic fine powder is the core material of the ink, and the particle size is required to be less than 1 micrometer, the particle size distribution is narrow, the particles cannot be strongly agglomerated, have good stability, and are less affected by other substances such as solvents.
  • Inkjet printing is a promising non-contact and maskless manufacturing method for additive manufacturing sub-micron and multi-material components. Inkjet printing has attracted a lot of attention due to its low cost, fast and precise manufacturing process.
  • the method can achieve a layer-by-layer 3D printing process by repeating deposition in a short time interval.
  • the inkjet printing method primarily controllably discharges tiny volumes of ink onto a surface of a reserved substrate by precisely positioning the printhead.
  • One of the important factors in achieving high quality inkjet printing is the preparation of ceramic inks with matching printer requirements, which generally require good stability, dispersion and uniformity.
  • Porous and dense composite ceramic components such as electrode layers and electrolytes in solid oxide fuel cells (SOFCs) are among the many examples of existing ink jet printing technology applications.
  • SOFCs solid oxide fuel cells
  • the performance of ceramic inks for inkjet printing is different for different people, and the method of formulating inks is different.
  • the most important performance index of ink is dispersion and stability. Ink with poor stability is prone to precipitation and delamination, which seriously affects the printing performance of the ink. Therefore, the preparation of a ceramic ink for inkjet printing with simple preparation process, good stability and excellent printing performance has great research and application prospects.
  • water-based inks are safer, more non-toxic, greener, more cost-effective in the development process, and easier to clean.
  • an object of the present invention is to provide a ceramic ink for inkjet printing and a method for preparing the same, which aim to solve the problem that the prior ceramic ink has poor stability, poor dispersibility, and affects the printing performance of the ink.
  • a ceramic ink for inkjet printing comprising, by weight percentage, the following components: 5-15% of ceramic powder, 3 ⁇ 7% of aqueous solution of surfactant, 0.1-0.5% of dispersant, and the balance is deionized water .
  • the ceramic ink for inkjet printing wherein, by weight percentage, comprises the following components: ceramic powder 10%, 20% by mass aqueous solution of surfactant 5%, dispersant 0.3%, balance is deionized water .
  • the ceramic ink for inkjet printing wherein the ceramic powder is samarium cobalt ferrite.
  • the ceramic ink for inkjet printing wherein the samarium cobalt ferrite has a D10 of 0.116 ⁇ m and a D50 of 0.696 ⁇ m.
  • the ceramic ink for inkjet printing wherein the dispersing agent is an amine compound.
  • the ceramic ink for inkjet printing wherein the amine compound is triethanolamine.
  • the ceramic ink for inkjet printing wherein the surfactant in the aqueous surfactant solution is a nonionic water-soluble polymer.
  • the ceramic ink for inkjet printing wherein the nonionic water-soluble polymer is polyethylene glycol.
  • the ceramic ink for inkjet printing wherein the ceramic ink has a viscosity of 5.0 to 10.0 mPa ⁇ s, a surface tension of 50 to 60 mN/m, and a pH of 2 to 11.
  • A mixing ceramic powder, aqueous surfactant solution, dispersing agent and deionized water to obtain a mixed solution
  • the mixed solution is placed in a ball mill tank for ball milling treatment, taken out, filtered, pH adjusted, and zeta potential is measured to obtain a ceramic ink.
  • the ceramic ink of the above formula of the present invention has low viscosity, uniform particle size fraction, viscosity of 5.0 to 10.0 mPa ⁇ s and can be adjusted, surface tension is 50-60 mN/m, and pH is 2-11. It can be adjusted and has the best stability when the pH is 6-7.
  • the ceramic ink for inkjet printing prepared by the present invention has good quality, can be stored for a long time, and has high dispersion stability.
  • the present invention provides a ceramic ink for inkjet printing and a method for preparing the same, and the present invention will be further described in detail below in order to clarify and clarify the objects, technical solutions and effects of the present invention. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the invention provides a preferred embodiment of the ceramic ink for inkjet printing, which comprises, by weight percentage, the following components: ceramic powder 5-15%, surfactant aqueous solution 3-7%, dispersant 0.1-0.5%, The balance is deionized water.
  • the ceramic powder is a fuel cell cathode material LSCF (samarium cobalt ferrite), and the samarium cobalt ferrite has a D10 of 0.116 ⁇ m and a D50 of 0.696 ⁇ m.
  • LSCF fuel cell cathode material
  • the surfactant in the aqueous surfactant solution is a nonionic water-soluble polymer, such as PEG (polyethylene glycol) or the like is not limited thereto.
  • the surfactant has a mass concentration of 20%.
  • the dispersing agent is an amine compound such as TEOA (triethanolamine) or the like is not limited thereto.
  • the invention designs a ceramic ink which has the above-mentioned good dispersion effect, does not block the nozzle, and does not precipitate for a long time.
  • the ceramic ink provided by the invention has good quality, can be preserved for a long time without sedimentation delamination, and has high dispersion stability.
  • the ceramic ink of the invention has low viscosity, uniform particle size fraction, viscosity between 5.0 and 10.0 mPa ⁇ s and can be adjusted, surface tension is 50-60 mN/m, pH is between 2 and 11 and can be regulated, and The best stability is obtained at a pH of 6-7.
  • the present invention provides a preferred embodiment of a method for preparing a ceramic ink for inkjet printing as described above, which comprises the following steps:
  • A mixing ceramic powder, aqueous surfactant solution, dispersing agent and deionized water to obtain a mixed solution
  • the mixed solution is placed in a ball mill tank for ball milling treatment (the treatment time is about 24 hours), and then taken out, filtered, pH value is adjusted and the zeta potential is tested to obtain a spray with high dispersion stability and long-term storage at room temperature. Ceramic ink for ink printing.
  • step B after filtration, the present invention adjusts the pH of the solution to neutral with an acid (e.g., 0.1 mol/L hydrochloric acid) or a base, and then tests the zeta potential at the pH.
  • an acid e.g., 0.1 mol/L hydrochloric acid
  • a base e.g., 0.1 mol/L hydrochloric acid
  • the ceramic ink for inkjet printing of this embodiment comprises the following steps:
  • PEG4000 polyethylene glycol
  • the ultrasonically finished ink is placed in an agate can, and then placed in a planetary ball mill for ball milling, wherein the ball milling speed is 650 rpm, and the ball milling time is 24 hours;
  • the formulated ink is added dropwise to the hydrochloric acid solution for pH adjustment, and the pH value and the corresponding zeta potential are tested.
  • the zeta potential of the pH value between 6 and 7 is more than +30 mV.
  • the ink is in a stable dispersion state under the optimized system.
  • the viscosity is 5-10 mPa ⁇ s (shear rate is 1000 s -1 ) and the surface tension is 50-60 mN/m, which meets the requirements of ink jet printing performance;
  • the stable dispersion ink of this embodiment can be placed at room temperature for more than 3 months without sedimentation stratification, while the ink which is not optimized is in the same environmental condition. Significant sedimentation stratification occurred within the next 3 days. Further experiments have verified that the optimized ink has a fairly long-lasting stability and can meet the requirements for long-term storage.
  • the ink is prepared by a physical method, and the process is simple and the preparation cycle is short.
  • the present invention provides a ceramic ink for inkjet printing and a preparation method thereof, and the ceramic ink for inkjet printing prepared by the invention has good quality and can be stored for a long time, and realizes a spray with high dispersion stability. Preparation of ink printed ceramic ink.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本发明公开一种喷墨打印用陶瓷墨水及其制备方法,按重量百分比计,所述陶瓷墨水包括如下组分:陶瓷粉末5~15%、表面活性剂水溶液3~7%、分散剂0.1~0.5%、余量为去离子水。本发明制备的喷墨打印用陶瓷墨水的品质良好,分散性良好,稳定性高,可以长时间保存。

Description

一种喷墨打印用陶瓷墨水及其制备方法 技术领域
本发明涉及喷墨打印用陶瓷墨水技术领域,尤其涉及一种喷墨打印用陶瓷墨水及其制备方法。
背景技术
陶瓷墨水就是含有某种或多种陶瓷细微粉体成分的墨水。陶瓷墨水的组成和性能与打印机的工作原理和墨水用途有关。陶瓷墨水通常由无机非金属细微粉体、溶剂、分散剂、结合剂、表面活性剂及其它辅料构成。无机非金属细微粉体是墨水的核心物质,要求其颗粒度小于1微米,颗粒尺寸分布要窄,颗粒之间不能有强团聚,具有良好的稳定性,受溶剂等其它物质的影响小。
喷墨打印是一种前景广阔的非接触式和无掩模制造方法,可用于增材制造亚微米级和多材料部件。喷墨打印由于其低成本,快速和精确的制造过程,引起了人们极大的关注。该方法可以通过在短时间间隔内重复沉积来实现逐层3D打印工艺。喷墨打印方法主要通过精确定位打印头而将墨水可控地排出微小体积的液滴到预留的基底表面上。实现高质量喷墨打印的重要因素之一是制备具有匹配打印机要求的陶瓷墨水,一般来说要求具有良好的稳定性、分散性和均匀性。固体氧化物燃料电池(SOFC)中的多孔和致密复合陶瓷部件如电极薄层和电解质是现有喷墨打印技术应用的众多例子之一。
目前不同的人员配制出喷墨打印用的陶瓷墨水性能不一,配制墨水的方法难易程度也不一样,其中墨水最关键的性能指标之一就是其分散性和稳定性。稳定性差的墨水很容易发生沉淀,出现分层现象,严重影响墨水的打印性能。所以配制出一种制备工艺简单、稳定性好和打印性能优异的喷墨打印用的陶瓷墨水具有很大的科研和应用前景。
目前针对固体氧化物燃料电池陶瓷电极材料研发方面,市面上还没有一款能够长久存放的稳定墨水。
另外,目前市面上的其他应用的墨水油系的偏多,而水系的偏少。但是相较于油系墨水,水系墨水的应用具有几个重要的优势,即水系墨水更加安全无毒、 绿色环保、研发过程更节约成本、并且清洗处理更加方便容易。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种喷墨打印用陶瓷墨水及其制备方法,旨在解决现有陶瓷墨水稳定性差,分散性差,影响墨水的打印性能的问题。
本发明的技术方案如下:
一种喷墨打印用陶瓷墨水,其中,按重量百分比计,包括如下组分:陶瓷粉末5~15%、表面活性剂水溶液3~7%、分散剂0.1~0.5%、余量为去离子水。
所述的喷墨打印用陶瓷墨水,其中,按重量百分比计,包括如下组分:陶瓷粉末10%、20%质量浓度的表面活性剂水溶液5%、分散剂0.3%、余量为去离子水。
所述的喷墨打印用陶瓷墨水,其中,所述陶瓷粉末为镧锶钴铁氧体。
所述的喷墨打印用陶瓷墨水,其中,所述镧锶钴铁氧体的D10为0.116μm,D50为0.696μm。
所述的喷墨打印用陶瓷墨水,其中,所述分散剂为胺类化合物。
所述的喷墨打印用陶瓷墨水,其中,所述胺类化合物为三乙醇胺。
所述的喷墨打印用陶瓷墨水,其中,所述表面活性剂水溶液中的表面活性剂为非离子型的水溶性聚合物。
所述的喷墨打印用陶瓷墨水,其中,所述非离子型的水溶性聚合物为聚乙二醇。
所述的喷墨打印用陶瓷墨水,其中,所述陶瓷墨水的粘度为5.0~10.0mPa·s,表面张力为50~60mN/m,pH值为2~11。
一种如上所述的喷墨打印用陶瓷墨水的制备方法,其中,包括以下步骤:
A、将陶瓷粉末、表面活性剂水溶液、分散剂以及去离子水混合,得到混合溶液;
B、将所述混合溶液放置于球磨罐中进行球磨处理后取出,过滤,调节pH值并测试其Zeta电位,得到陶瓷墨水。
有益效果:本发明上述配方的陶瓷墨水粘度低,粒径分部均匀,其粘度在5.0~10.0mPa·s之间并且可以调控,表面张力为50~60mN/m,pH值在2~11之间并且可以调控,且pH值为6~7时具有最好的稳定性。本发明制备的喷墨打印用陶瓷墨水的品质良好,可以长时间保存,具有高分散稳定性。
具体实施方式
本发明提供一种喷墨打印用陶瓷墨水及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提供一种喷墨打印用陶瓷墨水较佳实施例,其按重量百分比计,包括如下组分:陶瓷粉末5~15%、表面活性剂水溶液3~7%、分散剂0.1~0.5%、余量为去离子水。
优选地,所述陶瓷粉末为燃料电池阴极材料LSCF(镧锶钴铁氧体),所述镧锶钴铁氧体的D10为0.116μm,D50为0.696μm。
优选地,所述表面活性剂水溶液中的表面活性剂为非离子型的水溶性聚合物,如PEG(聚乙二醇)等不限于此。
优选地,所述表面活性剂水溶液中,表面活性剂的质量浓度为20%。
优选地,所述分散剂为胺类化合物,如TEOA(三乙醇胺)等不限于此。
基于目前固体氧化物燃料电池陶瓷电极材料方面,还没有一款能够长久存放的稳定墨水。本发明根据墨水性能的要求,设计出上述分散效果好、不堵塞喷头、长时间放置不会沉淀的陶瓷墨水。
与现有燃料电池陶瓷电极材料的陶瓷墨水相比,本发明提供的陶瓷墨水品质良好,可以长时间保存而不发生沉降分层,具有高的分散稳定性。本发明陶瓷墨水粘度低,粒径分部均匀,其粘度在5.0~10.0mPa·s之间并且可以调控,表面张力为50~60mN/m,pH值在2~11之间并且可以调控,且pH值为6~7时具有最好的稳定性。
本发明提供一种如上所述的喷墨打印用陶瓷墨水的制备方法较佳实施例,其中,包括以下步骤:
A、将陶瓷粉末、表面活性剂水溶液、分散剂以及去离子水混合,得到混合溶液;
B、将所述混合溶液放置于球磨罐中进行球磨处理(处理时长约为24h)后取出,过滤,调节pH值并测试其Zeta电位,得到具有高分散稳定性,可以长久常温密闭存放的喷墨打印用陶瓷墨水。
步骤B中,过滤后,本发明用酸(如0.1mol/L盐酸)或碱调节溶液pH值趋近中性,然后在该pH值下测试其Zeta电位。
下面通过实施例对本发明进一步说明。
实施例1
本实施例的一种喷墨打印用陶瓷墨水,其制备方法包括以下步骤:
1、先取20g PEG4000(聚乙二醇)溶于80g的去离子水中,得到20wt%的PEG水溶液;
2、将PEG水溶液放入搅拌机,速率设置在600r/min,搅拌2min,用肉眼观测溶液,直至溶液变得清澈即可;
3、在天平上放置一个空瓶,依次加入40gΦ3.2mm锆珠和80gΦ1.0mm的锆珠,20g LSCF(镧锶钴铁氧体)粉末、10g 20wt%PEG水溶液、0.6g TEA(三乙醇胺)和169.4g去离子水;
4、使用超声分散处理,以打散粉末的团聚作用;
5、将超声完的墨水放入玛瑙罐中,然后置于行星球磨机中进行球磨处理,其中球磨转速为650转/分钟,球磨时间为24小时;
6、根据DLVO稳定性理论,对配制的墨水逐滴加入盐酸溶液进行酸碱度调节,测试其pH值和对应的Zeta电位,测试发现其pH值在6~7之间的Zeta电位超过+30mV,说明该优化系统下墨水处于稳定分散状态。同时测定其粘度为5~10mPa·s(剪切速率为1000s -1)和表面张力为50~60mN/m,均符合喷墨打印性能要求;
7、经试验观测,并与未进行优化的原始墨水对照发现,本实施例稳定分散墨水可常温密闭放置达3个月以上而不发生沉降分层,而未进行优化的墨水则在 同等环境条件下3天内即产生明显沉淀分层。进一步试验验证了优化墨水具有相当持久的稳定性,可以满足长时间存放的要求。本实施例采用物理方法配制墨水,工艺简单、配制周期短。
综上所述,本发明提供的一种喷墨打印用陶瓷墨水及其制备方法,本发明制备的喷墨打印用陶瓷墨水的品质良好,可以长时间保存,实现了具有高分散稳定性的喷墨打印陶瓷墨水的制备。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种喷墨打印用陶瓷墨水,其特征在于,按重量百分比计,包括如下组分:陶瓷粉末5~15%、表面活性剂水溶液3~7%、分散剂0.1~0.5%、余量为去离子水。
  2. 根据权利要求1所述的喷墨打印用陶瓷墨水,其特征在于,按重量百分比计,包括如下组分:陶瓷粉末10%、20%质量浓度的表面活性剂水溶液5%、分散剂0.3%、余量为去离子水。
  3. 根据权利要求1~2任一项所述的喷墨打印用陶瓷墨水,其特征在于,所述陶瓷粉末为镧锶钴铁氧体。
  4. 根据权利要求3所述的喷墨打印用陶瓷墨水,其特征在于,所述镧锶钴铁氧体的D10为0.116μm,D50为0.696μm。
  5. 根据权利要求1~2任一项所述的喷墨打印用陶瓷墨水,其特征在于,所述分散剂为胺类化合物。
  6. 根据权利要求5所述的喷墨打印用陶瓷墨水,其特征在于,所述胺类化合物为三乙醇胺。
  7. 根据权利要求1~2任一项所述的喷墨打印用陶瓷墨水,其特征在于,所述表面活性剂水溶液中的表面活性剂为非离子型的水溶性聚合物。
  8. 根据权利要求7所述的喷墨打印用陶瓷墨水,其特征在于,所述非离子型的水溶性聚合物为聚乙二醇。
  9. 根据权利要求1~2任一项所述的喷墨打印用陶瓷墨水,其特征在于,所述陶瓷墨水的粘度为5.0~10.0mPa·s,表面张力为50~60mN/m,pH值为2~11。
  10. 一种如权利要求1~9任一项所述的喷墨打印用陶瓷墨水的制备方法,其特征在于,包括以下步骤:
    A、将陶瓷粉末、表面活性剂水溶液、分散剂以及去离子水混合,得到混合溶液;
    B、将所述混合溶液放置于球磨罐中进行球磨处理后取出,过滤,调节pH值并测试其Zeta电位,得到陶瓷墨水。
PCT/CN2017/119669 2017-09-26 2017-12-29 一种喷墨打印用陶瓷墨水及其制备方法 WO2019061919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710878738.1A CN107556822B (zh) 2017-09-26 2017-09-26 一种喷墨打印用陶瓷墨水及其制备方法
CN201710878738.1 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019061919A1 true WO2019061919A1 (zh) 2019-04-04

Family

ID=60982631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119669 WO2019061919A1 (zh) 2017-09-26 2017-12-29 一种喷墨打印用陶瓷墨水及其制备方法

Country Status (2)

Country Link
CN (1) CN107556822B (zh)
WO (1) WO2019061919A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11065781B2 (en) * 2018-06-13 2021-07-20 City University Of Hong Kong System and method for four-dimensional printing of elastomer-derived ceramic structures by self-forming method
CN108864822A (zh) * 2018-08-02 2018-11-23 张家港市沐和新材料技术开发有限公司 一种陶瓷墨水的配方及其制备方法
CN109192995A (zh) * 2018-09-06 2019-01-11 深圳大学 一种喷墨3d打印制造固体氧化物燃料电池电极的方法
CN114836076A (zh) * 2022-06-13 2022-08-02 广西碧清源环保投资有限公司 一种喷墨打印墨水及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160131294A (ko) * 2015-05-06 2016-11-16 고려대학교 산학협력단 잉크젯 프린팅용 수계 세라믹 잉크
US20170081500A1 (en) * 2015-09-17 2017-03-23 3Dbotics, Inc. Material system and method for fabricating refractory material-based 3d printed objects
CN106590149A (zh) * 2016-12-26 2017-04-26 哈尔滨工程大学 基于压电陶瓷纳米粉的墨水及制备方法
CN106905769A (zh) * 2017-04-18 2017-06-30 青岛农业大学 一种水性陶瓷数码喷绘墨水及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160095083A (ko) * 2014-01-09 2016-08-10 차오조우 쓰리-써클(그룹) 씨오., 엘티디. 전기화학적 에너지 변환 장치 및 전지, 그리고 이를 위한 양전극측 재료
US20170274416A1 (en) * 2014-09-02 2017-09-28 Sung Wung YEOM Applying a Coating to a Substrate; Composite Structures formed by Application of a Coating
CN106046939A (zh) * 2016-06-30 2016-10-26 佛山市理想家建材有限公司 一种新型陶瓷喷墨墨水及其生产工艺
CN106876149B (zh) * 2017-03-07 2018-06-22 华南理工大学 一种基于多孔钴酸锶镧基底担载银纳米颗粒的超级电容器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160131294A (ko) * 2015-05-06 2016-11-16 고려대학교 산학협력단 잉크젯 프린팅용 수계 세라믹 잉크
US20170081500A1 (en) * 2015-09-17 2017-03-23 3Dbotics, Inc. Material system and method for fabricating refractory material-based 3d printed objects
CN106590149A (zh) * 2016-12-26 2017-04-26 哈尔滨工程大学 基于压电陶瓷纳米粉的墨水及制备方法
CN106905769A (zh) * 2017-04-18 2017-06-30 青岛农业大学 一种水性陶瓷数码喷绘墨水及其制备方法

Also Published As

Publication number Publication date
CN107556822B (zh) 2020-11-17
CN107556822A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2019061919A1 (zh) 一种喷墨打印用陶瓷墨水及其制备方法
Zhu et al. Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks
CN102051069B (zh) 非离子型分散体系液状分散染料及其制备方法
Pandiyan et al. Formulation of spinel based inkjet inks for protective layer coatings in SOFC interconnects
JP2001192583A (ja) 顔料分散液と該分散液を用いたインクジェット用インク
CN111574889B (zh) 一种高性能纳米黑色色浆及其制备方法和应用
CN114497715B (zh) 电池用无机氧化物固态电解质分散液及其制备方法和应用
CN108816152B (zh) 一种聚醚与羧酸双改性聚乙烯亚胺水性分散剂及其制备方法与应用
CN114512711A (zh) 一种固含量稳定的电池用无机氧化物固态电解质纳米分散液及其制备方法
US6656976B2 (en) Preparation of well dispersed suspensions suitable for spray drying
CN110981527B (zh) 一种柔性陶瓷集流层薄膜生坯
US20170362454A1 (en) Water based magnetic ink character recognition ink jet ink based on dispersion of functionalized nanoparticulate magnetic ferrite
CN112852219B (zh) 一种静电喷雾釉料组合物及其制备方法
CN113061367A (zh) 一种基于分散蓝359染料的高稳定性热升华墨水及其制备方法
US6726759B2 (en) Aqueous magnetic ink character recognition ink-jet ink composition
CN115159985B (zh) 一种llzo固体电解质粉体干法混料烧结工艺
CN111205090A (zh) 氧化钪稳定氧化锆粉体及其制备方法
KR20100088528A (ko) 수산화니켈 피복 니켈입자 및 그 제조방법
KR19980029430A (ko) 그린쉬트용 세라믹 슬러리
CN113072840A (zh) 一种基于复配分散黑染料的热升华墨水及其制备方法
JP2011178845A (ja) ニッケル微粒子含有インクジェット用組成物
CN111244514A (zh) 共沉淀耦合喷雾热解制备钪锆粉体的方法及该方法制备的钪锆粉体
JP2008169050A (ja) セラミックスグリーンシート及びその製造方法
CN116544493B (zh) 磷酸盐固态电解质分散液及其制备方法和应用
CN113881997B (zh) 一种用于烧结钕铁硼的镍钴基纳米复合镀层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17927636

Country of ref document: EP

Kind code of ref document: A1