WO2019061900A1 - 一种高偏振消光比铌酸锂波导及其制作方法 - Google Patents

一种高偏振消光比铌酸锂波导及其制作方法 Download PDF

Info

Publication number
WO2019061900A1
WO2019061900A1 PCT/CN2017/118362 CN2017118362W WO2019061900A1 WO 2019061900 A1 WO2019061900 A1 WO 2019061900A1 CN 2017118362 W CN2017118362 W CN 2017118362W WO 2019061900 A1 WO2019061900 A1 WO 2019061900A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium niobate
waveguide
extinction ratio
proton exchange
polarization extinction
Prior art date
Application number
PCT/CN2017/118362
Other languages
English (en)
French (fr)
Inventor
杜闯
王冲
丁丽
傅力
陈小梅
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2019061900A1 publication Critical patent/WO2019061900A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1345Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion exchange
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Definitions

  • the invention relates to a waveguide and a manufacturing method thereof, and belongs to the field of optical devices, in particular to a high polarization extinction ratio lithium niobate waveguide and a manufacturing method thereof.
  • fiber optic gyroscope With the rapid development of optical fiber communication technology and semiconductor industry, fiber optic gyroscope has been widely used due to its simple structure, stable performance, large dynamic range, fast response speed and long life, especially in inertial navigation systems.
  • the polarization extinction ratio of the Y-waveguide modulator directly affects the phase error and stability in the fiber optic gyroscope. Therefore, it is important to improve the polarization extinction ratio of the Y-waveguide chip to improve the accuracy and stability of the gyroscope.
  • Lithium niobate crystal is the most commonly used crystal material in optical waveguide devices because of its large electro-optical, acousto-optic coefficient and excellent nonlinearity and photorefractive properties.
  • the optical waveguide device made of lithium niobate has a large modulation bandwidth, can improve the scale factor stability and dynamic range of the fiber optic gyroscope, and effectively reduce the coherent polarization noise, and is the best material for the Y-type optical waveguide.
  • the proton exchange method Compared with the Ti diffusion method, the proton exchange method has the advantages of low waveguide fabrication temperature, fast waveguide formation, strong resistance to light damage, step distribution of refractive index distribution, and large adjustment through annealing process. It is a simple and mature method. A method for preparing a lithium niobate optical waveguide.
  • the proton exchange process increases the extraordinary refractive index in lithium niobate, while the ordinary refractive index is almost constant, which makes it easy to obtain a high TE/TM extinction ratio.
  • the patent number "CN104597551A” patent "a polarizing plate capable of realizing a high polarization extinction ratio, and a manufacturing method and test apparatus thereof” discloses a method of using an optical fiber chip end face optical waveguide chip by using a method of increasing the extinction ratio of a polarizing plate.
  • the positive retardation film layer outside the region isolates the crosstalk of the radiation mode to the guided mode, effectively improving the polarization extinction ratio of the polarizing plate.
  • the present invention mainly solves the above-mentioned technical problems existing in the prior art, and provides a high polarization extinction ratio lithium niobate waveguide and a manufacturing method thereof.
  • the waveguide and the manufacturing method thereof protect the lower surface of the lithium niobate optical waveguide chip before proton exchange, so that no proton exchange occurs on the lower surface of the lithium niobate substrate, thereby reducing the TM leakage mode (or TE leakage mode) Coupling into the output fiber increases the TE/TM polarization extinction ratio of the lithium niobate waveguide.
  • a high polarization extinction ratio lithium niobate waveguide manufacturing method in which a protective layer for preventing proton exchange of a lower surface is disposed on a lower surface of a lithium niobate substrate before the proton exchange process; the lower surface is an unetched waveguide side .
  • the protective layer is a SiO 2 mask.
  • the protective layer has a thickness of 100 nm.
  • the above method for fabricating a high polarization extinction ratio lithium niobate waveguide is characterized in that: the lithium niobate substrate is cut from a lithium niobate crystal, and the lithium niobate substrate is X-cut or Z-cut tantal acid. Lithium crystal orientation.
  • the protective layer is a coating protective layer.
  • the high polarization extinction ratio lithium niobate waveguide fabrication method described above etches away the protective layer after annealing is completed.
  • the above method for fabricating a high polarization extinction ratio lithium niobate waveguide comprises:
  • a water bath cleaning step for performing ultrasonic cleaning on a lithium niobate substrate to remove oil stains
  • a photolithography development step of cleaning and drying the lithium niobate substrate on which the SiO 2 mask is grown, exposing with ultraviolet light, and developing and cleaning the exposed lithium niobate substrate;
  • the lithium niobate substrate is immersed in a benzoic acid solution in a water bath for proton exchange;
  • the SiO2 mask 1 is grown on the upper surface of the upper proton exchange region by plasma enhanced chemical vapor deposition, and annealed in a high temperature furnace to wash away the SiO2 mask on the upper and lower surfaces of the lithium niobate substrate.
  • a high polarization extinction ratio lithium niobate waveguide produced by any of the above fabrication methods.
  • the present invention has the following advantages: effectively avoiding proton exchange on the lower surface of the lithium niobate substrate, and reducing the probability that the TM drain mode or the TE drain mode scattered into the lithium niobate matrix is totally reflected to the output port,
  • the technical treatment of the lower surface of lithium niobate, the absorption or leakage of the TM mode or the TE mode return to the exit port lays the foundation to improve the TE/TM polarization extinction of the lithium niobate waveguide.
  • FIG. 1 is a schematic cross-sectional view of a lithium niobate waveguide fabricated by a prior proton exchange process
  • FIG. 2 is a schematic view showing a coupling of a conventional lithium niobate waveguide and a fiber
  • FIG. 3 is a schematic diagram showing the manufacturing process of the high polarization extinction ratio lithium niobate waveguide and the corresponding relationship of components in each step.
  • FIG. 4 is a schematic view showing the coupling of a high polarization extinction ratio lithium niobate waveguide and a fiber according to the present invention
  • SiO2 mask 2. upper proton exchange region; 3. lithium niobate substrate; 4. lower proton exchange region; 5. input fiber; 6. TE mode; 7. TM mode; 8. output fiber; 9. Mask plate; 10. Photoresist.
  • the existing theory it is known that for different external electric field directions, different crystal orientations should be selected in order to obtain the maximum electro-optic coefficient.
  • the electric field direction of the lithium niobate modulator is parallel to the surface of the lithium niobate substrate, the lithium niobate slice of X-cut Y-direction propagation (or Y-cut X-propagation) should be selected.
  • the TM mode only has a leakage mode, that is, TM. It is only possible to have a leakage mode in such a waveguide, and a TE mode may have a guided mode solution.
  • the TE mode in the X-cut Y-transmission (or Y-cut X-transmission) lithium niobate waveguide, only the TE mode can be transmitted, and the TM mode cannot be transmitted to form the TE/TM mode polarization.
  • the Z-cut lithium niobate crystal substrate should be selected. In this case, only the TM mode can be transmitted in the lithium niobate waveguide, and the TE mode cannot be transmitted. Forms a TM/TE mode polarization.
  • the existing proton exchange process uses X-cut. (Transmit TE mode) or Z cut (transfer TM mode) lithium niobate crystal.
  • Figure 1 is a cross-sectional view of the lithium niobate optical waveguide after proton exchange.
  • the upper proton exchange region 2 and the lower proton exchange region 4 are the results of proton exchange between the upper and lower surfaces of the lithium niobate crystal and the proton source, respectively. .
  • the optical wave TE mode 6 (or TM mode 7) output from the input optical fiber 5 propagates in the upper proton exchange region 2, and the TM mode 7 (or The TE mode 6) is scattered into the lithium niobate matrix 3, but due to the presence of the lower proton exchange region 4, a portion of the leaked TM mode 7 (or TE mode 6) is at the exit coupling port due to total reflection. Reflected into the output fiber 8, thereby reducing the TE/TM polarization extinction ratio of the optical signal.
  • a protective layer is added to the lower surface of the lithium niobate crystal before the proton exchange to avoid the formation of the lower proton exchange region, and also under the lithium niobate crystal after the proton exchange.
  • the surface coating of the absorption layer lays the foundation and effectively improves the TE/TM polarization extinction ratio of the lithium niobate waveguide.
  • the high polarization extinction ratio lithium niobate waveguide chip designed in this embodiment is fabricated based on a proton exchange process.
  • the waveguide fabrication process of X-cut Y-transferred lithium niobate is selected to illustrate the fabrication principle of the present invention.
  • the TE mode can propagate normally therein, and the TM mode is scattered in a leaky mode, and the modulated electrode electric field direction of the waveguide is parallel to the surface of the lithium niobate substrate.
  • FIG. 3 is a process flow diagram and a schematic diagram of a method for preparing a high polarization extinction ratio lithium niobate waveguide according to the present invention.
  • the lithium niobate substrate 3 required for the lithium niobate waveguide and the specific mask 9 used for photolithography are prepared, and a series of solvents such as potassium dichromate, ethanol, acetone, etc. are used to treat the lithium niobate substrate 3
  • Ultrasonic cleaning in a water bath was performed to remove oil stains; then, a SiO 2 mask 1 was grown on the upper surface of the lithium niobate substrate 3 by plasma enhanced chemical vapor deposition.
  • the lithium niobate substrate on which the SiO 2 mask 1 is grown is cleaned and dried in an oven, and then a layer of the positive photoresist 10 is uniformly coated on the surface of the lithium niobate substrate 3 and placed on the silicone.
  • the machine is evenly spread, and the photoresist is dried in an oven.
  • the lithium niobate substrate 3 and the mask 9 were placed on a photolithography machine, exposed to ultraviolet light at 400 nm for 15 seconds, and the exposed lithium niobate substrate was developed and washed.
  • the waveguide shape is etched on the surface of the lithium niobate substrate 3 by a combination of dry etching and wet etching: first, the upper surface SiO 2 mask of the lithium niobate substrate 3 is etched by electrical coupling plasma etching. 1 Incomplete etching is performed, and then wet-etching is performed in a mixed solution of HF and NH3F to complete the Y-waveguide shape etching on the upper surface of the lithium niobate substrate 3. The photoresist 10 on the surface of the lithium niobate substrate 3 is removed, and the lithium niobate substrate 3 is cleaned.
  • a SiO 2 mask 1 having a thickness of about 100 nm is grown on the lower surface of the lithium niobate substrate 3 by plasma enhanced chemical vapor deposition.
  • the lithium niobate substrate 3 is then immersed in a benzoic acid solution in a water bath for proton exchange.
  • the SiO 2 mask 1 is grown on the upper surface of the upper proton exchange region 2 by plasma enhanced chemical vapor deposition.
  • the SiO 2 mask 1 on the upper and lower surfaces of the lithium niobate substrate 3 is annealed in a high temperature furnace to obtain a lithium niobate optical waveguide. Referring to FIG.
  • a schematic diagram of coupling of a high polarization extinction ratio lithium niobate waveguide and an optical fiber produced by the present invention is shown.
  • the proton exchange does not occur on the lower surface of the lithium niobate optical waveguide, and the formation of the lower proton exchange region 4 is avoided. Therefore, the TE leakage mode (or TE leakage mode) is not reflected back to the output end due to the total reflection of the lower proton exchange region 4.
  • the waveguide is further reduced in the surface of the lithium niobate waveguide, such as slotting, grating fabrication, and coating of the light-absorbing layer to reduce the TM leakage mode (or TE leakage mode), thereby maximally absorbing the TM mode light wave.
  • the TE/TM polarization extinction ratio in the output fiber can be greatly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种高偏振消光比铌酸锂波导及其制作方法。该制作方法是在质子交换工艺前,在铌酸锂基片(3)下表面设置用于阻止下表面质子交换的保护层,下表面是未刻蚀波导的一面。该制造方法使得铌酸锂基片下表面无质子交换发生,降低TM漏模或TE漏模耦合进入输出光纤,提高铌酸锂波导的TE/TM偏振消光比。

Description

一种高偏振消光比铌酸锂波导及其制作方法 技术领域
本发明涉及一种波导及其制作方法,属于光器件领域,具体涉及一种高偏振消光比铌酸锂波导及其制作方法。
背景技术
随着光纤通信技术以及半导体工业的飞速发展,光纤陀螺仪凭借其结构简单、性能稳定、动态范围大、反应速度快及寿命长等优点得到了广泛应用,尤其在惯性导航系统中备受青睐。而作为光纤陀螺的核心器件,Y波导调制器的偏振消光比直接影响着光纤陀螺中的相位误差及稳定性,因此提高Y波导芯片的偏振消光比对提升陀螺精度和稳定性具有重要意义。
由于铌酸锂晶体具有较大的电光、声光系数和优良的非线性、光折变等性能,是光波导器件中最常使用的晶体材料。用铌酸锂制作的光波导器件具有较大的调制带宽,可以提高光纤陀螺的标度因数稳定性和动态范围,有效降低相干偏振噪声,是Y型光波导最佳选材。铌酸锂波导制作有两种常用的方法:Ti扩散法和质子交换法。质子交换法相比Ti扩散法具有波导制作温度低、形成波导速度快、抗光损伤能力强、折射率分布呈阶跃分布并可通过退火工艺大幅度调整的优点,是一种简单而又成熟的铌酸锂光波导制备方法。
质子交换工艺使得铌酸锂中的非常光折射率升高,而寻常光折射率几乎不变,这就容易得到高的TE/TM消光比。此外,专利号为“CN104597551A”的专利“可实现高偏振消光比的偏振片及其制作方法和测试装置”公开了 一种使用提高偏振片消光比的方法,通过在光波导芯片端面光波导芯片以外的区域正度阻光膜层隔离辐射模对导模的串扰,有效提高了偏振片的偏振消光比。但是现有的铌酸锂波导质子交换工艺过程中,在铌酸锂上表面有质子交换的同时,下表面也有一定的质子交换,从而使得TE(或TM模)能够重新反射浸入波导区域,从而一定程度上降低了TE/TM偏振消光比,进而影响Y波导调制器的性能,限制了器件应用范围。
发明内容
本发明主要是解决现有技术所存在的上述的技术问题,提供了一种高偏振消光比铌酸锂波导及其制作方法。该波导及其制作方法在铌酸锂光波导芯片进行质子交换前对其下表面进行涂覆保护,使得铌酸锂基片下表面无质子交换发生,从而降低TM漏模(或TE漏模)耦合进入输出光纤,提高铌酸锂波导的TE/TM偏振消光比。
本发明的上述技术问题主要是通过下述技术方案得以解决的:
一种高偏振消光比铌酸锂波导制作方法,在质子交换工艺前,在铌酸锂基片下表面设置用于阻止下表面质子交换的保护层;所述下表面是未刻蚀波导的一面。
优选的,上述的高偏振消光比铌酸锂波导制作方法,所述保护层为SiO 2掩膜。
优选的,上述的高偏振消光比铌酸锂波导制作方法,所述保护层的厚度为100nm。
优选的,上述的高偏振消光比铌酸锂波导制作方法,其特征在于:所述铌酸锂基片由铌酸锂晶体切割而成,铌酸锂基片采用X切或Z切的铌酸锂晶向。
优选的,上述的高偏振消光比铌酸锂波导制作方法,所述保护层为涂覆保护层。
优选的,上述的高偏振消光比铌酸锂波导制作方法,在退火完成后腐蚀掉所述保护层。
优选的,上述的高偏振消光比铌酸锂波导制作方法,包括:
水浴清洗步骤,用于对铌酸锂基片进行水浴超声清洗以去除油污;
气相沉积步骤,使用等离子体增强化学气相沉积法在铌酸锂基片的上表面生长一层SiO 2掩膜;
光刻显影步骤,清洗并烘干生长有SiO2掩膜的铌酸锂基片,用紫外光照射进行曝光,对曝光后的铌酸锂基片进行显影并清洗;
波导刻蚀步骤,在铌酸锂基片上表面刻蚀处出波导形状;
护膜生成步骤,用等离子体增强化学气相沉积法,在铌酸锂基片的下表面生长一层SiO 2掩膜;
质子交换步骤,将铌酸锂基片浸泡到苯甲酸溶液中水浴加热条件下进行质子交换;
护膜去除步骤,利用等离子体增强化学气相沉积法在上层质子交换区域的上表面生长SiO2掩膜1,在高温炉中退火,清洗掉铌酸锂基片上、下表面的SiO2掩膜。
一种高偏振消光比铌酸锂波导,由上述任一制作方法制得。
因此,本发明具有如下优点:有效避免了铌酸锂基体下表面发生质子交换,降低了被散射到铌酸锂基体中的TM漏模或TE漏模被全反射到输出端口的概率,为后续在铌酸锂下表面进行技术处理,吸收或者被泄漏的TM模或TE模返回出射端口奠定了基础,可以提高铌酸锂波导的TE/TM偏振消光。
附图说明
图1为现有质子交换工艺制作的铌酸锂波导截面示意图;
图2为现有的铌酸锂波导与光纤耦合示意图本;
图3为本发明的高偏振消光比铌酸锂波导制作工艺过程及各步骤中的元件对应关系示意图。
图4为本发明的高偏振消光比铌酸锂波导与光纤耦合示意图;
其中:1.SiO2掩膜;2.上层质子交换区域;3.铌酸锂基片;4.下层质子交换区域;5.输入光纤;6.TE模;7.TM模;8.输出光纤;9.掩膜板;10.光刻胶。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:
基于现有理论可知,对于不同的外电场方向,应选择不同的晶体取向以便获得最大的电光系数。当铌酸锂调制器的电场方向平行于铌酸锂基片表面时,应选择X切Y方向传播(或Y切X传播)的铌酸锂切片,此时TM模只存在漏模,即TM在这种波导中只可能是漏模,而TE模可可能存在导模解。所以在X切Y传(或Y切X传)的铌酸锂波导中只能传输TE模,而不能传输TM模,形成TE/TM模式偏振。当铌酸锂调制器的电场方向垂直于铌酸锂基片表面时,应选择Z切铌酸锂晶体基片,此时的铌酸锂波导中只能传输TM模,而不能传TE输模,形成TM/TE模式偏振。由于质子交换过程中,晶格张力在短时间内迅速增大,Y切铌酸锂晶体比X切、Z切铌酸锂晶体发生表面损伤要快很多,因此现有的质子交换过程选用X切(传TE模)或Z 切(传TM模)铌酸锂晶体。
如图1所示为质子交换后的铌酸锂光波导截面图,图中上层质子交换区域2和下层质子交换区域4分别是铌酸锂晶体的上、下表面与质子源进行质子交换的结果。参见图2,铌酸锂波导与光纤进行耦合时,在入射耦合端口处,输入光纤5输出的光波TE模6(或TM模7)在上层质子交换区域2中传播,而TM模7(或TE模6)则被散射到铌酸锂基体3中,但是由于下层质子交换区域4的存在,泄漏的的TM模7(或TE模6)一部分由于全反射作用,在出射耦合端口处,又反射到输出光纤8中,从而降低了光信号的TE/TM偏振消光比。因此,本发明的铌酸锂光波导制作时,在质子交换前对铌酸锂晶体下表面增加保护层,避免下层质子交换区域的形成,同时也为在质子交换后的对铌酸锂晶体下表面涂覆吸收层奠定了基础,有效提高了铌酸锂波导的TE/TM偏振消光比。
本实施例所设计的高偏振消光比铌酸锂波导芯片是基于质子交换工艺制作而成。在这里,选择X切Y传铌酸锂的波导制作工程来阐述本发明的制作原理。对于X切Y传铌酸锂晶体制作的波导,TE模能够在其中正常传播,而TM模则以漏模形式被散射掉,并且该波导的调制电极电场方向平行于铌酸锂基片表面。
如图3所示为本发明的一种高偏振消光比铌酸锂波导的制备方法的工艺流程和示意图。首先准备好制作铌酸锂波导所需的铌酸锂基片3以及光刻时使用的特定掩膜板9,用重铬酸钾、乙醇、丙酮等一系列的溶剂对铌酸锂基片3进行水浴超声清洗去除油污;然后使用等离子体增强化学气相沉积法,在铌酸锂基片3的上表面生长一层SiO 2掩膜1。将生长有SiO 2掩膜1的铌酸锂基片进行清洗,并在烘箱中烘干,然后在铌酸锂基片3上表面均匀涂覆一层阳性光刻胶10,并放在甩胶机上甩均匀,再用烘箱将光刻胶烘 干。将铌酸锂基片3和掩膜板9放入光刻机上,用400nm的紫外光照射15秒进行曝光,对曝光后的铌酸锂基片进行显影并清洗。利用干法刻蚀与湿法刻蚀相结合的方法在铌酸锂基片3上表面刻蚀处出波导形状:首先利用电耦合等离子刻蚀对铌酸锂基片3上表面SiO 2掩膜1进行不完全刻蚀,然后在HF和NH3F的混合溶液中进行湿发蚀漂,完成铌酸锂基片3上表面Y波导形状刻蚀。去除铌酸锂基片3表面的光刻胶10,并对铌酸锂基片3进行清洗。用等离子体增强化学气相沉积法,在铌酸锂基片3的下表面生长一层厚度约100nm的SiO 2掩膜1。然后将铌酸锂基片3浸泡到苯甲酸溶液中水浴加热条件下进行质子交换。质子交换完成后,利用等离子体增强化学气相沉积法在上层质子交换区域2的上表面生长SiO 2掩膜1。然后在高温炉中退火,清洗掉铌酸锂基片3上、下表面的SiO 2掩膜1,即可制作出得出铌酸锂光波导。参见图4所示,本发明所制作的高偏振消光比铌酸锂波导与光纤耦合示意图。铌酸锂光波导下表面没有发生质子交换,避免了下层质子交换区域4的形成,因此TE漏模(或TE漏模)不会因为下层质子交换区域4的全反射作用而反射回输出端,此外,该波导也为进一步在铌酸锂波导下表面处理,比如开槽、制作光栅、涂覆吸光层等降低TM漏模(或TE漏模),而便最大限度的吸收TM模光波奠定了基础,可以大大提高了输出光纤中的TE/TM偏振消光比。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (8)

  1. 一种高偏振消光比铌酸锂波导制作方法,其特征在于,在质子交换工艺前,在铌酸锂基片(3)下表面设置用于阻止下表面质子交换的保护层;所述下表面是未刻蚀波导的一面。
  2. 根据权利要求1所述的高偏振消光比铌酸锂波导制作方法,其特征在于,所述保护层为SiO 2掩膜。
  3. 根据权利要求1所述的高偏振消光比铌酸锂波导制作方法,其特征在于,其特征在于,所述保护层的厚度为100nm。
  4. 根据权利要求1所述的高偏振消光比铌酸锂波导制作方法,其特征在于:所述铌酸锂基片(3)由铌酸锂晶体切割而成,铌酸锂基片(3)采用X切或Z切的铌酸锂晶向。
  5. 根据权利要求1所述的高偏振消光比铌酸锂波导制作方法,其特征在于,所述保护层为涂覆保护层。
  6. 根据权利要求1所述的高偏振消光比铌酸锂波导制作方法,其特征在于,在退火完成后腐蚀掉所述保护层。
  7. 根据权利要求1所述的高偏振消光比铌酸锂波导制作方法,其特征在于,包括:
    水浴清洗步骤,用于对铌酸锂基片(3)进行水浴超声清洗以去除油污;
    气相沉积步骤,使用等离子体增强化学气相沉积法在铌酸锂基片(3)的上表面生长一层SiO 2掩膜(1);
    光刻显影步骤,清洗并烘干生长有SiO2掩膜(1)的铌酸锂基片,用 紫外光照射进行曝光,对曝光后的铌酸锂基片进行显影并清洗;
    波导刻蚀步骤,在铌酸锂基片(3)上表面刻蚀处出波导形状;
    护膜生成步骤,用等离子体增强化学气相沉积法,在铌酸锂基片(3)的下表面生长一层SiO 2掩膜(1);
    质子交换步骤,将铌酸锂基片(3)浸泡到苯甲酸溶液中水浴加热条件下进行质子交换;
    护膜去除步骤,利用等离子体增强化学气相沉积法在上层质子交换区域(2)的上表面生长SiO2掩膜1,在高温炉中退火,清洗掉铌酸锂基片(3)上、下表面的SiO2掩膜(1)。
  8. 一种高偏振消光比铌酸锂波导,其特征在于,由上述任一权利要求所述的制作方法制得。
PCT/CN2017/118362 2017-09-29 2017-12-25 一种高偏振消光比铌酸锂波导及其制作方法 WO2019061900A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710909512.3 2017-09-29
CN201710909512.3A CN107490824A (zh) 2017-09-29 2017-09-29 一种高偏振消光比铌酸锂波导及其制作方法

Publications (1)

Publication Number Publication Date
WO2019061900A1 true WO2019061900A1 (zh) 2019-04-04

Family

ID=60653902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118362 WO2019061900A1 (zh) 2017-09-29 2017-12-25 一种高偏振消光比铌酸锂波导及其制作方法

Country Status (2)

Country Link
CN (1) CN107490824A (zh)
WO (1) WO2019061900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11294120B2 (en) 2020-05-07 2022-04-05 Honeywell International Inc. Integrated environmentally insensitive modulator for interferometric gyroscopes

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490824A (zh) * 2017-09-29 2017-12-19 武汉光迅科技股份有限公司 一种高偏振消光比铌酸锂波导及其制作方法
CN108761640A (zh) * 2018-06-12 2018-11-06 黑龙江工业学院 一种光纤耦合的高偏振消光比波导起偏器及其制造方法
CN109870768B (zh) * 2019-03-29 2020-05-12 北京航空航天大学 一种小型化高偏振消光比的多分支光波导芯片
US11371843B2 (en) * 2020-07-02 2022-06-28 Anello Photonics, Inc. Integration of photonics optical gyroscopes with micro-electro-mechanical sensors
CN113740960B (zh) * 2021-07-27 2023-11-03 中国科学院微电子研究所 一种偏振分束器
CN114325934B (zh) * 2022-03-17 2022-06-10 西安中科华芯测控有限公司 一种光纤陀螺用铌酸锂光波导掩膜及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756039A (ja) * 1993-08-20 1995-03-03 Sumitomo Metal Mining Co Ltd プロトン交換導波路作製法
US5475772A (en) * 1994-06-02 1995-12-12 Honeywell Inc. Spatial filter for improving polarization extinction ratio in a proton exchange wave guide device
CN101118304A (zh) * 2007-09-21 2008-02-06 中国航天时代电子公司 Y波导集成光学器件铌酸锂芯片的制备方法
CN101256253A (zh) * 2007-12-29 2008-09-03 上海亨通光电科技有限公司 高温质子交换的LiNbO3光波导制造方法
CN104597552A (zh) * 2015-02-26 2015-05-06 中国电子科技集团公司第四十四研究所 高偏振消光比的偏振片及其制作方法和测试装置
CN105158849A (zh) * 2015-10-26 2015-12-16 武汉光迅科技股份有限公司 一种铌酸锂光波导器件的制作方法及其器件
CN107490824A (zh) * 2017-09-29 2017-12-19 武汉光迅科技股份有限公司 一种高偏振消光比铌酸锂波导及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0756039A (ja) * 1993-08-20 1995-03-03 Sumitomo Metal Mining Co Ltd プロトン交換導波路作製法
US5475772A (en) * 1994-06-02 1995-12-12 Honeywell Inc. Spatial filter for improving polarization extinction ratio in a proton exchange wave guide device
CN101118304A (zh) * 2007-09-21 2008-02-06 中国航天时代电子公司 Y波导集成光学器件铌酸锂芯片的制备方法
CN101256253A (zh) * 2007-12-29 2008-09-03 上海亨通光电科技有限公司 高温质子交换的LiNbO3光波导制造方法
CN104597552A (zh) * 2015-02-26 2015-05-06 中国电子科技集团公司第四十四研究所 高偏振消光比的偏振片及其制作方法和测试装置
CN105158849A (zh) * 2015-10-26 2015-12-16 武汉光迅科技股份有限公司 一种铌酸锂光波导器件的制作方法及其器件
CN107490824A (zh) * 2017-09-29 2017-12-19 武汉光迅科技股份有限公司 一种高偏振消光比铌酸锂波导及其制作方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11294120B2 (en) 2020-05-07 2022-04-05 Honeywell International Inc. Integrated environmentally insensitive modulator for interferometric gyroscopes
US11880067B2 (en) 2020-05-07 2024-01-23 Honeywell International Inc. Integrated environmentally insensitive modulator for interferometric gyroscopes

Also Published As

Publication number Publication date
CN107490824A (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
WO2019061900A1 (zh) 一种高偏振消光比铌酸锂波导及其制作方法
CN110989076B (zh) 一种薄膜铌酸锂单偏振波导及其制备方法
US5785874A (en) Optical waveguide device bonded through direct bonding and a method for fabricating the same
JP2011209629A (ja) 導波路型偏光子
CN103399378B (zh) 一种基于级联马赫-曾德干涉仪型可重构梳状滤波器及其制备方法
CN109239843B (zh) 一种平面光波导、其制备方法及热光器件
CN113325518B (zh) 一种二氧化硅平板光波导可调谐微环谐振器及其制备方法
KR920005445B1 (ko) 광도파로 제작방법 및 구조
CN113687556B (zh) 一种基于双层铌酸锂薄膜的光子线脊波导倍频芯片及其制备方法
CN110230096A (zh) 三硼酸锂晶体表面增透微结构及其制备方法
CN115291321A (zh) 一种基于两级mzi结构的模式不敏感的聚合物可变光衰减器
CN103268001B (zh) 非对称相位可调马赫-曾德干涉仪及其制备方法
US6718110B2 (en) Indiffused optical waveguide structures in a substrate
CN114355507B (zh) 基于倒脊型二氧化硅/聚合物混合波导的微环谐振器及其制备方法
KR101789026B1 (ko) 광변조기용 리튬나오베이트(LiNbO3)기판의 제조 방법
CN102096149B (zh) 一种硅基长波红外光波导及其制备方法
Eldada et al. Rapid direct fabrication of active electro-optic modulators in GaAs
CN203311034U (zh) 非对称相位可调马赫-曾德干涉仪
RU2594987C1 (ru) Интегрально-оптический элемент
CN112305651A (zh) 一种铌酸锂周期光栅结构的制备方法
CN115291322B (zh) 一种基于mmi结构的模式不敏感的可变光衰减器
CN114325934B (zh) 一种光纤陀螺用铌酸锂光波导掩膜及其制备方法和应用
CN116299857B (zh) 一种铌酸锂薄膜光波导及其制备方法
JPS6053904A (ja) リッジ型光導波路
JP7560790B2 (ja) 光導波路素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927633

Country of ref document: EP

Kind code of ref document: A1