WO2019061795A1 - Lamb波传感器、生物检测芯片和快速筛查系统 - Google Patents

Lamb波传感器、生物检测芯片和快速筛查系统 Download PDF

Info

Publication number
WO2019061795A1
WO2019061795A1 PCT/CN2017/113758 CN2017113758W WO2019061795A1 WO 2019061795 A1 WO2019061795 A1 WO 2019061795A1 CN 2017113758 W CN2017113758 W CN 2017113758W WO 2019061795 A1 WO2019061795 A1 WO 2019061795A1
Authority
WO
WIPO (PCT)
Prior art keywords
microelectrode
detection
wave sensor
lamb wave
chip
Prior art date
Application number
PCT/CN2017/113758
Other languages
English (en)
French (fr)
Inventor
周连群
魏巍
李传宇
张威
姚佳
张芷齐
郭振
Original Assignee
中国科学院苏州生物医学工程技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州生物医学工程技术研究所 filed Critical 中国科学院苏州生物医学工程技术研究所
Publication of WO2019061795A1 publication Critical patent/WO2019061795A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance

Definitions

  • the invention belongs to the technical field of sensors, and particularly relates to a Lamb wave sensor, a biodetection chip prepared by using the same, a method for using the biodetection chip, and a rapid screening system.
  • Gastric cancer is one of the most common malignant tumors in the world. There are about 1 million new cases each year, and its mortality ranks third in all kinds of malignant tumors worldwide. China is a high-risk area for gastric cancer. Every year, 400,000 patients with gastric cancer are newly discovered in China, accounting for about 42% of the total number of stomach cancers in the world. Among them, the proportion of deaths exceeds two-thirds. The postoperative survival rate of early gastric cancer is about 90%, and the survival rate of advanced gastric cancer is about 40%. Because the early symptoms of gastric cancer are not obvious, and there is no specific early diagnosis method, the morbidity and mortality are getting higher and higher. Therefore, the development of early diagnosis of gastric cancer, large-scale early screening for gastric cancer is an effective way to improve the survival rate of gastric cancer patients, and it is of great significance to improve the prognosis of patients.
  • the main means of gastric cancer detection include gastroscope, gastrointestinal barium meal, ultrasound, CT, PET/CT, magnetic resonance imaging, cytological examination of exfoliated cells, and histopathological examination.
  • imaging examination, cytological examination and pathological examination need to rely on large-scale instruments and equipment.
  • the early detection rate is low, the cost is high, there are certain clinical contraindications, and the test results depend on the clinical experience of the clinician, which is easy to produce by inspection. Misdiagnosis or missed diagnosis caused by improper materials or lack of human experience is difficult to apply to the early screening and screening of gastric cancer.
  • gastric cancer The occurrence of gastric cancer is a complex process involving multiple factors, multiple pathways, and multiple steps. It is the result of environmental factors and genetic factors acting together on the body.
  • the currently accepted pattern of gastric cancer is proposed by Correa in 1988: normal gastric mucosa-superficial gastritis (SG)-atrophic gastritis (AG)-intestinal metaplasia-Low grade dysplasia , LGD) - severe grade dysplasia (HGD) - gastric cancer (gut type).
  • SG normal gastric mucosa-superficial gastritis
  • AG atrophic gastritis
  • LGD LGD
  • HCD severe grade dysplasia
  • gastric cancer gut type
  • Gastric mucosal "serine biopsy" consisting of PG, G17 (gastrin 17) and H.pylori-IgG indicators were used to screen gastric cancer and its precancerous diseases.
  • the 2011 Department of Health's Disease Prevention and Control Bureau's "Technical Program for Early Diagnosis and Treatment of Cancer” will include serum PG testing in the screening program for gastric cancer screening, and is recommended for primary screening in populations with high incidence of gastric cancer.
  • H. pylori-IgG can further identify high-risk individuals such as atrophic gastritis.
  • the Chinese Medical Association Digestive Disease Society issued the "Chinese Consensus on Chronic Gastritis" pointed out that: H.
  • the detection methods for gastric cancer serum biomarkers include enzyme-linked immunosorbent assay (ELISA), time-resolved fluorescence immunoassay (TRFIA), chemiluminescent enzyme immunoassay (CMIA), and radioimmunoassay (RIA).
  • ELISA enzyme-linked immunosorbent assay
  • TRFIA time-resolved fluorescence immunoassay
  • CMIA chemiluminescent enzyme immunoassay
  • RIA radioimmunoassay
  • the above detection method requires pretreatment of the blood sample before detection, the sensitivity of the detection is low, the requirements on the instrument and equipment are high, the technical operation is complicated, the detection time is long, and professional operation is required to complete, and it is difficult to meet the configuration environment in which medical resources are scarce. Underuse, not suitable for the needs of early gastric cancer screening and screening.
  • Acoustic piezoelectric sensing technology is a non-optical, highly sensitive quantitative detection technology that has emerged rapidly in recent years. By specifically modifying the above sensor interface, it is almost independent of the light transmittance and viscosity of the sample, and the target molecules can be rapidly captured in the reaction system. These molecules can change the resonance frequency signal of the vibration of the piezoelectric material when combined with the sensor surface. The amplitude and phase changes of the signal reflect the molecular content of the binding molecule, the viscoelastic and other molecular content information, and the reaction dynamics curve can be used to analyze the kinetic parameters such as reaction rate, binding constant or dissociation constant.
  • Chinese patent document CN102520160A discloses a Lamb wave immunosensor for culturing a labeled antibody, an immunomagnetic microbead and a capture antibody in a sample cell.
  • the analyte is injected into the sample cell to open the magnetic field under the sensor.
  • the immunomagnetic beads bind the analyte to form an "immunomagnetic bead-analyte-antibody" ternary complex with the antibody, and then turn on the upper magnetic field of the sensor to adsorb the immunomagnetic beads not forming the ternary complex to the Lamb sensor.
  • the sensor is capable of detecting analytes by immunoadsorption, but the detection process relies on immunomagnetic beads and a magnetic field applied above and below the sensor to complicate the immunodetection step.
  • the detection process requires the use of two different antibodies, which on the one hand increases the cost of detection; on the other hand, when the sensor is applied to the detection of blood samples, due to the variety of protein substances in the blood, the increase in the type of detection antibody makes the antibody and the antigen An increase in non-specific binding that may occur between them reduces the specificity and sensitivity of the assay.
  • the technical problem to be solved by the present invention is to overcome the problems of cumbersome detection steps, high cost, and low detection specificity of the Lamb wave immunosensor in the prior art, thereby providing a simple operation step, a low detection cost, and high detection sensitivity.
  • Lamb wave sensor with high specificity and low detection limit.
  • the present invention provides a Lamb wave sensor, including
  • a substrate layer having at least one one-way open detection cavity on one side of the substrate layer;
  • a ground electrode layer disposed on a side of the substrate layer away from the detection cavity
  • a piezoelectric film disposed on a side of the ground electrode layer away from the substrate layer;
  • At least one pair of first microelectrodes disposed on a side of the piezoelectric film away from the ground electrode layer;
  • a second microelectrode of at least one pair of surface-modified antibodies is disposed in the detection chamber or is modified by the first microelectrode to form the second microelectrode.
  • the first microelectrode and/or the second microelectrode are interdigital electrodes made of a metal material.
  • the metal material is gold, platinum, silver, aluminum or copper.
  • the second microelectrode is formed on a side of the resonant film facing the detection cavity, and the electrode pins of the second microelectrode sequentially pass through the resonant film and the ground electrode a layer and the piezoelectric film, and an electrode contact point of the second microelectrode is formed on a side of the piezoelectric film away from the ground electrode layer.
  • the Lamb wave sensor described above, the second microelectrode is subjected to antibody modification by the following steps:
  • the substance for blocking is selected from the group consisting of calf serum albumin, fetal bovine serum, skim milk powder, ethylenediamine solution, casein, gelatin or Tween.
  • the substrate layer corresponding to the side of the detection cavity away from the opening forms a resonance film, and the thickness of the resonance film is ⁇ 20 ⁇ m.
  • the piezoelectric thin film is made of aluminum nitride, zinc oxide or quartz.
  • the substrate layer is a silicon substrate layer.
  • the invention provides a biodetection chip, and the biodetection chip comprises
  • the Lamb wave sensor is disposed in the recess, and is electrically connected to the base through a connecting member;
  • cover plate covering the base, wherein the cover plate is provided with a sample hole and a sample hole located at two sides of the detection cavity, and a side of the Lamb wave sensor on which the second micro electrode is disposed is oriented Said cover.
  • the Lamb wave sensor has at least two detection chambers, and each of the detection chambers corresponds to at least one pair of the second microelectrodes;
  • the surface of the second microelectrode corresponding to the same detection cavity is modified to bind an antibody of the same antigen, and the second microelectrode corresponding to the other detection chambers binds different antigens.
  • the cover plate includes a cover closure layer and a cover channel layer, and the cover closure layer is located above the cover channel layer, and the detection channel is opened in the cover channel layer One-to-one corresponding at least two of the fluid passages, the fluid passages including an inflow section and an outflow section;
  • the two ends of the fluid channel are respectively connected to the same sample hole and the same sample hole; wherein each of the fluid channels has the same length, and the fluid flows from the sample hole to the same amount and flows at a constant velocity through each of the holes. Said fluid channel.
  • the cover plate is made of a transparent material.
  • the transparent material is polydimethylsiloxane, polymethyl methacrylate, polycarbonate or glass.
  • the connecting member is an elastic probe, and one end of the elastic probe is connected to a detecting circuit located in the base;
  • the second microelectrode is located in the detection cavity, and the other end of the elastic probe is connected to the electrode of the ground electrode layer, the first microelectrode and the second microelectrode on the Lamb sensor. Point; or
  • the second microelectrode is formed by the first microelectrode being modified by an antibody, and the other end of the elastic probe is connected to the ground electrode layer and the second microelectrode on the Lamb sensor.
  • the biodetection chip further includes a seal disposed between the cover plate and the Lamb wave sensor and covering the base; the seal having a corresponding opening corresponding to the detection cavity Detection port.
  • the method for using the above biodetection chip comprises the following steps:
  • the second microelectrode is located in the detection cavity, the fluid sample flows through the detection cavity, and the impedance signal is generated by the second microelectrode, the first micro The electrode generates the piezoelectric change signal; before the fluid sample flows through the second microelectrode, the Lamb sensor is in an on state, pre-acquisition of a pre-piezoelectric signal, and then flowing the fluid sample through the first a second microelectrode that collects the piezoelectric signal and the impedance signal; or
  • the second microelectrode is formed by the first microelectrode being modified by an antibody, the fluid sample flowing through the piezoelectric film, and the impedance signal and the piezoelectric change signal are generated by the second microelectrode
  • the Lamb wave sensor is in an on state, pre-acquisition of the pre-piezoelectric signal, and then the Lamb sensor is in a power-off state, and the fluid sample flows through the a second microelectrode, drying the second microelectrode, and then placing the Lamb sensor in an on state, collecting a post piezoelectric signal and the impedance signal;
  • the piezoelectric change signal is obtained from the front piezoelectric signal and the rear piezoelectric signal.
  • the present invention provides a rapid screening system comprising the biodetection chip described above.
  • a Lamb wave sensor comprising a substrate layer, a ground electrode layer, a piezoelectric film, at least a pair of first microelectrodes, and a second microelectrode of at least one pair of surface-modified antibodies.
  • Lamb wave sensor When the Lamb wave sensor is used to detect the target biomarker (ie, the target antigen) in the sample, the target antigen is combined with the antibody corresponding to the surface of the second microelectrode to change the electrical properties of the second microelectrode, resulting in the second micro
  • the change of the impedance signal of the electrode obtains the impedance change signal; on the other hand, the combination of the antigen and the antibody increases the mass of the surface of the resonant film, causes the vibration frequency of the piezoelectric film to change, causes the piezoelectric signal to change, and obtains the piezoelectric Change signal.
  • Quantitative detection of the target biomarker is achieved by coupling of the piezoelectric change signal and the impedance change signal.
  • Lamb wave sensor provided by the invention It has the advantages of impedance sensing, piezoelectric sensing and immunoassay, and provides a new detection method for early large-scale screening of diseases such as gastric cancer. Lamb wave sensor has the following characteristics:
  • the above Lamb wave sensor introduces impedance sensing on the basis of the surface quality loading of the resonant film, which leads to the change of the piezoelectric signal.
  • the coupling of the two signals acts as a signal amplification, which improves the detection sensitivity.
  • the above-mentioned Lamb wave sensor utilizes the advantage of strong specificity of immunodetection, and the antibody corresponding to the target biomarker is modified on the surface of the second microelectrode, and the direct combination of the antigen and the antibody effectively avoids the generation of non-specific binding, thereby further improving the detection. Specificity.
  • the target biomarker passes through the second microelectrode, that is, specifically binds to the antibody on the surface of the second microelectrode, so that the sensor immediately responds to the piezoelectric signal and the impedance signal. Rapid detection of target biomarkers is achieved.
  • the blood sample detected is a whole blood sample, without pretreatment, and is not affected by external factors such as sample color, which simplifies technical operation steps and equipment requirements, and improves detection efficiency.
  • high sensitivity detection can be completed without using a secondary antibody, and the detection limit is as low as 6 pg/ml.
  • the number of detection cavities on the Lamb wave sensor is set as needed, and each detection cavity corresponds to at least one pair of first microelectrodes and second microelectrodes, passing through the surface of the second microelectrode.
  • the Lamb wave sensor provided by the present invention, the first microelectrode and/or the second microelectrode are interdigital electrodes made of a metal material, and the interdigital electrodes have the advantages of rapidly establishing a steady state signal and a high signal to noise ratio, and are suitable for Develop sensitive, fast, specific, miniaturized and easy to operate biosensing devices.
  • the Lamb wave sensor of the present invention the electrode lead of the second microelectrode passes through the resonance film, the ground electrode layer and the piezoelectric film, and an electrode contact point is formed on the surface of the piezoelectric film.
  • the second microelectrode of the structure is used for detecting a liquid sample, and the liquid sample flows through the second microelectrode to bind the antibody to the target antigen, and the impedance signal generated on the second microelectrode is outward through the electrode contact point. Transmission further reduces response time and improves detection efficiency.
  • the second microelectrode provided by the invention is an interdigitated electrode made of a metal material, and has the advantages of stable detection signal, high sensitivity, simple structure and suitable for mass production; on the other hand, it is beneficial to realize the piezoelectric film.
  • the first microelectrode of the surface is modified by an antibody to form the structure of the second microelectrode.
  • the Lamb wave sensor provided by the present invention has a thickness of the resonant film of ⁇ 20 ⁇ m.
  • the thickness of the resonant film of the Lamb wave sensor has a direct relationship with the response and sensitivity of its surface loading. The thinner the film thickness, the higher the sensitivity of the mass detection and the faster the response. In order to improve the quality detection sensitivity, the film thickness is controlled to be 20 ⁇ m or less.
  • the Lamb wave sensor provided by the invention uses silicon as a substrate layer, and is easy to etch and shape a plurality of detection cavities and a resonance film corresponding to the detection cavity on the silicon substrate layer by etching or the like, so that the substrate is easy to be integrated. Further implementation of sensor array and multi-channel, multi-target biomarker detection.
  • the biodetection chip provided by the present invention comprises a base, a cover plate and the above-mentioned Lamb wave transmission In the sensor, the cover has an inlet and a sample hole for the sample to be tested.
  • the biodetection chip has the advantages of high detection sensitivity, strong specificity, short response time and high detection efficiency, and can realize rapid detection of various target biomarkers.
  • the bio-detection chip is small in size and suitable for mass production, which is conducive to large-scale early diagnosis and screening of diseases.
  • the biodetection chip provided by the present invention has at least two detection cavities, and a surface of a second microelectrode corresponding to each detection cavity is modified with a specific antibody, and the sample to be tested flows through a corresponding region of a different detection cavity, and the sample
  • the plurality of target biomarkers are respectively combined with the corresponding second microelectrode surface-modified antibody, so that the surface of the resonance film corresponding to each detection cavity adsorbs a specific target biomarker, and generates a corresponding piezoelectric change signal.
  • impedance change signals are respectively combined with the corresponding second microelectrode surface-modified antibody, so that the surface of the resonance film corresponding to each detection cavity adsorbs a specific target biomarker, and generates a corresponding piezoelectric change signal.
  • impedance change signals The piezoelectric change signal and the impedance change signal generated in the corresponding areas of the detection chamber do not interfere with each other, thereby realizing the specific detection of various target
  • the bioassay chip can use the same sample to detect multiple target biomarkers in the sample.
  • the sample can be used down to 10 ⁇ L and the detection limit is as low as 6pg/ml.
  • the biodetection chip provided by the invention starts the fluid channel and the detection cavity one by one, and the two ends of the plurality of fluid channels are respectively connected to the same injection hole and the same sample, and the structure of the fluid channel is set to make the sample enter After the sample hole enters, the same amount and constant velocity flow to each detection chamber, and the biological detection chip can simultaneously detect a plurality of biomarkers, thereby further improving the detection efficiency.
  • the above biological detection chip only needs to enter the sample to be tested from the injection hole, and the sample flows through the corresponding area of each detection cavity to complete the detection, and the operation mode of the biological detection chip is simple, which is beneficial to realize large-scale popularization and promotion.
  • the biodetection chip provided by the invention has a seal between the cover plate and the Lamb wave sensor
  • a sealing port is arranged at a position corresponding to the detecting chamber, so that the sample in each fluid channel can flow through the surface of the second microelectrode corresponding to each detecting cavity to realize the combination of the antigen and the antibody.
  • the seal is arranged to ensure that the sample stays stable on the surface of the Lamb wave sensor resonant film or piezoelectric film, and at the same time, the packaged Lamb wave sensor has balanced force and stability, and also ensures the Lamb wave sensor and elasticity. Good contact of the probe to ensure signal stability.
  • the biodetection chip provided by the present invention, wherein a detection circuit is disposed in the base, and the electrode contact point of the second microelectrode of the detection detection circuit and the Lamb wave sensor, the first microelectrode and the ground electrode layer are connected by an elastic probe, or The detection circuit and the second microelectrode and the ground electrode layer of the Lamb wave sensor are connected.
  • the piezoelectric change signal and the impedance signal generated by the Lamb wave sensor during the sample detection process are received by the detection circuit, and then the coupling of the signal and the determination of the target biomarker concentration are performed.
  • the cover plate is made of a transparent material to facilitate observation of the flow of the sample on the surface of the Lamb wave sensor.
  • the rapid screening system provided by the present invention comprising the above biodetection chip, can be used for multi-biomarker detection with high sensitivity, high specificity, fast response and low detection limit.
  • FIG. 1 is a schematic structural diagram of a Lamb wave sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a first microelectrode and a second micro of a Lamb wave sensor according to Embodiment 1 of the present invention; Schematic diagram of the positional relationship between the electrode and the resonant film;
  • Embodiment 3 is an exploded view of a biometric detection chip provided in Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram showing the connection relationship of each device in the rapid screening system provided in Embodiment 5 of the present invention.
  • 5-signal analysis device 51-network analyzer, 52-computer.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or integrally connected; can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • Connected, or integrally connected can be mechanical or electrical; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of the two components.
  • the specific meaning of the above terms in the present invention can be understood in a specific case by those skilled in the art.
  • the embodiment provides a Lamb wave sensor, including a substrate layer 131. At least one unidirectional opening detection cavity 1312 is formed on one side of the substrate layer, and the substrate layer on the top of the detection cavity 1312 forms a resonance film 1311. a ground electrode layer 132 and a piezoelectric film 133 are disposed in the direction away from the detecting cavity 1312 along the substrate layer 131; at least one pair of first microelectrodes 134 are disposed on the piezoelectric film 133 away from the ground electrode layer a side surface of 132 for detecting a piezoelectric signal; at least one pair of second microelectrodes 135, a surface modification antibody of the second microelectrode 135 for detecting an impedance signal; and the second microelectrode 135 is disposed at the The lower surface of the resonant film 1311 or the first microelectrode 134 is modified by an antibody.
  • the substrate layer 131 is formed by using silicon as a substrate material, and the bottom surface of the substrate layer 131 is etched into four grooves to form four detection chambers 1312.
  • the four detection chambers 1312 are respectively named as a first detection chamber, a second detection chamber, a third detection chamber and a fourth detection chamber, and the detection chamber 1312 is away from the opening side of the groove.
  • the top substrate layer 131 forms a resonance film 1311, and the four detection chambers 1312 correspond to the first to fourth resonance films.
  • the substrate layer 131 is a silicon substrate layer, and the silicon substrate layer mainly serves as a support.
  • the use of the silicon-based material as the substrate layer 131 has the advantages of low cost, electrical conductivity, and easy integration by conventional micro-machining technology.
  • the upper surface of the substrate layer 131 is provided with a ground electrode layer 132, preferably a titanium material layer; the upper surface of the ground electrode layer 132 is provided with a piezoelectric film 133, preferably an aluminum nitride film.
  • the titanium material layer facilitates the sputter deposition of the aluminum nitride material on the surface thereof, so that the formed aluminum nitride film has a uniform structure and has high strength in combination with the titanium material layer.
  • the second microelectrodes 135 As shown in FIG. 1, three pairs of the second microelectrodes 135 having a thickness of 80 to 150 nm are sputtered on the bottom surface of the resonant film 1311 corresponding to each of the detecting cavities 1312, and the second microelectrodes 135 are An interdigital electrode made of a metal material (in this embodiment, the metal material is selected as gold), a surface modification antibody of the second microelectrode 135, wherein the second microelectrode 135 corresponding to each of the detection cavities 1312
  • the surface-modified antibody binds to the same antigen, and the antibody modified by the surface of the second microelectrode 135 corresponding to the detection chamber 1312 binds to different antigens, so that the Lamb wave sensor can detect the four antigens.
  • a pair of first microelectrodes 134 are formed by sputtering on a top surface of the piezoelectric film 133 corresponding to each of the detection cavities 1312, and the first microelectrodes 134 are made of a metal material ((selecting a metal material in this embodiment)
  • the Lamb wave sensor of the above structure forms the detection cavity 1312 after etching the bottom of the silicon substrate layer, and the lower surface of the detection cavity 1312 forms an interface with the air, thereby limiting the sound wave to the top of the detection cavity 1312.
  • the first microelectrode 134, the piezoelectric film 133, and the ground electrode layer 132 Formed within the piezoelectric shock stack.
  • the Lamb wave sensor has a total of four detection chambers 1312, and the resonance film 1311, the second microelectrode 135, the first microelectrode 134, the piezoelectric film 133 and the ground electrode layer 132 corresponding to the detection cavity 1312 form four effective detection regions. The detection of four different biomarkers can be achieved.
  • the input first microelectrode acquires an excitation signal
  • the piezoelectric film 133 elastically vibrates a particle in the aluminum nitride due to an inverse piezoelectric effect. And propagating in the piezoelectric film 33 to form an elastic mechanical wave, and then reflecting back and forth between the first microelectrode 134 and the ground electrode layer 132 to form a mechanical resonance wave, and then outputting the first microelectrode through the positive piezoelectric
  • the effect converts the transmitted mechanical signal into an electrical signal for delivery.
  • the thickness of the resonant film 1311 of the Lamb wave sensor has a direct relationship with the surface loading quality response and sensitivity. The thinner the film thickness, the higher the sensitivity of the mass detection and the faster the response. In order to improve the quality detection sensitivity, the film thickness is controlled to be less than or equal to 20 ⁇ m. In the Lamb wave sensor provided in this embodiment, the thickness of the first to fourth resonance films is 15 ⁇ m.
  • the Lamb wave sensor when applied to the detection of the biomarker in the fluid sample (the sample selection blood in the present embodiment), causes the sample to flow into the four detection chambers 1312, the sample and the second microelectrode 135, respectively.
  • the target biomarker in the sample is combined with the antibody corresponding to the surface of the second microelectrode 135 to change the electrical properties of the second microelectrode 135, thereby causing the impedance of the second microelectrode 135.
  • the signal changes; the combination of the antigen and the antibody causes an increase in the surface loading quality of the resonant film 1311, causing a change in the mechanical vibration in the Lamb wave sensor, for example, the vibration frequency is shifted, thereby causing the piezoelectric signal to change.
  • the impedance change signal and the piezoelectric change signal are collected to achieve accurate quantitative determination of the target biomarker in the sample.
  • the four effective detection areas of the Lamb wave sensor are isolated from each other. The measured signals do not interfere with each other, and the quantitative determination of four target biomarkers in the same sample can be realized separately. Therefore, the Lamb wave sensor provided in this embodiment can realize high-throughput, array-based rapid molecular level detection, and the coupling of the impedance signal and the piezoelectric signal is utilized in the detection process, so that the detection signal is effectively amplified, and the detection can be significantly improved.
  • the sensitivity reduces the detection limit (6pg/ml); the detection process utilizes immunological techniques, and the direct binding between the antibody and the antigen is highly specific, making the detection result more specific.
  • the Lamb wave sensor has the advantages of small size and easy mass production, and is suitable for mass popularization and promotion.
  • the Lamb wave sensor of this structure is subjected to antibody modification on the surface of the second microelectrode by the following method:
  • the antibody is immobilized on the surface of the second microelectrode 135 in the first detection chamber.
  • the antibody to be modified is selected as a PGI (pepsinogen I) antibody.
  • the second microelectrode 135 in the Lamb wave sensor detection chamber 1312 is prepared by using a fresh piranha solution (98% by mass concentrated sulfuric acid: 30% by mass of hydrogen peroxide mixed in a volume ratio of 3:1). The mixture was washed 10-15 times, 30-60 s each time, and rinsed with a large amount of deionized water for 3-5 times, and then dried with nitrogen to remove surface impurities of the second microelectrode 135 to ensure the second microelectrode material.
  • a fresh piranha solution 98% by mass concentrated sulfuric acid: 30% by mass of hydrogen peroxide mixed in a volume ratio of 3:1.
  • the mixture was washed 10-15 times, 30-60 s each time, and rinsed with a large amount of deionized water for 3-5 times, and then dried with nitrogen to remove surface impurities of the second microelectrode 135 to ensure the second microelectrode material.
  • the exposed carboxyl group on the surface of 11-mercaptoundecanoic acid is coupled and activated to ensure that the exposed amino group of the subsequent pepsinogen PGI antibody can bind to the carboxyl group.
  • the antibodies PGII, G17 and H. pylori-IgG were sequentially immobilized on the surface of the second microelectrode 135 in the second to fourth detection chambers by the method described in the step 1.
  • the Lamb wave sensor obtained by the above antibody modification method can accurately quantify four biomarkers of PGI, PGII, G17 and H.pylori-IgG in blood samples, and is applied to early diagnosis of gastric cancer, and is a gastric cancer control and drug. Efficacy assessment and prognosis provide effective information to improve postoperative survival and quality of life in patients with gastric cancer.
  • the Lamb wave sensor is small in size and suitable for mass production, which is conducive to large-scale early screening of gastric cancer and provides an effective detection tool for backward medical equipment.
  • the etch-formed inspection of the substrate layer 131 of the Lamb wave sensor The measuring chamber 1312 can also be 1, 2, 3, etc., and the number of detecting chambers is determined by the type of the target biomarker to be detected during the actual detecting process, and only the effective detecting area corresponding to each detecting chamber 1312 is required.
  • a pair of first microelectrodes 134 and three pairs of second microelectrodes 135 are simultaneously disposed on the upper side.
  • the logarithm of the first microelectrode 134 may also be 2 pairs, 3 pairs, and the like.
  • the logarithm of the second microelectrode may also be 1 pair, 2 pairs, 4 pairs, and the like.
  • the increase in the logarithm of the second microelectrode increases the number of antibodies modified on the second microelectrode 135, and the binding of the target biomarker in the sample is more sufficient.
  • the surface of the second microelectrode 135 corresponding to each of the detection chambers 1312 can modify other kinds of antibodies according to actual needs, and correspondingly detect different biomarkers to achieve diagnosis and screening of the target diseases.
  • the first microelectrode may also be a micropillar electrode or a microdisk electrode made of copper or the like, as long as the first microelectrode can complete the conversion and transmission of the signal; as a deformation, the first microelectrode further It can be made of other metal materials with conductive and signal conducting functions, such as platinum, silver, aluminum, and the like.
  • the second microelectrode may also be a micro-pillar electrode or a micro-disc electrode made of gold or the like, as long as the second micro-electrode can complete the detection of the impedance signal; as a deformation, the second micro-electrode can also It is made of other metal materials with conductive and signal conducting functions, such as platinum, silver, aluminum, and the like.
  • the piezoelectric film may also be made of a piezoelectric material capable of exciting mechanical vibration such as zinc oxide or quartz.
  • the present embodiment provides a Lamb wave sensor, which is different from the Lamb wave sensor provided in Embodiment 1 only in that: the second microelectrode 135 is not disposed in the detection cavity 1312.
  • the first microelectrode 134 located on the piezoelectric film 133 is modified to sequentially modify the surfaces of the first microelectrode 134 corresponding to the first to fourth detection chambers to the antibodies PGI, PGII, G17 and H. pylori-IgG.
  • the Lamb wave sensor of the above structure acquires an excitation signal through the input first microelectrode 134 before detecting the sample, thereby causing mechanical vibration of the piezoelectric film 133 to generate a front piezoelectric signal, and the first A microelectrode 134 generates a front impedance signal; then, the input signal is turned off, the Lamb sensor is turned off, and the sample is caused to flow through the top surface of the piezoelectric film 133, and a certain reaction time is left on the surface of the piezoelectric film 133.
  • the antibody modified on the first microelectrode 134 is sufficiently bound to the target biomarker, and then the surface of the piezoelectric film 133 is washed with a detergent to elute non-specific binding of the impurity protein in the sample to the first microelectrode 134. Then, nitrogen gas is introduced to dry the surface of the piezoelectric film 133, the Lamb sensor is energized, the excitation signal is continuously input, and the post-piezoelectric signal and the post-impedance signal generated by combining the target antigen and the antibody are collected, thereby obtaining the Lamb sensor detection process.
  • the changing piezoelectric signal and the impedance signal, the two signals are coupled to obtain a detection signal for determining the target biomarker Measured.
  • the four effective detection areas on the Lamb wave sensor respectively collect and output signals, and do not interfere with each other, so as to achieve accurate quantification of the four target biomarkers in the sample to be tested.
  • the detection cavity 1312 formed on the substrate layer 131 of the Lamb wave sensor may also be one, two, three, etc., and the type of the target biomarker to be detected during the actual detection process.
  • the logarithm of the first microelectrode 134 may also be 2 pairs, 3 pairs, and the like.
  • the surface of the first microelectrode 134 corresponding to each detection cavity 1312 can be modified according to actual needs, corresponding to other types of antibodies, corresponding Detect different biomarkers to diagnose and screen the target disease.
  • the first microelectrode may also be a micropillar electrode or a microdisk electrode made of copper or the like as long as the first microelectrode can complete the conversion and transmission of the signal and the detection of the impedance signal.
  • the piezoelectric film may also be made of a piezoelectric material capable of exciting mechanical vibration such as zinc oxide or quartz.
  • the embodiment of the present invention provides a bio-detection chip, comprising a pedestal 14 having a recessed thereon; the Lamb wave sensor 13 of the embodiment 1 is disposed in the recess, and the pedestal 14 is connected to the pedestal 14 15 forming an electrical connection; a cover plate 11 covering the pedestal 14, the cover plate 11 is provided with a sample hole 1122 and a sample hole on both sides of the detection chamber, and the Lamb wave sensor 13 is disposed on the cover One side of the second microelectrode 135 faces the cover plate 11.
  • the upper surface of the base 14 is provided with a groove, and the Lamb wave sensor 13 is disposed in the groove of the base 14 at the base 14
  • the upper surface sequentially covers the seal 12 and the cover plate 11.
  • the Lamb wave sensor 13 is provided with a side surface of the first microelectrode 134 facing the susceptor 14 such that the opening of the detection chamber 1312 faces the cover plate 11.
  • the cover plate 11 includes the cover closure layer 111 and the cover channel layer 112.
  • the cover closure layer 111 is located at the top of the cover channel layer 112.
  • the cover channel layer 112 is provided with four fluid passages 1121.
  • Each of the fluid passages 1121 is constituted by an inflow passage and an outflow passage which are symmetrically disposed in the direction of the detection chamber 1312.
  • the four inflow channels After the four inflow channels are introduced by the same injection hole 1122, they extend toward the corresponding upper position of the four detection chambers 1312, and reach the side of the detection cavity 1312 close to the injection hole 1122, and then stop extending. Then extending in the distance detecting chamber 1312 After the width distance in the direction of the body channel 1121, the four outflow channels that are symmetric with the inflow channel continue to extend away from the injection hole, and the outflow channel finally converges at a corresponding position of the injection hole 1122 to form a sample hole.
  • the two channels in the middle of the fluid channel 1121 are bent, so that the four fluid channels 1121 have the same length path and the pressures in the channels are equal.
  • the cover plate 11 is made of a transparent material such as polycarbonate (PC) to facilitate observation of the flow of the sample on the surface of the Lamb wave sensor.
  • the cover closure layer 111 has a thickness of 0.2 to 0.5 mm
  • the cover channel layer 1121 has a thickness of 2 to 5 mm
  • the cover closure layer 111 and the cover channel layer 1121 are bonded by a crosslinking agent.
  • the sealing member 12 is disposed at the top of the Lamb wave sensor 13, and four detecting ports 121 are opened at positions corresponding to the detecting chamber 1312. After the sample to be tested flows in through the sampling hole 1122, the same amount is obtained. The flow enters each of the inflow passages, so that the sample in each fluid passage 1121 can flow into the detection chambers 1312 through the detection port 121.
  • the arrangement of the sealing member 12 can ensure that the sample stays stable on the surface of the Lamb wave sensor resonant film 1311, and at the same time, the packaged Lamb wave sensor 13 has balanced force and stability, and also ensures the Lamb wave sensor 13 Good contact with the connector 15 ensures signal stability.
  • the biodetection chip is provided with a detection circuit in the susceptor 14, and the detection circuit realizes communication with the four effective detection regions of the Lamb wave sensor 13 through the connector 15.
  • the connecting member 15 is an elastic probe, and one end of the elastic probe is connected to the detecting circuit, and the other end is connected to the first micro electrode 134, the ground electrode layer 132 and the second micro corresponding to the first to fourth detecting chambers 1312, respectively.
  • the detecting circuit supplies an excitation signal to the Lamb wave sensor 13 through the elastic probe, and receives the piezoelectric signal and the impedance signal generated by the Lamb wave sensor 13.
  • the connector 15 can also be a wire, or other connection structure capable of transmitting electrical signals.
  • the detection circuit can be arranged outside the base, and the connection to the Lamb wave sensor 13 is achieved by a connection through the base.
  • the cover member 11 and the base 14 may be glued or the like after the biodetection chip is fixed in the recess on the base 14 without providing the sealing member 12.
  • the seal is connected such that a fluid sample flows directly from the fluid passage 1121 into the detection chamber 1312 of the Lamb wave sensor 13.
  • the detecting circuit communicates with the Lamb wave sensor 13 through an elastic probe, and sends an excitation signal to the input first microelectrode;
  • the sample flows in from the sample hole 1122, and then is equally divided into each of the fluid channels 1121.
  • the sample flows at a constant velocity in the fluid channel 1121, and flows through the corresponding position of the detection chamber 1312.
  • the detecting port 121 on the sealing member 12 flows into the corresponding detecting chamber 1312;
  • the sample is allowed to stand in the detection chamber 1312 for a certain reaction time, so that the target biomarker in the sample fully binds to the corresponding antibody modified by the surface of the second microelectrode 135, and the combination of the antigen and the antibody makes the first
  • the impedance signal of the output of the two microelectrodes is changed, and the piezoelectric signal outputted by the output of the first microelectrode is changed;
  • the washing liquid is introduced into the sampling hole 1122, and non-specific binding on the surface of the second microelectrode 135 is eluted until the impedance signal received by the detecting circuit and the signal peak center frequency of the piezoelectric signal no longer occur. Offset, collect and record the post-piezoelectric signal and the post-impedance signal at this time;
  • the piezoelectric change signal is obtained by the front piezoelectric signal and the post-piezoelectric signal
  • the impedance change signal is obtained by the impedance electric signal and the back impedance signal
  • the piezoelectric change signal and the impedance change signal are coupled to obtain the detection signal, and the detection signal is obtained.
  • the signal corresponds to the concentration of the target biomarker in the sample.
  • the biodetection chip separately collects the impedance signal and the piezoelectric change signal generated by the four effective detection regions, so that the detection of the biomarkers in each of the detection chambers 1312 does not interfere with each other, thereby realizing the use of the same sample for the four markers.
  • the detection of the target biomarker can be realized, and the operation is simple and easy.
  • the biological detection chip detects multiple biomarkers in the blood sample
  • the blood sample detected is a whole blood sample, no pretreatment is required, and is not affected by external factors such as the color of the sample, thereby further simplifying technical operation steps and equipment requirements, and improving The detection efficiency.
  • standard samples of different concentrations may be prepared in advance, and then the standard samples are respectively introduced into the biodetection chip to obtain piezoelectric change signals generated by the Lamb wave sensor 13 corresponding to biomarkers of different concentrations. And the frequency of the impedance change signal, the correspondence between the detected signal and the relative concentration is obtained, and a relationship curve is formed.
  • the present embodiment provides a biometric detection chip, which is different from the biometric detection chip provided in Embodiment 4 only in that the Lamb wave sensor 13 provided in Embodiment 2 is disposed in the recess of the susceptor 14, and the Lamb wave sensor is disposed on the Lamb wave sensor.
  • the side surface of the first microelectrode 134 faces the direction of the cover 11 such that the side of the detection cavity 1312 is disposed on the Lamb wave sensor 13 in the direction toward the susceptor 14.
  • a detection circuit located in the susceptor 14 communicates with the first microelectrode 134 and the ground electrode layer 132 on the Lamb wave sensor 13 via an elastic probe.
  • the connector 15 can also be a wire, or other connection structure capable of transmitting electrical signals.
  • the detection circuit can be arranged outside the base 14 and the connection to the Lamb wave sensor 13 is achieved by a connector 15 that passes through the base 14.
  • the sealing member 12 may not be disposed, and after the bio-detection chip is fixed in the recess on the base 14, the cover 11 and the base 14 may be sealed by gluing or the like.
  • the fluid sample is directly flowed from the fluid passage 1121 into the surface of the piezoelectric film 133 of the Lamb wave sensor 13.
  • S201 to S202 are the same as S101 to S102 in the first embodiment, and after the end of S102, the excitation signal input from the detection circuit is turned off, and the Lamb wave sensor 13 is turned off;
  • the sample flows in from the sample hole 1122, and then is equally divided into each of the fluid channels 1121.
  • the sample flows at a constant velocity in the fluid channel 1121, and flows through the corresponding position of the detection chamber 1312.
  • the detecting port 121 on the sealing member 12 flows to the surface of the piezoelectric film 133;
  • the sample is allowed to stand on the surface of the piezoelectric film 133 for a certain reaction time to make the sample
  • the target biomarker in the target is sufficiently bound to the corresponding antibody surface-modified by the first microelectrode 134;
  • the washing liquid is introduced into the sample hole 1122, the non-specific binding of the surface of the first microelectrode 134 is eluted, and then nitrogen gas is introduced, and the eluate is discharged through the sample hole to expose the piezoelectric film 133.
  • the detecting circuit continues to input an excitation signal to make the Lamb wave sensor 13 in an on state, and the first microelectrode 134 outputs a post-piezoelectric signal and a post-impedance signal after the antigen and the antibody are combined;
  • the piezoelectric change signal is obtained by the front piezoelectric signal and the post-piezoelectric signal
  • the impedance change signal is obtained by the front impedance signal and the back impedance signal
  • the piezoelectric change signal and the impedance change signal are coupled to obtain the detection signal, and the detection signal is obtained.
  • the signal corresponds to the concentration of the target biomarker in the sample.
  • the embodiment provides a rapid detection system, including the biological detection chip 1 provided in Embodiment 3, and a temperature control device, a sample driving device 2, a sample cell 3, a waste liquid pool 4, and a signal analysis device 5.
  • the sample cell 3 is in communication with a sample well 1122 of the biodetection chip 1, and the waste liquid pool 4 is in communication with a sample well of the biodetection chip 1.
  • a sample driving device 2 is connected between the sample cell 3 and the bio-detection chip 1.
  • the sample driving device 2 is a peristaltic pump for driving a sample to be tested in the sample cell 3 to flow into the bio-detection chip 1 And driving the detected sample in the biodetection chip 1 into the waste liquid pool 4.
  • the biodetection chip 1, the sample cell 3 and the waste liquid pool 4 are located inside a temperature control device (for example, an incubator), and the preheating of the sample to be tested in the sample cell 3 is realized by adjusting the temperature of the incubator, and Temperature control when the target antigen in the bioassay chip 1 is combined with the antibody.
  • the biodetection chip 1 is connected to the signal analysis device 5,
  • the signal analysis device 5 includes a network analyzer 51 and a computer 52.
  • the temperature of the incubator is adjusted to 37 ° C, and then the sample is pumped from the injection port 1122 of the biodetection chip 1 at a pump speed of 60 ⁇ L/min into the sample cell 3 by a peristaltic pump. 50 ⁇ L of the sample preheated at ° C, and incubated at 37 ° C for 40 minutes, and then pumped into the detection chamber 1312 of the Lamb sensor 13 at a pump speed of 60 ⁇ L / min with a pre-warmed PBS phosphate buffer at 37 ° C.
  • the heterosexual binding material elutes until the center frequency of the signal peak no longer shifts.
  • the entire process is collected and recorded by the network analyzer 51 connected to the biodetection chip 1 at the center frequency of the signal peak of the Lamb wave sensor.
  • the amount of change in the center frequency directly reflects the mass loading of the surface of the resonant film 1311 in the detection cavity 1312 of the Lamb wave sensor 1, that is, the piezoelectric change signal; the change of the electrode property caused by the combination of the modified antibody on the second microelectrode 135 and the antigen generates an impedance.
  • the amount of change that is, the impedance change signal. Therefore, the amount of change in the center frequency of the signal peak and the amount of change in impedance are related to the concentration of the target antigen in the test sample.
  • This embodiment provides a fast detection system, which is different from the fast detection system provided in Embodiment 5 only in that the rapid detection system includes the biometric detection chip 1 provided in Embodiment 4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Electrochemistry (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种Lamb波传感器,包括衬底层(131)、地电极层(132)、压电薄膜(133)、至少一对第一微电极(134)和至少一对表面修饰抗体的第二微电极(135),第二微电极(135)表面修饰的抗体能够与样品中的目标生物标志物结合,实现对目标生物标志物的浓度测定。Lamb波传感器具有灵敏度高、特异性强和检测限低、易操作等优势,能用于实现针对同一样品的多种目标生物标志物的检测。一种生物检测芯片,包括上述的Lamb波传感器,能够用于血液样品中多种生物标志物的检测。一种快速筛查系统,包括上述的生物检测芯片,为疾病的诊断和筛查提供了一种新的快速筛查系统。

Description

Lamb波传感器、生物检测芯片和快速筛查系统 技术领域
本发明属于传感器技术领域,具体涉及一种Lamb波传感器,应用其制备的生物检测芯片、生物检测芯片的使用方法,以及一种快速筛查系统。
背景技术
胃癌是世界范围内最常见的恶性肿瘤之一,每年约有100万个新发病例,其死亡率在全球范围位居各种恶性肿瘤第3位。而我国是胃癌的高发区,每年我国新发现40万胃癌患者,约占世界胃癌发病人数的42%左右,其中,死亡人数的比例超过三分之二。早期胃癌术后生存率约为90%,进展期胃癌术后生存率约为40%,由于胃癌早期症状不明显,又缺乏特异的早期诊断方法,使其发病率和死亡率越来越高。因此,开发胃癌早期诊断的方法,针对胃癌进行大规模的早期筛查,是提高胃癌患者生存率的有效途径,对改善患者预后具有重要的意义。
目前胃癌检测的主要手段包括胃镜、胃肠道钡餐透视、超声、CT、PET/CT、磁共振的影像学检查,脱落细胞的细胞学检查,以及组织病理学检查。但影像学检查、细胞学检查和病理组织检查都需要依赖大型仪器设备,早期检出率低,费用较高,存在一定的临床禁忌,且检测结果依赖于临床医生的临床经验,易产生由检查取材不当或人为经验不足导致的误诊或漏诊,难以适用于胃癌的早期普查以及筛查工作。近年来,为了寻找无创、简便、快捷、适于定量和定性的检测方法,在血清中检测肿瘤标志物的方法在临床上逐渐受到重视,血清生物标志物检测可以在不依赖大型仪 器设备、操作简单的情况下,安全高效且无创的对病程进行反映和提示,是一种理想的胃癌早筛的方法。
胃癌的发生是一个多因素参与、多途径引起、多步骤发生的复杂过程,是环境因素和遗传因素共同作用于机体产生的结果。目前普遍认可的胃癌的发生模式是1988年Correa提出的:正常胃黏膜-浅表性胃炎(SG)-萎缩性胃炎(AG)-小肠型肠上皮化生-轻度不典型增生(Low grade dysplasia,LGD)-重度不典型增生(high grade dysplasia,HGD)-胃癌(肠型)。美国学者Asmloff首次提出血清胃蛋白酶原(pepsinogen,PG)I、II水平可以反映胃黏膜的形态和功能,起到“血清学活检”的作用。90年代初,日本学者三木一正倡导用无创性血清PG I、PG II,进而联合检测H.pylori-IgG(幽门螺杆菌抗体)进行胃癌人群筛查,提高了受检人群参与率和早期胃癌的检出率。研究显示血清PG水平和慢性萎缩性胃炎(Chronic atrophic gastritis,CAG)相关,CAG和胃癌相关,PG法可用于胃癌的高危因素——重度萎缩性胃炎的诊断,并且可通过检测血清PG I水平及PG I/II比值筛查胃癌高风险患者,有利于发现早期胃癌。世界多个国家相继利用PG、G17(胃泌素17)、H.pylori-IgG指标组成的胃黏膜“血清学活检”进行胃癌及其癌前疾病筛查。卫生部疾病预防控制局2011版《癌症早诊早治项目技术方案》将血清PG检测纳入胃癌筛查技术方案,推荐用于胃癌高发地区人群进行初筛。对于胃蛋白酶原检测水平低的患者,H.pylori-IgG可进一步发现萎缩性胃炎等高危个体。2012年中华医学会消化病学会发布了《中国慢性胃炎共识意见》指出:H.pylori感染是慢性胃炎的主要病因,建议将其作为慢性胃炎病因诊断的常规检查。2014年4月发布《中国早期胃癌筛查及内镜诊治 共识意见》建议联合检测血清标志物PGI、PGII、PGI/PGII值、G17、H.pylori-IgG进行初筛,以增加评估胃黏膜病变范围和程度的准确性,根据血清学指标检测结果对患者的胃癌患病风险进行分层,并根据检测结果决定进一步胃镜精查及治疗方案。
对胃癌血清学生物标志物的检测方法有:酶联免疫吸附测定法(ELISA)、时间分辨荧光免疫分析法(TRFIA)、化学发光酶免疫检测法(CMIA)、放射免疫测定法(RIA)。但上述检测方法检测前需要对血液样品进行预处理,检测的灵敏度低,且对仪器设备要求高、技术操作复杂、检测时间长,需要专业人员操作才能完成,难以满足在医疗资源匮乏的配置环境下使用,不适于早期胃癌普查及筛查的需求。
声波压电传感技术是近年来快速兴起的一种非光学、高灵敏定量检测技术。通过对上述传感器界面进行特异性修饰,几乎不受样品透光性及粘度的影响,可以在反应体系中迅速捕获目标分子,这些分子与传感器表面结合后可以改变压电材料振动的谐振频率信号,该信号幅度和相位的变化反应了结合分子的质量、粘弹性等分子含量的信息,并结合反应动态曲线可以对反应速率、结合常数或解离常数等动力学参数进行解析。中国专利文献CN102520160A中公开了一种Lamb波免疫传感器,在样品池内培养标记抗体、免疫微磁珠和捕获抗体,在对待分析物进行检测时,将待分析物注入样品池内,开启传感器的下方磁场,免疫磁珠结合待分析物与抗体形成“免疫磁珠-待分析物-抗体”三元复合物,然后开启传感器的上方磁场,使未形成三元复合物的免疫磁珠吸附至Lamb传感器上方,洗涤除去未结合的免疫磁珠,然后通过Lamp波免疫传感器测量,实现对待分析物的特异性 检测。该传感器能够通过免疫吸附的方法实现对待分析物的检测,但是检测过程依赖免疫微磁珠和施加在传感器上方与下方的磁场,使免疫检测步骤复杂化。其次,检测过程需要使用两种不同的抗体,一方面增加了检测成本;另一方面传感器在应用于血液样品检测时,由于血液中蛋白物质种类较多,检测抗体种类的增加使抗体与抗原之间可能出现的非特异性结合增加,降低了检测的特异性和灵敏度。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中Lamb波免疫传感器检测步骤繁琐、成本高以及检测的特异性低的问题,从而提供一种操作步骤简便,检测成本降低、检测灵敏度高、特异性强和检测限低的Lamb波传感器。
为此,本发明提供了一种Lamb波传感器,包括
衬底层,所述衬底层的一侧面上开设至少一个单向开口的检测腔;
地电极层,设置于所述衬底层的远离所述检测腔的一侧面上;
压电薄膜,设置于所述地电极层的远离所述衬底层的一侧面上;
至少一对第一微电极,设置于所述压电薄膜远离所述地电极层的一侧面上;
至少一对表面修饰抗体的第二微电极,设置于所述检测腔内,或者由所述第一微电极经抗体修饰后形成所述第二微电极。
上述的Lamb波传感器,所述第一微电极和/或所述第二微电极由金属材料制成的叉指电极。
优选地,上述的Lamb波传感器,所述金属材料为金、铂金、银、铝或铜。
上述的Lamb波传感器,所述第二微电极成型于所述谐振薄膜朝向所述检测腔的一侧面上,所述第二微电极的电极引脚依次穿过所述谐振薄膜、所述地电极层和所述压电薄膜,并在所述压电薄膜远离所述地电极层的一侧面上形成所述第二微电极的电极接触点。
优选地,上述的Lamb波传感器,所述第二微电极通过以下步骤进行抗体修饰:
(1)通过巯基化自组装法、戊二醛交联法、蛋白A法、物理吸附法或fab定点固定法在所述第二微电极的表面固定所需抗体;
(2)对抗体固定后的所述第二微电极进行封闭,使所述第二微电极表面未结合抗体的位点处于封闭状态。
优选地,上述的Lamb波传感器,所述封闭用的物质选自小牛血清蛋白、胎牛血清、脱脂奶粉、乙二胺溶液、酪蛋白、明胶或吐温。
上述的Lamb波传感器,所述检测腔远离所述开口的一侧对应的衬底层形成谐振薄膜,所述谐振薄膜的厚度≤20μm。
优选地,上述的Lamb波传感器,所述压电薄膜的制备材料为氮化铝、氧化锌或石英。
优选地,上述的Lamb波传感器,所述衬底层为硅衬底层。
本发明提供了一种生物检测芯片,所述生物检测芯片包括
基座,其上开设有凹槽;
上述的Lamb波传感器,设置于所述凹槽内,与所述基座通过连接件形成电连接;
盖板,覆盖所述基座,所述盖板内设置有位于所述检测腔两侧的进样孔和出样孔,所述Lamb波传感器上设置所述第二微电极的一侧朝向所述盖板。
上述的一种生物检测芯片,所述Lamb波传感器具有至少两个所述检测腔,每个所述检测腔对应至少一对所述第二微电极;
其中,对应同一所述检测腔的所述第二微电极表面修饰结合相同抗原的抗体,且与其他所述检测腔对应的所述第二微电极结合不同抗原。
上述的生物检测芯片,所述盖板包括盖板封闭层和盖板通道层,所述盖板封闭层位于所述盖板通道层的上方,所述盖板通道层内开设与所述检测腔一一对应的至少两条所述流体通道,所述流体通道包括流入段和流出段;
所述流体通道的两端分别连接同一进样孔和同一出样孔;其中,每条所述流体通道的长度相等,流体由所述进样孔流入后等量且等速度流经每条所述流体通道。
优选地,上述的生物检测芯片,所述盖板由透明材料制成。
优选地,上述的生物检测芯片,所述透明材料为聚二甲基硅氧烷、聚甲基丙烯酸甲酯、聚碳酸酯或玻璃。
上述的生物检测芯片,所述连接件为弹性探针,所述弹性探针的一端连接位于所述基座内的检测电路;
所述第二微电极位于所述检测腔内,所述弹性探针的另一端连接所述Lamb传感器上的所述地电极层、所述第一微电极和所述第二微电极的电极接触点;或者
所述第二微电极由所述第一微电极经抗体修饰后形成,所述弹性探针的另一端连接所述Lamb传感器上的所述地电极层和所述第二微电极。
上述的生物检测芯片,所述生物检测芯片还包括设置于所述盖板和所述Lamb波传感器之间且覆盖所述基座的密封件;所述密封件具有与所述检测腔对应开设的检测口。
上述的生物检测芯片的使用方法,包括以下步骤:
(1)在所述流体通道内引入流体样品;
(2)所述流体样品流经所述Lamb传感器的第二微电极,所述流体样品中的待测抗原与所述第二微电极上修饰的抗体结合,使所述Lamb传感器分别产生压电变化信号和阻抗信号;
(3)将所述压电变化信号和所述阻抗信号耦合后得到检测信号,根据所述检测信号与所述待测抗原结合量之间的对应关系,得到所述流体样品中所述待测抗原的浓度。
优选地,上述的方法,所述第二微电极位于所述检测腔内,所述流体样品流过所述检测腔,由所述第二微电极产生所述阻抗信号,所述第一微 电极产生所述压电变化信号;所述流体样品流经所述第二微电极之前,所述Lamb传感器处于导通状态,预先采集前压电信号,然后使所述流体样品流过所述第二微电极,采集后压电信号和阻抗信号;或者
所述第二微电极由所述第一微电极经抗体修饰后形成,所述流体样品流过所述压电薄膜,由所述第二微电极产生所述阻抗信号和所述压电变化信号;所述流体样品流经所述第二微电极之前,所述Lamb波传感器处于导通状态,预先采集前压电信号,然后使所述Lamb传感器处于断电状态,所述流体样品流过所述第二微电极,干燥所述第二微电极,然后使所述Lamb传感器处于导通状态,采集后压电信号和所述阻抗信号;
由所述前压电信号和所述后压电信号得到所述压电变化信号。
本发明提供了一种快速筛查系统,所述快速筛查系统包括上述的生物检测芯片。
本发明相对现有技术具有如下优点:
1.本发明提供的Lamb波传感器,包括衬底层、地电极层、压电薄膜、至少一对第一微电极和至少一对表面修饰抗体的第二微电极。Lamb波传感器在用于检测样品中的目标生物标志物(也即目标抗原)时,目标抗原与第二微电极表面对应的抗体相结合,使第二微电极的电性质改变,导致第二微电极的阻抗信号的改变,得到阻抗变化信号;另一方面,抗原与抗体的结合,使谐振薄膜表面加载的质量增加,引起压电薄膜振动频率的改变,导致压电信号的改变,得到压电变化信号。由压电变化信号和阻抗变化信号的耦合实现对目标生物标志物的定量检测。本发明提供的Lamb波传感器 兼有阻抗传感、压电传感和免疫检测的优势,为胃癌等疾病的早期大规模普查提供了一种新的检测手段,Lamb波传感器具有以下特点:
(1)灵敏度高
上述Lamb波传感器在谐振薄膜表面质量加载导致压电信号改变的基础上引入阻抗传感,通过两种信号的耦合起到了信号放大的作用,提高了检测灵敏度。
(2)特异性强
上述Lamb波传感器利用免疫检测特异性强的优势,在第二微电极表面修饰与目标生物标志物对应的抗体,利用抗原与抗体的直接结合有效地避免了非特异性结合的产生,进一步提高了检测的特异性。
(3)响应时间短
Lamb波传感器在应用于对目标生物标志物的检测时,目标生物标志物经过第二微电极,即与第二微电极表面的抗体发生特异性结合,使传感器立即响应压电信号和阻抗信号,实现了对目标生物标志物的快速检测。
(4)检测效率高、检测限低
Lamb波传感器在用于血液样品检测时,所检测的血液样品为全血样品,无需预处理,不受样品颜色等外界因素影响,简化了技术操作步骤和设备要求,提高了检测效率。同时,在实现对对待测样品的检测,无需使用二抗即可完成高灵敏度检测,检测限低至6pg/ml。
(5)能够用于多通道、多标志物检测
在实际应用中根据需要设置Lamb波传感器上检测腔的个数,并使每个检测腔对应至少一对第一微电极与第二微电极,通过在第二微电极的表面 修饰不同的抗体,能够实现Lamb波传感器多通道、多生物标志物的检测。
2.本发明提供的Lamb波传感器,第一微电极和/或第二微电极是由金属材料制成的叉指电极,叉指电极具有快速建立稳态信号和信噪比高等优点,适于研制研制灵敏、快速、特异、小型化、易操作的生物传感设备。
3.本发明提供的Lamb波传感器,第二微电极的电极引脚穿过谐振薄膜、地电极层和压电薄膜,在压电薄膜的表面形成电极接触点。该结构的第二微电极用于检测液体样品时,在液体样品流经第二微电极,以使抗体与目标抗原结合的同时,通过电极接触点使第二微电极上产生的阻抗信号向外传输,进一步缩短了响应时间,提高了检测效率。
4.本发明提供的第二微电极是由金属材料制成的叉指状电极,具有检测信号稳定、灵敏度高、结构简单以及适合批量生产等优点;另一方面,有利于实现将压电薄膜表面的第一微电极经抗体修饰以形成第二微电极的结构。
5.本发明提供的Lamb波传感器,谐振薄膜的厚度≤20μm。Lamb波传感器的谐振薄膜厚度对其表面加载质量的响应和灵敏度有直接的关系,薄膜厚度越薄质量检测灵敏度越高,响应越迅速。为了提高质量检测灵敏度,薄膜厚度控制在20μm以下。
6.本发明提供的Lamb波传感器,以硅作为衬底层,易于通过刻蚀等方法在硅衬底层上刻蚀成形多个检测腔和与检测腔对应的谐振薄膜,使衬底易于集成化,进一步实现传感器的阵列化和多通道、多目标生物标志物的检测。
7.本发明提供的生物检测芯片,包括基座、盖板和上述的Lamb波传 感器,盖板内具有待测样品的进样口和出样孔。生物检测芯片具有检测灵敏度高、特异性强、响应时间短和检测效率高等优点,能够实现对多种目标生物标志物的快速检测。
另一方面,生物检测芯片的体积小、适用于批量化生产,有利于实现疾病的大规模早期诊断和筛查。
8.本发明提供的生物检测芯片,具有至少两个检测腔,每个检测腔对应的第二微电极表面修饰特定的一种抗体,待测样品在流经不同的检测腔对应区域时,样品中的多种目标生物标志物分别与对应的第二微电极表面修饰的抗体结合,使每一检测腔对应的谐振薄膜表面吸附某一特定的目标生物标志物,并产生相应的压电变化信号和阻抗变化信号。各检测腔对应区域产生的压电变化信号和阻抗变化信号互不干扰,从而实现了多种目标生物标志物的特异性检测。
生物检测芯片能够利用同一样品实现对样品中多种目标生物标志物的检测,样品的使用量能够低至10μL,检测限低至6pg/ml。
9.本发明提供的生物检测芯片,流体通道与检测腔一一对应开始,多条流体通道的两端分别连接同一进样孔和同一出样品,对流体通道的结构进行设置,使样品由进样孔进入后,等量、等速流向各检测腔,生物检测芯片能够同时完成对多种生物标志物的检测,进一步提高了检测效率。
上述生物检测芯片仅需将待测样品由进样孔进入后,样品流经各检测腔对应的区域以完成检测,生物检测芯片的操作方式简便,有利于实现大规模的普及和推广。
10.本发明提供的生物检测芯片,盖板与Lamb波传感器之间设有密封 件,密封件与检测腔对应位置开设有检测口,使各流体通道内的样品能够流经各检测腔对应的第二微电极表面,实现抗原与抗体的结合。密封件的设置能够确保样品稳定的停留在Lamb波传感器谐振薄膜或压电薄膜的表面,同时使所封装进去的Lamb波传感器具有平衡的受力和稳定性,同时也保证了Lamb波传感器与弹性探针的良好接触,保证信号的稳定性。
11.本发明提供的生物检测芯片,基座内设有检测电路,由弹性探针连接检测检测电路与Lamb波传感器的第二微电极的电极接触点、第一微电极和地电极层,或者连接检测电路与Lamb波传感器的第二微电极和地电极层。通过检测电路接收Lamb波传感器在样品检测过程中产生的压电变化信号和阻抗信号,然后进行信号的耦合与目标生物标志物浓度的测定。
12.本发明提供的生物检测芯片,盖板由透明材料制成,便于样品在Lamb波传感器表面流动的观察。
13.本发明提供的快速筛查系统,包括上述的生物检测芯片,能够用于高灵敏度、高特异性、快速响应和低检测限的多生物标志物检测。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中提供的Lamb波传感器的结构示意图;
图2为本发明实施例1中提供的Lamb波传感器的第一微电极、第二微 电极和谐振薄膜的位置关系示意图;
图3为本发明实施例3中提供的生物检测芯片的爆炸图;
图4为本发明实施例5中提供的快速筛查系统中各装置的连接关系示意图;
附图标记说明:1-生物检测芯片,11-盖板,111-盖板封闭层,112-盖板通道层,1121-流体通道,1122-进样孔,12-密封件,121-检测口,13-Lamb波传感器,131-衬底层,1311-谐振薄膜,1312-检测腔,132-地电极层,133-压电薄膜,134-第一微电极,135-第二微电极,14-基座,15-连接件;
2-样品驱动装置;
3-样品池;
4-废液池;
5-信号分析装置,51-网络分析仪,52-电脑。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第 三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
除非另外说明,本发明中所公开的实验方法均采用本技术领域常规技术,实施例中所用到的试剂和原料均可由市场购得。
实施例1
本实施例提供了一种Lamb波传感器,包括衬底层131,所述衬底层的一侧面上开设至少一个单向开口的检测腔1312,所述检测腔1312顶部的所述衬底层形成谐振薄膜1311,沿着衬底层131上沿远离检测腔1312的方向依次设有地电极层132和压电薄膜133;至少一对第一微电极134,设置于所述压电薄膜133远离所述地电极层132的一侧面上,用于检测压电信号;至少一对第二微电极135,所述第二微电极135的表面修饰抗体,用于检测阻抗信号;所述第二微电极135设置于所述谐振薄膜1311下表面,或者由所述第一微电极134经抗体修饰后形成。
在本实施例中,具体的如图1-2所示,以硅作为衬底材料形成所述衬底层131,所述衬底层131的底面刻蚀四个凹槽形成四个所述检测腔1312, 为了便于表述,将四个所述检测腔1312分别命名为第一检测腔、第二检测腔、第三检测腔和第四检测腔,所述检测腔1312远离所述凹槽开口一侧对应的顶部的衬底层131形成谐振薄膜1311,四个所述检测腔1312对应形成第一~第四谐振薄膜。其中,所述衬底层131为硅衬底层,硅衬底层主要起到支撑作用,采用硅基材料作为所述衬底层131具有成本低、可导电和易于通过传统微加工技术实现集成化等优点。所述衬底层131的上表面设置有地电极层132,优选为钛材料层;地电极层132的上表面设置有压电薄膜133,优选为氮化铝薄膜。钛材料层有利于氮化铝材料在其表面的溅射沉积,使形成的氮化铝薄膜组织结构均匀,且与钛材料层结合的强度高。
如图1所示,在每个所述检测腔1312对应的谐振薄膜1311的底部表面上溅射形成80~150nm厚度的三对所述第二微电极135,所述第二微电极135是由金属材料(在本实施例中选择金属材料为金)制成的叉指电极,所述第二微电极135的表面修饰抗体,其中每个所述检测腔1312对应的所述第二微电极135表面修饰的抗体结合同一抗原,不同所述检测腔1312对应的所述第二微电极135表面修饰的抗体结合不同抗原,使Lamb波传感器能够实现对四种抗原的检测。在每个所述检测腔1312对应的压电薄膜133的顶部表面上溅射形成一对第一微电极134,所述第一微电极134是由金属材料((在本实施例中选择金属材料为铜)制成的叉指电极,每对所述第一微电极134包括输入第一微电极和输出第一微电极。
上述结构的Lamb波传感器,将硅衬底层的底部腐蚀后形成所述检测腔1312,所述检测腔1312的下表面形成与空气交界面,从而将声波限制于所述检测腔1312顶部对应的由第一微电极134、压电薄膜133和地电极层132 形成的压电震荡堆内。Lamb波传感器共具有四个检测腔1312,所述检测腔1312对应的谐振薄膜1311、第二微电极135、第一微电极134、压电薄膜133和地电极层132形成四个有效检测区域,能够实现对四种不同的生物标志物的检测。当电压施加在第一微电极134和地电极层132上时,所述输入第一微电极获取激励信号,所述压电薄膜133由于逆压电效应使氮化铝内的质点发生弹性振动,并在所述压电薄膜33内传播形成了弹性机械波,进而在所述第一微电极134和地电极层132之间来回反射形成机械谐振波,然后所述输出第一微电极通过正压电效应将传输来的机械信号转换为电信号输送出去。
Lamb波传感器的谐振薄膜1311厚度对其表面加载质量的响应和灵敏度有直接的关系,薄膜厚度越薄质量检测灵敏度越高,响应越迅速。为了提高质量检测灵敏度,薄膜厚度控制为小于或等于20μm,在本实施例中提供的Lamb波传感器,第一~第四谐振薄膜的厚度均为15μm。
Lamb波传感器在应用于流体样品(在本实施例中所述样品选择血液)中的生物标志物的检测时,使样品分别流入四个所述检测腔1312,样品与所述第二微电极135接触,样品中的目标生物标志物与所述第二微电极135表面对应修饰的抗体结合,使所述第二微电极135的电性质发生改变,进而使所述第二微电极135产生的阻抗信号改变;抗原与抗体的结合同时会引起所述谐振薄膜1311表面加载质量的增加,致使Lamb波传感器内的机械振动发生改变,例如振动频率发生偏移,从而使压电信号发生改变,通过对阻抗变化信号和压电变化信号进行采集,能够实现对样品中目标生物标志物的精准定量测定。Lamb波传感器的四个有效检测区域彼此隔离,检 测信号互不干扰,可以分别实现对同一样品中四种目标生物标志物的定量测定。因此,本实施例提供的Lamb波传感器能够实现高通量、阵列化的快速分子水平的检测,检测过程中利用阻抗信号和压电信号的耦合,使检测信号得到了有效放大,能够显著提高检测的灵敏度,降低检测限(6pg/ml);检测过程利用免疫学技术,抗体与抗原之间的直接结合具有高度特异性,使检测结果的特异性强。同时,Lamb波传感器具有体积小、易于批量化生产的优势,适于大规模的普及和推广。
此结构的Lamb波传感器,第二微电极表面进行抗体修饰通过以下方法进行:
1、在第一检测腔内的第二微电极135表面固定抗体,在本实施例中选择要修饰的抗体为PGI(胃蛋白酶原I)抗体
(1)抗体固定
用新鲜水虎鱼溶液(98%质量分数的浓硫酸:30%质量分数的过氧化氢以3:1的体积比混合得到)对所制备的Lamb波传感器检测腔1312内第二微电极135进行滴加清洗10-15次,每次30-60s,并用大量去离子水冲洗3-5遍后用氮气吹干,以去除所述第二微电极135表面杂质,确保所述第二微电极材料(在本实施例中选择为金材料)即金充分裸露,然后在室温浸泡于11-巯基十一烷酸乙醇溶液(11-巯基十一烷酸用无水乙醇配制成15-25mM的浓度)中10-24小时,金结合11-巯基十一烷酸的巯基,形成稳定的金硫键,然后用无水乙醇冲洗3-5遍,并用氮气吹干。然后再向Lamb波传感器谐振薄膜1311下表面滴加1-甲基咪唑盐酸缓冲液新鲜配制的pH=5的EDC(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐)-NHS(N-羟基 琥珀酰亚胺)溶液(EDC:NHS=(3-8):1(体积比或质量比),NHS浓度为5-25mM)并在室温维持2-8小时,将结合在金第一微电极表面的11-巯基十一烷酸上暴露出来的羧基进行偶联活化,以确保后续胃蛋白酶原PGI抗体裸露的氨基可以与羧基结合。在活化完成后,用去离子水冲洗3-5次,并用氮气吹干,再向检测腔谐振薄膜下表面滴加50-200μL的pH=7.4的0.01M PBS磷酸盐缓冲液稀释的50-500μg/ml胃蛋白酶原PGI抗体,4℃处理10-24小时,使PGI抗体完成在Lamb波传感器谐振薄膜1311下表面上第二微电极表面的固定,再用PBS缓冲液滴加清洗3次,并用氮气吹干。
(2)封闭
在传感器检测腔加入50-200μL 0.01M pH7.4 PBS稀释的1%BSA溶液4℃封闭4h,即对自组装层上未结合抗体的位点进行封闭,再用PBS缓冲液滴加清洗3次,并用氮气吹干,获得PGI抗体功能化阻抗型Lamb波传感器,置于4℃冰箱备用。
2、采用步骤1中所述的方法依次在第二~第四检测腔内的第二微电极135表面固定抗体PGII、G17和H.pylori-IgG。
通过上述抗体修饰方法得到的Lamb波传感器,能够实现对血液样品中PGI、PGII、G17和H.pylori-IgG四种生物标志物的准确定量,以应用于胃癌的早期诊断,为胃癌控制、药物疗效的检测评估,以及预后提供有效信息,提高胃癌患者的术后生存率和生存质量。Lamb波传感器体积小、适于批量生产,有利于实现胃癌的大规模的早期普查,为医疗设备落后地区提供有效的检测工具。
作为可替代的实施方式,Lamb波传感器的衬底层131上刻蚀成形的检 测腔1312还可以是1个、2个、3个等等,通过实际检测过程中需要检测的目标生物标志物的种类确定检测腔的个数,只需要每个检测腔1312对应的有效检测区域上同时设置一对第一微电极134和三对第二微电极135。作为变形,所述第一微电极134的对数还可以是2对、3对等等。作为进一步的变形,所述第二微电极的对数还可以是1对、2对、4对等等。所述第二微电极的对数的增加,对应第二微电极135上修饰的抗体的数量增加,对样品中目标生物标志物的结合更加充分。作为进一步的变形,每个所述检测腔1312对应的第二微电极135的表面可以根据实际需要修饰其他种类的抗体,对应检测不同的生物标志物,实现对目标疾病的诊断和筛查。
作为可替代的实施方式,第一微电极还可以是由铜制成的微柱电极或微盘电极等等,只要能使第一微电极完成信号的转换和传输;作为变形,第一微电极还可以由其他具有导电、信号传导功能的金属材料制成,例如铂金、银、铝等等。
作为可替代的实施方式,第二微电极还可以是由金制成的微柱电极或微盘电极等等,只要能使第二微电极完成阻抗信号的检测;作为变形,第二微电极还可以由其他具有导电、信号传导功能的金属材料制成,例如铂金、银、铝等等。
作为可替代的实施方式,压电薄膜还可以由氧化锌、石英等能够激发机械振动的压电材料制成。
实施例2
本实施例提供一种Lamb波传感器,与实施例1中提供的Lamb波传感器相比,区别仅在于:所述检测腔1312内不设置第二微电极135的同时, 对位于压电薄膜133上的第一微电极134进行修饰处理,使第一~第四检测腔对应的第一微电极134的表面依次修饰抗体PGI、PGII、G17和H.pylori-IgG。
上述结构的Lamb波传感器,在对样品进行检测前,先通过所述输入第一微电极134获取激励信号,进而引起所述压电薄膜133的机械振动,产生前压电信号,同时所述第一微电极134产生前阻抗信号;然后切断输入信号,使所述Lamb传感器处于断电状态,再使样品流经压电薄膜133的顶部表面,并在压电薄膜133的表面停留一定的反应时间,使第一微电极134上修饰的抗体与目标生物标志物充分结合,之后用洗涤剂冲洗压电薄膜133的表面,洗脱掉样品中的杂质蛋白与第一微电极134的非特异性结合,然后通入氮气,至所述压电薄膜133的表面干燥,将Lamb传感器通电,继续输入激励信号,采集目标抗原与抗体结合后产生的后压电信号和后阻抗信号,进而得到Lamb传感器检测过程中的变化的压电信号和阻抗信号,将两种信号耦合后得到检测信号,用于对目标生物标志物的定量测定。Lamb波传感器上四个有效检测区域分别进行信号的采集输出,彼此之间互不干扰,实现对待测样品中四种目标生物标志物的精准定量。
作为可替代的实施方式,Lamb波传感器的衬底层131上刻蚀成形的检测腔1312还可以是1个、2个、3个等等,通过实际检测过程中需要检测的目标生物标志物的种类确定检测腔的个数,只需要每个检测腔1312对应的有效检测区域上设置一对抗体修饰的第一微电极134。作为变形,第一微电极134的对数还可以是2对、3对等等。作为变形,每个检测腔1312对应的第一微电极134的表面可以根据实际需要修饰其他种类的抗体,对应 检测不同的生物标志物,实现对目标疾病的诊断和筛查。
作为可替代的实施方式,第一微电极还可以是由铜制成的微柱电极或微盘电极等等,只要能使第一微电极完成信号的转换和传输,以及阻抗信号的检测。
作为可替代的实施方式,压电薄膜还可以由氧化锌、石英等能够激发机械振动的压电材料制成。
实施例3
本实施例提供一种生物检测芯片,包括基座14,其上开设有凹槽;实施例1所述的Lamb波传感器13,设置于所述凹槽内,与所述基座14通过连接件15形成电连接;盖板11,覆盖所述基座14,所述盖板11上设置有位于所述检测腔两侧的进样孔1122和出样孔,所述Lamb波传感器13上设置所述第二微电极135的一侧朝向所述盖板11。
在本实施例中,具体的如图3所示,所述基座14上表面开设有凹槽,所述Lamb波传感器13设置在所述基座14的凹槽内,在所述基座14上表面依次覆盖密封件12和盖板11。所述Lamb波传感器13上设有第一微电极134的侧面朝向所述基座14的方向,使所述检测腔1312的开口朝向所述盖板11。所述盖板11包括所述盖板封闭层111和盖板通道层112,所述盖板封闭层111位于盖板通道层112的顶部,所述盖板通道层112内设有四条流体通道1121,每条流体通道1121由沿检测腔1312的方向对称设置的流入通道和流出通道构成。其中,四条流入通道由同一所述进样孔1122引入后,朝向四个所述检测腔1312对应的正上方位置处延伸,到达所述检测腔1312靠近进样孔1122的一侧后停止延伸,然后在相距检测腔1312延流 体通道1121方向上的宽度距离后,继续以流入通道一一对称的四条流出通道朝向远离进样孔的方向延伸,流出通道最终在进样孔1122对应位置处汇聚形成一出样孔。流体通道1121位于中间的两条通道折弯处理,使四条流体通道1121具有等长的路径且各通道内的压力相等,样品由同一进样孔1122流入后,等量分流进入各流体通道1121,并在各流体通道1121内等速流通。盖板11由透明材料,例如聚碳酸酯(PC)制成,便于样品在Lamb波传感器表面流动的观察。所述盖板封闭层111的厚度为0.2~0.5mm,所述盖板通道层1121的厚度为2~5mm,所述盖板封闭层111和盖板通道层1121由交联剂键合。
如图3所示,所述密封件12设置于Lamb波传感器13的顶部,并在对应检测腔1312的位置处开设有四个检测口121,待测样品由进样孔1122流入后,等量分流进入各流入通道,使各流体通道1121内的样品能够通过检测口121流入各检测腔1312内。所述密封件12的设置能够确保样品稳定的停留在Lamb波传感器谐振薄膜1311的表面,同时使所封装进去的Lamb波传感器13具有平衡的受力和稳定性,同时也保证了Lamb波传感器13与连接件15的良好接触,保证信号的稳定性。
生物检测芯片在基座14内设置有检测电路,检测电路通过连接件15实现与所述Lamb波传感器13四个有效检测区域的连通。在本实施例中连接件15为弹性探针,弹性探针的一端连接检测电路,另一端分别连接第一~第四检测腔1312对应的第一微电极134、地电极层132和第二微电极135的电极接触点。检测电路通过弹性探针向Lamb波传感器13提供激励信号,并接收由Lamb波传感器13产生的压电信号和阻抗信号。
作为可替代的实施方式,所述连接件15还可以是导线,或其他能够传输电信号的连接结构。作为变形,检测电路可以设置在基座外,通过穿过基座的连接件实现与Lamb波传感器13的连接。
作为可替代的实施方式,还可以不设置密封件12,将生物检测芯片固定在所述基座14上的凹槽内后,通过胶粘等方式将所述盖板11和所述基座14密封连接,使流体样品从所述流体通道1121中直接流入所述Lamb波传感器13的检测腔1312内。
此实施例中的生物检测芯片通过以下步骤完成对样品中目标生物标志物的检测:
S101,检测电路通过弹性探针与所述Lamb波传感器13连通,向所述输入第一微电极输送激励信号;
S102,输入第一微电极获取激励信号,将激励信号转化为在所述压电薄膜133内传播的机械谐振波,机械谐振波经所述输出第一微电极转化为前压电信号后,由检测电路接收前压电信号和所述第二微电极135输出的前阻抗信号;
S103,样品由所述进样孔1122流入,然后等量分流进入各所述流体通道1121内,样品在所述流体通道1121内等速流通,流经所述检测腔1312对应位置后经所述密封件12上的检测口121流入对应的检测腔1312内;
S104,样品在所述检测腔1312内静置一定的反应时间,使样品中的目标生物标志物与所述第二微电极135表面修饰的对应抗体充分结合,抗原与抗体的结合使所述第二微电极输出的阻抗信号改变,同时输出所述第一微电极输出的压电信号改变;
S106,由所述进样孔1122通入洗涤液,对所述第二微电极135表面的非特异性结合进行洗脱,直至检测电路接收的阻抗信号和压电信号的信号峰中心频率不再发生偏移,采集并记录此时的后压电信号和后阻抗信号;
S107,由前压电信号和后压电信号对应得到压电变化信号,由阻抗电信号和后阻抗信号对应得到阻抗变化信号,将压电变化信号和阻抗变化信号耦合后得到检测信号,利用检测信号对应计算出中样品中目标生物标志物的浓度。
生物检测芯片分别独立采集四个有效检测区域产生的阻抗信号和压电变化信号,使各所述检测腔1312内生物标志物的检测互不干扰,从而利用同一样品实现了对四种标志物的响应时间短、灵敏度高、特异性强和检测限低的快速检测,使用样品量低至10μL。使用时仅需将样品由进样孔1122加入,即可实现对目标生物标志物的检测,操作简单易行。生物检测芯片对血液样品中多个生物标志物进行检测时,所检测的血液样品为全血样品,无需预处理,不受样品颜色等外界因素影响,进一步简化了技术操作步骤和设备要求,提高了检测效率。
本实施例中,可以预先配制不同浓度的标准样品,然后将这些标准样品分别通入到上述生物检测芯片内,得到不同浓度的生物标志物对应的所述Lamb波传感器13生成的压电变化信号和阻抗变化信号的频率,得到检测信号与相对浓度之间的对应关系,形成关系曲线。在进行待测样品的生物标志物浓度测定时,只需要根据所述Lamb波传感器13检测到的压电变化信号和阻抗信号,耦合得到其检测信号,即可查找出待测生物标志物的浓度。
实施例4
本实施例提供一种生物检测芯片,与实施例4提供的生物检测芯片的区别仅在于:所述基座14的凹槽内设置实施例2中提供的Lamb波传感器13,Lamb波传感器上设置第一微电极134的侧面朝向盖板11的方向,使Lamb波传感器13上设置检测腔1312的侧面朝向所述基座14的方向。位于所述基座14内的检测电路通过弹性探针与所述Lamb波传感器13上的第一微电极134和地电极层132相连通。
作为可替代的实施方式,所述连接件15还可以是导线,或其他能够传输电信号的连接结构。作为变形,检测电路可以设置在所述基座14外,通过穿过基座14的连接件15实现与所述Lamb波传感器13的连接。
作为可替代的实施方式,还可以不设置所述密封件12,将生物检测芯片固定在基座14上的凹槽内后,通过胶粘等方式将所述盖板11和基座14密封连接,使流体样品从所述流体通道1121中直接流入Lamb波传感器13的压电薄膜133的表面。
此实施例中的生物检测芯片通过以下步骤完成对样品中目标生物标志物的检测:
S201~S202同实施例1中的S101~S102,在S102结束后,切断检测电路输入的激励信号,使Lamb波传感器13处于断电状态;
S203,样品由所述进样孔1122流入,然后等量分流进入各所述流体通道1121内,样品在所述流体通道1121内等速流通,流经所述检测腔1312对应位置后经所述密封件12上的检测口121流至压电薄膜133的表面;
S204,样品在所述压电薄膜133的表面静置一定的反应时间,使样品 中的目标生物标志物与所述第一微电极134表面修饰的对应抗体充分结合;
S205,由所述进样孔1122通入洗涤液,对所述第一微电极134表面的非特异性结合进行洗脱,然后通入氮气,洗脱液经由出样孔排出,将压电薄膜133的表面干燥后,检测电路继续输入激励信号,使所述Lamb波传感器13处于导通状态,所述第一微电极134输出抗原与抗体结合后的后压电信号和后阻抗信号;
S206,由前压电信号和后压电信号对应得到压电变化信号,由前阻抗信号和后阻抗信号对应得到阻抗变化信号,将压电变化信号和阻抗变化信号耦合后得到检测信号,利用检测信号对应计算出中样品中目标生物标志物的浓度。
实施例5
本实施例提供一种快速检测系统,包括实施例3所提供的生物检测芯片1,以及温控装置、样品驱动装置2、样品池3、废液池4和信号分析装置5。
如图4所示,所述样品池3与生物检测芯片1的进样孔1122连通,所述废液池4与所述生物检测芯片1的出样孔连通。所述样品池3与所述生物检测芯片1之间连接样品驱动装置2,所述样品驱动装置2为蠕动泵,用于驱动所述样品池3内的待测样品流入所述生物检测芯片1,以及驱动所述生物检测芯片1内的检测后的样品流入所述废液池4。所述生物检测芯片1、样品池3和废液池4位于温控装置(例如:恒温箱)内部,通过调节恒温箱的温度,实现对所述样品池3中待测样品的预热,以及生物检测芯片1内目标抗原与抗体结合时的温度控制。生物检测芯片1连接信号分析装置5, 所述信号分析装置5包括网络分析仪51和电脑52。
快速筛查系统在使用时,将恒温箱的温度调节为37℃,然后用蠕动泵将样品由生物检测芯片1的进样孔1122以60μL/min泵速泵入在所述样品池3中37℃预热的样品50μL,并在37℃条件下温育40分钟,再用37℃预热的PBS磷酸盐缓冲液以60μL/min泵速泵入所述Lamb传感器13的检测腔1312,将非特异性结合物质洗脱,直到信号峰中心频率不再发生偏移。整个过程由连接在生物检测芯片1上的网络分析仪51采集和记录Lamb波传感器信号峰的中心频率。中心频率的变化量直接反应Lamb波传感器1检测腔1312内谐振薄膜1311表面的质量加载,也即压电变化信号;第二微电极135上修饰的抗体与抗原结合引起的电极性质改变,产生阻抗变化量,也即阻抗变化信号。因此,信号峰中心频率的变化量及阻抗的变化量与检测样品中目标抗原的浓度有关。
实施例6
本实施例提供一种快速检测系统,与实施例5所提供的快速检测系统的区别仅在于:快速检测系统包括实施例4所提供的生物检测芯片1。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种Lamb波传感器,其特征在于,包括
    衬底层(131),所述衬底层的一侧面上开设至少一个单向开口的检测腔(1312),所述检测腔(1312)顶部的所述衬底层形成谐振薄膜(1311);
    地电极层(132),设置于所述衬底层(131)的远离所述检测腔(1312)的一侧面上;
    压电薄膜(133),设置于所述地电极层(132)的远离所述衬底层(131)的一侧面上;
    至少一对第一微电极(134),设置于所述压电薄膜(133)远离所述地电极层(132)的一侧面上,用于检测压电信号;
    至少一对第二微电极(135),所述第二微电极(135)的表面修饰抗体,用于检测阻抗信号;所述第二微电极(135)设置于所述谐振薄膜(1311)下表面,或者由所述第一微电极(134)经抗体修饰后形成。
  2. 根据权利要求1所述的Lamb波传感器,其特征在于,所述第一微电极(134)和/或所述第二微电极(135)是由金属材料制成的叉指电极、微柱电极或微盘电极。
  3. 根据权利要求1或2所述的Lamb波传感器,其特征在于,所述第二微电极(135)的电极引脚依次穿过所述谐振薄膜(1311)、所述地电极层(132)和所述压电薄膜(133),并在所述压电薄膜(133)远离所述地电极层(132)的一侧面上形成所述第二微电极(135)的电极接触点。
  4. 根据权利要求1-3任一项所述的Lamb波传感器,其特征在于,所述谐振薄膜(1311)的厚度≤20μm。
  5. 一种生物检测芯片,其特征在于,所述生物检测芯片包括
    基座(14),其上开设有凹槽;
    权利要求1-4任一项所述的Lamb波传感器(13),设置于所述凹槽内,与所述基座(14)通过连接件(15)形成电连接;
    盖板(11),覆盖所述基座(14),所述盖板(11)内设置有位于所述检测腔(1312)两侧的进样孔(1122)和出样孔,所述Lamb波传感器(13)上设置所述第二微电极(135)的一侧朝向所述盖板(11)。
  6. 根据权利要求5所述的一种生物检测芯片,其特征在于,所述Lamb波传感器(13)具有至少两个所述检测腔(1312),每个所述检测腔(1312)对应至少一对所述第二微电极(135);
    其中,对应同一所述检测腔(1312)的所述第二微电极(135)表面修饰结合相同抗原的抗体,且与其他所述检测腔(1312)对应的所述第二微电极(135)结合不同抗原。
  7. 根据权利要求6所述的生物检测芯片,其特征在于,所述盖板(11)包括盖板封闭层(111)和盖板通道层(112),所述盖板(11)封闭层位于所述盖板通道层(111)的上方,所述盖板通道层(112)内开设有与所述检测腔(1312)对应的至少两条流体通道(1121),所述流体通道包括流入段和流出段;
    所述流体通道(1121)的两端别连接同一进样孔(1122);其中,每条所述流体通道(1121)的长度相等,流体由所述进样孔(1122)流入后等量且等速度流经每条所述流体通道(1121)。
  8. 根据权利要求5-7任一项所述的生物检测芯片,其特征在于,所述连接件(15)为弹性探针,所述弹性探针的一端连接位于所述基座(14)内的检测电路;
    所述第二微电极(135)位于所述检测腔(1312)内,所述弹性探针的另一端连接所述Lamb波传感器(13)上的所述地电极层(132)、所述第一微电极(134)和所述第二微电极(135)的电极接触点;或者
    所述第二微电极(135)由所述第一微电极(134)经抗体修饰后形成,所述弹性探针的所述另一端连接所述Lamb波传感器(13)上的所述地电极层(132)和所述第二微电极(135)。
  9. 根据权利要求5-8任一项所述的生物检测芯片,其特征在于,所述生物检测芯片还包括设置于所述盖板(11)和所述Lamb波传感器(13)之间且覆盖所述基座(14)的密封件(12);所述密封件(12)具有与所述检测腔(1312)对应开设的检测口(121)。
  10. 一种快速筛查系统,其特征在于,所述快速筛查系统包括权利要求5-9任一项所述的生物检测芯片。
PCT/CN2017/113758 2017-09-26 2017-11-30 Lamb波传感器、生物检测芯片和快速筛查系统 WO2019061795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710883416.6A CN107727845B (zh) 2017-09-26 2017-09-26 Lamb波传感器、生物检测芯片和快速筛查系统
CN201710883416.6 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019061795A1 true WO2019061795A1 (zh) 2019-04-04

Family

ID=61206958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113758 WO2019061795A1 (zh) 2017-09-26 2017-11-30 Lamb波传感器、生物检测芯片和快速筛查系统

Country Status (2)

Country Link
CN (1) CN107727845B (zh)
WO (1) WO2019061795A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111190022A (zh) * 2020-01-07 2020-05-22 中国科学院半导体研究所 基于谐振式传感器的生化检测系统及检测方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107727845B (zh) * 2017-09-26 2019-09-10 中国科学院苏州生物医学工程技术研究所 Lamb波传感器、生物检测芯片和快速筛查系统
CN109187974A (zh) * 2018-08-02 2019-01-11 深圳大学 癌胚抗原传感器及其制作方法、癌胚抗原浓度检测方法
CN109078661B (zh) 2018-08-09 2020-06-23 京东方科技集团股份有限公司 微流控芯片及其检测和驱动方法、片上实验室系统
CN109142452B (zh) * 2018-10-26 2021-03-26 浙江师范大学 基于压阻式微悬桥传感器的血液粘弹力测量装置与方法
CN109374973B (zh) * 2018-11-08 2021-01-05 深圳市国赛生物技术有限公司 绝缘阻抗检测电路、检测电路和检测装置
CN111351848B (zh) * 2020-03-19 2020-10-16 山东科技大学 一种传感器的制备方法、传感器以及传感器的检测方法
CN112415067A (zh) * 2020-09-28 2021-02-26 广东省农业科学院动物卫生研究所 猪流行性腹泻病毒阻抗型免疫生物传感器及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058954A1 (en) * 2007-09-05 2009-03-05 Takami Arakawa Process for forming a ferroelectric film, ferroelectric film, ferroelectric device, and liquid discharge apparatus
CN106053595A (zh) * 2016-05-13 2016-10-26 中国科学院苏州生物医学工程技术研究所 具有高品质因数的Lamb波传感器
CN206192948U (zh) * 2016-11-15 2017-05-24 中国科学院苏州生物医学工程技术研究所 水分测量装置和兰姆波传感器
CN106770642A (zh) * 2016-11-15 2017-05-31 中国科学院苏州生物医学工程技术研究所 水分测量装置和方法、兰姆波传感器及气体湿度测量方法
CN107727845A (zh) * 2017-09-26 2018-02-23 中国科学院苏州生物医学工程技术研究所 Lamb波传感器、生物检测芯片和快速筛查系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723516B1 (en) * 1995-01-31 2004-04-20 Agilent Technologies, Inc. Method for continuously detecting the presence and quantity of analytes in a flowing liquid stream
US20050173267A1 (en) * 2003-08-13 2005-08-11 Jitendran Muthuswamy Acoustic immunosensor for detecting neurotransmitter GABA
CN101246162A (zh) * 2008-03-12 2008-08-20 浙江大学 利用压电薄膜体声波器件的抗体检测生物芯片
CN102520160B (zh) * 2011-12-02 2014-10-15 苏州生物医学工程技术研究所 Lamb波免疫传感器及其器件的制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090058954A1 (en) * 2007-09-05 2009-03-05 Takami Arakawa Process for forming a ferroelectric film, ferroelectric film, ferroelectric device, and liquid discharge apparatus
CN106053595A (zh) * 2016-05-13 2016-10-26 中国科学院苏州生物医学工程技术研究所 具有高品质因数的Lamb波传感器
CN206192948U (zh) * 2016-11-15 2017-05-24 中国科学院苏州生物医学工程技术研究所 水分测量装置和兰姆波传感器
CN106770642A (zh) * 2016-11-15 2017-05-31 中国科学院苏州生物医学工程技术研究所 水分测量装置和方法、兰姆波传感器及气体湿度测量方法
CN107727845A (zh) * 2017-09-26 2018-02-23 中国科学院苏州生物医学工程技术研究所 Lamb波传感器、生物检测芯片和快速筛查系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111190022A (zh) * 2020-01-07 2020-05-22 中国科学院半导体研究所 基于谐振式传感器的生化检测系统及检测方法

Also Published As

Publication number Publication date
CN107727845A (zh) 2018-02-23
CN107727845B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2019061795A1 (zh) Lamb波传感器、生物检测芯片和快速筛查系统
Chikkaveeraiah et al. Microfluidic electrochemical immunoarray for ultrasensitive detection of two cancer biomarker proteins in serum
Gaikwad et al. Advances in point-of-care diagnostic devices in cancers
Xie et al. An electrochemical peptide cleavage-based biosensor for prostate specific antigen detection via host–guest interaction between ferrocene and β-cyclodextrin
JP4775262B2 (ja) センサユニット及び反応場セルユニット並びに分析装置
US20100088039A1 (en) Piezoelectric ceramic sensor and sensor array for detection of molecular makers
KR101906447B1 (ko) 전계효과 대장암 센서
Yu et al. Capillary-based three-dimensional immunosensor assembly for high-performance detection of carcinoembryonic antigen using laser-induced fluorescence spectrometry
CN106066324B (zh) 一种电致化学发光生物传感器标记物的制备方法
EP2017613A1 (en) Piezoelectric biosensor and biosensor array for parallel detection of multiple biomarkers
US20130005026A1 (en) Cervical cancer screening by molecular detection of human papillomavirus-induced neoplasia
Pasinszki et al. Advances in celiac disease testing
Balayan et al. Biosensor development for C-reactive protein detection: A review
Rodrigues et al. On the detection of cTnI-a comparison of surface-plasmon optical-electrochemical-, and electronic sensing concepts
Scherf et al. Biosensors for the diagnosis of celiac disease: current status and future perspectives
JP2010091308A (ja) レクチン吸収法による前立腺がんの診断方法及び判定キット
US20230296551A1 (en) Method for detecting and quantifying analytes in a microfluidic device
WO2021245543A1 (en) Real-time tracing of cytokine storm in blood serum of covid-19 patients
CN102662050B (zh) 基于二氧化硅纳米粒子的红外吸收性质的免疫分析方法
Quazi The potential implementation of biosensors for the diagnosis of biomarkers of various cancer
Viguier et al. Trends and perspectives in immunosensors
TWI765383B (zh) 生物晶片檢測裝置及其生物傳感器平台、製法和應用
TW201024727A (en) Flexural plate wave (FPW) biosensor for detecting α-fetoprotein
Ani Najeeb et al. Nano-based PSA biosensors: an early detection technique of prostate cancer
Anuthum et al. Signaling redox probe/DNA aptamer complexes on a new POP/2D WSe2 composite-based immunosensor towards the simultaneous detection of three-protein overexpression as an alternative severe SARS-COV-2 infection diagnosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927366

Country of ref document: EP

Kind code of ref document: A1