WO2019061755A1 - 一种可降解高韧性木塑包装材料及其制备方法 - Google Patents

一种可降解高韧性木塑包装材料及其制备方法 Download PDF

Info

Publication number
WO2019061755A1
WO2019061755A1 PCT/CN2017/112124 CN2017112124W WO2019061755A1 WO 2019061755 A1 WO2019061755 A1 WO 2019061755A1 CN 2017112124 W CN2017112124 W CN 2017112124W WO 2019061755 A1 WO2019061755 A1 WO 2019061755A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
temperature
packaging material
plastic packaging
reaction
Prior art date
Application number
PCT/CN2017/112124
Other languages
English (en)
French (fr)
Inventor
王静
王海峰
Original Assignee
苏州市一木包装材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州市一木包装材料有限公司 filed Critical 苏州市一木包装材料有限公司
Publication of WO2019061755A1 publication Critical patent/WO2019061755A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/46Applications of disintegrable, dissolvable or edible materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the invention belongs to the field of wood plastic packaging materials, in particular to a degradable high toughness wood plastic packaging material and a preparation method thereof.
  • Wood-plastic materials are mainly biomass materials such as wood chips, bamboo chips, peanut shells, cotton straws, wheat straw, etc., generally containing more than 50%, and are modified by polymer interface chemistry and plastic filling, and mixed with a certain proportion.
  • Plastic, processed by special process is a basic material with reversible recycling and various types of structure.
  • the field of wood-plastic materials spans construction, furniture, logistics, packaging, gardening, environmental protection, military, sports and other aspects, and the market is infinite.
  • Wood-plastic materials have the resources of raw materials, and the raw materials can be effectively utilized; the products can be plasticized, and products with different properties and shapes can be produced according to different production requirements; using environmental protection, wood-plastic substrates, common auxiliaries and products are safe and environmentally friendly; cost-effective To achieve the transfer of low-value materials to high value-added products.
  • Wood-plastic materials generally use recyclable plastic PP or PE. These plastics are up to 50% in wood-plastic materials, but non-biodegradable materials. Although they are environmentally friendly, they cannot truly achieve environmental protection.
  • Polylactic acid-glycolic acid copolymer is a new type of biodegradable material, which has good biodegradability. It can be completely degraded by microorganisms in nature after use, and finally produces carbon dioxide and water, which does not pollute the environment. It is recognized. Environmentally friendly materials.
  • the object of the present invention is to provide a method for preparing a degradable high-toughness wood-plastic packaging material, which is mainly composed of polylactic acid-glycolic acid copolymer and lignocellulose, and various additives are added to improve the toughness of wood-plastic packaging materials.
  • the wood plastic packaging material is environmentally friendly and degradable, and it affects the environment. It is small.
  • a preparation method of a degradable high-toughness wood-plastic packaging material comprising the following steps:
  • reaction is cooled to 30-40 ° C and dried, and extruded through an extruder to obtain the degradable high toughness wood plastic packaging material.
  • step (1) 4 parts of nano-magnesia and 3 parts of calcium nano-silicate are added to 12 parts of octyl epoxy oleate, the temperature is raised to 115 ° C, and the reaction is stirred at a rate of 550 rpm. 18min.
  • step (2) 30 parts of the polylactic acid-glycolic acid copolymer described in the step (2), followed by adding 18 parts of triethylene glycol monobutyl ether, raising the temperature to 112 ° C, and stirring the reaction for 13 min.
  • step (3) 9 parts of tributyl citrate, 8 parts of sorbitol, 2 parts of diatomaceous earth and 9 parts of ethylene glycol oleate are added, and the mixture is strongly sheared and stirred at a temperature of 195 ° C and 1500 r / min. 1h.
  • the temperature of drying in the step (4) is 130 °C.
  • the extruder has an extrusion temperature of 185 ° C and an extrusion pressure of 13 MPa.
  • the degradable high toughness wood plastic packaging material prepared according to any one of the above.
  • the invention has the following beneficial effects:
  • the invention discloses a preparation method of a degradable high-toughness wood-plastic packaging material, which comprises a polylactic acid-glycolic acid copolymer and a lignocellulosic powder as a main body of a wood plastic material, and a triethylene glycol monobutyl ether and a polylactic acid resin are added.
  • the wood-plastic material has better bonding; adding octyl epoxide of soybean oleic acid containing nano-magnesia and nano-silicate silicate improves the toughness of the wood-plastic packaging material to a certain extent.
  • reaction is dried at 130 ° C when the reaction is cooled to 30 ° C, and extruded by an extruder to obtain the degradable high-toughness wood-plastic packaging material; the extrusion temperature of the extruder is 185 ° C, and the extrusion pressure For 13MPa.
  • reaction is cooled to 40 ° C and dried at 130 ° C, and extruded through an extruder to obtain the degradable high toughness wood plastic packaging material; the extrusion temperature of the extruder is 185 ° C, extrusion pressure It is 13 MPa.
  • reaction is dried at 130 ° C when the reaction is cooled to 30 ° C, and extruded by an extruder to obtain the degradable high-toughness wood-plastic packaging material; the extrusion temperature of the extruder is 185 ° C, and the extrusion pressure For 13MPa.
  • reaction is cooled to 40 ° C and dried at 130 ° C, and extruded through an extruder to obtain the degradable high toughness wood plastic packaging material; the extrusion temperature of the extruder is 185 ° C, extrusion pressure It is 13 MPa.
  • reaction is dried at 130 ° C when the reaction is cooled to 35 ° C, and extruded by an extruder to obtain the degradable high toughness wood plastic packaging material; the extrusion temperature of the extruder is 185 ° C, extrusion pressure For 13MPa.
  • Example Bending strength (MPa) Tensile strength (MPa) Degree of degradation
  • Example 1 95.8 73.1 85.2%
  • Example 2 97.1 76.4 86.7
  • Example 3 99.2 78.4 88.1
  • Example 4 98.7 77.9 87.4%
  • Example 5 100.2 79 89.8%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Wrappers (AREA)

Abstract

本发明公开了一种可降解高韧性木塑包装材料的制备方法,将纳米氧化镁和纳米硅酸钙加入至环氧大豆油酸辛酯中,升高温度至80-120℃,搅拌反应10-20min;将聚乳酸-羟基乙酸共聚物加入三乙二醇单丁醚,升高温度至100-120℃,搅拌反应10-15min;再加入木质纤维素粉料,继续升高温度至140-160℃,边搅拌边加入聚乳酸树脂,继续反应30-50min;随后再加入柠檬酸三丁酯、山梨醇、硅藻土和油酸乙二醇酯,在180-200℃强力剪切搅拌0.5-2h;待反应冷却至30-40℃时干燥,并通过挤压机挤出即可得到所述可降解高韧性木塑包装材料。

Description

一种可降解高韧性木塑包装材料及其制备方法 技术领域
本发明属于木塑包装材料领域,特别涉及一种可降解高韧性木塑包装材料及其制备方法。
背景技术
木塑材料是以木屑、竹屑、花生壳、棉秸杆、麦秸等生物质材料为主原料,一般含量大于50%,并利用高分子界面化学原理和塑料填充改性,配混一定比例的塑料,经特殊工艺加工成型为一种可逆性循环利用、型态结构多样的基础性材料。木塑材料的领域横跨建筑、家具、物流、包装、园林、环保、军事、体育等各方面,市场浅力无穷。木塑材料具有原料资源化,原材料可有效利用;产品可塑化,可根据不同生产要求制作不同性能和形状的制品;使用环保化,木塑基材、常用助剂以及产品均安全环保;成本经济化,实现低价值材料向高附加值产品的转移。
木塑材料一般使用可回收的塑料PP或PE,此类塑料于木塑材料中高达50%,却非生物可分解的材料,虽然可达环保化,却无法真正达到环保的效果。而聚乳酸-羟基乙酸共聚物即是一种新型的生物降解材料,其具有良好的生物可降解性,使用后能被自然界中微生物完全降解,最终生成二氧化碳和水,不污染环境,是公认的环境友好材料。
发明内容
针对上述缺陷,本发明的目的是提供一种可降解高韧性木塑包装材料的制备方法,以聚乳酸-羟基乙酸共聚物和木质纤维素为主体,加入多种添加剂提高木塑包装材料的韧性,且该木塑包装材料环保可降解,对环境影 响小。
一种可降解高韧性木塑包装材料的制备方法,包含如下步骤:
(1)将2-6份纳米氧化镁和1-4份纳米硅酸钙加入至10-15份环氧大豆油酸辛酯中,升高温度至80-120℃,搅拌反应10-20min;
(2)将聚乳酸-羟基乙酸共聚物20-35份加入15-20份三乙二醇单丁醚,升高温度至100-120℃,搅拌反应10-15min;再加入60-70份木质纤维素粉料,继续升高温度至140-160℃,边搅拌边加入10-14份聚乳酸树脂,继续反应30-50min;
(3)随后再加入7-10份柠檬酸三丁酯、5-10份山梨醇、1-3份硅藻土和8-10份油酸乙二醇酯,在180-200℃强力剪切搅拌0.5-2h;
(4)待反应冷却至30-40℃时干燥,并通过挤压机挤出即可得到所述可降解高韧性木塑包装材料。
更进一步的,步骤(1)中所述将4份纳米氧化镁和3份纳米硅酸钙加入至12份环氧大豆油酸辛酯中,升高温度至115℃,以速率550r/min搅拌反应18min。
更进一步的,步骤(2)中所述聚乳酸-羟基乙酸共聚物30份,随后加入18份三乙二醇单丁醚,升高温度至112℃,搅拌反应13min。
更进一步的,步骤(2)中所述加入65份木质纤维素粉料,继续升高温度至155℃,边搅拌边加入12份聚乳酸树脂,继续反应40min。
更进一步的,步骤(3)中加入9份柠檬酸三丁酯、8份山梨醇、2份硅藻土和9份油酸乙二醇酯,在温度195℃、1500r/min强力剪切搅拌1h。
更进一步的,步骤(4)中干燥的温度为130℃。
更进一步的,步骤(4)挤压机的挤出温度为185℃,挤出压力为13MPa。
上述任意一条所述所制备得到的可降解高韧性木塑包装材料。
本发明与现有技术相比,其有益效果为:
本发明所述一种可降解高韧性木塑包装材料的制备方法,以聚乳酸-羟基乙酸共聚物和木质纤维素粉料为木塑材料主体,加入三乙二醇单丁醚和聚乳酸树脂以提高两者的相容性,使木塑材料结合性更好;加入包含纳米氧化镁和纳米硅酸钙的环氧大豆油酸辛酯,在提高木塑包装材料韧性的同时也一定程度上提高了耐磨性能;经柠檬酸三丁酯、油酸乙二醇酯等物质的进一步融入,其韧性大幅度提高,可以尽可能的依据实际需要进行弯曲和变形;且该木塑包装材料对环境很小,可降解。
具体实施方式
以下结合实施例对本发明作进一步的说明。
实施例1
(1)将2份纳米氧化镁和4份纳米硅酸钙加入至10份环氧大豆油酸辛酯中,升高温度至80℃,以速率550r/min搅拌反应10min;
(2)将聚乳酸-羟基乙酸共聚物20份加入15份三乙二醇单丁醚,升高温度至100℃,搅拌反应15min;再加入60份木质纤维素粉料,继续升高温度至140℃,边搅拌边加入10份聚乳酸树脂,继续反应50min;
(3)随后再加入7份柠檬酸三丁酯、5份山梨醇、1份硅藻土和8份油酸乙二醇酯,在温度180℃、速率1500r/min强力剪切搅拌0.5h;
(4)待反应冷却至30℃时于130℃干燥,并通过挤压机挤出即可得到所述可降解高韧性木塑包装材料;挤压机的挤出温度为185℃,挤出压力为 13MPa。
实施例2
(1)将6份纳米氧化镁和1份纳米硅酸钙加入至15份环氧大豆油酸辛酯中,升高温度至120℃,以速率550r/min搅拌反应20min;
(2)将聚乳酸-羟基乙酸共聚物35份加入20份三乙二醇单丁醚,升高温度至120℃,搅拌反应10min;再加入70份木质纤维素粉料,继续升高温度至160℃,边搅拌边加入14份聚乳酸树脂,继续反应30min;
(3)随后再加入10份柠檬酸三丁酯、10份山梨醇、3份硅藻土和10份油酸乙二醇酯,在温度200℃、速率1500r/min强力剪切搅拌2h;
(4)待反应冷却至40℃时于130℃干燥,并通过挤压机挤出即可得到所述可降解高韧性木塑包装材料;挤压机的挤出温度为185℃,挤出压力为13MPa。
实施例3
(1)将3份纳米氧化镁和2份纳米硅酸钙加入至12份环氧大豆油酸辛酯中,升高温度至90℃,以速率550r/min搅拌反应14min;
(2)将聚乳酸-羟基乙酸共聚物25份加入17份三乙二醇单丁醚,升高温度至110℃,搅拌反应12min;再加入65份木质纤维素粉料,继续升高温度至145℃,边搅拌边加入12份聚乳酸树脂,继续反应35min;
(3)随后再加入8份柠檬酸三丁酯、7份山梨醇、2份硅藻土和9份油酸乙二醇酯,在温度185℃、速率1500r/min强力剪切搅拌0.8h;
(4)待反应冷却至30℃时于130℃干燥,并通过挤压机挤出即可得到所述可降解高韧性木塑包装材料;挤压机的挤出温度为185℃,挤出压力为 13MPa。
实施例4
(1)将5份纳米氧化镁和4份纳米硅酸钙加入至14份环氧大豆油酸辛酯中,升高温度至110℃,以速率550r/min搅拌反应18min;
(2)将聚乳酸-羟基乙酸共聚物30份加入19份三乙二醇单丁醚,升高温度至105℃,搅拌反应14min;再加入68份木质纤维素粉料,继续升高温度至150℃,边搅拌边加入14份聚乳酸树脂,继续反应45min;
(3)随后再加入10份柠檬酸三丁酯、9份山梨醇、1份硅藻土和10份油酸乙二醇酯,在温度195℃、速率1500r/min强力剪切搅拌1.2h;
(4)待反应冷却至40℃时于130℃干燥,并通过挤压机挤出即可得到所述可降解高韧性木塑包装材料;挤压机的挤出温度为185℃,挤出压力为13MPa。
实施例5
(1)将4份纳米氧化镁和3份纳米硅酸钙加入至12份环氧大豆油酸辛酯中,升高温度至115℃,以速率550r/min搅拌反应18min;
(2)将聚乳酸-羟基乙酸共聚物30份加入18份三乙二醇单丁醚,升高温度至112℃,搅拌反应13min;再加入65份木质纤维素粉料,继续升高温度至155℃,边搅拌边加入12份聚乳酸树脂,继续反应40min;
(3)随后再加入9份柠檬酸三丁酯、8份山梨醇、2份硅藻土和9份油酸乙二醇酯,在温度195℃、速率1500r/min强力剪切搅拌1h;
(4)待反应冷却至35℃时于130℃干燥,并通过挤压机挤出即可得到所述可降解高韧性木塑包装材料;挤压机的挤出温度为185℃,挤出压力为 13MPa。
对上述各个实施例可降解高韧性木塑包装材料性能测试,详细结果见下表:
实施例 弯曲强度(MPa) 拉伸强度(MPa) 可降解度
实施例1 95.8 73.1 85.2%
实施例2 97.1 76.4 86.7
实施例3 99.2 78.4 88.1
实施例4 98.7 77.9 87.4%
实施例5 100.2 79 89.8%
本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

  1. 一种可降解高韧性木塑包装材料的制备方法,其特征在于,包含如下步骤:
    (1)将2-6份纳米氧化镁和1-4份纳米硅酸钙加入至10-15份环氧大豆油酸辛酯中,升高温度至80-120℃,搅拌反应10-20min;
    (2)将聚乳酸-羟基乙酸共聚物20-35份加入15-20份三乙二醇单丁醚,升高温度至100-120℃,搅拌反应10-15min;再加入60-70份木质纤维素粉料,继续升高温度至140-160℃,边搅拌边加入10-14份聚乳酸树脂,继续反应30-50min;
    (3)随后再加入7-10份柠檬酸三丁酯、5-10份山梨醇、1-3份硅藻土和8-10份油酸乙二醇酯,在180-200℃强力剪切搅拌0.5-2h;
    (4)待反应冷却至30-40℃时干燥,并通过挤压机挤出即可得到所述可降解高韧性木塑包装材料。
  2. 根据权利要求1所述的一种可降解高韧性木塑包装材料的制备方法,其特征在于,步骤(1)中所述将4份纳米氧化镁和3份纳米硅酸钙加入至12份环氧大豆油酸辛酯中,升高温度至115℃,以速率550r/min搅拌反应18min。
  3. 根据权利要求1所述的一种可降解高韧性木塑包装材料的制备方法,其特征在于,步骤(2)中所述聚乳酸-羟基乙酸共聚物30份,随后加入18份三乙二醇单丁醚,升高温度至112℃,搅拌反应13min。
  4. 根据权利要求1所述的一种可降解高韧性木塑包装材料的制备方法,其特征在于,步骤(2)中再加入65份木质纤维素粉料,继续升高温度至155℃,边搅拌边加入12份聚乳酸树脂,继续反应40min。
  5. 根据权利要求1所述的一种可降解高韧性木塑包装材料的制备方法,其 特征在于,步骤(3)中加入9份柠檬酸三丁酯、8份山梨醇、2份硅藻土和9份油酸乙二醇酯,在温度195℃、1500r/min强力剪切搅拌1h。
  6. 根据权利要求1所述的一种可降解高韧性木塑包装材料的制备方法,其特征在于,步骤(4)中干燥的温度为130℃。
  7. 根据权利要求1所述的一种可降解高韧性木塑包装材料的制备方法,其特征在于,步骤(4)挤压机的挤出温度为185℃,挤出压力为13MPa。
  8. 根据权利要求1-7任意一条所述所制备得到的可降解高韧性木塑包装材料。
PCT/CN2017/112124 2017-09-26 2017-11-21 一种可降解高韧性木塑包装材料及其制备方法 WO2019061755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710879639.5 2017-09-26
CN201710879639.5A CN107641330A (zh) 2017-09-26 2017-09-26 一种可降解高韧性木塑包装材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2019061755A1 true WO2019061755A1 (zh) 2019-04-04

Family

ID=61113732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112124 WO2019061755A1 (zh) 2017-09-26 2017-11-21 一种可降解高韧性木塑包装材料及其制备方法

Country Status (2)

Country Link
CN (1) CN107641330A (zh)
WO (1) WO2019061755A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1603361A (zh) * 2003-09-29 2005-04-06 吉林圣元科技有限责任公司 生物可降解聚合物
CN101020780A (zh) * 2007-03-15 2007-08-22 上海交通大学 聚乳酸基热可塑性木塑复合材料的制备方法
US20080146686A1 (en) * 2006-12-14 2008-06-19 Handa Y Paul Expanded and extruded biodegradable and reduced emission foams made with methyl formate-based blowing agents
CN101367986A (zh) * 2007-08-14 2009-02-18 袁明龙 生物降解聚乳酸/淀粉复合材料共混界面的偶联与增容技术
CN101955638A (zh) * 2010-09-21 2011-01-26 浙江大学宁波理工学院 植物纤维增强聚乳酸发泡材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273375A (zh) * 2014-07-23 2016-01-27 东北林业大学 一种木质纤维素增强可生物降解阻燃复合材料
CN104231512A (zh) * 2014-08-27 2014-12-24 广东红旗家具有限公司 一种可降解木塑复合材料的制备方法及制品
CN106317700A (zh) * 2016-08-30 2017-01-11 江苏爱富希新型建材股份有限公司 硅塑板及其制造方法
CN107141595A (zh) * 2017-06-20 2017-09-08 合肥市淑芹美装饰工程有限公司 一种高强度木塑地板及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1603361A (zh) * 2003-09-29 2005-04-06 吉林圣元科技有限责任公司 生物可降解聚合物
US20080146686A1 (en) * 2006-12-14 2008-06-19 Handa Y Paul Expanded and extruded biodegradable and reduced emission foams made with methyl formate-based blowing agents
CN101020780A (zh) * 2007-03-15 2007-08-22 上海交通大学 聚乳酸基热可塑性木塑复合材料的制备方法
CN101367986A (zh) * 2007-08-14 2009-02-18 袁明龙 生物降解聚乳酸/淀粉复合材料共混界面的偶联与增容技术
CN101955638A (zh) * 2010-09-21 2011-01-26 浙江大学宁波理工学院 植物纤维增强聚乳酸发泡材料及其制备方法

Also Published As

Publication number Publication date
CN107641330A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
CN102268144B (zh) 生物可降解的聚乳酸-淀粉耐热复合材料及其制备方法
CN105670239B (zh) 一种以pla/pbat为基料的全降解育苗盘及其制备方法
CN103159984B (zh) 一种全降解热塑性淀粉/聚乳酸共混材料及其制备方法
TWI581873B (zh) 取自農業廢棄物之熱塑性澱粉組成物
WO2016015508A1 (zh) 一种秸秆生物质的改性及其使用方法
CN103992518B (zh) 一种可生物降解的包装材料
CN103627154B (zh) 一种聚乳酸/淀粉生物基可降解复合材料及其制备方法
CN104109262B (zh) 一种热塑性淀粉-聚乙烯醇复合塑料薄膜
CN103160116A (zh) 一种改性塑料及其制备方法
CN102875852A (zh) 一种生物基塑料及其制备方法
CN108929527A (zh) 一种兼具高延展性和高阻隔性能的pbat/改性淀粉全生物降解薄膜及其制备方法和应用
CN107118398A (zh) 可降解的无毒环保玩具材料及其制备方法
CN106189326B (zh) 糠醛渣在制备木塑材料中的应用
CN107686567A (zh) 一种淀粉泡沫塑料的制备方法
CN109575540A (zh) 一种酒糟聚乳酸全降解复合材料、制备方法及应用
CN109504042A (zh) Pha改性的tps/pbat可生物降解树脂及其制备方法
CN104194288A (zh) 一种含茭白外壳纤维改性聚己二酸/对苯二甲酸丁二酯复合材料及其制备方法
CN106433044A (zh) 一种改性蔗渣增强pbat/淀粉完全生物降解复合材料及其制备方法和应用
CN106046830A (zh) 一种天然杜仲木塑复合材料的制备方法
CN106217540A (zh) 用于木材改性的糠醇树脂优化液
CN109571681A (zh) 一种糠醇木材优化液及制备方法
WO2019061755A1 (zh) 一种可降解高韧性木塑包装材料及其制备方法
CN105111572B (zh) 用于制备车身空腔隔音块的膨胀材料及其制备方法
CN110054850A (zh) 一种板材专用增韧高强度耐候pvc组合物及其制备方法
CN102838880A (zh) 一种利用可再生资源生产环保型木塑复合材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927168

Country of ref document: EP

Kind code of ref document: A1