WO2019061264A1 - 一种信号发送、接收方法及设备 - Google Patents

一种信号发送、接收方法及设备 Download PDF

Info

Publication number
WO2019061264A1
WO2019061264A1 PCT/CN2017/104296 CN2017104296W WO2019061264A1 WO 2019061264 A1 WO2019061264 A1 WO 2019061264A1 CN 2017104296 W CN2017104296 W CN 2017104296W WO 2019061264 A1 WO2019061264 A1 WO 2019061264A1
Authority
WO
WIPO (PCT)
Prior art keywords
ofdm symbol
resource
subframe
signal
network device
Prior art date
Application number
PCT/CN2017/104296
Other languages
English (en)
French (fr)
Inventor
汲桐
金哲
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/104296 priority Critical patent/WO2019061264A1/zh
Publication of WO2019061264A1 publication Critical patent/WO2019061264A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a signal transmitting and receiving method and device.
  • the narrow band internet of things (NB-IoT) system is built on a cellular network and can occupy at least about 180 kHz of bandwidth. It can be directly deployed in the global system for mobile communication (GSM) system, universal mobile. In a universal mobile telecommunications system (UMTS), a long term evolution (LTE) system, or a 5G system, to reduce deployment costs and achieve smooth upgrades.
  • GSM global system for mobile communication
  • UMTS universal mobile telecommunications system
  • LTE long term evolution
  • 5G 5G system
  • the NB-IoT system uses licensed bands and can be deployed in an in-band mode, a guard-band mode, or a standalone mode to coexist with existing networks.
  • the above three deployment modes are in a synchronization signal, such as a narrow band primary synchronization signal (NPSS) or a narrow band secondary synchronization signal (NSSS), and a master information block (master).
  • a synchronization signal such as a narrow band primary synchronization signal (NPSS) or a narrow band secondary synchronization signal (NSSS), and a master information block (master).
  • NPSS narrow band primary synchronization signal
  • NSS narrow band secondary synchronization signal
  • master master information block
  • MIB-NB information block-narrow band
  • the NB-IoT system occupies the band resources of the LTE system.
  • the first three orthogonal frequency division multiplexing (OFDM) symbols of each subframe are used to transmit a Physical Downlink Control Channel (PDCCH), and after each subframe Some of the 11 symbols are also used to transmit cell-specific reference signals (CRS). Therefore, in the in-band mode, the downlink signal of the NB-IoT system cannot occupy the first 3 OFDM symbols of the subframe, and cannot occupy the RE of the last 11 OFDM symbols of the subframe for carrying the CRS.
  • OFDM Orthogonal frequency division multiplexing
  • the NB-IoT system transmits NPSS using only the last 11 OFDM symbols of subframe 5 in the radio frame in the in-band mode, and only uses the last 11 OFDM symbols of the subframe 9 in the radio frame to transmit the NSSS, and only uses The last 11 OFDM symbols of subframe 0 in the radio frame transmit the MIB-NB.
  • some REs are still unused, for example, in The RE used to carry the CRS in the inband mode is not used for the transmission of MIB-NB, NPSS, NSSS.
  • the first 3 OFDM symbols of the subframe are not used for the transmission of NPSS, NSSS, MIB-NB.
  • the RE at the CRS position of the last 11 OFDM symbols of subframe 5 can already be used, and for the transmission of NSSS, the RE at the CRS position of the last 11 OFDM symbols of subframe 9 can also be used, however
  • the RE at the CRS position of the last 11 OFDM symbols of subframe 0 cannot currently be used.
  • the RE at the so-called CRS position is not actually used to carry the CRS, but its location is the same as the CRS RE position when there is CRS, so it is also here. It is called the RE at the CRS position.
  • the subframe 3 of the NB-IoT, the first 3 OFDM symbols of the subframe 0 and the subframe 9, and the RE at the CRS position of the subframe 0 are in an idle state, This has caused a waste of resources.
  • the embodiment of the present application provides a signal sending and receiving method and device, which are used to reduce resource waste and improve resource utilization.
  • a signal transmission method which can be performed by a network device, such as a base station.
  • the method includes: the network device determining a first resource for transmitting the first signal; and when the first resource includes the second resource, the network device generates first indication information, where the first indication information is used Instructing the network device to send the first signal by using the second resource;
  • the second resource includes at least one of the following REs: on the first carrier, subframe 0, subframe 5 of each radio frame, and OFDM symbol 0, OFDM symbol 1 and all REs corresponding to OFDM symbol 2 in each subframe in subframe 9, and OFDM symbol 4, OFDM symbol 7, OFDM symbol 8 in subframe 0 of each radio frame, and RE0, RE3, RE6, and RE9 in each OFDM symbol in OFDM symbol 11; wherein the first carrier includes an anchor carrier of NB-IoT and/or a non-anchor carrier of NB-IoT; Transmitting the first indication information; the network device transmitting the first signal on the first resource.
  • a signal receiving method which may be performed by a terminal device, the method comprising: the terminal device receiving first indication information from the network device, where the first indication information is used to indicate that the network device uses The second resource sends the first signal; the second resource includes at least one of the following REs: on the first carrier, in each of the subframe 0, the subframe 5, and the subframe 9 of each radio frame OFDM symbol 0, OFDM symbol 1 and all REs corresponding to OFDM symbol 2, and each OFDM symbol in OFDM symbol 4, OFDM symbol 7, OFDM symbol 8, and OFDM symbol 11 in subframe 0 of each radio frame RE0, RE3, RE6, and RE9; wherein the first carrier includes an anchor carrier of the NB-IoT and/or a non-anchor carrier of the NB-IoT; the terminal device receives the first resource on the first resource A signal, the first resource comprising the second resource.
  • the first 3 OFDM symbols of subframe 5, subframe 0, and subframe 9 of NB-IoT, and the RE at the CRS position of subframe 0 are in an idle state, resulting in waste of resources.
  • the RE at the CRS position of the subframe 0 may include RE0, RE3, RE6, and RE9 in each of the OFDM symbols 4, OFDM symbol 7, OFDM symbol 8, and OFDM symbol 11 in subframe 0.
  • the embodiment of the present application combines the first indication information to inform the terminal device of the resource used by the network device to send the first signal, and the terminal device can receive the first signal at the correct location, so that the network device can use the original idle state.
  • the resource sends the first signal, so that the idle resource can be rationally utilized, the resource waste is reduced, and the resource utilization rate is improved; and since the network device uses more resources to transmit the first signal, the terminal is also improved accordingly.
  • the demodulation performance of the first signal by the device that is, the error probability of the terminal device receiving the first signal, and/or the delay and power consumption required for the terminal device to receive the first signal; and combining the first indication Information, the terminal device can clear which resources are used by the network device to send the first signal, and prevent the terminal device from blindly detecting because the network device does not know how to send the first signal, thereby reducing the chip complexity and power consumption of the terminal device. .
  • the network device in a case that the first resource does not include the second resource, the network device generates second indication information, where the second indication information is used to indicate that the network device does not use the The second resource sends the first signal; the network device sends the second indication information.
  • the terminal device receives the second indication information from the network device, where the second indication information is used to indicate that the network device does not use the second resource to send the first signal; The first signal is received on a resource, and the third resource does not include the second resource.
  • the network device may generate the second indication information, or the network device may also determine the first resource.
  • the second indication information is generated when the second resource is not included, and the second indication information is used to indicate that the network device does not use the second resource.
  • the source sends the first signal.
  • the terminal device receives the second indication information, it may be determined that the network device does not use the second resource to send the first signal, so that the first signal is received according to the manner indicated by the second indication information, that is, the first resource is not received on the second resource.
  • the signal helps to reduce the complexity and power consumption of the terminal device, and also reduces the probability of terminal device failure.
  • the first resource further includes a third resource
  • the network device may be configured to send the first signal by using the third resource included in the first resource, where the terminal device is also The first signal is received at the third resource.
  • the first signal includes a signal carried on a physical broadcast channel
  • the third resource includes at least one of the following REs: OFDM symbol 3 to OFDM symbol of subframe 0 of each radio frame on the first carrier RE corresponding to each OFDM symbol in 13; and/or
  • the first signal includes an NPSS
  • the third resource includes at least one of the following REs: each of the OFDM symbols 3 to OFDM symbols 13 of the subframe 5 of each radio frame on the first carrier.
  • the first signal includes an NSSS
  • the third resource includes at least one of the following REs: each of the OFDM symbols 3 to OFDM symbols 13 of the subframe 9 of each radio frame on the first carrier. Corresponding RE.
  • the network device is in a guard band mode or a standalone carrier mode.
  • the embodiment of the present application can solve the problem that the network device is in the protection band mode or the independent carrier mode.
  • the embodiment of the present application does not limit the mode of the network device, and the guard band mode or the independent carrier mode is only an example.
  • the first signal includes a signal carried on a physical broadcast channel
  • the second resource includes at least one of the following REs: an OFDM symbol 0 in a subframe 0 of each radio frame on the first carrier, OFDM symbol 1 and all REs corresponding to OFDM symbol 2, and OFDM symbol 4, OFDM symbol 7, OFDM symbol 8 in subframe 0 of each radio frame, and RE0, RE3 in each OFDM symbol , RE6 and RE9; and/or
  • the first signal includes an NPSS
  • the second resource includes at least one of the following REs: OFDM symbol 0, OFDM symbol 1 and OFDM symbol 2 in subframe 5 of each radio frame on the first carrier Corresponding to all RE; and / or
  • the first signal includes an NSSS
  • the second resource includes at least one of the following REs: OFDM symbol 0, OFDM symbol 1 and OFDM symbol 2 in subframe 9 of each radio frame on the first carrier Corresponding to all REs.
  • all REs corresponding to OFDM symbol 0, OFDM symbol 1, and OFDM symbol 2 in each of subframe 0, subframe 5, and subframe 9 of each radio frame are used by the LTE system.
  • OFDM symbol 4 OFDM symbol 7, OFDM symbol 8 in each frame 0 of each radio frame, and RE0 in each OFDM symbol in OFDM symbol 11, RE3, RE6, and RE9 are REs used by the LTE system to transmit CRS.
  • the guard band mode and the independent carrier mode are consistent with the in-band mode, so in the guard band mode and the independent carrier mode, these REs are idle. Therefore, in this embodiment, the RE may be utilized in the protection band mode or the independent carrier mode, and the first signal is transmitted through the RE, thereby improving resource utilization, thereby improving demodulation of the first signal by the terminal device. performance.
  • the first signal includes a signal carried on a physical broadcast channel, and the first resource further includes the following RE At least one of the REs: an RE corresponding to each of the OFDM symbols 3 to OFDM symbols of the subframe 0 of each radio frame on the first carrier; and/or
  • the first signal includes an NPSS, and the first resource further includes at least one of the following REs: each of the OFDM symbols 3 to OFDM symbols 13 of the subframe 5 of each radio frame on the first carrier The RE corresponding to the symbol; and/or
  • the first signal includes an NSSS, and the first resource further includes at least one of the following REs: each of OFDM symbol 3 to OFDM symbol 13 of subframe 9 of each radio frame on the first carrier The RE corresponding to the symbol.
  • the first resource further includes some REs, and the REs further included in the first resource may also be different according to the first signal.
  • the network device transmits the first signal if the first resource includes the second resource, the network device transmits the first signal by using the second resource and the RE further included by the first resource, and if the first resource does not include the second resource, The network device transmits the first signal using the RE further included in the first resource.
  • the first resource further includes an RE and a third resource, and the two may be considered as the same concept.
  • a method of determining an actual null subframe is provided, the method being executable by a terminal device.
  • the method includes: the terminal device obtains subframe information, where the subframe information is used to indicate that the first subframe in the at least one radio frame is an actual invalid subframe; and the terminal device determines the at least one according to the subframe information.
  • the first subframe in the radio frame is an actual null subframe.
  • the at least one radio frame may include all radio frames in the time domain; or include 8 or 16 radio frames out of every 32 radio frames in the time domain, such as the first 8 of every 32 radio frames Or 16 radio frames, etc.; or include 8 or 16 radio frames per 64 radio frames in the time domain, such as the first 8 or 16 radio frames in every 64 radio frames.
  • the actual invalid subframe in the at least one radio frame may be used to transmit SIB1-NB and/or NSSS.
  • a method for determining an actual invalid subframe is provided, and the method can be performed by a network device, such as a base station.
  • the method includes: the network device determines that the first subframe in the at least one radio frame is an actual invalid subframe; the network device generates subframe information, where the subframe information is used to indicate the first one of the at least one radio frame The subframe is an actual invalid subframe; the network device sends the subframe information to the terminal device.
  • the terminal device is in a first subframe of other radio frames except the at least one radio frame, and in other subframes except the first subframe in the at least one radio frame,
  • the network device receives a downlink signal.
  • the network device sends a downlink signal in a first subframe of other radio frames except the at least one radio frame, and in other subframes except the first subframe in the at least one radio frame.
  • the terminal device can learn that the first subframe in the specific radio frame is the actual invalid subframe, so that the downlink signal cannot be received on the first subframe, thereby reducing the work of the terminal device. Consumption. And for the first subframe that is not the actual invalid subframe in the other radio frame, and the other subframes except the first subframe in the at least one radio frame, the network device may continue to send the downlink signal on the subframes, The terminal device can also continue to receive downlink signals in these subframes, thereby improving resource utilization and reducing resource waste.
  • the terminal device receives the SIB1-NB in a subframe set, where the subframe set includes a part of the first subframe or all of the first subframes in the first subframe of the at least one radio frame .
  • the network device sends the SIB1-NB in the subframe set, where the subframe set includes a part of the first subframe or all of the first subframes in the first subframe of the at least one radio frame.
  • the network device can transmit other information by using a partial subframe or all subframes in the actual invalid subframe, for example, SIB-NB to improve the demodulation performance of SIB1-NB and the delay and power consumption consumed by the terminal device to read SIB1-NB.
  • SIB-NB a partial subframe or all subframes in the actual invalid subframe
  • the terminal device obtains the subframe information, including: the terminal device receives the MIB-NB from the network device; and the terminal device obtains the subframe information from the MIB-NB.
  • the network device sends the subframe information to the terminal device, including: the network device sends an MIB-NB, where the MIB-NB includes the subframe information.
  • the network device can send the subframe information to the terminal device through the MIB-NB, so that multiple terminal devices can be notified at one time, without separately notifying the network device, and reducing the power consumption of the network device.
  • the first of the at least one radio frame includes subframe 4 and/or subframe 9 of the at least one radio frame.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the first aspect or the first aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the second aspect or the second aspect described above.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processor.
  • the terminal device may further include a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any of the possible aspects of the third or third aspect above.
  • the structure of the terminal device can be referred to FIG. 5 correspondingly.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device can include a processor and a transceiver.
  • the processor and transceiver may perform the respective functions of the methods provided by any one of the possible aspects of the fourth aspect or the fourth aspect described above.
  • the structure of the terminal device can be referred to FIG. 4 correspondingly.
  • a terminal device has the function of implementing the terminal device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the terminal device may include a processing module.
  • the terminal device may further include a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible aspects of the third aspect or the third aspect described above.
  • a network device has the function of implementing the network device in the above method design. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the network device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform the respective functions of the methods provided by any of the possible designs of the fourth aspect or the fourth aspect described above.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions that, when executed by the processor, cause the communication device to perform the method performed by the network device in any of the possible aspects of the first aspect or the first aspect described above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the second aspect or the second aspect above.
  • a communication device may be a terminal device in the above method design, or a chip disposed in the terminal device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the terminal device in any of the possible aspects of the third aspect or the third aspect above.
  • the structure of the communication device can be referred to FIG. 6A or FIG. 6B accordingly.
  • a communication device may be a network device in the above method design, or a chip disposed in the network device.
  • the communication device includes a memory for storing computer executable program code, and a processor coupled to the memory.
  • the program code stored in the memory includes instructions which, when executed by the processor, cause the communication device to perform the method performed by the network device in any one of the possible aspects of the fourth aspect or the fourth aspect described above.
  • the structure of the communication device can be referred to FIG. 6A or FIG. 6B accordingly.
  • a communication system comprising a network device and a terminal device.
  • the network device is configured to determine a first resource for sending the first signal, where the first resource includes a second resource, where the first indication information is generated, where the first indication information is used to indicate the
  • the network device sends the first signal by using the second resource;
  • the second resource includes at least one RE of the following resource unit RE: on the first carrier, subframe 0, subframe 5, and child of each radio frame Orthogonal frequency division multiplexing OFDM symbol 0, OFDM symbol in each subframe in frame 9.
  • the first carrier comprises an anchor carrier of a narrowband Internet of Things NB-IoT and/or a non-anchor carrier of an NB-IoT; transmitting the first indication information; transmitting on the first resource The first signal.
  • a terminal device configured to receive, by the network device, the first indication information, where the first indication information is used to indicate that the network device sends the first signal by using the second resource;
  • the second resource includes at least one of the following resource units RE One RE: on the first carrier, each of the subframe 0, the subframe 5, and the subframe 9 of each radio frame corresponds to orthogonal frequency division multiplexing OFDM symbol 0, OFDM symbol 1, and OFDM symbol 2.
  • the first carrier includes an anchor carrier of the narrowband Internet of Things NB-IoT and/or a non-anchor carrier of the NB-IoT; the first signal is received on the first resource, the first resource including the second resource.
  • a communication system comprising a network device and a terminal device.
  • the terminal device is configured to obtain subframe information, where the subframe information is used to indicate that the first subframe in the at least one radio frame is an invalid subframe, and determining, according to the subframe information, that the first subframe is invalid.
  • a network device configured to determine that the first subframe in the at least one radio frame is an invalid subframe, and generate subframe information, where the subframe information is used to indicate that the first subframe in the at least one radio frame is Invalid subframe, and the subframe information is sent to the terminal device.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the first aspect or the first aspect of the first aspect The method described in the above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any of the possible aspects of the second aspect or the second aspect described above The method described in the above.
  • a computer storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the third aspect or the third aspect described above The method described in the design.
  • a twenty-second aspect a computer storage medium is provided, wherein the computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the design.
  • a twenty-third aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the first aspect or the first aspect described above The method described in the design.
  • a twenty-fourth aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any of the second aspect or the second aspect described above The method described in the design.
  • a twenty-fifth aspect a computer program product comprising instructions, wherein the computer program product stores instructions that, when run on a computer, cause the computer to perform any one of the third aspect or the third aspect described above The method described in the design.
  • a twenty-sixth aspect a computer program product comprising instructions, wherein instructions stored in a computer program product, when executed on a computer, cause the computer to perform any one of the fourth aspect or the fourth aspect described above The method described in the design.
  • the embodiment of the present application combines the first indication information, so that the network device can use the resources that are originally in an idle state to send the first signal, so that the idle resources can be reasonably utilized, the resource waste is reduced, and the resources are improved. Utilization rate.
  • FIG. 1 is a schematic diagram of an RB in an NB-IoT system
  • FIG. 2 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for sending and receiving signals according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • 6A-6B are schematic structural diagrams of a communication apparatus according to an embodiment of the present application.
  • a terminal device including a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with wireless connectivity, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a user equipment (UE), a wireless terminal device, a mobile terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, and a remote station.
  • Remote station access point (AP), remote terminal, access terminal, user terminal, user agent, or user Equipment (user device) and so on.
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer built-in or in-vehicle mobile device, smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • smart watches smart helmets, smart glasses, smart bracelets, and other equipment.
  • restricted devices such as devices with lower power consumption, or devices with limited storage capacity, or devices with limited computing capabilities. Examples include information sensing devices such as bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), and laser scanners.
  • RFID radio frequency identification
  • GPS global positioning system
  • a network device for example comprising a base station (e.g., an access point), may refer to a device in the access network that communicates over the air interface with the wireless terminal device over one or more cells.
  • the base station can be used to convert the received air frame to an Internet Protocol (IP) packet as a router between the terminal device and the rest of the access network, wherein the remainder of the access network can include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may include an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in an LTE system or an evolved LTE system (LTE-A), or may also include a fifth generation mobile communication technology. (fifth generation, 5G)
  • the next generation node B (gNB) in the new radio (NR) system is not limited in the embodiment of the present application.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more.
  • a plurality can also be understood as “at least two” in the embodiment of the present application.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • subframe 0 Take subframe 0 as an example.
  • the subframe 0 in each radio frame is used to transmit the MIB-NB of the NB-IoT, wherein the MIB-NB can be transmitted through a narrow physical broadcast channel (NPBCH).
  • NPBCH narrow physical broadcast channel
  • the resource element (RE) actually used by the NPBCH is only at the blank position as shown in FIG. 1, where each box in FIG. 1 represents an RE.
  • the RE that is not used by the NPBCH has two parts, one part is reserved for the LTE system to transmit the PDCCH and the CRS, that is, the RE with the backslash " ⁇ " in FIG.
  • the other part is reserved for the NB-IoT system to transmit the narrowband reference signal ( Narrowband reference signal (NRS), which is the RE of the slash "/" in Figure 1.
  • NRS narrowband reference signal
  • the part reserved for the NRS is necessary because the reference signal needs to be used for channel estimation.
  • the guard band mode and the independent carrier mode since the band resources of the LTE system are not used, they are idle, so the actual There is no need for it, resulting in a waste of resources.
  • the embodiment of the present application provides a signal sending and receiving method, by which resource waste can be reduced.
  • FIG. 2 an application scenario of an embodiment of the present application is introduced.
  • the network device and the terminal device are included in FIG. 2, and after the method provided by the embodiment of the present application, the network device may send the first signal to the terminal device by using the first resource.
  • the number of terminal devices in FIG. 2 is only an example. In a practical application, the network device can provide services for multiple terminal devices, and the network device can send the first signal to multiple terminal devices.
  • the network device in Figure 2 is for example a base station.
  • the embodiments of the present application can be applied to an LTE system, and can also be applied to other wireless communication systems, such as an NR system, or a next generation communication system.
  • the guard band mode or the independent carrier mode of the NB-IoT system applied in the LTE system is taken as an example.
  • an embodiment of the present application provides a signal sending and receiving method.
  • the application scenario shown in FIG. 2 is applied to the example. The flow of this method is described below.
  • the network device determines a first resource used to send the first signal. In the case where the first resource includes the second resource, the process jumps to S32, and if the first resource does not include the second resource, the process jumps to S33.
  • the network device Before transmitting the first signal, the network device first determines which resources to send the first signal, and the resource used to send the first signal is referred to as the first resource.
  • the first signal includes at least one of: part or all of a signal carried on a physical broadcast channel, and a synchronization signal. All of the signals carried on the physical broadcast channel are the signals carried on the physical broadcast channel, and the portion of the signal carried on the physical broadcast channel is part of the signal carried on the physical broadcast channel. For example, if a physical broadcast channel carries a narrowband master information block (MIB)-NB, the first signal includes all of the MIB-NB, or the first signal includes a part of information in the MIB-NB.
  • the synchronization signal includes a narrow primary synchronization signal (NPSS) and/or a narrow secondary synchronization signal (NSSS).
  • NPSS narrow primary synchronization signal
  • NSSS narrow secondary synchronization signal
  • the physical broadcast channel is, for example, a physical broadcast channel (PBCH) or a narrow physical broadcast channel (NPBCH).
  • PBCH physical broadcast channel
  • NPBCH narrow physical broadcast channel
  • the network device generates first indication information, where the first indication information is used to indicate that the network device sends the first signal by using the second resource. Jump to the next S34.
  • the in-band mode of the NB-IoT system resources for transmitting PDCCH and CRS are reserved for the LTE system.
  • the protection band mode and the independent carrier mode are also deployed. The same deployment as the in-band mode is used, which also makes the corresponding resources idle.
  • the two deployment modes of the guard band mode and the independent carrier mode since the NB-IoT system does not use the band resources of the LTE system, the idle resources are not used, so it is actually unnecessary, resulting in resources. waste. Then, the embodiment of the present application can utilize this part of resources to improve resource utilization.
  • the part of the originally idle resource is referred to as the second resource
  • the network device may use the second resource when transmitting the first signal, or may not use the second resource, that is, the second resource may include the second resource.
  • Resources may or may not include the second resource.
  • the network device in the in-band mode of the NB-IoT, the network device does not use the second resource when transmitting the first signal; for example, in the protection band mode or the independent deployment mode of the NB-IoT, the network device may not use the second device.
  • the second resource sends the first signal.
  • the second resource may include at least one of the following REs:
  • OFDM symbol 0 OFDM symbol 1 and each subframe in subframe 0, subframe 5, and subframe 9 of each radio frame All REs corresponding to OFDM symbol 2; and, in the OFDM symbol 4, OFDM symbol 7, OFDM symbol 8, and OFDM symbol 11 in subframe 0 of each radio frame, on the first carrier RE0, RE3, RE6 and RE9.
  • all REs corresponding to OFDM symbol 0, OFDM symbol 1, and OFDM symbol 2 in each of subframe 0, subframe 5, and subframe 9 of each radio frame are used by the LTE system.
  • OFDM symbol 4 OFDM symbol 7, OFDM symbol 8 in each frame 0 of each radio frame, and RE0 in each OFDM symbol in OFDM symbol 11, RE3, RE6, and RE9 are REs used by the LTE system to transmit CRS.
  • the guard band mode and the independent carrier mode are consistent with the in-band mode, so in the guard band mode and the independent carrier mode, these REs are idle. Therefore, in this embodiment, the RE may be utilized in the protection band mode or the independent carrier mode, and the first signal is transmitted through the RE, thereby improving resource utilization, thereby improving demodulation of the first signal by the terminal device. performance.
  • the subframe and the OFDM symbol are sequentially numbered in chronological order.
  • the 10 subframes are respectively recorded as subframe 0 to subframe 9 in chronological order
  • 1 subframe includes 14 OFDM symbols, and this is performed in chronological order.
  • the 14 OFDM symbols are respectively recorded as OFDM symbols 0 to OFDM symbols 13, wherein for 1 subframe, OFDM symbols 0 to OFDM symbols 6 correspond to OFDM in the first slot of the subframe.
  • Symbol 0 to OFDM symbol 6, and OFDM symbol 7 to OFDM symbol 13 of the subframe correspond to OFDM symbol 0 to OFDM symbol 6 in the second slot of the subframe.
  • the REs corresponding to one OFDM symbol can be numbered in order from low frequency to high frequency.
  • 1 shows an RB in which REs are numbered RE0 to RE11 in order from low frequency to high frequency, and the number of REs herein can also be understood as the number of subcarriers.
  • all REs corresponding to the symbol 0 in the subframe 0 on the first carrier refer to RE0 to RE11 corresponding to the symbol 0 in the subframe 0 on the first carrier.
  • the number of the RE in the embodiment of the present application is a relative number in one RB. If an RB is placed in the entire bandwidth, the number of the RE is related to the position of the RB in the bandwidth, that is, the number of the RE may occur. Variety.
  • the first carrier may include at least one subcarrier, each of which may be a 15 kHz spectral resource, and may of course be other types of spectral resources.
  • the at least one subcarrier included in the first carrier may be a continuous subcarrier, for example, the first carrier may be a spectrum resource composed of 12 consecutive subcarriers.
  • the at least one subcarrier included in the first carrier may also be a discontinuous subcarrier.
  • the first carrier may include an anchor carrier in the NB-IoT system, and/or include a non-anchor carrier in the NB-IoT system.
  • the anchor carrier can be used to carry more important information, such as a system message or a synchronization signal.
  • the non-anchor carrier can be used to carry information in the communication process, for example, the communication can be performed through a non-anchor carrier after the communication is established.
  • the use of these additional REs to transmit the first signal may be a feature introduced by a higher version, for example, may be a feature introduced by Release -15, so an earlier version of the network device may not This transmission mode is supported, that is, an earlier version of the network device does not use the second resource to transmit the first signal.
  • the terminal device may not know the version of the network device that it accesses, that is, the terminal device does not know whether the network device uses the second resource when transmitting the first signal, so the terminal device cannot determine which resource mapping method should be used to receive the first a signal.
  • the terminal device assumes that the network device uses the second resource and receives the first signal according to the manner in which the network device uses the second resource, if the network device does not actually use the additional resource, the network device does not actually send the first signal. If the second resource is used, the terminal device may receive a receiving error; and if the terminal device assumes that the network device does not use the additional resource, the first signal is received according to the manner in which the network device does not use the second resource, if the network device actually supports the additional resource. When the network device actually uses the second resource when sending the first signal, the terminal device cannot enjoy the gain brought by using the additional resource.
  • the terminal device receives the first signal in the following manner: the terminal device first assumes that the network device uses the additional resource to transmit the first signal, and the terminal device receives the first signal according to the manner in which the network device uses the second resource, If the receiving is successful, the terminal device may continue to perform other actions, and if the receiving fails, the terminal device may further assume that the network device does not use additional resources, and try to receive the first signal again according to the manner in which the network device does not use the second resource.
  • the terminal device since the terminal device is to try to receive, the complexity of the terminal device is relatively high, and the power consumption is also large.
  • the network device may generate the first indication information, or the network device may also determine that the first resource includes the second.
  • the first indication information is generated by the network device, and the first indication information is used to indicate that the network device sends the first signal by using the second resource.
  • the terminal device may determine that the network device sends the first signal by using the second resource, so that the first signal is received according to the manner indicated by the first indication information, that is, the first signal is received on the second resource.
  • the error probability of the first signal reduces the delay and power consumption required by the terminal device to receive the first signal.
  • the first signal includes part or all of the signal carried in the physical broadcast channel.
  • the first indication information includes, for example, 1 bit, and the 1 bit value is “1”, which means that the network device uses the second resource when transmitting the first signal.
  • the first indication information is a Boolean variable, and the value of ‘TRUE’ indicates that the network device uses the second resource when transmitting the first signal.
  • any indication form that can implement the “first indication information used to indicate that the network device uses the second resource when transmitting the first signal” is within the protection scope of the embodiment of the present application.
  • the first signal includes a synchronization signal.
  • the synchronization signal includes NSSS and/or NPSS. Then, if the synchronization signal includes the NSSS, the first indication information includes, for example, 1 bit, and the 1 bit value is “1”, indicating that the network device uses the second resource when transmitting the NSSS, or the first indication information is a Boolean variable. If the value is 'TRUE', it means that the network device uses the second resource when sending the NSSS; if the synchronization signal includes the PSSS, the first indication information includes, for example, 1 bit, and the 1 bit value is “1”, indicating the network device. The second resource is used when the PSSS is sent, or the first indication information is a Boolean variable.
  • the value When the value is 'TRUE', it indicates that the network device uses the second resource when sending the PSSS; if the synchronization signal includes NSSS and PSSS, then An indication information may be uniformly indicated.
  • the first indication information includes 1 bit, and the 1 bit value is “1”, indicating that the network device uses the second resource when sending the NSSS and the PSSS, or the first indication information is a Boolean variable.
  • the value of 'TRUE' indicates that the network device uses the second resource when sending the NSSS and the PSSS, or the first indication information may also be respectively indicated, for example, the first indication letter.
  • the first signal includes part or all of the signal carried in the physical broadcast channel and includes a synchronization signal.
  • the first indication information can be uniformly indicated.
  • the first indication information includes 1 bit, and the 1 bit value is “1”, indicating that the network device uses the second resource when transmitting the signal carried in the physical broadcast channel and the synchronization signal, or the first indication information is Boolean.
  • the variable when the value is 'TRUE', indicates that the network device uses the second resource when transmitting the signal carried in the physical broadcast channel and the synchronization signal.
  • the synchronization signal includes NSSS and/or PSSS.
  • the first indication information may be indicated separately.
  • the first indication information may indicate a signal carried in the physical broadcast channel and a synchronization signal, respectively.
  • the synchronization signal includes NSSS or PSSS
  • the first indication information includes 2 bits, where 1 bit is used to indicate that the network device uses the second resource when transmitting part or all of the signals carried in the physical broadcast channel, wherein the remaining 1
  • the bit is used to indicate that the network device uses the second resource when sending the NSSS or the PSSS.
  • the indication manner of each bit refer to the previous introduction.
  • the synchronization signal includes an NSSS and a PSSS
  • the first indication information includes, for example, 3 bits, where 1 bit is used to indicate that the network device uses the second resource when transmitting part or all of the signals carried in the physical broadcast channel, where The 1 bit is used to indicate that the network device uses the second resource when sending the NSSS, where the remaining 1 bit is used to indicate that the network device uses the second resource when sending the PSSS.
  • the first indication information may also be indicated in two ways: a unified indication and a separate indication.
  • the first signal includes a signal carried in a physical broadcast channel and a synchronization signal
  • the synchronization signal includes an NSSS and a PSSS
  • the first indication information includes 2 bits, wherein 1 bit is used to indicate that the network device is transmitting the bearer in the physical broadcast channel.
  • the second resource is used for the signal, and the remaining 1 bit is used to indicate that the network device uses the second resource when sending the NSSS and the PSSS.
  • the indication manner of each bit refer to the foregoing description.
  • the bit quantity of the first indication information is small, which is advantageous for saving transmission resources. If the first indication information is indicated by means of separately indicating, the granularity of the indication is finer, which is more favorable for achieving more precise control. Therefore, different indication methods can be selected according to different needs.
  • the first indication information may be sent by using an MIB-NB or a system information block (SIB).
  • SIB system information block
  • the network device generates second indication information, where the second indication information is used to indicate that the network device does not use the second resource to send the first signal. Jump to the next S35.
  • the network device in a case that the first resource includes the second resource, the network device generates the first indication information, Then, in order to play a better prompting function on the terminal device, after the network device determines the first resource, if the first resource does not include the second resource, the network device may generate the second indication information, or the network device may also determine the first
  • the second indication information is generated by the network device not including the second resource, and the second indication information is used to indicate that the network device does not use the second resource to send the first signal.
  • the terminal device After the terminal device receives the second indication information, it may be determined that the network device does not use the second resource to send the first signal, so that the first signal is received according to the manner indicated by the second indication information, that is, the first resource is not received on the second resource.
  • the signal helps to reduce the complexity and power consumption of the terminal device, and also reduces the probability of terminal device failure.
  • the first signal includes part or all of the signal carried in the physical broadcast channel.
  • the second indication information includes, for example, 1 bit, and the 1 bit value is “0”, indicating that the network device does not use the second resource when transmitting the first signal.
  • the second indication information is a Boolean variable, and the value of ‘FALSE’ indicates that the network device does not use the second resource when transmitting the first signal.
  • the first signal includes a synchronization signal.
  • the synchronization signal includes NSSS and/or PSSS. Then, if the synchronization signal includes the NSSS, the second indication information includes, for example, 1 bit, and the 1 bit value is “0”, indicating that the network device does not use the second resource when transmitting the NSSS, or the second indication information is a Boolean variable. If the value is 'FALSE', it means that the network device does not use the second resource when sending the NSSS; if the synchronization signal includes the PSSS, the second indication information includes, for example, 1 bit, and the 1 bit value is “0”, indicating the network device. The second resource is not used when sending the PSSS, or the second indication information is a Boolean variable.
  • the value When the value is 'FALSE', it means that the network device does not use the second resource when sending the PSSS; if the synchronization signal includes NSSS and PSSS, then the first The second indication information may be uniformly indicated.
  • the second indication information includes 1 bit, and the 1 bit value is “0”, indicating that the network device does not use the second resource when sending the NSSS and the PSSS, or the second indication information is a Boolean variable. If the value is 'FALSE', it means that the network device does not use the second resource when sending the NSSS and the PSSS, or the second indication information may also be respectively indicated, for example, the second indication.
  • the information includes 2 bits, where 1 bit is used to indicate that the network device does not use the second resource when transmitting the NSSS, where the remaining 1 bit is used to indicate that the network device does not use the second resource when transmitting the PSSS, and the specific indication manner of each bit Please refer to the introduction above, not to repeat.
  • the first signal includes part or all of the signal carried in the physical broadcast channel and includes a synchronization signal.
  • the second indication information can be uniformly indicated.
  • the second indication information includes 1 bit, and the 1 bit value is “0”, indicating that the network device does not use the second resource when transmitting the signal carried in the physical broadcast channel and the synchronization signal, or the second indication information is Boolean.
  • the variable when the value is 'FALSE', indicates that the network device does not use the second resource when transmitting the signal carried in the physical broadcast channel and the synchronization signal.
  • the synchronization signal includes NSSS and/or PSSS.
  • the second indication information may be separately indicated.
  • the second indication information may indicate a signal carried in the physical broadcast channel and a synchronization signal, respectively.
  • the synchronization signal includes NSSS or PSSS
  • the second indication information includes 2 bits, where 1 bit is used to indicate that the network device does not use the second resource when transmitting part or all of the signals carried in the physical broadcast channel, where the remaining The 1 bit is used to indicate that the network device does not use the second resource when sending the NSSS or the PSSS.
  • 1 bit is used to indicate that the network device does not use the second resource when sending the NSSS or the PSSS.
  • the synchronization signal includes an NSSS and a PSSS
  • the second indication information includes, for example, 3 bits, where 1 bit is used to indicate that the network device does not use the second resource when transmitting part or all of the signals carried in the physical broadcast channel, One of the bits is used to indicate that the network device does not use the second resource when sending the NSSS, where the remaining 1 bit is used to indicate that the network device does not use the second resource when transmitting the PSSS, and the specific indication manner of each bit can be referred to as before. Introduction.
  • the second indication information may also be indicated in two ways: a unified indication and a separate indication.
  • the first signal includes a signal carried in a physical broadcast channel and a synchronization signal
  • the synchronization signal includes an NSSS and a PSSS
  • the second indication information includes 2 bits, wherein 1 bit is used to indicate that the network device is transmitting in the physical broadcast channel.
  • the second resource is not used in the signal, and the remaining 1 bit is used to indicate that the network device does not use the second resource when sending the NSSS and the PSSS.
  • the indication manner of each bit refer to the foregoing description.
  • the bit quantity of the second indication information is small, which is advantageous for saving transmission resources. If the second indication information is indicated in a manner indicated separately, the granularity of the indication is finer, which is more advantageous for achieving more precise control. Therefore, different indication methods can be selected according to different needs.
  • the second indication information may also be sent through the MIB-NB or the SIB.
  • the manner in which the network device sends the first signal generally does not change.
  • the network device either generates the first indication information or generates the second indication information, and the subsequent information may rarely change, for example, It is rare for the sir to be the first indication information, and then the second indication information is generated.
  • the indication information plays the role of notifying the terminal device, and generally does not adjust frequently, which can reduce the system implementation. the complexity.
  • the network device sends the first indication information, and the terminal device receives the first indication information from the network device. Jump to S36.
  • the network device may send the first indication information after the first indication information is generated, and the terminal device may receive the first indication information. For example, the network device sends the first indication information through the MIB-NB or the SIB, and the terminal device can obtain the first indication information by reading the MIB-NB or the SIB. After receiving the first indication information, the terminal device may determine that the network device uses the second resource when transmitting the first signal.
  • the network device sends the second indication information, where the terminal device receives the second indication information from the network device. Jump to S37.
  • the network device may send the second indication information after the second indication information is generated, and the terminal device may receive the second indication information.
  • the network device sends the second indication information through the MIB-NB or the SIB, and the terminal device can obtain the second indication information by reading the MIB-NB or the SIB.
  • the terminal device may determine that the network device does not use the second resource when transmitting the first signal.
  • the terminal device can clear which resources are used by the network device to send the first signal, and prevent the terminal device from performing blind detection because the network device does not know how the network device sends the first signal. , thereby reducing the chip complexity and power consumption of the terminal device.
  • the network device sends the first signal on the first resource, and the terminal device receives the first signal from the network device on the first resource.
  • the network device sends the first signal on the third resource, and the terminal device receives the first signal from the network device on the third resource.
  • the first resource may further include the third resource, where the third resource includes all REs or partial REs in the RE for carrying the NPBCH.
  • the third resource may include at least one RE of the following REs:
  • each of the OFDM symbol 3, the OFDM symbol 9 and the OFDM symbol in each of the subframe 0, the subframe 5, and the subframe 9 of each radio frame may correspond to an RE corresponding to each OFDM symbol.
  • All REs for example, all REs corresponding to the symbol 3 of the subframe 0 include RE0 to RE11 corresponding to the symbol 3; in each of the subframe 0, the subframe 5, and the subframe 9 of each radio frame REs corresponding to each of OFDM symbol 4, OFDM symbol 5, OFDM symbol 6, OFDM symbol 7, OFDM symbol 8, OFDM symbol 11, OFDM symbol 12, and OFDM symbol 13 may refer to a corresponding partial RE, for example OFDM symbol 4, OFDM symbol 5, OFDM symbol 6, OFDM symbol 7, OFDM symbol 8, OFDM symbol 11, OFDM symbol 12, and OFDM symbol 13 in subframe 0, subframe 5, and subframe 9
  • the RE corresponding to each OFDM symbol includes RE1, RE2, RE4, RE5, RE7, RE8, RE10, and RE11 corresponding to each OFDM symbol.
  • the network sends the first signal on the third resource, and according to the case where the first resource includes the second resource, there may be different sayings.
  • the network device sends the first signal on the first resource, which may be understood as the network device sends the first signal on the second resource and the third resource, where the terminal device is in the first Receiving the first signal on a resource, it can be understood that the terminal device receives the first signal on the second resource and the third resource, as shown in S36 of FIG.
  • the network device sends the first signal on the first resource, that is, the network device sends the first signal on the third resource, and the terminal device is in the first resource.
  • Receiving the first signal it can be understood that the terminal device receives the first signal on the third resource, as shown in S37 of FIG.
  • the network device sends the first signal on the first resource, whether the network device sends the first signal on the second resource and the third resource, or the network device sends the first signal on the third resource.
  • the first signal may include different information.
  • the second resource may also be different, which are respectively introduced below.
  • the first signal includes a signal carried on a physical broadcast channel
  • the second resource includes at least one of the following REs: OFDM symbol 0, OFDM symbol 1 and OFDM symbol in subframe 0 of each radio frame on the first carrier 2 corresponding all REs, and OFDM symbol 4, OFDM symbol 7, OFDM symbol 8 in each frame 0 of each radio frame, and RE0, RE3, RE6, and RE9 in each OFDM symbol in the OFDM symbol 11; /or
  • the first signal includes an NPSS
  • the second resource includes at least one of the following REs: OFDM symbol 0, OFDM symbol 1, and all REs corresponding to OFDM symbol 2 in subframe 5 of each radio frame on the first carrier; /or
  • the first signal includes an NSSS
  • the second resource includes at least one of the following REs: OFDM symbol 0, OFDM symbol 1, and all REs corresponding to OFDM symbol 2 in subframe 9 of each radio frame on the first carrier.
  • the third resource is generally introduced in S36, and the first signal may include different information.
  • the third resource may also be different, or The resources further included in a resource may vary, as described below.
  • the first signal includes a signal carried on a physical broadcast channel
  • the third resource (or a resource further included by the first resource) includes at least one RE of the following RE: OFDM symbol of subframe 0 of each radio frame on the first carrier 3 to RE corresponding to each OFDM symbol in OFDM symbol 13; and/or
  • the first signal includes an NPSS
  • the third resource (or a resource further included by the first resource) includes at least one of the following REs: in the OFDM symbol 3 to the OFDM symbol 13 of the subframe 5 of each radio frame on the first carrier RE corresponding to each OFDM symbol; and/or
  • the first signal includes an NSSS
  • the third resource (or a resource further included by the first resource) includes at least one of the following REs: in the OFDM symbol 3 to the OFDM symbol 13 of the subframe 9 of each radio frame on the first carrier RE corresponding to each OFDM symbol.
  • the first signal includes a signal carried on a physical broadcast channel, and the RE corresponding to each OFDM symbol of the OFDM symbol 3 to the OFDM symbol 13 of the subframe 0 of each radio frame on the first carrier may have a part.
  • the RE is used to transmit signals carried on the physical broadcast channel, and some REs may be used to transmit pilots, such as NRS, which may be used to assist signal demodulation carried on the physical broadcast channel, and therefore, the third resource (or
  • the resource further included in the first resource is at least one of the REs corresponding to each of the OFDM symbols 3 to OFDM symbols 13 of the subframe 5 of each radio frame on the first carrier, and is not necessarily included All REs in the RE corresponding to each of the OFDM symbols 3 to OFDM symbols 13 of the subframe 5 of each radio frame on the first carrier.
  • the network device sends the indication information and sends the first signal, and the sequence is not limited.
  • the network device may first send the indication information and then send the first signal, or the network device may send the first
  • the indication information is sent after the signal, or the network device can simultaneously send the first signal and the indication information.
  • the indication information may be first indication information or second indication information.
  • a signal carried on a physical broadcast channel is transmitted through subframe 0.
  • a signal carried on a physical broadcast channel may also pass through subframe 5 and/or Subframe 9 is transmitted.
  • the second resource may include at least one of the following REs:
  • OFDM symbol 0 OFDM symbol 1 and all REs corresponding to OFDM symbol 2 of subframe 0, subframe 5, and subframe 9 of each radio frame on the first carrier, and subframes of each radio frame OFDM symbol 4, OFDM symbol 7, OFDM symbol 8, and RE0, RE3, RE6, and RE9 in each of the OFDM symbols in frame 0.
  • the third resource (or the resource further included by the first resource) may comprise at least one RE of the following REs:
  • the terminal device when the terminal device is connected to a network device by using the MIB-NB or the SIB, the terminal device needs to read the MIB-NB first after acquiring the synchronization with the network device.
  • the terminal device may receive the first signal, such as the method specified by the protocol or the network device and the terminal device, according to the manner specified by the protocol or the manner agreed by the network device and the terminal device before the indication information is obtained.
  • the pre-agreed manner may be that the network device does not use the first resource to send the first signal, so that the terminal device may fail to be received as much as possible.
  • the manner specified by the protocol or the manner agreed by the network device and the terminal device may be the first use of the network device.
  • the resource sends the first signal, which is not limited in the embodiment of the present application.
  • the first signal is received according to the manner indicated by the indication information, for example, the received first indication information, where the first indication information indicates that the network device sends the first signal by using the second resource, and the terminal device Receiving the first signal by using the second resource and the third resource, so that the terminal device can enjoy the gain brought by using the additional resource, and if the second indication information is received, the second indication information indicates that the network device does not use the first
  • the terminal device receives the first signal through the third resource, so as to avoid receiving errors as much as possible.
  • the terminal device When the terminal device accesses the network device, the terminal device knows the resource used by the network device indicated by the indication information to send the first signal, that is, the network device is aware that the network device is transmitting the first. Whether the second resource is used when the signal is used, so the terminal device can directly follow the indication of the previously received indication information. The method of receiving the first signal does not need to wait for receiving the indication information again, so that the manner in which the terminal device receives the first signal and the manner in which the network device sends the first signal can be consistent as soon as possible.
  • the technical solution provided by the embodiment of the present application helps the terminal device to explicitly receive the behavior of the first signal, avoids blind detection of the terminal device, and maintains the complexity and power consumption of the terminal device at a level equivalent to that of the earlier version.
  • some downlink subframes are reserved for transmitting LTE multicast signals, such as a multicast broadcast single frequency network (MBSFN) subframe. Therefore, in NB-IoT, the network device needs to indicate which subframes of the terminal device are invalid subframes.
  • MMSFN multicast broadcast single frequency network
  • the system will introduce some additional public signal transmission.
  • additional resources can be used to transmit SIB1-NB to enhance SIB1-NB. Demodulation performance, and the delay and power consumption consumed by the terminal device to read the SIB1-NB.
  • the network device may configure the subframe used for transmitting the SIB1-NB as an invalid subframe, so that the terminal device of the earlier version knows the subframe corresponding to the additional resources. It is an invalid subframe, and naturally it will not receive any downlink signals in these invalid subframes.
  • the network device uses subframe 4 or subframe 9 in at least one radio frame to transmit SIB1-NB as an additional resource and configure subframe 4 or subframe 9 as an invalid subframe.
  • subframes 4 or 9 in all radio frames are used to transmit SIB1-NB, but once subframe 4 or subframe 9 is configured as an invalid subframe, subframes in all radio frames 4 or subframe 9 will be understood by the terminal device as an invalid subframe, then all terminal devices will not receive the downlink signal in the invalid subframe, which will cause some subframes that are not actually invalid subframes to be invalid. Subframes are wasted. Therefore, the present application provides a solution that the terminal device can determine which are true invalid subframes, so that downlink signals can be received on subframes that are not invalid subframes to improve system resource utilization.
  • the network device may determine an actual invalid subframe in the at least one radio frame, for example, the network device determines that the first subframe in the at least one radio frame is an actual invalid subframe. Then, the network device generates subframe information, where the subframe information is used to indicate that the first subframe in the at least one radio frame is an actual invalid subframe. The network device sends the subframe information, and the terminal device receives the subframe information from the network device, and the terminal device determines, according to the subframe information, that the first subframe in the at least one radio frame is an actual invalid subframe.
  • the actual invalid subframe may be used to transmit the SIB1-NB and/or the NSSS.
  • the actual invalid subframe may include the subframe 4 carrying the SIB1-NB, and/or the sub-bearer carrying the SIB1-NB and the NSSS. Frame 9.
  • the network device can send the subframe information through the MIB-NB.
  • the terminal device can obtain the subframe information by parsing the MIB-NB, or the network device can also send the subframe information by using other signaling.
  • the first subframe includes, for example, subframe 4 and/or subframe 9 in the radio frame, and may further include other subframes.
  • the terminal device may determine, according to the subframe information, that the first subframe in the at least one radio frame is an actual invalid subframe, and the terminal device does not receive the downlink signal in the invalid subframe, thereby reducing power consumption of the terminal device.
  • the terminal device In the subframe that is not configured as the actual invalid subframe, that is, in the non-actual invalid subframe, the terminal device can receive the downlink signal, and the terminal device can also determine the non-actual invalid subframe according to the subframe information.
  • the non-actual invalid subframe may include other subframes in the at least one radio frame except the first subframe, and subframes included in other radio frames except the at least one radio frame (including the first of the radio frames) One subframe).
  • the foregoing actual invalid subframe includes the subframe 4 and/or the subframe 9.
  • the non-actual invalid subframe may include the subframe 4 that does not carry the SIB1-NB, and/or the subframe that does not carry the SIB1-NB and the NSSS.
  • the network device may also indicate the radio frame including the actual invalid subframe, and specifically indicate the subframe that is not invalid in the radio frame, and the terminal device determines according to the information. The actual invalid subframe is determined.
  • the at least one radio frame may include all radio frames in the time domain; or include 8 or 16 radio frames out of every 32 radio frames in the time domain, such as the first 8 of every 32 radio frames Or 16 radio frames, etc.; or include 8 or 16 radio frames per 64 radio frames in the time domain, such as the first 8 or 16 radio frames in every 64 radio frames.
  • the network device may send other information in the subframe set, where the subframe set includes a partial actual invalid subframe or all actual invalid subframes in the actual invalid subframe configured by the network device, that is, the subframe set includes the at least the subframe set. A portion of the first subframe or all of the first subframes in the first subframe of a radio frame.
  • the network device sends the SIB1-NB in the subframe set, then the actual invalid subframe is included in the subframe set, and the network device can notify the terminal device in advance, for example, the network device can also notify the terminal device through the MIB-NB, and the terminal After receiving the MIB-NB, the device can determine which actual invalid subframes the network device will send SIB1-NB, so that the terminal device can receive the SIB1-NB on the subframe set. In this way, the waste of the invalid subframe can be avoided as much as possible, and the terminal device can normally receive the downlink signal, and the terminal device can also receive the SIB1-NB in the invalid subframe.
  • the subframe set includes, for example, the subframe 4 of the first partial radio frame and/or the subframe 9 of the second partial radio frame, and may of course include other subframes.
  • the first partial radio frame may have an intersection with the second partial radio frame, or there may be no intersection.
  • the at least one radio frame includes the first partial radio frame and the second partial radio frame.
  • FIG. 4 shows a schematic structural diagram of a network device 400.
  • the network device 400 can implement the functions of the network devices referred to above.
  • the network device 400 may be the network device described above or may be a chip disposed in the network device described above.
  • the network device 400 can include a processor 401 and a transceiver 402.
  • the processor 401 can be used to execute S31, S32, and S33 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the transceiver 402 can be used to perform S34, S35, S36, and S37 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the processor 401 is configured to determine a first resource used to send the first signal, and, in a case where the first resource includes a second resource, generate first indication information, where the first indication information is used to Instructing the network device 400 to transmit the first signal using the second resource; the second resource includes at least one of the following REs:
  • the first carrier On the first carrier, OFDM symbol 0, OFDM symbol 1 and all REs corresponding to OFDM symbol 2 in each of subframe 0, subframe 5, and subframe 9 of each radio frame, and each radio frame OFDM symbol 4, OFDM symbol 7, OFDM symbol 8, and RE0, RE3, RE6, and RE9 in each of the OFDM symbols in subframe 0; wherein the first carrier includes an anchor of NB-IoT Point carrier and/or non-anchor carrier of NB-IoT;
  • the transceiver 402 is configured to send the first indication information, and send the first signal on the first resource.
  • FIG. 5 shows a schematic structural diagram of a terminal device 500.
  • the terminal device 500 can implement the functions of the terminal device referred to above.
  • the terminal device 500 may be the terminal device described above, or may be a chip provided in the terminal device described above.
  • the terminal device 500 can include a processor 501 and a transceiver 502.
  • the processor 501 can be used to execute S34, S35, S36, and S37 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the processor 501 executes S34, S35, S36, and S37, the main If the analysis of the information received by the transceiver 502 is completed, for example, the processor 501 may parse the first indication information or the second indication information, determine the content indicated by the first indication information or the second indication information, and may also parse the first signal. Obtaining information carried by the first signal.
  • the transceiver 502 can be used to perform S34, S35, S36, and S37 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the transceiver 502 is configured to receive, by the network device, the first indication information, where the first indication information is used to indicate that the network device sends the first signal by using the second resource, where the second resource includes the following RE At least one RE:
  • the first carrier On the first carrier, OFDM symbol 0, OFDM symbol 1 and all REs corresponding to OFDM symbol 2 in each of subframe 0, subframe 5, and subframe 9 of each radio frame, and each radio frame OFDM symbol 4, OFDM symbol 7, OFDM symbol 8, and RE0, RE3, RE6, and RE9 in each of the OFDM symbols in subframe 0; wherein the first carrier includes an anchor of NB-IoT Point carrier and/or non-anchor carrier of NB-IoT;
  • the processor 501 is configured to determine, according to the first indication information, that the network device sends the first signal by using the second resource;
  • the transceiver 502 is further configured to receive the first signal on the first resource, where the first resource includes the second resource.
  • network device 400 or terminal device 500 can also be implemented by the structure of communication device 600 as shown in FIG. 6A.
  • the communication device 600 can implement the functions of the network device or the terminal device referred to above.
  • the communication device 600 can include a processor 601. Wherein, when the communication device 600 is used to implement the functions of the network device in the embodiment shown in FIG. 3, the processor 601 can be used to execute S31, S32, and S33 in the embodiment shown in FIG. 3, and/or Other processes for supporting the techniques described herein. When the communication device 600 is used to implement the functions of the terminal device in the embodiment shown in FIG. 3, the processor 601 can be used to execute S34, S35, S36, and S37 in the embodiment shown in FIG. 3, and/or Other processes for supporting the techniques described herein.
  • the communication device 600 can pass through a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processor (central processor). Unit, CPU), network processor (NP), digital signal processor (DSP), microcontroller (micro controller unit (MCU), or programmable logic device (programmable logic device, The PLD) or other integrated chip implementation, the communication device 600 can be disposed in the network device or the terminal device in the embodiment of the present application, so that the network device or the terminal device implements the signal sending and receiving method provided by the embodiment of the present application.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • programmable logic device programmable logic device
  • the communication device 600 can further include a memory 602, which can be referred to FIG. 6B, where the memory 602 is used to store computer programs or instructions, and the processor 601 is used to decode and execute the computer programs or instructions. .
  • these computer programs or instructions may include the functional programs of the network devices or terminal devices described above.
  • the function program of the network device is decoded and executed by the processor 601
  • the network device can be configured to implement the function of the network device in the signal sending and receiving method of the embodiment of the present application.
  • the terminal device can be configured to implement the function of the terminal device in the signal transmitting and receiving method of the embodiment of the present application.
  • the functional programs of these network devices or terminal devices are stored in a memory external to the communication device 600.
  • the memory 602 temporarily Store some or all of the functions of the above network devices.
  • the function program of the terminal device is decoded and executed by the processor 601
  • part or all of the contents of the function program of the terminal device is temporarily stored in the memory 602.
  • the functional programs of these network devices or terminal devices are disposed in a memory 602 stored internal to the communication device 600.
  • the communication device 600 can be disposed in the network device of the embodiment of the present application.
  • the function program of the terminal device is stored in the memory 602 inside the communication device 600
  • the communication device 600 can be disposed in the terminal device of the embodiment of the present application.
  • portions of the functional programs of the network devices are stored in a memory external to the communication device 600, and other portions of the functional programs of the network devices are stored in the memory 602 internal to the communication device 600.
  • part of the contents of the functional programs of the terminal devices are stored in a memory external to the communication device 600, and other portions of the functional programs of the terminal devices are stored in the memory 602 inside the communication device 600.
  • the network device 400, the terminal device 500, and the communication device 600 are presented in the form of dividing each functional module into functions, or may be presented in an integrated manner to divide the functional modules.
  • a “module” herein may refer to an ASIC, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other devices that provide the functionality described above.
  • the network device 400 provided by the embodiment shown in FIG. 4 can also be implemented in other forms.
  • the network device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 401, and the transceiver module can be implemented by the transceiver 402.
  • the processing module can be used to perform S31, S32, and S33 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the transceiver module can be used to perform S34, S35, S36, and S37 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the processing module is configured to determine a first resource used to send the first signal, and, in a case where the first resource includes the second resource, generate first indication information, where the first indication information is used to indicate
  • the network device sends the first signal by using the second resource; the second resource includes at least one of the following REs:
  • the first carrier On the first carrier, OFDM symbol 0, OFDM symbol 1 and all REs corresponding to OFDM symbol 2 in each of subframe 0, subframe 5, and subframe 9 of each radio frame, and each radio frame OFDM symbol 4, OFDM symbol 7, OFDM symbol 8, and RE0, RE3, RE6, and RE9 in each of the OFDM symbols in subframe 0; wherein the first carrier includes an anchor of NB-IoT Point carrier and/or non-anchor carrier of NB-IoT;
  • transceiver module configured to send the first indication information, and send the first signal on the first resource.
  • the terminal device 500 provided by the embodiment shown in FIG. 5 can also be implemented in other forms.
  • the terminal device includes a processing module and a transceiver module.
  • the processing module can be implemented by the processor 501, and the transceiver module can be implemented by the transceiver 502.
  • the processing module can be used to perform S34, S35, S36, and S37 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the processing module performs S34, S35, S36, and S37, mainly to complete the parsing of the information received by the transceiver module.
  • the processing module may parse the first indication information or the second indication information, and determine the first indication information or the second.
  • the content indicated by the indication information may also parse the first signal to obtain information carried by the first signal.
  • the transceiver module can be used to perform S34, S35, S36, and S37 in the embodiment shown in FIG. 3, and/or other processes for supporting the techniques described herein.
  • the transceiver module is configured to receive first indication information from the network device, where the first indication information is used to indicate The network device sends the first signal by using the second resource; the second resource includes at least one of the following REs:
  • the first carrier On the first carrier, OFDM symbol 0, OFDM symbol 1 and all REs corresponding to OFDM symbol 2 in each of subframe 0, subframe 5, and subframe 9 of each radio frame, and each radio frame OFDM symbol 4, OFDM symbol 7, OFDM symbol 8, and RE0, RE3, RE6, and RE9 in each of the OFDM symbols in subframe 0; wherein the first carrier includes an anchor of NB-IoT Point carrier and/or non-anchor carrier of NB-IoT;
  • a processing module configured to determine, according to the first indication information, that the network device sends the first signal by using the second resource
  • the transceiver module is further configured to receive the first signal on the first resource, where the first resource includes the second resource.
  • the network device 400, the terminal device 500, and the communication device 600 provided by the embodiments of the present application can be used to perform the method provided in the embodiment shown in FIG. 5 or the embodiment shown in FIG. 3, so that the technical effects can be obtained. Reference may be made to the foregoing method embodiments, and details are not described herein again.
  • Embodiments of the present application are described with reference to flowchart illustrations and/or block diagrams of methods, devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another readable storage medium, for example, the computer instructions can be passed from a website site, computer, server or data center Wired (eg, coaxial cable, fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a digital versatile disc (DVD)), or a semiconductor medium (eg, a solid state disk (SSD) ))Wait.
  • a magnetic medium eg, a floppy disk, a hard disk, a magnetic tape
  • an optical medium eg, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • semiconductor medium eg, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信号发送、接收方法及设备,用于减少资源浪费,提高资源的利用率。其中的信号发送方法包括:网络设备确定用于发送第一信号的第一资源;在第一资源包括第二资源的情况下,网络设备生成第一指示信息,第一指示信息用于指示网络设备使用第二资源发送第一信号;第二资源包括以下至少一个RE:第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,第一载波包括NB-IoT的锚点载波和/或NB-IoT的非锚点载波;网络设备发送第一指示信息;网络设备在第一资源上发送第一信号。

Description

一种信号发送、接收方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种信号发送、接收方法及设备。
背景技术
窄带物联网(narrow band internet of things,NB-IoT)系统构建于蜂窝网络,最少可以只占用约180KHz的带宽,可直接部署于全球移动通信系统(global system for mobile communication,GSM)系统、通用移动通信系统(universal mobile telecommunications system,UMTS)、长期演进(long term evolution,LTE)系统或5G系统中,以降低部署成本、实现平滑升级。NB-IoT系统使用授权频段,可采取带内(in-band)模式、保护带(guard-band)模式或独立载波(standalone)模式等三种部署方式,与现有网络共存。
在现有技术中,以上三种部署方式在同步信号,例如窄带主同步信号(narrow band primary synchronization signal,NPSS)或窄带辅同步信号(narrow band secondary synchronization signal,NSSS),以及主信息块(master information block-narrow band,MIB-NB)的资源映射方式上不作区分,均按照带内模式进行资源映射。
以NB-IoT系统部署在LTE系统为例,在带内模式下,NB-IoT系统会占用LTE系统的频带资源。LTE系统中,每个子帧的前3个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号会用来传输物理下行控制信道(Physical Downlink Control Channel,PDCCH),并且,每个子帧的后11个符号中的一些RE还要用来传输小区专用参考信号(cell-specific reference signals,CRS)。因此,在带内模式下,NB-IoT系统的下行信号不能占用子帧的前3个OFDM符号,以及不能占用子帧的后11个OFDM符号中用于承载CRS的RE。
例如,NB-IoT系统在带内模式下只使用无线帧中的子帧5的后11个OFDM符号发送NPSS,只使用无线帧中的子帧9的后11个OFDM符号发送NSSS,以及只使用无线帧中的子帧0的后11个OFDM符号发送MIB-NB。而且,也不是使用子帧0、子帧5、及子帧9的后11个OFDM符号中的所有RE用于MIB-NB、NPSS、NSSS的传输,其中一些RE还是不使用的,例如,在带内模式下用于承载CRS的RE是不用来进行MIB-NB、NPSS、NSSS的传输的。在保护带模式或独立载波模式下,为了保持与带内模式的一致,对于NPSS、NSSS、MIB-NB的传输也不使用子帧的前3个OFDM符号。对于NPSS的传输,已经可以使用子帧5的后11个OFDM符号的CRS位置处的RE,对于NSSS的传输,也已经可以使用子帧9的后11个OFDM符号的CRS位置处的RE,然而对于MIB-NB的传输,目前不能使用子帧0的后11个OFDM符号的CRS位置处的RE。需要理解的是,对于保护带模式或独立载波模式,所谓的CRS位置处的RE,实际上已经不用来承载CRS,只是其位置与有CRS时的CRS RE位置是相同的,所以这里也将其称作CRS位置处的RE。
因此,在保护带模式和独立载波这两种模式下,NB-IoT的子帧5、子帧0和子帧9的前3个OFDM符号,以及子帧0的CRS位置处的RE处于空闲状态,造成了资源浪费。
发明内容
本申请实施例提供一种信号发送、接收方法及设备,用于减少资源浪费,提高资源的利用率。
第一方面,提供一种信号发送方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备确定用于发送第一信号的第一资源;在所述第一资源包括第二资源的情况下,所述网络设备生成第一指示信息,所述第一指示信息用于指示所述网络设备使用所述第二资源发送所述第一信号;所述第二资源包括以下RE中的至少一个RE:第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括NB-IoT的锚点载波和/或NB-IoT的非锚点载波;所述网络设备发送所述第一指示信息;所述网络设备在所述第一资源上发送所述第一信号。
相应的,第二方面,提供一种信号接收方法,该方法可由终端设备执行,该方法包括:终端设备从网络设备接收第一指示信息,所述第一指示信息用于指示所述网络设备使用第二资源发送第一信号;所述第二资源包括以下的RE中的至少一个RE:第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括NB-IoT的锚点载波和/或NB-IoT的非锚点载波;所述终端设备在第一资源上接收所述第一信号,所述第一资源包括所述第二资源。
目前,NB-IoT的子帧5、子帧0和子帧9的前3个OFDM符号,以及子帧0的CRS位置处的RE处于空闲状态,造成了资源浪费。其中,子帧0的CRS位置处的RE可包括子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9。本申请实施例结合了第一指示信息,以告知终端设备网络设备发送第一信号所利用的资源,则终端设备能够在正确的位置接收第一信号,从而网络设备就可以利用这些原本处于空闲状态的资源来发送第一信号,使得空闲的资源能够得到合理利用,减少了资源浪费,提高了资源的利用率;而且由于网络设备使用了更多的资源来传输第一信号,也相应提高了终端设备对第一信号的解调性能,即,能够降低终端设备接收第一信号的错误概率,和/或,减少终端设备接收第一信号所需花费的时延和功耗;而且结合第一指示信息,终端设备能够清楚网络设备使用了哪些资源来发送第一信号,避免了终端设备因为不知道网络设备会如何发送第一信号而进行盲检测,从而减少了终端设备的芯片复杂度和功耗。
在一个可能的设计中,在所述第一资源不包括所述第二资源的情况下,所述网络设备生成第二指示信息,所述第二指示信息用于指示所述网络设备不使用所述第二资源发送所述第一信号;所述网络设备发送所述第二指示信息。相应的,终端设备从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述网络设备不使用所述第二资源发送所述第一信号;所述终端设备在第三资源上接收所述第一信号,所述第三资源不包括所述第二资源。
为了对终端设备起到更好的提示作用,网络设备确定第一资源后,如果第一资源不包括第二资源,则网络设备可以生成第二指示信息,或者网络设备也可以在确定第一资源不包括第二资源的同时生成第二指示信息,该第二指示信息用于指示网络设备不使用第二资 源发送第一信号。则终端设备接收第二指示信息后,就可以确定网络设备不使用第二资源发送第一信号,从而按照第二指示信息所指示的方式接收第一信号,即,不在第二资源上接收第一信号,有助于降低终端设备的复杂度和功耗,也能减少终端设备接收失败的概率。
在本申请实施例中,第一资源还包括第三资源,在第一资源不包括第二资源时,可以认为网络设备是通过第一资源包括的第三资源发送第一信号,则终端设备也就在第三资源接收第一信号。
在一个可能的设计中,
所述第一信号包括承载在物理广播信道上的信号,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
所述第一信号包括NPSS,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
所述第一信号包括NSSS,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
在一个可能的设计中,所述网络设备处于保护带模式或独立载波模式下。
即,本申请实施例可以解决网络设备处于保护带模式或独立载波模式下时存在的问题。当然本申请实施例不限制网络设备的模式,保护带模式或独立载波模式只是示例。
在一个可能的设计中,
所述第一信号包括承载在物理广播信道上的信号,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧0中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;和/或
所述第一信号包括NPSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧5中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE;和/或
所述第一信号包括NSSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧9中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE。
其中,在带内模式下,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1及OFDM符号2对应的全部RE是LTE系统用来传输PDCCH和CRS的RE,以及在带内模式下,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6及RE9是LTE系统用来传输CRS的RE。保护带模式和独立载波模式与带内模式保持一致,因此在保护带模式和独立载波模式下,这些RE都处于空闲状态。所以本申请实施例在保护带模式或独立载波模式下可以对这部分RE加以利用,通过这部分RE来传输第一信号,提高了资源利用率,从而提升了终端设备对于第一信号的解调性能。
在一个可能的设计中,
所述第一信号包括承载在物理广播信道上的信号,所述第一资源进一步包括以下RE 中的至少一个RE:所述第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
所述第一信号包括NPSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
所述第一信号包括NSSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
在本申请实施例中,第一资源进一步还包括一些RE,根据第一信号的不同,第一资源进一步包括的RE也可能有所不同。网络设备在传输第一信号时,如果第一资源包括第二资源,则网络设备使用第二资源和第一资源进一步包括的RE传输第一信号,而如果第一资源不包括第二资源,则网络设备就使用第一资源进一步包括的RE传输第一信号。其中,第一资源进一步包括的RE与第三资源,二者可以认为是同一概念。
第三方面,提供一种确定实际无效子帧的方法,该方法可由终端设备执行。该方法包括:终端设备获得子帧信息,所述子帧信息用于指示至少一个无线帧中的第一子帧为实际无效子帧;所述终端设备根据所述子帧信息确定所述至少一个无线帧中的所述第一子帧为实际无效子帧。
例如,所述至少一个无线帧可以包括时域上的所有无线帧;或者包括时域上的每32个无线帧中的8个或16个无线帧,例如每32个无线帧中的前8个或16个无线帧等;或者包括时域上的每64个无线帧中的8个或16个无线帧,例如每64个无线帧中的前8个或16个无线帧等。
其中,所述至少一个无线帧中的所述实际无效子帧可用于传输SIB1-NB和/或NSSS。
相应的,第四方面,提供一种确定实际无效子帧的方法,该方法可由网络设备执行,网络设备例如为基站。该方法包括:网络设备确定至少一个无线帧中的第一子帧为实际无效子帧;所述网络设备生成子帧信息,所述子帧信息用于指示所述至少一个无线帧中的第一子帧为实际无效子帧;所述网络设备将所述子帧信息发送给终端设备。
在一个可能的设计中,终端设备在除所述至少一个无线帧之外的其他无线帧的第一子帧,以及所述至少一个无线帧中除第一子帧外的其他子帧中,从所述网络设备接收下行信号。相应的,网络设备在除所述至少一个无线帧之外的其他无线帧的第一子帧,以及所述至少一个无线帧中除第一子帧外的其他子帧中,发送下行信号。
通过本申请实施例提供的技术方案,终端设备可以获知具体哪些无线帧中的第一子帧是实际无效子帧,从而在这些第一子帧上可以不接收下行信号,从而减少终端设备的功耗。而对于其他无线帧中的不是实际无效子帧的第一子帧,以及所述至少一个无线帧中除第一子帧外的其他子帧,网络设备可以继续在这些子帧上发送下行信号,而终端设备也可以继续在这些子帧上接收下行信号,提高了资源的利用率,减少了资源浪费。
在一个可能的设计中,终端设备在子帧集合中接收SIB1-NB,所述子帧集合包括所述至少一个无线帧中的第一子帧中的部分第一子帧或全部第一子帧。相应的,网络设备在子帧集合中发送SIB1-NB,所述子帧集合包括所述至少一个无线帧中的第一子帧中的部分第一子帧或全部第一子帧。
网络设备可以利用实际无效子帧中的部分子帧或全部子帧发送其他的信息,例如 SIB-NB,以提升SIB1-NB的解调性能,和终端设备读取SIB1-NB所消耗的时延和功耗。
在一个可能的设计中,终端设备获得子帧信息,包括:所述终端设备从网络设备接收MIB-NB;所述终端设备从所述MIB-NB中获得所述子帧信息。相应的,所述网络设备将所述子帧信息发送给终端设备,包括:所述网络设备发送MIB-NB,所述MIB-NB中包括所述子帧信息。
网络设备可以通过MIB-NB将子帧信息发送给终端设备,这样可以一次性通知多个终端设备,无需分别单独通知,减少网络设备的功耗。
在一个可能的设计中,所述至少一个无线帧中的第一子帧包括所述至少一个无线帧中的子帧4和/或子帧9。
第五方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第六方面,提供一种终端设备。该终端设备具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第七方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的设计所提供的方法中的相应功能。
第八方面,提供一种终端设备。该终端设备具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第二方面或第二方面的任意一种可能的设计所提供的方法中的相应功能。
第九方面,提供一种终端设备。该终端设备具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括处理器。可选的,该终端设备还可以包括收发器。处理器和收发器可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应功能。该终端设备的结构可相应参考图5。
第十方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理器和收发器。处理器和收发器可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。该终端设备的结构可相应参考图4。
第十一方面,提供一种终端设备。该终端设备具有实现上述方法设计中终端设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该终端设备的具体结构可包括处理模块。可选的,该终端设备还可以包括收发模块。处理模块和收发模块可执行上述第三方面或第三方面的任意一种可能的设计所提供的方法中的相应功能。
第十二方面,提供一种网络设备。该网络设备具有实现上述方法设计中的网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该网络设备的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第四方面或第四方面的任意一种可能的设计所提供的方法中的相应功能。
第十三方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第一方面或第一方面的任意一种可能的设计中网络设备所执行的方法。
第十四方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第二方面或第二方面的任意一种可能的设计中终端设备所执行的方法。
第十五方面,提供一种通信装置。该通信装置可以为上述方法设计中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第三方面或第三方面的任意一种可能的设计中终端设备所执行的方法。该通信装置的结构可相应参考图6A或图6B。
第十六方面,提供一种通信装置。该通信装置可以为上述方法设计中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使通信装置执行上述第四方面或第四方面的任意一种可能的设计中网络设备所执行的方法。该通信装置的结构可相应参考图6A或图6B。
第十七方面,提供一种通信系统,该通信系统包括网络设备和终端设备。其中,网络设备,用于确定用于发送第一信号的第一资源,在所述第一资源包括第二资源的情况下,生成第一指示信息,所述第一指示信息用于指示所述网络设备使用所述第二资源发送所述第一信号;所述第二资源包括以下资源单元RE中的至少一个RE:第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的正交频分复用OFDM符号0、OFDM符 号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括窄带物联网NB-IoT的锚点载波和/或NB-IoT的非锚点载波;发送所述第一指示信息;在所述第一资源上发送所述第一信号。终端设备,用于从网络设备接收第一指示信息,所述第一指示信息用于指示所述网络设备使用第二资源发送第一信号;所述第二资源包括以下的资源单元RE中的至少一个RE:第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的正交频分复用OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括窄带物联网NB-IoT的锚点载波和/或NB-IoT的非锚点载波;在第一资源上接收所述第一信号,所述第一资源包括所述第二资源。
第十八方面,提供一种通信系统,该通信系统包括网络设备和终端设备。其中,终端设备,用于获得子帧信息,所述子帧信息用于指示至少一个无线帧中的第一子帧为无效子帧,根据所述子帧信息确定所述第一子帧为无效子帧;网络设备,用于确定至少一个无线帧中的第一子帧为无效子帧,生成子帧信息,所述子帧信息用于指示所述至少一个无线帧中的第一子帧为无效子帧,以及,将所述子帧信息发送给终端设备。
第十九方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十一方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
第二十三方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第二十四方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第二十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面或第三方面的任意一种可能的设计中所述的方法。
第二十六方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第四方面或第四方面的任意一种可能的设计中所述的方法。
目前,本申请实施例结合了第一指示信息,从而网络设备就可以利用这些原本处于空闲状态的资源来发送第一信号,使得空闲的资源能够得到合理利用,减少了资源浪费,提高了资源的利用率。
附图说明
图1为NB-IoT系统中的一个RB的示意图;
图2为本申请实施例的一种应用场景示意图;
图3为本申请实施例提供的一种信号发送、接收方法的流程图;
图4为本申请实施例提供的网络设备的一种结构示意图;
图5为本申请实施例提供的终端设备的一种结构示意图;
图6A-图6B为本申请实施例提供的通信装置的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、智能手表、智能头盔、智能眼镜、智能手环、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线终端设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB),本申请实施例并不限定。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
以及,除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例的技术背景。
以子帧0为例。在NB-IoT的锚点载波中,每个无线帧内的子帧0用来传输NB-IoT的MIB-NB,其中MIB-NB可通过窄带物理广播信道(narrow physical broadcast channel,NPBCH)传输。在子帧0中,NPBCH实际使用的资源单元(resource element,RE)只有如图1的空白位置处,其中,图1中的每个方框代表一个RE。NPBCH没使用的RE有两部分,一部分是预留给LTE系统传输PDCCH和CRS的,即图1中画反斜线“\”的RE,另一部分是留给NB-IoT系统传输窄带参考信号(narrowband reference signal,NRS)的,即图1中画斜线“/”的RE。其中,留给NRS的部分是必须的,因为需要利用参考信号来做信道估计。但对于预留给LTE系统传输PDCCH和CRS的部分,在NB-IoT系统的保护带模式和独立载波模式这两种部署模式下,因为没有使用LTE系统的频带资源,因此会空闲出来,所以实际上是没有必要的,造成了资源的浪费。
鉴于此,本申请实施例提供一种信号发送、接收方法,通过这种方法能够减少资源浪费。
请参考图2,介绍本申请实施例的一种应用场景。图2中包括网络设备和终端设备,采用本申请实施例提供的方法后,网络设备可通过第一资源向终端设备发送第一信号。图2中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务,则网络设备可以向多个终端设备发送第一信号。图2中的网络设备例如为基站。
本申请实施例可以适用于LTE系统,也可以适用于其他无线通信系统,例如NR系统,或者下一代通信系统等。在本文的介绍过程中,是以应用在LTE系统中的NB-IoT系统的保护带模式或独立载波模式为例。
请参见图3,本申请实施例提供一种信号发送、接收方法,在下文的介绍过程中,以该方法应用在图2所示的应用场景为例。该方法的流程介绍如下。
S31、网络设备确定用于发送第一信号的第一资源。在第一资源包括第二资源的情况下,跳转到S32,在第一资源不包括第二资源的情况下,跳转到S33。
网络设备在发送第一信号之前,首先要确定通过哪些资源发送第一信号,本文将用于发送第一信号的资源称为第一资源。
在本申请实施例中,第一信号包括以下至少一项:承载在物理广播信道上的信号的部分或全部,及,同步信号。承载在物理广播信道上的信号的全部即为物理广播信道上承载的信号,承载在物理广播信道上的信号的部分即为物理广播信道上承载的信号的一部分。例如物理广播信道上承载的是窄带主信息块(master information block,MIB)-NB,则第一信号包括MIB-NB的全部,或者第一信号包括MIB-NB中的一部分信息。同步信号包括窄带主同步信号(narrow primary synchronization signal,NPSS)和/或窄带辅同步信号(narrow secondary synchronization signal,NSSS)。
物理广播信道,例如为物理广播信道(physical broadcast channel,PBCH),或者为窄带物理广播信道(narrow physical broadcast channel,NPBCH)。
S32、在第一资源包括第二资源的情况下,网络设备生成第一指示信息,第一指示信息用于指示网络设备使用第二资源发送第一信号。跳转到后续的S34。
根据如前的分析可知,在NB-IoT系统的带内模式下,会为LTE系统预留用于传输PDCCH和CRS的资源,为了保持一致,保护带模式和独立载波模式这两种部署方式也会采用与带内模式相同的部署方式,即也会将相应的资源置为空闲。但在保护带模式和独立载波模式这两种部署模式下,因为NB-IoT系统没有使用LTE系统的频带资源,因此空闲的资源不会被使用,所以实际上是没有必要的,造成了资源的浪费。那么,本申请实施例可以将这部分资源加以利用,从而提高资源的利用率。具体的,本文将这部分原本空闲的资源称为第二资源,则网络设备在发送第一信号时可以利用第二资源,当然也可以不利用第二资源,即第一资源中可以包括第二资源,也可以不包括第二资源。例如,在NB-IoT的带内模式下,网络设备在发送第一信号时不使用第二资源;再例如,在NB-IoT的保护带模式或独立部署模式下,网络设备也可以不使用第二资源发送第一信号。
在本申请实施例中,第二资源可以包括以下的RE中的至少一个RE:
第一载波上,每个无线帧的子帧0、子帧5、以及子帧9中的每个子帧中的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号0、OFDM符号1及OFDM符号2对应的全部RE;以及,所述第一载波上,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8、以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6及RE9。
其中,在带内模式下,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1及OFDM符号2对应的全部RE是LTE系统用来传输PDCCH和CRS的RE,以及在带内模式下,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6及RE9是LTE系统用来传输CRS的RE。保护带模式和独立载波模式与带内模式保持一致,因此在保护带模式和独立载波模式下,这些RE都处于空闲状态。所以本申请实施例在保护带模式或独立载波模式下可以对这部分RE加以利用,通过这部分RE来传输第一信号,提高了资源利用率,从而提升了终端设备对于第一信号的解调性能。
其中,本申请实施例对子帧和OFDM符号都是按照时间先后顺序依次编号。例如1个无线帧中包含10个子帧,则按照时间先后顺序,将这10个子帧分别记为子帧0~子帧9,1个子帧包含14个OFDM符号,则按照时间先后顺序,将这14个OFDM符号分别记为OFDM符号0~OFDM符号13,其中,对于1个子帧来说,其中的OFDM符号0~OFDM符号6对应于该子帧的第1个时隙(slot)中的OFDM符号0~OFDM符号6,而该子帧的OFDM符号7~OFDM符号13对应于该子帧的第2个slot中的OFDM符号0~OFDM符号6。一个OFDM符号对应的RE,可以按照从低频到高频的顺序编号。图1所示的是一个RB,在该RB中,按照从低频到高频的顺序将RE编号为RE0~RE11,这里的RE的编号也可以理解为是子载波的编号。例如,第一载波上的子帧0中的符号0对应的全部RE,是指第一载波上的子帧0中的符号0对应的RE0~RE11。其中,本申请实施例中的RE的编号是在一个RB中的相对编号,如果将一个RB放到整个带宽中,则RE的编号与RB在带宽中的位置有关,即RE的编号可能会发生变化。
第一载波可以包括至少一个子载波,其中的每个子载波可以是15kHz的频谱资源,当然也可能是其他类型的频谱资源。第一载波包括的至少一个子载波可以是连续的子载波,例如第一载波可以是12个连续的子载波组成的频谱资源。或者,第一载波包括的至少一个子载波也可以是不连续的子载波。作为一种示例,第一载波可以包括NB-IoT系统中的锚点载波,和/或,包括NB-IoT系统中的非锚点载波。其中,锚点载波可以用于承载较为重要的信息,例如系统消息或同步信号等,非锚点载波可以用于承载通信过程中的信息,例如通信建立之后可以通过非锚点载波进行通信。
利用这些额外的RE传输第一信号,即利用第二资源传输第一信号,可能是较高版本引入的特性,例如可能是版本(release)-15引入的特性,因此早期版本的网络设备可能不支持这种传输方式,即早期版本的网络设备是不使用第二资源来传输第一信号的。但是终端设备可能不知道自己接入的网络设备的版本,即终端设备不知道网络设备在传输第一信号时是否会使用第二资源,所以终端设备不能确定应该按照哪种资源映射方法来接收第一信号。那么,如果终端设备假设网络设备使用了第二资源,按照网络设备使用了第二资源的方式接收第一信号,则如果网络设备实际不支持使用额外的资源,网络设备发送第一信号时实际不使用第二资源,则终端设备会发生接收错误;而如果终端设备假设网络设备不使用额外的资源,按照网络设备不使用第二资源的方式接收第一信号,则如果网络设备实际支持额外的资源,网络设备发送第一信号时实际使用了第二资源,则终端设备就无法享受到使用额外的资源所带来的增益。
为了解决该问题,假设终端设备采用以下方式来接收第一信号:终端设备先假设网络设备使用了额外的资源传输第一信号,终端设备按照网络设备使用了第二资源的方式接收第一信号,如果接收成功,则终端设备可以继续进行其它行为,而如果接收失败,则终端设备可以再假设网络设备不使用额外的资源,按照网络设备不使用第二资源的方式再一次尝试接收第一信号。然而在这种假设的方案中,因为终端设备要进行尝试接收,因此终端设备的复杂度会比较高,功耗也较大。
鉴于此,在本申请实施例中,网络设备确定第一资源后,如果第一资源包括第二资源,则网络设备可以生成第一指示信息,或者网络设备也可以在确定第一资源包括第二资源的同时生成第一指示信息,该第一指示信息用于指示网络设备使用第二资源发送第一信号。则终端设备接收第一指示信息后,就可以确定网络设备使用第二资源发送第一信号,从而按照第一指示信息所指示的方式接收第一信号,即,在第二资源上接收第一信号,有助于降低终端设备的复杂度和功耗,也能使得终端设备享受到使用额外的资源所带来的增益,提高终端设备对第一信号的解调性能,即,能够降低终端设备接收第一信号的错误概率,和/或,减少终端设备接收第一信号所需花费的时延和功耗。
关于第一指示信息的指示方式,下面分几种情况进行介绍。
1、第一信号包括承载在物理广播信道中的信号的部分或全部。
第一指示信息例如包括1比特,该1比特取值为“1”,就是表示网络设备在发送第一信号时会使用第二资源。
或者第一指示信息为布尔型变量,取值为‘TRUE’时表示网络设备在发送第一信号时会使用第二资源。
此外,任何能够实现“第一指示信息用来指示网络设备在发送第一信号时使用第二资源的”的指示形式均在本申请实施例的保护范围内。
2、第一信号包括同步信号。
同步信号包括NSSS和/或NPSS。那么,如果同步信号包括NSSS,则第一指示信息例如包括1比特,该1比特取值为“1”,表示网络设备在发送NSSS时会使用第二资源,或者第一指示信息为布尔型变量,取值为‘TRUE’时表示网络设备在发送NSSS时会使用第二资源;如果同步信号包括PSSS,则第一指示信息例如包括1比特,该1比特取值为“1”,表示网络设备在发送PSSS时会使用第二资源,或者第一指示信息为布尔型变量,取值为‘TRUE’时表示网络设备在发送PSSS时会使用第二资源;如果同步信号包括NSSS和PSSS,则第一指示信息可以统一指示,例如第一指示信息包括1比特,该1比特取值为“1”,表示网络设备在发送NSSS和PSSS时会使用第二资源,或者第一指示信息为布尔型变量,取值为‘TRUE’时表示网络设备在发送NSSS和PSSS时会使用第二资源,或者,第一指示信息也可以分别指示,例如第一指示信息包括2比特,其中的1比特用于指示网络设备在发送NSSS时使用第二资源,其中剩余的1比特用于指示网络设备在发送PSSS时使用第二资源,具体每比特的指示方式可参考前文的介绍,不多赘述。
3、第一信号包括承载在物理广播信道中的信号的部分或全部,以及包括同步信号。
第一指示信息可以统一指示。例如第一指示信息包括1比特,该1比特取值为“1”,表示网络设备在发送承载在物理广播信道中的信号以及同步信号时会使用第二资源,或者第一指示信息为布尔型变量,取值为‘TRUE’时表示网络设备在发送承载在物理广播信道中的信号以及同步信号时会使用第二资源。同步信号包括NSSS和/或PSSS。
或者,第一指示信息可以分别指示。例如第一指示信息可以分别指示承载在物理广播信道中的信号以及同步信号。例如同步信号包括NSSS或PSSS,第一指示信息包括2比特,其中的1比特用于指示网络设备在发送承载在物理广播信道中的信号中的部分或全部时使用第二资源,其中剩余的1比特用于指示网络设备在发送NSSS或PSSS时使用第二资源,具体每比特的指示方式可参考如前的介绍。或者,例如同步信号包括NSSS和PSSS,第一指示信息例如包括3比特,其中的1比特用于指示网络设备在发送承载在物理广播信道中的信号中的部分或全部时使用第二资源,其中的1比特用于指示网络设备在发送NSSS时使用第二资源,其中剩余的1比特用于指示网络设备在发送PSSS时使用第二资源,具体每比特的指示方式可参考如前的介绍。
或者,第一指示信息也可以结合统一指示和分别指示两种方式进行指示。例如第一信号包括承载在物理广播信道中的信号以及同步信号,同步信号包括NSSS和PSSS,第一指示信息包括2比特,其中的1比特用于指示网络设备在发送承载在物理广播信道中的信号时使用第二资源,其中剩余的1比特用于指示网络设备在发送NSSS和PSSS时使用第二资源,具体每比特的指示方式可参考如前的介绍。
如果第一指示信息采用统一指示的方式进行指示,则第一指示信息的比特量较小,有利于节省传输资源。而如果第一指示信息采用分别指示的方式进行指示,则指示的粒度较细,更有利于实现较为精确的控制。因此可以根据不同的需求选择不同的指示方式。
在本申请实施例中,第一指示信息可以通过MIB-NB或系统信息块(system information block,SIB)发送。
S33、在第一资源不包括第二资源的情况下,网络设备生成第二指示信息,第二指示信息用于指示网络设备不使用第二资源发送第一信号。跳转到后续的S35。
在S32中介绍了,在第一资源包括第二资源的情况下,网络设备会生成第一指示信息, 那么,为了对终端设备起到更好的提示作用,网络设备确定第一资源后,如果第一资源不包括第二资源,则网络设备可以生成第二指示信息,或者网络设备也可以在确定第一资源不包括第二资源的同时生成第二指示信息,该第二指示信息用于指示网络设备不使用第二资源发送第一信号。则终端设备接收第二指示信息后,就可以确定网络设备不使用第二资源发送第一信号,从而按照第二指示信息所指示的方式接收第一信号,即,不在第二资源上接收第一信号,有助于降低终端设备的复杂度和功耗,也能减少终端设备接收失败的概率。
关于第二指示信息的指示方式,下面分几种情况进行介绍。
1、第一信号包括承载在物理广播信道中的信号的部分或全部。
第二指示信息例如包括1比特,该1比特取值为“0”,表示网络设备在发送第一信号时不使用第二资源。
或者第二指示信息为布尔型变量,取值为‘FALSE’时表示网络设备在发送第一信号时不使用第二资源。
2、第一信号包括同步信号。
同步信号包括NSSS和/或PSSS。那么,如果同步信号包括NSSS,则第二指示信息例如包括1比特,该1比特取值为“0”,表示网络设备在发送NSSS时不使用第二资源,或者第二指示信息为布尔型变量,取值为‘FALSE’时表示网络设备在发送NSSS时不使用第二资源;如果同步信号包括PSSS,则第二指示信息例如包括1比特,该1比特取值为“0”,表示网络设备在发送PSSS时不使用第二资源,或者第二指示信息为布尔型变量,取值为‘FALSE’时表示网络设备在发送PSSS时不使用第二资源;如果同步信号包括NSSS和PSSS,则第二指示信息可以统一指示,例如第二指示信息包括1比特,该1比特取值为“0”,表示网络设备在发送NSSS和PSSS时不使用第二资源,或者第二指示信息为布尔型变量,取值为‘FALSE’时表示网络设备在发送NSSS和PSSS时不使用第二资源,或者,第二指示信息也可以分别指示,例如第二指示信息包括2比特,其中的1比特用于指示网络设备在发送NSSS时不使用第二资源,其中剩余的1比特用于指示网络设备在发送PSSS时不使用第二资源,具体每比特的指示方式可参考前文的介绍,不多赘述。
3、第一信号包括承载在物理广播信道中的信号的部分或全部,以及包括同步信号。
第二指示信息可以统一指示。例如第二指示信息包括1比特,该1比特取值为“0”,表示网络设备在发送承载在物理广播信道中的信号以及同步信号时不使用第二资源,或者第二指示信息为布尔型变量,取值为‘FALSE’时表示网络设备在发送承载在物理广播信道中的信号以及同步信号时不使用第二资源。同步信号包括NSSS和/或PSSS。
或者,第二指示信息可以分别指示。例如第二指示信息可以分别指示承载在物理广播信道中的信号以及同步信号。例如同步信号包括NSSS或PSSS,第二指示信息包括2比特,其中的1比特用于指示网络设备在发送承载在物理广播信道中的信号中的部分或全部时不使用第二资源,其中剩余的1比特用于指示网络设备在发送NSSS或PSSS时不使用第二资源,具体每比特的指示方式可参考如前的介绍。或者,例如同步信号包括NSSS和PSSS,第二指示信息例如包括3比特,其中的1比特用于指示网络设备在发送承载在物理广播信道中的信号中的部分或全部时不使用第二资源,其中的1比特用于指示网络设备在发送NSSS时不使用第二资源,其中剩余的1比特用于指示网络设备在发送PSSS时不使用第二资源,具体每比特的指示方式可参考如前的介绍。
或者,第二指示信息也可以结合统一指示和分别指示两种方式进行指示。例如第一信号包括承载在物理广播信道中的信号以及同步信号,同步信号包括NSSS和PSSS,第二指示信息包括2比特,其中的1比特用于指示网络设备在发送承载在物理广播信道中的信号时不使用第二资源,其中剩余的1比特用于指示网络设备在发送NSSS和PSSS时不使用第二资源,具体每比特的指示方式可参考如前的介绍。
如果第二指示信息采用统一指示的方式进行指示,则第二指示信息的比特量较小,有利于节省传输资源。而如果第二指示信息采用分别指示的方式进行指示,则指示的粒度较细,更有利于实现较为精确的控制。因此可根据不同的需求选择不同的指示方式。
在本申请实施例中,第二指示信息也可以通过MIB-NB或SIB发送。
另外,网络设备发送第一信号的方式一般不会发生变化,即一般来说,网络设备要么生成的是第一指示信息,要么生成的是第二指示信息,后续可能很少会发生变化,例如很少会出现先生成的是第一指示信息,之后又生成的是第二指示信息的情况,指示信息起到的是通知终端设备的作用,一般不会频繁地调整,这样可以降低系统实现的复杂度。
S34、网络设备发送第一指示信息,则终端设备从网络设备接收第一指示信息。跳转到S36。
如果网络设备生成的是第一指示信息,则网络设备在生成第一指示信息后,可以发送第一指示信息,则终端设备就可以接收第一指示信息。例如网络设备通过MIB-NB或SIB发送第一指示信息,则终端设备通过读取MIB-NB或SIB就可以获得第一指示信息。终端设备接收第一指示信息后,就可以确定网络设备在发送第一信号时使用了第二资源。
S35、网络设备发送第二指示信息,则终端设备从网络设备接收第二指示信息。跳转到S37。
如果网络设备生成的是第二指示信息,则网络设备在生成第二指示信息后,可以发送第二指示信息,则终端设备就可以接收第二指示信息。例如网络设备通过MIB-NB或SIB发送第二指示信息,则终端设备通过读取MIB-NB或SIB就可以获得第二指示信息。终端设备接收第二指示信息后,就可以确定网络设备在发送第一信号时不使用第二资源。
本申请实施例结合第一指示信息或第二指示信息,终端设备能够清楚网络设备使用了哪些资源来发送第一信号,避免了终端设备因为不知道网络设备会如何发送第一信号而进行盲检测,从而减少了终端设备的芯片复杂度和功耗。
S36、网络设备在第一资源上发送第一信号,则终端设备在第一资源上从网络设备接收第一信号。
S37、网络设备在第三资源上发送第一信号,则终端设备在第三资源上从网络设备接收第一信号。
在本申请实施例中,第一资源进一步可以包括该第三资源,第三资源包括用于承载NPBCH的RE中的全部RE或部分RE。以图1为例,第三资源可以包括以下RE中的至少一个RE:
所述第一载波上,每个无线帧的子帧0、子帧5、以及子帧9中的每个子帧中的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。具体的,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号3、OFDM符号9及OFDM符号10中的每个OFDM符号对应的RE可以是指对应的全部RE,例如子帧0的符号3对应的全部RE包括符号3对应的RE0~RE11;每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中 的OFDM符号4、OFDM符号5、OFDM符号6、OFDM符号7、OFDM符号8、OFDM符号11、OFDM符号12及OFDM符号13中的每个OFDM符号对应的RE可以是指对应的部分RE,例如子帧0、子帧5、以及子帧9中的每个子帧中的OFDM符号4、OFDM符号5、OFDM符号6、OFDM符号7、OFDM符号8、OFDM符号11、OFDM符号12及OFDM符号13中的每个OFDM符号对应的RE包括所述每个OFDM符号对应的RE1、RE2、RE4、RE5、RE7、RE8、RE10以及RE11。
那么,实际上网络都是在第三资源上发送第一信号,根据第一资源是否包括第二资源的情况,又可以有不同的说法。例如,在第一资源包括第二资源的情况下,网络设备在第一资源上发送第一信号,可以理解为网络设备在第二资源和第三资源上发送第一信号,则终端设备在第一资源上接收第一信号,就可以相应理解为终端设备在第二资源和第三资源上接收第一信号,如图3的S36所示。或者,在第一资源不包括第二资源的情况下,网络设备在第一资源上发送第一信号,就可以理解为网络设备在第三资源上发送第一信号,则终端设备在第一资源上接收第一信号,就可以相应理解为终端设备在第三资源上接收第一信号,如图3的S37所示。其中,无论是网络设备在第二资源和第三资源上发送第一信号,还是网络设备在第三资源上发送第一信号,都可以理解为网络设备是在第一资源上发送第一信号。
另外,在S32中只是总体介绍了第二资源所包括的RE,而第一信号可能包括不同的信息,在第一信号包括的信息不同时,第二资源也可能有所不同,下面分别介绍。
第一信号包括承载在物理广播信道上的信号,第二资源包括以下RE中的至少一个RE:第一载波上的每个无线帧的子帧0中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;和/或
第一信号包括NPSS,第二资源包括以下RE中的至少一个RE:第一载波上的每个无线帧的子帧5中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE;和/或
第一信号包括NSSS,第二资源包括以下RE中的至少一个RE:第一载波上的每个无线帧的子帧9中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE。
以上第二资源的三种情况,可能存在其中的至少一种。
相应的,S36中也只是总体介绍了第三资源所包括的RE,而第一信号可能包括不同的信息,在第一信号包括的信息不同时,第三资源也可能有所不同,或者说第一资源进一步包括的资源可能有所不同,下面分别介绍。
第一信号包括承载在物理广播信道上的信号,第三资源(或第一资源进一步包括的资源)包括以下RE中的至少一个RE:第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
第一信号包括NPSS,第三资源(或第一资源进一步包括的资源)包括以下RE中的至少一个RE:第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
第一信号包括NSSS,第三资源(或第一资源进一步包括的资源)包括以下RE中的至少一个RE:第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
以上第三资源(或第一资源进一步包括的资源)的三种情况,可能存在其中的至少一种。
例如,第一信号包括承载在物理广播信道上的信号,则第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE中,可能有部分RE用于传输承载在物理广播信道上的信号,还可能有部分RE是用于传输导频,例如NRS,NRS可用来协助承载在物理广播信道上的信号解调,因此,第三资源(或第一资源进一步包括的资源)是包括第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE中的至少一个RE,而不一定是包括第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE中的全部RE。
在本申请实施例中,网络设备发送指示信息和发送第一信号这两个步骤之间不限制先后顺序,例如网络设备可以先发送指示信息后发送第一信号,或者网络设备可以先发送第一信号后发送指示信息,或者网络设备可以同时发送第一信号和指示信息。指示信息可以是第一指示信息或第二指示信息。
另外,在前文的介绍过程中,均介绍的是承载在物理广播信道上的信号通过子帧0传输,在一些实施方式中,承载在物理广播信道上的信号也可能通过子帧5和/或子帧9传输。那么,如果第一信号包括承载在物理广播信道上的信号,则第二资源可以包括以下RE中的至少一个RE:
第一载波上的每个无线帧的子帧0、子帧5、及子帧9中的每个子帧的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9。
相应的,如果第一信号包括承载在物理广播信道上的信号,则第三资源(或第一资源进一步包括的资源)可以包括以下RE中的至少一个RE:
第一载波上每个无线帧的子帧0、子帧5及子帧9中的每个子帧的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
以指示信息通过MIB-NB或SIB发送为例,终端设备在第一次接入一个网络设备中时,即终端设备注册到网络设备时,在与网络设备获取同步后需要先读取MIB-NB,之后再读取SIB,那么终端设备在还没有获取指示信息之前,可以根据协议规定的方式或网络设备与终端设备事先约定的方式接收第一信号,例如协议规定的方式或网络设备与终端设备事先约定的方式可以是网络设备不使用第一资源发送第一信号,这样可以尽量避免终端设备接收失败,当然协议规定的方式或网络设备与终端设备事先约定的方式也可以是网络设备使用第一资源发送第一信号,本申请实施例不做限制。在终端设备接收指示信息后,就可以根据指示信息所指示的方式接收第一信号,例如接收的是第一指示信息,第一指示信息指示网络设备使用第二资源发送第一信号,则终端设备就通过第二资源和第三资源接收第一信号,使得终端设备可以享受到使用额外的资源所带来的增益,而如果接收的是第二指示信息,第二指示信息指示网络设备不使用第二资源发送第一信号,则终端设备就通过第三资源接收第一信号,从而尽量避免接收错误。
终端设备在后续再接入到该网络设备中时,由于此前已经获取过指示信息,因此终端设备知晓指示信息所指示的网络设备发送第一信号所使用的资源,即知晓网络设备在发送第一信号时是否使用第二资源,因此终端设备可以直接根据之前接收的指示信息的指示来 接收第一信号,无需再次等待接收指示信息,使得终端设备接收第一信号的方式与网络设备发送第一信号的方式能够尽快实现一致。
本申请实施例提供的技术方案,有助于帮助终端设备明确接收第一信号的行为,避免了终端设备进行盲检测,保持了终端设备的复杂度和功耗维持在于早期版本相当的水平。
在NB-IoT系统的带内模式中,有一些下行子帧是需要预留出来传输LTE的多播信号的,如多播单频网络(multicast broadcast single frequency network,MBSFN)子帧。因此,在NB-IoT中,网络设备需要指示终端设备哪些子帧是无效(invalid)子帧。
在后续的演进中,系统会引入一些额外公共信号的传输,例如在NB-IoT的版本15(release-15,R-15)中,可以使用额外资源来传输SIB1-NB,以提升SIB1-NB的解调性能,和终端设备读取SIB1-NB所消耗的时延和功耗。为了避免这些额外资源对早期版本的终端设备造成影响,网络设备可以将用来传输SIB1-NB的子帧配置为invalid子帧,这样早期版本的终端设备就会知道这些额外资源所对应的子帧是invalid子帧,自然也就不会在这些invalid子帧中接收任何下行信号。例如,网络设备使用至少一个无线帧中的子帧4或子帧9来作为额外资源传输SIB1-NB,并将子帧4或子帧9配置为invalid子帧。但是,可能不是所有无线帧中的子帧4或子帧9都被用来传输SIB1-NB,但一旦子帧4或子帧9被配置为invalid子帧,则所有的无线帧中的子帧4或子帧9都会被终端设备理解为invalid子帧,则所有的终端设备都不会在invalid子帧中接收下行信号,这样会造成某些实际上不是invalid子帧的子帧因被当做invalid子帧而被浪费掉。因此,本申请提供一种方案,终端设备可以确定哪些是真正的invalid子帧,从而在不是invalid子帧的子帧上可以接收下行信号,以提升系统资源利用率。
网络设备可以确定至少一个无线帧中的实际invalid子帧,例如网络设备确定至少一个无线帧中的第一子帧为实际invalid子帧。则网络设备生成子帧信息,该子帧信息用于指示至少一个无线帧中的第一子帧为实际invalid子帧。网络设备发送子帧信息,则终端设备从网络设备接收该子帧信息,那么终端设备就可以根据该子帧信息确定至少一个无线帧中的第一子帧为实际invalid子帧。本申请实施例中,实际invalid子帧可以用于传输SIB1-NB和/或NSSS,例如实际invalid子帧可以包括承载SIB1-NB的子帧4,和/或,承载SIB1-NB和NSSS的子帧9。
例如网络设备可通过MIB-NB发送该子帧信息,则终端设备接收MIB-NB后,通过解析MIB-NB就可以获得该子帧信息,或者网络设备也可以通过其他信令发送该子帧信息。本申请实施例中,第一子帧例如包括无线帧中的子帧4和/或子帧9,当然还可能包括其他的子帧。
终端设备根据该子帧信息可以确定至少一个无线帧中的第一子帧为实际invalid子帧,则终端设备不在invalid子帧接收下行信号,从而减小终端设备的功耗。而在没有被配置为实际invalid子帧的子帧中,即在非实际invalid子帧中,终端设备可以接收下行信号,相当于,终端设备根据该子帧信息也可以确定非实际invalid子帧。非实际invalid子帧可以包括至少一个无线帧中除了第一子帧之外的其他子帧,以及除了所述至少一个无线帧外的其他无线帧所包括的子帧(包括这些无线帧中的第一子帧)。以前述实际invalid子帧包括子帧4和/或子帧9为例,非实际invalid子帧可以包括不承载SIB1-NB的子帧4,和/或,不承载SIB1-NB和NSSS的子帧9。当然,网络设备也可以针对包括了实际invalid子帧的无线帧进行指示,且具体是指示该无线帧中未被invalid的子帧,终端设备则根据该信息确 定实际invalid子帧。
例如,所述至少一个无线帧可以包括时域上的所有无线帧;或者包括时域上的每32个无线帧中的8个或16个无线帧,例如每32个无线帧中的前8个或16个无线帧等;或者包括时域上的每64个无线帧中的8个或16个无线帧,例如每64个无线帧中的前8个或16个无线帧等。
另外,网络设备在子帧集合中可以发送其他的信息,子帧集合包括网络设备配置的实际invalid子帧中的部分实际invalid子帧或全部实际invalid子帧,即,子帧集合包括所述至少一个无线帧中的第一子帧中的部分第一子帧或全部第一子帧。例如网络设备在子帧集合中发送SIB1-NB,那么,该子帧集合究竟包括哪些实际invalid子帧,网络设备可以事先告知终端设备,例如网络设备也可以通过MIB-NB告知终端设备,则终端设备接收MIB-NB后,就可以确定网络设备会在哪些实际invalid子帧上发送SIB1-NB,从而终端设备可以在该子帧集合上接收SIB1-NB。通过这种方式,既能尽量避免invalid子帧的浪费,也能使得终端设备正常接收下行信号,且终端设备还能在invalid子帧中接收SIB1-NB。
本申请实施例中,子帧集合例如包括第一部分无线帧的子帧4和/或第二部分无线帧的子帧9,当然还可能包括其他的子帧。第一部分无线帧与第二部分无线帧可能具有交集,也可能没有交集。所述至少一个无线帧包括所述第一部分无线帧和所述第二部分无线帧。
下面结合附图介绍本申请实施例提供的装置。
图4示出了一种网络设备400的结构示意图。该网络设备400可以实现上文中涉及的网络设备的功能。该网络设备400可以是上文中所述的网络设备,或者可以是设置在上文中所述的网络设备中的芯片。该网络设备400可以包括处理器401和收发器402。其中,处理器401可以用于执行图3所示的实施例中的S31、S32、及S33,和/或用于支持本文所描述的技术的其它过程。收发器402可以用于执行图3所示的实施例中的S34、S35、S36、以及S37,和/或用于支持本文所描述的技术的其它过程。
例如,处理器401,用于确定用于发送第一信号的第一资源,以及,在所述第一资源包括第二资源的情况下,生成第一指示信息,所述第一指示信息用于指示网络设备400使用所述第二资源发送所述第一信号;所述第二资源包括以下RE中的至少一个RE:
第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括NB-IoT的锚点载波和/或NB-IoT的非锚点载波;
收发器402,用于发送所述第一指示信息,以及,在所述第一资源上发送所述第一信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图5示出了一种终端设备500的结构示意图。该终端设备500可以实现上文中涉及的终端设备的功能。该终端设备500可以是上文中所述的终端设备,或者可以是设置在上文中所述的终端设备中的芯片。该终端设备500可以包括处理器501和收发器502。其中,处理器501可以用于执行图3所示的实施例中的S34、S35、S36、以及S37,和/或用于支持本文所描述的技术的其它过程。其中,处理器501执行S34、S35、S36、以及S37,主 要是完成对于收发器502所接收的信息的解析,例如处理器501可以解析第一指示信息或第二指示信息,确定第一指示信息或第二指示信息所指示的内容,也可以解析第一信号,获得第一信号承载的信息。收发器502可以用于执行图3所示的实施例中的S34、S35、S36、以及S37,和/或用于支持本文所描述的技术的其它过程。
例如,收发器502,用于从网络设备接收第一指示信息,所述第一指示信息用于指示所述网络设备使用第二资源发送第一信号;所述第二资源包括以下的RE中的至少一个RE:
第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括NB-IoT的锚点载波和/或NB-IoT的非锚点载波;
处理器501,用于根据所述第一指示信息确定所述网络设备使用所述第二资源发送所述第一信号;
收发器502,还用于在所述第一资源上接收所述第一信号,所述第一资源包括所述第二资源。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将网络设备400或终端设备500通过如图6A所示的通信装置600的结构实现。该通信装置600可以实现上文中涉及的网络设备或终端设备的功能。该通信装置600可以包括处理器601。其中,在该通信装置600用于实现图3所示的实施例中的网络设备的功能时,处理器601可用于执行图3所示的实施例中的S31、S32、及S33,和/或用于支持本文所描述的技术的其它过程。在该通信装置600用于实现图3所示的实施例中的终端设备的功能时,处理器601可用于执行图3所示的实施例中的S34、S35、S36、以及S37,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置600可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置600可被设置于本申请实施例的网络设备或终端设备中,以使得该网络设备或终端设备实现本申请实施例提供的信号发送、接收方法。
在一种可选实现方式中,该通信装置600还可以包括存储器602,可参考图6B,其中,存储器602用于存储计算机程序或指令,处理器601用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述网络设备或终端设备的功能程序。当网络设备的功能程序被处理器601译码并执行时,可使得网络设备实现本申请实施例的信号发送、接收方法中网络设备的功能。当终端设备的功能程序被处理器601译码并执行时,可使得终端设备实现本申请实施例的信号发送、接收方法中终端设备的功能。
在另一种可选实现方式中,这些网络设备或终端设备的功能程序存储在通信装置600外部的存储器中。当网络设备的功能程序被处理器601译码并执行时,存储器602中临时 存放上述网络设备的功能程序的部分或全部内容。当终端设备的功能程序被处理器601译码并执行时,存储器602中临时存放上述终端设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些网络设备或终端设备的功能程序被设置于存储在通信装置600内部的存储器602中。当通信装置600内部的存储器602中存储有网络设备的功能程序时,通信装置600可被设置在本申请实施例的网络设备中。当通信装置600内部的存储器602中存储有终端设备的功能程序时,通信装置600可被设置在本申请实施例的终端设备中。
在又一种可选实现方式中,这些网络设备的功能程序的部分内容存储在通信装置600外部的存储器中,这些网络设备的功能程序的其他部分内容存储在通信装置600内部的存储器602中。或,这些终端设备的功能程序的部分内容存储在通信装置600外部的存储器中,这些终端设备的功能程序的其他部分内容存储在通信装置600内部的存储器602中。
在本申请实施例中,网络设备400、终端设备500及通信装置600对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图4所示的实施例提供的网络设备400还可以通过其他形式实现。例如该网络设备包括处理模块和收发模块。例如处理模块可通过处理器401实现,收发模块可通过收发器402实现。其中,处理模块可以用于执行图3所示的实施例中的S31、S32、及S33,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图3所示的实施例中的S34、S35、S36、以及S37,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于确定用于发送第一信号的第一资源,以及,在所述第一资源包括第二资源的情况下,生成第一指示信息,所述第一指示信息用于指示所述网络设备使用所述第二资源发送所述第一信号;所述第二资源包括以下RE中的至少一个RE:
第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括NB-IoT的锚点载波和/或NB-IoT的非锚点载波;
收发模块,用于发送所述第一指示信息,以及,在所述第一资源上发送所述第一信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图5所示的实施例提供的终端设备500还可以通过其他形式实现。例如该终端设备包括处理模块和收发模块。例如处理模块可通过处理器501实现,收发模块可通过收发器502实现。其中,处理模块可以用于执行图3所示的实施例中的S34、S35、S36、以及S37,和/或用于支持本文所描述的技术的其它过程。其中,处理模块执行S34、S35、S36、以及S37,主要是完成对于收发模块所接收的信息的解析,例如处理模块可以解析第一指示信息或第二指示信息,确定第一指示信息或第二指示信息所指示的内容,也可以解析第一信号,获得第一信号承载的信息。收发模块可以用于执行图3所示的实施例中的S34、S35、S36、以及S37,和/或用于支持本文所描述的技术的其它过程。
例如,收发模块,用于从网络设备接收第一指示信息,所述第一指示信息用于指示所 述网络设备使用第二资源发送第一信号;所述第二资源包括以下的RE中的至少一个RE:
第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括NB-IoT的锚点载波和/或NB-IoT的非锚点载波;
处理模块,用于根据所述第一指示信息确定所述网络设备使用所述第二资源发送所述第一信号;
收发模块,还用于在所述第一资源上接收所述第一信号,所述第一资源包括所述第二资源。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的网络设备400、终端设备500、及通信装置600可用于执行图5所示的实施例或图3所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种信号发送方法,其特征在于,包括:
    网络设备确定用于发送第一信号的第一资源;
    在所述第一资源包括第二资源的情况下,所述网络设备生成第一指示信息,所述第一指示信息用于指示所述网络设备使用所述第二资源发送所述第一信号;所述第二资源包括以下资源单元RE中的至少一个RE:
    第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的正交频分复用OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括窄带物联网NB-IoT的锚点载波和/或NB-IoT的非锚点载波;
    所述网络设备发送所述第一指示信息;
    所述网络设备在所述第一资源上发送所述第一信号。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一资源不包括所述第二资源的情况下,所述网络设备生成第二指示信息,所述第二指示信息用于指示所述网络设备不使用所述第二资源发送所述第一信号;
    所述网络设备发送所述第二指示信息。
  3. 如权利要求1或2所述的方法,其特征在于,
    所述网络设备处于保护带模式或独立载波模式下。
  4. 如权利要求1-3任一所述的方法,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧0中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;和/或
    所述第一信号包括NPSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧5中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE;和/或
    所述第一信号包括NSSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧9中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE。
  5. 如权利要求1-4任一所述的方法,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NPSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NSSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对 应的RE。
  6. 一种信号接收方法,其特征在于,包括:
    终端设备从网络设备接收第一指示信息,所述第一指示信息用于指示所述网络设备使用第二资源发送第一信号;所述第二资源包括以下的资源单元RE中的至少一个RE:
    第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的正交频分复用OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括窄带物联网NB-IoT的锚点载波和/或NB-IoT的非锚点载波;
    所述终端设备在第一资源上接收所述第一信号,所述第一资源包括所述第二资源。
  7. 如权利要求6所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述网络设备不使用所述第二资源发送所述第一信号;
    所述终端设备在第三资源上接收所述第一信号,所述第三资源不包括所述第二资源。
  8. 如权利要求7所述的方法,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NPSS,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NSSS,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
  9. 如权利要求6-8任一所述的方法,其特征在于,
    所述网络设备处于保护带模式或独立载波模式下。
  10. 如权利要求6-9任一所述的方法,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧0中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;和/或
    所述第一信号包括NPSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧5中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE;和/或
    所述第一信号包括NSSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧9中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE。
  11. 如权利要求6-10任一所述的方法,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13 中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NPSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NSSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
  12. 一种网络设备,其特征在于,包括:
    处理器,用于确定用于发送第一信号的第一资源,以及,在所述第一资源包括第二资源的情况下,生成第一指示信息,所述第一指示信息用于指示所述网络设备使用所述第二资源发送所述第一信号;所述第二资源包括以下资源单元RE中的至少一个RE:
    第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的正交频分复用OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括窄带物联网NB-IoT的锚点载波和/或NB-IoT的非锚点载波;
    收发器,用于发送所述第一指示信息,以及,在所述第一资源上发送所述第一信号。
  13. 如权利要求12所述的网络设备,其特征在于,
    所述处理器,还用于在所述第一资源不包括所述第二资源的情况下,所述网络设备生成第二指示信息,所述第二指示信息用于指示所述网络设备不使用所述第二资源发送所述第一信号;
    所述收发器,还用于发送所述第二指示信息。
  14. 如权利要求12或13所述的网络设备,其特征在于,所述网络设备处于保护带模式或独立载波模式下。
  15. 如权利要求12-14任一所述的网络设备,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧0中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;和/或
    所述第一信号包括NPSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧5中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE;和/或
    所述第一信号包括NSSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧9中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE。
  16. 如权利要求12-15任一所述的网络设备,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NPSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NSSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
  17. 一种终端设备,其特征在于,包括:
    收发器,用于从网络设备接收第一指示信息,所述第一指示信息用于指示所述网络设备使用第二资源发送第一信号;所述第二资源包括以下的资源单元RE中的至少一个RE:
    第一载波上,每个无线帧的子帧0、子帧5以及子帧9中的每个子帧中的正交频分复用OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以及RE9;其中,所述第一载波包括窄带物联网NB-IoT的锚点载波和/或NB-IoT的非锚点载波;
    处理器,用于根据所述第一指示信息确定所述网络设备使用所述第二资源发送所述第一信号;
    收发器,还用于在所述第一资源上接收所述第一信号,所述第一资源包括所述第二资源。
  18. 如权利要求17所述的终端设备,其特征在于,
    所述收发器,还用于从所述网络设备接收第二指示信息,所述第二指示信息用于指示所述网络设备不使用所述第二资源发送所述第一信号;
    所述处理器,还用于根据所述第二指示信息确定所述网络设备不使用所述第二资源发送所述第一信号;
    收发器,还用于在第三资源上接收所述第一信号,所述第三资源不包括所述第二资源。
  19. 如权利要求18所述的终端设备,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NPSS,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NSSS,所述第三资源包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
  20. 如权利要求17-19任一所述的终端设备,其特征在于,所述网络设备处于保护带模式或独立载波模式下。
  21. 如权利要求17-20任一所述的终端设备,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧0中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE,以及,每个无线帧的子帧0中的OFDM符号4、OFDM符号7、OFDM符号8以及OFDM符号11中的每个OFDM符号中的RE0、RE3、RE6以 及RE9;和/或
    所述第一信号包括NPSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧5中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE;和/或
    所述第一信号包括NSSS,所述第二资源包括以下RE中的至少一个RE:所述第一载波上的每个无线帧的子帧9中的OFDM符号0、OFDM符号1以及OFDM符号2对应的全部RE。
  22. 如权利要求17-21任一所述的终端设备,其特征在于,
    所述第一信号包括承载在物理广播信道上的信号,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧0的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NPSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧5的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE;和/或
    所述第一信号包括NSSS,所述第一资源进一步包括以下RE中的至少一个RE:所述第一载波上每个无线帧的子帧9的OFDM符号3~OFDM符号13中的每个OFDM符号对应的RE。
PCT/CN2017/104296 2017-09-29 2017-09-29 一种信号发送、接收方法及设备 WO2019061264A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104296 WO2019061264A1 (zh) 2017-09-29 2017-09-29 一种信号发送、接收方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104296 WO2019061264A1 (zh) 2017-09-29 2017-09-29 一种信号发送、接收方法及设备

Publications (1)

Publication Number Publication Date
WO2019061264A1 true WO2019061264A1 (zh) 2019-04-04

Family

ID=65902192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104296 WO2019061264A1 (zh) 2017-09-29 2017-09-29 一种信号发送、接收方法及设备

Country Status (1)

Country Link
WO (1) WO2019061264A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303440A (zh) * 2012-05-11 2015-01-21 英特尔公司 用于独立新载波类型(nct)的下行链路控制指示
CN104796987A (zh) * 2014-01-16 2015-07-22 中兴通讯股份有限公司 发送系统信息的方法和装置
CN106961735A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 资源的使用方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104303440A (zh) * 2012-05-11 2015-01-21 英特尔公司 用于独立新载波类型(nct)的下行链路控制指示
CN104796987A (zh) * 2014-01-16 2015-07-22 中兴通讯股份有限公司 发送系统信息的方法和装置
CN106961735A (zh) * 2016-01-11 2017-07-18 中兴通讯股份有限公司 资源的使用方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Introduction of NB-IoT Enhancements", 3GPP TSG-RAN1 MEETING #88, R1-1704155, 17 February 2017 (2017-02-17), XP051236990 *

Similar Documents

Publication Publication Date Title
EP3923502A1 (en) Communication method, apparatus, and device
TWI569663B (zh) D2D signal transmission method and apparatus
JP2023078319A (ja) 端末装置、無線通信装置、無線通信方法及びコンピュータプログラム
WO2015109866A1 (zh) 信息传输的方法、用户设备及基站
CN113261320B (zh) 通信方法、装置及系统
WO2019120179A1 (zh) 一种信号发送、接收方法及设备
CN109391424B (zh) 一种数据发送方法、设备及系统
CN109151955B (zh) 一种通信方法及设备
EP4171103A1 (en) Communication method and apparatus
JP2017516356A (ja) 無線システムにおける通信
EP4068885A1 (en) Terminal device, base station device, and communication method
WO2019029706A1 (zh) 一种信息发送、信息接收方法及装置
CN104812053B (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2015027437A1 (zh) 通信方法、用户设备和基站
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2018137700A1 (zh) 一种通信方法,装置及系统
EP3661311B1 (en) Resource indication method, system, computer readable storage medium and computer program product
JP2023521639A (ja) 通信装置および基地局
WO2018128029A1 (ja) 端末装置、基地局装置、方法及び記録媒体
WO2022152427A1 (en) User equipment and base station involved in paging
WO2018202027A1 (zh) 子载波间隔类型的确定方法、装置
CN111034242B (zh) 一种发送小区配置信息的方法及装置
CN112399498A (zh) 用于小区测量的方法和装置
WO2019153144A1 (zh) 一种获取系统消息的方法和通信装置
WO2017193908A1 (zh) 信息的收发方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927235

Country of ref document: EP

Kind code of ref document: A1